
6

BogusBiter: A Transparent Protection
Against Phishing Attacks

CHUAN YUE and HAINING WANG
College of William and Mary

Many anti-phishing mechanisms currently focus on helping users verify whether a Web site is gen-
uine. However, usability studies have demonstrated that prevention-based approaches alone fail to
effectively suppress phishing attacks and protect Internet users from revealing their credentials to
phishing sites. In this paper, instead of preventing human users from “biting the bait,” we propose
a new approach to protect against phishing attacks with “bogus bites.” We develop BogusBiter, a
unique client-side anti-phishing tool, which transparently feeds a relatively large number of bogus
credentials into a suspected phishing site. BogusBiter conceals a victim’s real credential among
bogus credentials, and moreover, it enables a legitimate Web site to identify stolen credentials
in a timely manner. Leveraging the power of client-side automatic phishing detection techniques,
BogusBiter is complementary to existing preventive anti-phishing approaches. We implemented
BogusBiter as an extension to the Firefox 2 Web browser, and evaluated its efficacy through real
experiments on both phishing and legitimate Web sites. Our experimental results indicate that it
is promising to use BogusBiter to transparently protect against phishing attacks.

Categories and Subject Descriptors: H.4.3 [Information Systems Applications]: Communi-
cations Applications—Information browsers; K.4.4 [Computers and Society]: Electronic Com-
merce—Security; K.6.5 [Management of Computing and Information Systems]: Security and
Protection—Unauthorized access

General Terms: Design, Experimentation, Human Factors

Additional Key Words and Phrases: Phishing, web spoofing, credential theft, security, usability

ACM Reference Format:
Yue, C. and Wang, H. 2010. BogusBiter: A transparent protection against phishing attacks. ACM
Trans. Internet Technol. 10, 2, Article 6 (May 2010), 31 pages.
DOI = 10.1145/1754393.1754395 http://doi.acm.org/10.1145/1754393.1754395

This work was partially supported by NSF grants ECCS-0901537 and CNS-0916022.
A short version of this article has appeared in Proceedings of the Annual Computer Security
Applications Conference [Yue and Wang 2008].
Authors’ address: C. Yue and H. Wang, Department of Computer Science, College of William and
Mary, Williamsburg, VA 23187; email: {cyue,hnw}@cs.wm.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2010 ACM 1533-5399/2010/05-ART6 $10.00
DOI 10.1145/1754393.1754395 http://doi.acm.org/10.1145/1754393.1754395

ACM Transactions on Internet Technology, Vol. 10, No. 2, Article 6, Publication date: May 2010.

6:2 • C. Yue and H. Wang

1. INTRODUCTION

A phishing attack is typically carried out using an email or an instant mes-
sage, in an attempt to lure recipients to a fake Web site to disclose personal
credentials. Phishing attacks have seriously afflicted Internet users and finan-
cial institutions with identity thefts and brand reputation damage. According
to recent Anti-Phishing Working Group (APWG) reports [APWG 2008] and
Gartner surveys [GartnerSurvey 2006], the number of phishing sites, the num-
ber of phishing victims, and the amount of financial losses stemming from
phishing attacks have all increased over the past few years.

To defend against phishing attacks, a number of countermeasures have been
proposed and developed. Server-side defenses employ SSL certificates, user-
selected site images, and other security indicators to help users verify the le-
gitimacy of Web sites. Client-side defenses equip Web browsers with automatic
phishing detection features or add-ons to warn users away from suspected
phishing sites. However, recent usability studies have demonstrated that nei-
ther server-side security indicators nor client-side toolbars and warnings are
successful in preventing vulnerable users from being deceived [Downs et al.
2006; Dhamija et al. 2006; Schechter et al. 2007; Whalen and Inkpen 2005;
Wu et al. 2006a; Egelman et al. 2008]. This is mainly because (1) phishers can
convincingly imitate the appearance of legitimate Web sites, (2) users tend to
ignore security indicators or warnings, and (3) users do not necessarily inter-
pret security cues appropriately. Educational defenses teach users to under-
stand and avoid phishing attacks [Jagatic et al. 2007; Kumaraguru et al. 2007;
Sheng et al. 2007]. But they cannot completely foil phishing attacks. Takedown
defenses exploit spams and suspicious URLs to discover and shut down newly
emerged phishing sites. However, the efficacy of this approach is limited, due
to the ease of setting up and the short online time of phishing sites, as well
as the application of takedown evasion methods by phishers [Jakobsson and
Myers 2006; Moore and Clayton 2007; APWG 2008; KYE-Phishing 2008].

These different approaches are all preventive by nature. They endeavor to
prevent users from being tricked into revealing their credentials to phishing
sites. Nevertheless, these prevention-based approaches alone are insufficient
to shield vulnerable users from “biting the bait” and defeat phishers, as human
users are the weakest link in the security chain. The ever-increasing prevalence
and severity of phishing attacks clearly indicate that anti-phishing is still a
daunting challenge.

In response to this challenge, we have made two observations with respect
to the acquisition of credentials by phishers and the automatic detection of
phishing attacks on Web browsers. First, currently the majority of those who
have “bitten the bait” and fallen victim to phishing attacks are real victims;
thus, it is trivial for a phisher to verify the acquired credentials and trade them
for money. However, if we can supply phishing sites with a large number of
bogus credentials, we might be able to hide victims’ real credentials among
bogus credentials and make it harder for phishers to succeed.

Second, although remarkable advances in client-side automatic phishing
detection have empowered Web browsers to identify the majority of phishing

ACM Transactions on Internet Technology, Vol. 10, No. 2, Article 6, Publication date: May 2010.

BogusBiter: A Transparent Protection Against Phishing Attacks • 6:3

sites [Chou et al. 2004; Garera et al. 2007; Ludl et al. 2007; Zhang et al. 2007b;
FirefoxPhishingProtection 2008; MicrosoftPhishingFilter 2008], the possible
false positives (legitimate Web sites misclassified as phishing sites) make it
hard for Web browsers to directly block users’ connections to suspected phishing
sites. Thus, issuing warnings and expecting users to leave a suspected phishing
site have become the most common actions employed by modern Web browsers.
However, instead of just wishing vulnerable users could make correct decisions,
if we can effectively transform the power of automatic phishing detection into
the power of automatic fraud protection, we will take a big step forward towards
winning the battle against phishing.

In this paper, we propose a new approach to protect against phishing attacks
with “bogus bites” on the basis of the two observations we have mentioned. The
key feature of this approach is to transparently feed a relatively large number
of bogus credentials into a suspected phishing site, rather than attempt to
prevent vulnerable users from “biting the bait.” These “bogus bites” conceal
victims’ real credentials among bogus credentials, and enable legitimate Web
sites to identify stolen credentials in a timely manner. Based on the concept
of “bogus bites,” we design and develop BogusBiter, a unique client-side anti-
phishing tool that is complementary to existing prevention-based mechanisms.
Seamlessly integrated with the phishing detection and warning mechanisms
in modern Web browsers, BogusBiter is transparent to users.

At a user’s Web browser, BogusBiter is turned on once a login Web page is
classified as a phishing page by a Web browser’s built-in phishing detection
component or a third-party detection toolbar. For a victim who is beguiled into
divulging a real credential, BogusBiter hides the real credential among a set of
automatically generated bogus credentials, and then submits these credentials
one by one to the phishing site. For a security-conscious user who does not
reveal a real credential, BogusBiter also generates a set of bogus credentials,
and then submits them to the phishing site in the same way as it does for a
victim.

At the phishing site, a phisher will thus receive a much larger number
of credentials than before, but the overwhelming majority are bogus creden-
tials fed by BogusBiter. Elaborating bogus credential generation and sub-
mission mechanisms, BogusBiter makes it difficult for a phisher to distin-
guish who are real victims and which are real credentials. The only effective
way for a phisher to sift out bogus credentials is to visit the legitimate Web
site and verify whatever credentials have been collected from the phishing
site.

At the legitimate Web site, if the phisher assumes the burden of verifying all
the collected credentials to single out the real credentials, the unique design of
bogus credential generation will enable the legitimate site to identify victims’
stolen credentials in a timely manner and make it harder for a phisher to suc-
ceed. In other words, the bogus credential filtering process becomes the trigger
for detecting stolen credentials at the legitimate Web site, and hence, ironically,
the phisher’s attempt to bypass BogusBiter helps us to achieve automatic fraud
protection.

ACM Transactions on Internet Technology, Vol. 10, No. 2, Article 6, Publication date: May 2010.

6:4 • C. Yue and H. Wang

Fig. 1. (a) A phishing site designed to attack eBay users, (b) Firefox 2 phishing warning mecha-
nism.

While leveraging the power of widely used client-side automatic phishing de-
tection techniques, BogusBiter is not bound to any specific phishing detection
scheme. Thus, BogusBiter can utilize the latest advances in phishing detection
techniques such as blacklists and heuristics to protect against a wide range of
phishing attacks. Moreover, BogusBiter is incrementally deployable over the
Internet, and the fraud protection enabled at a legitimate Web site is indepen-
dent of the deployment scale of BogusBiter. We implemented BogusBiter as a
Firefox Web browser extension and evaluated its efficacy through real experi-
ments over both phishing and legitimate Web sites. Our experimental results
indicate that it is promising to use BogusBiter to transparently protect against
phishing attacks.

The remainder of this article is structured as follows. Section 2 introduces
the background of phishing attacks and the automatic phishing detection and
warning mechanisms in modern Web browsers. Section 3 details the design of
BogusBiter. Section 4 describes the implementation of BogusBiter. Section 5
evaluates the capability and performance of BogusBiter. Section 6 discusses
the deployment of BogusBiter and potential evasions against BogusBiter. Sec-
tion 7 surveys the related client-side anti-phishing research work, and finally,
Section 8 concludes the article.

2. BACKGROUND

Figure 1(a) illustrates a phishing site designed to attack eBay users. In a typical
scenario, a user receives a spoofed email that appears to be sent from the real
eBay, luring the user to log into the phishing site. Once the user believes this
site is the genuine eBay Web site and logs in, the user’s username/password
credential is stolen. Passwords have increasingly been targeted by harvesting
attacks, as they protect online accounts with valuable assets [Florêncio and
Herley 2007]. While some phishing attacks may steal other types of credentials
such as credit card numbers and social security numbers, the most common
type of phishing attack attempts to steal account numbers and passwords
used for online banking [Jakobsson and Young 2005]. Therefore, protecting a

ACM Transactions on Internet Technology, Vol. 10, No. 2, Article 6, Publication date: May 2010.

BogusBiter: A Transparent Protection Against Phishing Attacks • 6:5

user’s username/password credential is the primary focus of many client-side
anti-phishing research work such as SpoofGuard [Chou et al. 2004], Dynamic
Security Skins [Dhamija and Tygar 2005], AntiPhish [Kirda and Kruegel 2005],
PwdHash [Ross et al. 2005], Web Wallet [Wu et al. 2006b], and Passpet [Yee and
Sitaker 2006]. Our work also focuses on protecting a user’s username/password
credential. In the remainder of this article, we use the terms credential and
username/password pair interchangeably.

The potential threat of phishing or Web spoofing attacks was first uncovered
by Felten et al. [1997]. Today, phishing is not merely about Web site forgery
and email spoofing, it has become a carefully planned and well structured
multiphase effort to steal money. The life cycle of a phishing attack consists of
six phases: planning, setup, attack, collection, fraud & abuse, and post attack,
as defined by the Financial Services Technology Consortium [FSTC-Phishing
2005]. Various techniques can be applied in these six phases to combat phishing.
However, since phishing sites can be easily set up and money laundering is still
a difficult problem to curtail, current research and industry efforts focus mainly
on the attack phase, with the objective of preventing users from submitting
their credentials to phishing sites.

In contrast, the BogusBiter’s protection against phishing attacks ranges
from the attack phase to the collection phase, and then to the fraud & abuse
phase, covering the flow of credentials. Specifically, BogusBiter retaliates
against phishers with a large number of bogus credentials in the attack phase,
makes it hard for them to identify real credentials in the collection phase, and
detects their fraudulent activities in the fraud & abuse phase.

While distinct from preventive anti-phishing mechanisms, BogusBiter com-
plements them in a natural way. In particular, BogusBiter leverages the power
of client-side automatic phishing detection mechanisms and takes advantage
of the state-of-practice phishing warning mechanisms in popular Web browsers
to transparently protect vulnerable users.

Among automatic phishing detection mechanisms, two commonly used tech-
niques are blacklists and heuristics. Blacklist-based techniques generate close-
to-zero false positives and can detect most phishing attacks [Ludl et al. 2007;
Zhang et al. 2007a; FirefoxPhishingTest 2006; Robichaux and Ganger 2006].
For example, Ludl et al. [2007] demonstrated that blacklists provided by Google
(used by Firefox 2) can recognize almost 90% of live phishing sites. However,
because some phishing sites may not be added into blacklists and the so-called
zero-day attacks may occur, researchers have proposed various heuristic-based
techniques to identify phishing sites in real time [Chou et al. 2004; Garera
et al. 2007; Ludl et al. 2007; Zhang et al. 2007b]. These heuristic-based tech-
niques have obtained very encouraging results. For example, CANTINA, a
content-based detection tool proposed by Zhang et al. [2007b] can identify 90%
of phishing pages with only 1% false positives. A URL-based classifier proposed
by Garera et al. [2007] is another tool that can catch 95.8% of phishing pages
with only 1.2% false positives.

Currently, Firefox 2 primarily employs blacklist-based techniques while
Internet Explorer (IE) 7 uses both kinds of techniques [FirefoxPhishingPro-
tection 2008; MicrosoftPhishingFilter 2008]. Because BogusBiter’s design is

ACM Transactions on Internet Technology, Vol. 10, No. 2, Article 6, Publication date: May 2010.

6:6 • C. Yue and H. Wang

independent of any specific detection scheme, it can leverage advances in both
blacklist-based techniques and heuristic-based techniques to combat the ma-
jority of phishing attacks.

Regarding phishing site warning mechanisms, the state of practice is to
make it mandatory for a user to respond to the active warning of a suspected
phishing site. Figure 1(b) illustrates the warning given by Firefox 2 [Firefox-
PhishingProtection 2008] after correctly identifying the example Web site in
Figure 1(a) as a phishing site. A user is unable to enter the username and pass-
word without first interacting with the warning page. If the user clicks the “Get
me out of here!” link, the user is redirected to a default page and is protected.
Otherwise, if the user clicks the “Ignore this warning” link, the warning page
disappears and the user is exposed to the risk of credential theft. A similar
warning mechanism is also used in IE 7 [MicrosoftPhishingFilter 2008].

Both Firefox 2 and IE 7 might choose such a active warning mechanism
because: (1) issuing warnings simply through browser-based security indica-
tors such as the address bar, the status bar, and various toolbars is ineffec-
tive [Downs et al. 2006; Dhamija et al. 2006; Schechter et al. 2007; Whalen
and Inkpen 2005; Wu et al. 2006a; Egelman et al. 2008], and (2) directly
blocking users’ connections to suspected phishing sites is unacceptable, due
to inevitable false positives. Although using an active warning page repre-
sents current best practice, a recent usability study conducted by Egelman
et al. [2008] demonstrates that overall about 21% of participants still ignore
the IE 7 and Firefox 2 active phishing warnings and fall for phishing attacks.
Therefore, a crucial usability gap still exists in today’s anti-phishing ecosys-
tem, and many users who are most vulnerable to phishing still cannot be
protected.

Phishing attacks are very insidious, and so far there is no single silver
bullet for completely defeating phishers. Comprehensive, multifaceted, and
integrated approaches are clearly needed in the anti-phishing ecosystem.
BogusBiter fits into such an anti-phishing ecosystem especially by aiming to fill
the aforementioned usability gap. Properly leveraging existing anti-phishing
efforts, BogusBiter is capable of providing a transparent protection to those
most vulnerable users.

3. DESIGN

In this section, we first give an overview on the design of BogusBiter, includ-
ing the basic working mechanism, the main design assumption, and the two
key design objectives. We then detail the offensive line and defensive line of
BogusBiter.

3.1 Design Overview

BogusBiter is designed as either a new component or an extension to popular
Web browsers such as Firefox 2 or IE 7. It integrates seamlessly with phish-
ing detection and warning mechanisms of current Web browsers to protect
vulnerable users against phishing attacks.

ACM Transactions on Internet Technology, Vol. 10, No. 2, Article 6, Publication date: May 2010.

BogusBiter: A Transparent Protection Against Phishing Attacks • 6:7

Fig. 2. Anti-phishing with BogusBiter.

3.1.1 How It Works. In the scenario without BogusBiter, when a phishing
site is visited by users, only real credentials are submitted by vulnerable users,
and a phisher can easily verify the collected credentials and trade them for
money.

The basic idea of BogusBiter is very simple, as illustrated in Figure 2. When
a login page is classified as a phishing page by a browser’s built-in detection
component or a third-party detection toolbar, BogusBiter is triggered. At this
point, BogusBiter will perform differently based on a user’s response to the
browser’s phishing warning page. For a vulnerable user who clicks the “Ignore
this warning” link and submits a real credential, BogusBiter will intercept the
victim’s real credential, hide it among a set of S−1 generated bogus credentials,
and then submit the S credentials one by one to the phishing site within a few
milliseconds. For a security-conscious user who clicks the “Get me out of here!”
link on the warning page, BogusBiter will generate a set of S bogus credentials,
and then feed them one by one into the phishing site in the same way as it
does for a vulnerable user. These actions are completely transparent to both
vulnerable and security-conscious users. The BogusBiter extensions installed
on users’ browsers make up the offensive line. Later on, when a phisher verifies
the collected credentials at the legitimate site, the defensive line enabled by
BogusBiter will help a legitimate site to detect victims’ stolen credentials in a
timely manner.

3.1.2 Design Assumption. We assume that a phisher does not have a com-
plete list of valid usernames for a targeted legitimate Web site, and cannot
directly query a targeted legitimate Web site for the validity of a specific user-
name. Although this assumption may not be strictly correct for email service
Web sites and community Web sites, it is generally true for financial institu-
tions, which are the main targets of phishing attacks. Financial institutions
seldom have valid username lists publicly accessible. Meanwhile, for a failed
login attempt, Web sites often try to hide whether the failure is due to an in-
correct username or due to an incorrect password by returning the same error
message [Bortz et al. 2007; Florêncio et al. 2007], making it very hard to test
the validity of a given username.

ACM Transactions on Internet Technology, Vol. 10, No. 2, Article 6, Publication date: May 2010.

6:8 • C. Yue and H. Wang

Indeed, preventing the leakage of username validity information is neces-
sary for protecting user privacy, guarding users from invasive advertising and
phishing, and defending against password guessing attacks. To enhance such
a protection, the recent work by Bortz et al. [2007] recommends that the re-
sponse time of HTTP requests should be carefully controlled by some Web sites
to remove timing vulnerabilities. Florêncio et al. [2007] further suggest that
increasing username strength could be more beneficial than merely increasing
password strength.

3.1.3 Design Objectives. To be effective, BogusBiter has two key design
objectives:

—Offensive objective. BogusBiter should inject as many bogus credentials as
possible into a phishing site, thus well hiding victims’ real credentials among
bogus credentials.

—Defensive objective. Given that a phisher is aware of BogusBiter and is will-
ing to assume the heavy burden of sifting out bogus credentials, Bogus-
Biter should enable a legitimate Web site to exploit the filtering process
initiated by the phisher to detect victims’ stolen credentials in a timely
manner.

3.2 Offensive Line

To achieve its offensive objective, BogusBiter should strive to meet the following
three requirements.

—Massiveness. The number of bogus credentials fed into a phishing site should
be large so that the overwhelming majority of credentials received by a
phisher are bogus.

—Indiscernibility. Without the credential verification at the legitimate Web
site, it is extremely difficult for a phisher to deterministically discern, either
at credential submission time or afterwards, who are real victims and what
are real credentials.

—Usability. The usage of BogusBiter at the client-side should not incur undue
overhead or unwanted side effects, nor should it produce any security or
privacy concerns.

3.2.1 Massiveness. We use the real-to-all ratio—the ratio between the
number of real credentials being collected and the total number of credentials
being collected—to estimate how many bogus credentials should be fed into a
phishing site to hide victims’ real credentials. In the scenario without Bogus-
Biter, most or perhaps all credentials collected by a phisher are real credentials
submitted by victims, thus the real-to-all ratio is close to one. A phisher can
easily verify these credentials at the legitimate Web site, assess their values,
and ultimately use them to obtain money.

In the scenario of anti-phishing with BogusBiter (Figure 2), a phishing site
receives both real credentials and bogus credentials. Real credentials came

ACM Transactions on Internet Technology, Vol. 10, No. 2, Article 6, Publication date: May 2010.

BogusBiter: A Transparent Protection Against Phishing Attacks • 6:9

from cheated users, that is, users who visited the phishing site and meanwhile
became victims by revealing their credentials. The ratio between the number
of cheated users and the total number of phishing site visitors can be denoted
as cheat-to-visit. This ratio is often used by researchers to estimate the severity
of phishing attacks. So if the total number of phishing site visitors is N, the
number of real credentials being collected at the phishing site becomes “N∗
cheat-to-visit.” Meanwhile, because BogusBiter submits a set of S credentials
in each phishing site visit (either by a cheated user or by a security-conscious
user as explained in the design overview), the total number of credentials
being collected at the phishing site becomes “N ∗ S.” Therefore, in the scenario
of anti-phishing with BogusBiter, the real-to-all ratio can be computed as:
cheat-to-visit

S .
If all the phishing site visitors become victims, the cheat-to-visit ratio equals

one. Therefore, the upper bound of the real-to-all ratio is 1
S . However, the exper-

iments conducted by Jakobsson and Ratkiewicz [2006] demonstrate that even
with the effects of modern anti-phishing efforts, about 11 ± 3% of users will
read a spoofed email, visit the phishing site, and enter their login credentials.
In addition, Garera et al. [2007] found that on average, 8.24% of users become
victims after visiting phishing sites. If we use 10% as a realistic value for the
cheat-to-visit ratio, the real-to-all ratio becomes 1

10S . Thus, if the value of the
set size S is 10, a real credential will be hidden among 100 bogus credentials.
Moreover, it is plausible to assume that the cheat-to-visit ratio will decrease in
the long run due to technical advances and educational efforts—a trend that fa-
vors BogusBiter. Assuming that the indiscernibility requirement is achievable,
we now analyze the probability and the expected number of tries for a phisher
to single out a certain number of real credentials by verifying them at the le-
gitimate Web site. Since each set of S credentials is submitted by BogusBiter
from a user’s browser within a few milliseconds, a phisher can easily group
the collected credentials by sets and verify them. If a set of S credentials is
submitted from a victim’s browser, the real credential will be singled out by
a phisher with an expected number of S+1

2 tries. However, because a phisher
cannot discern which set includes a real credential, the phisher has to verify
all sets of the collected credentials in order to single out as many real creden-
tials as possible. Considering the very low cheat-to-visit ratio, without loss of
generality, we simplify our analysis by mixing together all sets of the collected
credentials. Let n be the total number of credentials collected at a phishing
site, and m be the number of real credentials revealed by victims. Let Xk be
the discrete random variable representing the number of tries performed by
the phisher to single out k real credentials. Let Pr(Xk = i) be the probability of
“Xk = i” and E[Xk] be the expectation of Xk. Intuitively, Pr(Xk = i) is the proba-
bility that a phisher identifies the kth real credential until the ith try. That is, in
the first i −1 tries, the phisher has identified k−1 real credentials; meanwhile,
at the ith try, the phisher also identifies a real credential. Therefore, based on
the definition of the binomial coefficient, we can calculate Pr(Xk = i) and E[Xk]
using Formula (1) and Formula (2), respectively, where

∑n−m+k
i=k Pr(Xk = i) = 1

ACM Transactions on Internet Technology, Vol. 10, No. 2, Article 6, Publication date: May 2010.

6:10 • C. Yue and H. Wang

Fig. 3. Expected number of tries for a phisher to single out: (a) one real credential, (b) all real
credentials.

and k = 1, 2, . . . , m.

Pr(Xk = i) =
(n−m

i−k

)(m
k−1

)
(n

i−1

) · m− (k − 1)
n − (i − 1)

(1)

E[Xk] =
n−m+k∑

i=k

i · Pr(Xk = i) (2)

=
n−m+k∑

i=k

i ·
(n−m

i−k

)(m
k−1

)
(n

i−1

) · m− (k − 1)
n − (i − 1)

.

With the cheat-to-visit ratio set to 10%, Figure 3(a) illustrates the expected
number of tries for a phisher to single out one real credential, that is, E[X1].
The four curves correspond to four different values of set size S. For example,
if there are 6 real credentials hidden among all the collected credentials, to
single out one real credential, the expected number of tries are 69 and 103,
for set sizes 8 and 12, respectively. Figure 3(b) illustrates the expected number
of tries for a phisher to single out all real credentials. Similarly, if there are
6 real credentials hidden among all the collected credentials, to single out
these 6 real credentials, the expected number of tries are 412 and 618, for
set sizes 8 and 12, respectively. From this example, we can see that a set
size of 8 can already allow BogusBiter to feed a relatively large number of
bogus credentials into a phishing site and well hide victims’ real credentials
among bogus credentials. However, we should note that such a hiding effect
will never be enough to frustrate greedy phishers who intend to verify all
the collected credentials. Therefore, a defensive line enabled by BogusBiter is
highly desirable (see Section 3.3).

3.2.2 Indiscernibility. The indiscernibility requirement is essential for
BogusBiter to work. It has two implications: (1) the submission actions ini-
tiated from victims’ browsers should be very difficult to be differentiated from
the submission actions initiated from security-conscious users’ browsers, and

ACM Transactions on Internet Technology, Vol. 10, No. 2, Article 6, Publication date: May 2010.

BogusBiter: A Transparent Protection Against Phishing Attacks • 6:11

(2) victims’ real credentials should be very difficult to be differentiated from
bogus credentials generated by BogusBiter.

For a victim who ignores a browser’s phishing warning, BogusBiter first
intercepts the credential submission HTTP request before it is sent out. Next,
BogusBiter creates S−1 bogus credentials based on the victim’s real credential
and spawns S − 1 new HTTP requests based on the original HTTP request.
Each of the S −1 spawned requests is exactly the same as the original request,
except for carrying a bogus credential instead of a real one. Then, BogusBiter
inserts the original HTTP request into the S − 1 spawned requests and sends
out all the S requests within a few milliseconds. Finally, BogusBiter interprets
and properly processes the returned HTTP responses so that a phishing site
cannot identify the differences between the S submissions.

For a security-conscious user who accepts a browser’s phishing warning,
BogusBiter first imitates a victim’s behavior by entering a generated bogus
credential into the phishing page and submitting it. Next, similar to the above
case for a real victim, BogusBiter intercepts this original HTTP request, spawns
S − 1 new HTTP requests, and generates the corresponding S − 1 bogus cre-
dentials as well. Finally, BogusBiter sends out the S requests and processes
the returned responses in the same way as it does for a victim, thereby making
it hard for a phisher to distinguish these submissions from those initiated from
a victim’s browser.

As for bogus credential generation, BogusBiter uses the original credential
as the template to generate the S − 1 bogus credentials. For a victim, the
original credential is the victim’s real credential and thus is ready to use.
For a security-conscious user, the automatically generated original credential
should be similar to a human’s real credential. In current design, BogusBiter
randomly generates a username/password pair as the original credential. For
the remaining S − 1 bogus credentials, a specific rule should be followed to
generate them so that neither a human nor a computer can easily discern
which is the original credential and which are the rest. We will present the
rule used by BogusBiter in Section 3.3.

3.2.3 Usability. In terms of usability, the major advantage of BogusBiter is
its transparency to users. Complementary to existing preventive anti-phishing
approaches, BogusBiter automatically defends against phishing attacks with-
out user involvement. Meanwhile, because BogusBiter only needs to submit
some extra bogus credentials to a suspected phishing site and does not contact
any third-party service, it will not cause any security or privacy problems.

The main usability concerns come from the scenario of a false positive (i.e.,
a legitimate Web site is wrongly classified as a phishing site). While the oc-
currence of false positives is rare for Firefox 2, IE 7, and recent detection
techniques as mentioned in Section 2, BogusBiter should eliminate or reduce
the possible side effects on users’ access to misclassified legitimate Web sites.

The first side effect is that submitting a set of S login requests and waiting
for responses will induce an additional delay to users. To reduce the delay,
BogusBiter sends out all the S requests within a few milliseconds, so that the
round-trip times of the S submissions can be overlapped as much as possible.

ACM Transactions on Internet Technology, Vol. 10, No. 2, Article 6, Publication date: May 2010.

6:12 • C. Yue and H. Wang

Accordingly, as long as the set size S is not too large, the additional delay
incurred by BogusBiter should be minimal and unobtrusive. Our experimental
results in Section 5 confirm that the additional delays are negligible.

The second side effect is that a user’s real account may be locked because
multiple login requests are submitted from the user’s browser to a legitimate
Web site within a few milliseconds. To defend against password guessing at-
tacks, some Web sites may lock a user’s account for a period of time after several
failed login attempts. However, because all the usernames are different for the
S login requests sent out by BogusBiter, the “account with many failed login
attempts” alarm will not be triggered as discussed in [Pinkas and Sander 2002].
Our experiments on 20 legitimate Web sites confirm that account locking is not
a concern for BogusBiter.

The third side effect is that a user may be asked to complete a
CAPTCHA [Ahn et al. 2003] test, for the same reason that multiple login re-
quests are submitted from the user’s browser within a few milliseconds. Some
Web sites may resort to this mechanism to counter password guessing attacks
or denial of service attacks. However, in our legitimate site experiments where
false positives are assumed to occur, no CAPTCHA test is triggered if the set
size S is not greater than 10, and only two of the 20 Web sites ask a user to do
a CAPTCHA test if the set size S is greater than 10.

3.3 Defensive Line

Simply requiring BogusBiter to meet the offensive objective is not sufficient.
This is because even if victims’ real credentials are well hidden among bogus
credentials, a phisher can still visit the legitimate Web site to verify each
of the collected credentials. Therefore, a defensive line is highly desirable,
and BogusBiter should enable a legitimate Web site to exploit the verification
process initiated (either manually or automatically) by the phisher to detect
victims’ stolen credentials in a timely manner.

3.3.1 Working Mechanism. BogusBiter makes such a defensive line fea-
sible by imposing a correlation requirement upon the generation of the S − 1
bogus credentials. It is important that this correlation requirement should not
violate the indiscernibility requirement of credential generation, that is, vic-
tims’ real credentials should be very difficult to be differentiated from bogus
credentials generated by BogusBiter.

—Correlation Requirement. Based on the original credential, a specific rule is
applied to generate the S − 1 bogus credentials. This rule must guarantee
that the S credentials in a set are correlated: given any one of them, we can
reversely derive a small superset that includes all the S credentials.

BogusBiter attempts to meet both the correlation and indiscernibility re-
quirements on credential generation by using a simple substitution rule. While
there are other ways to meet the two requirements, we choose the substitution
rule because of its simplicity and efficiency for verification. Due to our empiri-
cal experience that if the set size S is not greater than 10, no usability problem
occurs and the delay overhead is small (see Section 5), the substitution rule

ACM Transactions on Internet Technology, Vol. 10, No. 2, Article 6, Publication date: May 2010.

BogusBiter: A Transparent Protection Against Phishing Attacks • 6:13

is tailored to have S ≤ 10. Note that the exact value of S should be publicly
known.

To generate the S−1 bogus username/password pairs, BogusBiter first com-
putes an integer position i between 1 and S inclusively. This integer position
determines which set of S − 1 bogus credentials will be generated, and it also
determines in which order the S credentials will be sent out to a phishing site.
BogusBiter uses Formula (3) to deterministically compute this integer position
i:

i = PRF(k, original username) mod S + 1, (3)

where k is a master secret that is randomly chosen when a BogusBiter is in-
stalled or configured, and PRF is a secure pseudorandom function. The master
secret k is securely stored and used by BogusBiter. A user does not need to
memorize the master secret, but is allowed to export and use the same master
secret on different computers. From a given original credential, the same S − 1
bogus credentials will always be generated, and the S credentials will always
be submitted to a phishing site in the same order. Therefore, even if a phisher
can attack a victim multiple times, the phisher cannot find the real credential
by observing which credential over time appears most often. Meanwhile, since
this formula only securely hashes the original username, it is applicable both
to Web sites that ask a user to submit username/password pair at the same
time, and to Web sites that require a user to first submit a username and then
submit a password.

Next, BogusBiter identifies the first digit in the original username as the
username replacement character, denoted as username-rc; if the original user-
name does not contain a digit, the first letter (upper or lower case) is identified
as the username-rc. Using the same method, BogusBiter identifies the pass-
word replacement character in the original password, denoted as password-rc.

Then, for each integer position j from 1 to S inclusively where j �= i,
BogusBiter generates a bogus username/password pair by substituting both
the username-rc character and the password-rc character in the original user-
name/password pair using one of the following two replacement methods:

(1) For the case of j − i > 0: if username-rc (also for password-rc) is a letter,
this lower (or upper) case letter is replaced by another lower (or upper) case
letter j − i places further down the alphabet, wrapped around if needed,
i.e., ‘z’ is followed by ‘a’ (or ‘Z’ is followed by ‘A’); if username-rc (also for
password-rc) is a digit, this digit is replaced by another digit j − i places
further down the single digit sequence “0123456789,” wrapped around if
needed, that is, “9” is followed by “0.”

(2) For the case of j − i < 0: if username-rc (also for password-rc) is a letter,
this lower (or upper) case letter is replaced by another lower (or upper)
case letter i − j places further up the alphabet, wrapped around if needed,
that is, “a” is followed by “z” (or “A” is followed by “Z”); if username-rc
(also for password-rc) is a digit, this digit is replaced by another digit i − j
places further up the single digit sequence “0123456789”, wrapped around
if needed, i.e., “0” is followed by “9.”

ACM Transactions on Internet Technology, Vol. 10, No. 2, Article 6, Publication date: May 2010.

6:14 • C. Yue and H. Wang

Table I.
Substitution from the original

username/password pair
(mcsmith/Fuzzycat15)

Position Username/Password
j = 1 (kcsmith/Fuzzycat95)
j =2 (lcsmith/Fuzzycat05)
→i =3 (mcsmith/Fuzzycat15)
j =4 (ncsmith/Fuzzycat25)

Table II.
Derivation from the

username/password pair
(lcsmith/Fuzzycat05)

Username/Password
(icsmith/Fuzzycat75)
(jcsmith/Fuzzycat85)
(kcsmith/Fuzzycat95)
→(lcsmith/Fuzzycat05)
(mcsmith/Fuzzycat15)
(ncsmith/Fuzzycat25)
(ocsmith/Fuzzycat35)

Table I illustrates an example of applying the substitution rule to the original
username/password pair (mcsmith/Fuzzycat15). In this example, the username
replacement character username-rc is the first ‘m’ in the original username
and the password replacement character password-rc is the digit “1” in the
original password. These two alphanumeric characters will be replaced to gen-
erate S − 1 bogus credentials. If S = 4 and the computed integer position i
is 3, three bogus username/password pairs are generated for j = 1, 2, and 4,
respectively.

Finally, BogusBiter submits the S username/password pairs to a suspected
phishing site following their corresponding position order. Using Formula (3) to
compute the integer position i and using their position order to send out the
S credentials, BogusBiter makes it hard for a phisher to narrow down a vic-
tim’s real credential even if the victim visits a phishing site twice from the
same browser and enters the real credential twice. However, we should note
that the overall extent to which the indiscernibility requirement can be met
still depends on the characteristics (such as meaningfulness) of a victim’s real
credential. We further discuss this limitation in Section 6.3.1.

Clearly the substitution rule above meets the correlation requirement. Given
any one of the S credentials, we can derive at most 2 ∗ (S − 1) variations
based on the substitution rule, in which further down replacement produces
S − 1 variations and further up replacement produces other S − 1 variations.
These 2 ∗ (S − 1) + 1 credentials cover all the S credentials submitted to the
phishing site. Table II lists an example derivation from the credential (lcsmith/
Fuzzycat05).

Now let us see how a legitimate Web site can take advantage of the corre-
lation requirement to identify the credentials stolen by phishing attacks. If a
phisher is lucky enough (with 1

S probability) to choose a victim’s real credential

ACM Transactions on Internet Technology, Vol. 10, No. 2, Article 6, Publication date: May 2010.

BogusBiter: A Transparent Protection Against Phishing Attacks • 6:15

Fig. 4. The Stolen Credential Identification (SCI) procedure.

as the first try to verify at the legitimate Web site, this login attempt will suc-
ceed and the legitimate Web site cannot detect the fact that a real credential
has been stolen and verified. However, for any failed login attempt, the legit-
imate Web site will trigger the procedure of Stolen Credential Identification
(SCI), which is illustrated in Figure 4. SCI takes the failed username/password
pair (f-uname/f-pword) as its input. It constructs the set D of derived creden-
tials (line 2), and seeks a match between a derived username/password pair
and a valid account’s username/password pair. Then, it adds any derived user-
name/password pair (d-uname/d-pword) that matches a valid account’s user-
name/password pair to the result set R (line 6). SCI finally returns the result
set R as its output.

If the failure of a login attempt is caused by a phisher who is verifying
any one of the S − 1 bogus credentials generated from a victim’s real cre-
dential, SCI must report a match since the derived credential set D contains
the victim’s real credential. The matched credential is the victim’s real cre-
dential that has been revealed to the phisher, and is included in the result
set R. However, if the failure of a login attempt is due to any other reasons,
even if there is a chance that a derived username d-uname may match a valid
account’s username (line 4), the probability that the correspondingly derived
password d-pword also happens to match this valid account’s password (line 5)
is extremely low. This probability is equivalent to that of randomly guessing
a valid account’s password. As an example, if a user accidentally mistypes
the user’s real password (or an attacker launches online password guessing
attacks against a user), the login attempts will fail but SCI will not report a
match.

Therefore, if the result set R is not empty, the username/password pair
(the probability of having two or more credential pairs in the result set R is
also extremely low) contained in R must have been stolen by a phisher. The
legitimate Web site can take immediate actions to protect the victim even before
the phisher figures out the victim’s real credential. Because SCI is turned on
only when a login attempt fails and it only needs a small number of verifications
(at most 2 ∗ (S − 1) for our substitution rule), the overhead is very small for a

ACM Transactions on Internet Technology, Vol. 10, No. 2, Article 6, Publication date: May 2010.

6:16 • C. Yue and H. Wang

legitimate Web site. If necessary, this identification task can even be delegated
to a separate machine.

3.3.2 Deployment of Defensive Line. While BogusBiter is installed in a
user’s Web browser, the defensive line enabled by BogusBiter needs to be
deployed only on those legitimate Web sites that are really targeted by
phishers. These phishing-targeted legitimate Web sites listed in the APWG
database [APWG-PSTC 2008] usually have properly registered domain names
and well-designed Web pages, and may even be whitelisted by some phish-
ing detection tools. None of their login pages will be misclassified as phishing
pages by popular detection tools. The rare false positives [Zhang et al. 2007a;
Robichaux and Ganger 2006] produced by phishing detection tools are mainly
caused by some legitimate Web sites that are almost never targeted by phish-
ing attacks. We do not need to deploy the defensive line of BogusBiter on
them.

Moreover, the deployment work on phishing-targeted legitimate Web sites
is very simple because SCI only uses these Web sites’ existing authentica-
tion information and does not change their authentication mechanisms (no
matter plaintext-equivalent mechanisms or verifier-based mechanisms). This
server-side deployment cost is minimal compared to that of Dynamic Security
Skins [Dhamija and Tygar 2005], which changes authentication mechanisms
via the SRP protocol [Wu 1998], and to that of BeamAuth [Adida 2007], which
demands an extra secret token for every user account.

3.3.3 Scale-Independency Properties. The defensive line enabled by
BogusBiter also has two valuable scale-independency properties. First, the
efficacy of the defensive line does not depend on the cheat-to-visit ratio, that
is, it does not require a large percentage of users to properly respond to anti-
phishing warnings. Second, the efficacy does not depend upon a massive instal-
lation of BogusBiter in users’ browsers, that is, even a single vulnerable user
who installs BogusBiter can benefit from a deployed defensive line. These two
scale-independency properties are not only valuable by themselves, they also
ensure that BogusBiter cannot be easily evaded by sophisticated phishers, as
will be discussed in Section 6.

4. IMPLEMENTATION

We have implemented BogusBiter as a Firefox extension in approximately 1700
lines of JavaScript code and 100 lines of C++ code. Seamlessly integrated with
the built-in phishing protection feature of Firefox 2 [FirefoxPhishingProtection
2008], BogusBiter consists of four main modules: Information Extraction, Bo-
gus Credential Generation, Request Submission, and Response Process, as
illustrated in Figure 5. We detail these four modules in the remainder of this
section.

4.1 Information Extraction Module

The information extraction module extracts the username and password pair
and its corresponding form element on a login page by analyzing Document

ACM Transactions on Internet Technology, Vol. 10, No. 2, Article 6, Publication date: May 2010.

BogusBiter: A Transparent Protection Against Phishing Attacks • 6:17

Fig. 5. Implementation of BogusBiter as a Firefox 2 browser extension.

Object Model (DOM) objects. First, all the HTMLInputElement objects within
the HTMLDocument object of the login page are collected. Next, the pass-
word object is located by examining its special attribute type=“password.”
A similar password locating method is also used in [Florêncio and Herley
2007; Ross et al. 2005]. Then, the HTMLFormElement object—the submis-
sion form object—associated with the password object is directly extracted.
Finally, based on object attributes, the username object is extracted from other
HTMLInputElement objects included in the submission form. Following this
element extraction order combined with the attribute analysis of the visible
input fields, BogusBiter can accurately identify username, password, and form
elements on a login page. Note that phishers may use non-standard login pages
to disrupt this automatic information extraction procedure and evade Bogus-
Biter. We discuss some solutions to this kind of evasions in Section 6.3.2.

The information extraction module also implements a protection mecha-
nism to defend against input-stealing attacks that use malicious JavaScript
code on a phishing page to directly steal a victim’s credential. Existing works
such as AntiPhish [Kirda and Kruegel 2005] and PwdHash [Ross et al. 2005]
provide good technical guidance for implementing such a protection mecha-
nism. In BogusBiter, we adopt the keystroke intercepting technique introduced
in PwdHash and create protectors on username and password elements. More
precisely, username and password keystrokes are intercepted by the regis-
tered event handlers and are masked to hide from the JavaScript on a Web
page. Therefore, a victim’s real keystrokes are recorded by BogusBiter, but
are blocked from being received by various JavaScript attacks [Ross et al.
2005]. We choose the keystroke intercepting technique because it is more
generic than the temporary deactivating technique used in AntiPhish’s Firefox
version.

ACM Transactions on Internet Technology, Vol. 10, No. 2, Article 6, Publication date: May 2010.

6:18 • C. Yue and H. Wang

4.2 Bogus Credential Generation Module

The bogus credential generation module generates S − 1 bogus credentials
based on an original credential. For a victim, the original credential is the vic-
tim’s real credential. For a security-conscious user, in our current implementa-
tion, this module will randomly generate a username/password pair composed
of upper/lower case letters and digits as the original credential. Advanced orig-
inal credential generation methods can also be incorporated into BogusBiter, so
that a randomly generated original credential will look more like a real user’s
credential. The substitution rule of BogusBiter is implemented in JavaScript.
The open source HMAC SHA256 MAC() JavaScript function implemented by
Poettering [2008] is used as the secure pseudo-random function of Formula (3).

4.3 Request Submission Module

The request submission module is responsible for spawning and submitting
multiple HTTP requests. Its implementation is guided by both the indiscerni-
bility and usability requirements of BogusBiter. Since each HTTP request can
only carry one credential, S requests are needed to submit a set of S credentials
to a phishing site. For a victim, once a credential is entered and the submit
button is clicked, the first HTTP request is initiated from the current browser
window. For a security-conscious user, the action of accepting a phishing warn-
ing triggers BogusBiter to imitate a human’s credential entering and button
clicking actions and initiate the first HTTP request from the current browser
window.

Next, just before the first HTTP request is actually sent out, BogusBiter
is notified by Firefox’s global notification service and intercepts this HTTP
request. Then, BogusBiter quickly spawns the other S −1 HTTP requests with
each of them carrying a bogus credential. The main challenge here lies in how
to efficiently spawn S − 1 new HTTP requests and schedule the submission of
all the S requests. A few solutions are available, for example, using multiple
submission windows, or reusing the submission form on one browser window to
submit multiple times. However, they suffer from various usability drawbacks
such as multiple Web page refreshing and long interaction time.

BogusBiter, instead, creates and uses internal HTTP channels to submit re-
quests behind the screen. In order to make our extension code more portable,
we choose to use XMLHttpRequest objects [XMLHttpRequest 2008] to cre-
ate internal HTTP channels. XMLHttpRequest objects are supported by both
Firefox 2 and IE 7, and they allow JavaScript to perform HTTP client function-
alities such as submitting form data or loading data from a server. The first
HTTP request is also associated with an HTTP channel, which is created by the
browser. For this first HTTP request, all its contents, such as message header
and message body [Fielding et al. 1999] can be extracted from its HTTP chan-
nel. Then, S − 1 XMLHttpRequest objects are created and their corresponding
HTTP channels are established based on the contents extracted from the first
HTTP channel. More specifically, BogusBiter executes the following four steps:
request initialization, message body replacement, header fields setting, and
header fields reordering:

ACM Transactions on Internet Technology, Vol. 10, No. 2, Article 6, Publication date: May 2010.

BogusBiter: A Transparent Protection Against Phishing Attacks • 6:19

(1) Request Initialization: For each of the S − 1 XMLHttpRequests, the same
request type and URL as those in the first HTTP request are used. Asyn-
chronous mode is used so that request sending is nonblocked and all the
corresponding HTTP responses can be handled in a specified callback func-
tion. Since HTML forms, especially login forms, are in general submitted
using POST instead of GET type of HTTP requests for security reasons,
we only consider POST type of HTTP requests in the following discussion.
Indeed, it is much simpler to process the GET type of HTTP requests.

(2) Message Body Replacement: For each of the S − 1 XMLHttpRequests,
BogusBiter only needs to make a copy of the message body extracted from
the first HTTP request, and then replace the original username/password
pair with a bogus username/password pair. Nothing else needs to be
changed in the message body. Because the bogus username/password pair
and original username/password pair have the same length, the mes-
sage body length does not change. Meanwhile, since the first HTTP re-
quest’s message body is extracted before its HTTP channel is encrypted,
this message body replacement also works correctly for secured (HTTPS)
connections.

(3) Header Fields Setting: For each of the S − 1 XMLHttpRequests, the
“Content-Type” request header field is set as “application/x-www-form-
urlencoded” to mimic the case of submitting a form on a browser window.
The “Content-Length” request header field is set to the same value as that
of the first HTTP request, because the message body length is unchanged.
The “Referer” request header field also needs to be set as the same value as
that of the first HTTP request. The “Cookie” request header field is auto-
matically set by the Firefox Web browser because the same URL has been
specified. For each of the S − 1 XMLHttpRequests, BogusBiter also makes
sure that “no-cache” is assigned to both the “Pragma” request header field
and the “Cache-Control” request header field so that the form submissions
will not be cached, and the “close” is assigned to the “Connection” request
header field so that its TCP connection will not be persisted and shared
with any other requests. The first HTTP request also needs to be adjusted
to have the same values for these three request header fields.

(4) Header Fields Reordering: For each of the S − 1 XMLHttpRequests, the
request header fields must be reordered so that the same order used in
the first HTTP request will be used. Since the order of request header
fields is not significant as defined in [Fielding et al. 1999], this reorder-
ing will not cause any problem. In our implementation, only the order
of “Content-Type,” “Content-Length,” “Pragma,” “Cache-Control,” “Cookie,”
and “Referer” is adjusted by BogusBiter, due to some subtle implemen-
tation differences between an XMLHttpRequest and a regular HTTP re-
quest in Firefox. To support this reordering, we actually introduced a new
function switchHeaderFieldsPosition(headerFieldA, headerFieldB) to Fire-
fox’s nsIXMLHttpRequest interface and nsIHttpChannel interface and imple-
mented this new function in C++. This new function may also be useful for
other applications that use XMLHttpRequest objects.

ACM Transactions on Internet Technology, Vol. 10, No. 2, Article 6, Publication date: May 2010.

6:20 • C. Yue and H. Wang

After the completion of these four steps, the S − 1 XMLHttpRequests and
the first HTTP request all have the same request type, URL, header fields, and
header field order. Their message bodies are all the same except for carrying
different username/password pairs. As previously described in BogusBiter’s
substitution rule, the submission order of these S requests is decided when the
S − 1 bogus credentials are generated. If the ith position (1 ≤ i ≤ S) is com-
puted for the original credential, BogusBiter first asynchronously transmits
i − 1 XMLHttpRequests, which carry the first i − 1 bogus credentials. Then,
BogusBiter transmits the first initiated HTTP request, which carries the orig-
inal credential. Finally, BogusBiter asynchronously transmits the remaining
S − i XMLHttpRequests, which carry the last S − i bogus credentials. All the
S requests are sent out within a few milliseconds, and no timing clue can be
observed on a Web server or proxy.

4.4 Response Process Module

After receiving and interpreting an HTTP request, a Web site replies with an
HTTP response message. For a legitimate Web site, if the credential carried in
a request is valid, a successful login page is returned in the response message;
otherwise, a failed login page is returned in the response message. Phishing
sites may take different response actions after receiving credential submis-
sion requests (see Section 5.2). In every case, BogusBiter parses and renders
the response message of the first HTTP request on the browser window, and
processes the response messages of the S − 1 XMLHttpRequests behind the
screen using a callback function. Therefore, BogusBiter can always correctly
match responses to their corresponding requests and work transparently to
users.

Many times there are Web objects such as JavaScript and embedded images
associated with each response message. These objects will be downloaded by the
Web browser if the response message corresponds to an HTTP request initiated
from the browser window, but by default will not be downloaded if the response
message corresponds to an XMLHttpRequest. Future phishers may want to
discern which are XMLHttpRequests by exploiting this fact and manipulating
response contents. For example, a phisher may return a different HTML page to
each submission, which includes a slightly different named image. Later on, by
examining whether an image has ever been downloaded from the phishing site,
the phisher can identify bogus credentials submitted by XMLHttpRequests.

To defend against such rendering-based attacks, BogusBiter utilizes a set of
hidden DOM windows to render these asynchronously returned response pages
for XMLHttpRequests, thus leaving no clue to phishers. Because the same Web
objects cached by a browser will be directly used by different DOM windows,
bandwidth-overhead incurred by this mechanism is negligible, especially for
legitimate Web sites. For a phishing site that returns a different HTML page for
each of BogusBiter’s S submissions, the possible long delay due to downloading
different Web objects will only annoy a victim and encourage the victim to leave
the phishing site—a result that actually favors victims’ interests.

ACM Transactions on Internet Technology, Vol. 10, No. 2, Article 6, Publication date: May 2010.

BogusBiter: A Transparent Protection Against Phishing Attacks • 6:21

5. EVALUATION

We conducted three sets of experiments to evaluate BogusBiter. In the first
set of experiments, we built a testbed to verify the implementation correctness
of BogusBiter with respect to indiscernibility. In the second and third sets of
experiments, we ran BogusBiter against 50 phishing sites and 20 legitimate
Web sites to validate its efficacy, in terms of attacking capability and usability.

5.1 Testbed Experiments

In the testbed experiments, we set up an Apache 2 Web server in a Linux
machine and hosted over twenty various phishing Web pages on it. We used
BogusBiter to send various login requests to these phishing Web pages either
directly or through proxies. By examining both request logs and request con-
tents at the Web server, we verified that all the S requests in a set are exactly
the same, except for the credentials carried in the request bodies. In addition,
we placed an open-source tool, Tcpmon [Tcpmon 2008], in between the Web
browser and Web server to monitor TCP connections. We verified that the S
submission requests are transmitted over S independent non-persistent TCP
connections; therefore, it is hard for a phisher to differentiate these requests
at the TCP connection level.

5.2 Phishing Site Experiments

In the phishing site experiments, we ran BogusBiter against 50 verified phish-
ing sites chosen from PhishTank [PhishTank 2008]. PhishTank is a community
based anti-phishing service and its data have been widely used for evaluat-
ing phishing detection techniques [Ludl et al. 2007; Zhang et al. 2007a, 2007b,
FirefoxPhishingTest 2006]. These 50 chosen phishing sites are diverse in terms
of their locations, design styles, and targeted brand names. For each phishing
site, when it was online, we tested BogusBiter with four different set sizes of
4, 8, 12, and 16. Our major experiential findings are summarized as follows.

First, BogusBiter is capable of attacking all the 50 phishing sites. Acting as
either a victim or a security-conscious user, BogusBiter always works correctly:
it sends out all the S requests within 10 milliseconds, and then processes all
the responses properly. In rare cases that phishing sites were not correctly
detected by Firefox 2, we manually corrected the detection results to trigger
BogusBiter.

Second, the delay caused by BogusBiter is minimal when the set size S is 4
or 8. Here the delay means the submission interaction time difference between
using BogusBiter and not using BogusBiter. The submission interaction time is
the time elapsed between the transmission of the first request and the reception
of the last response. Figure 6(a) depicts the percentage of phishing sites versus
the delay caused by BogusBiter under four different set sizes. We can see that
if the set size S is 4 or 8, for over 85% of phishing sites, the delay is less than
4 seconds. This delay measure is common to either a security-conscious user or
a victim, but the delay effect is different. A security-conscious user is unaware
of such a delay because the user is actually redirected to a default Web page
by Firefox. A victim may perceive this delay because the victim is waiting for

ACM Transactions on Internet Technology, Vol. 10, No. 2, Article 6, Publication date: May 2010.

6:22 • C. Yue and H. Wang

Fig. 6. Delay caused by BogusBiter on: (a) phishing sites, (b) legitimate sites, under different set
size S.

the response from the phishing site. Nevertheless, it is definitely worthwhile
adding a small delay on revealing a victim’s credential, in order to make it less
likely for phishers to succeed.

Third, phishing sites take three different response actions after receiving
a user’s credential submission request. Among 50 phishing sites, 38 of them
simply redirect a user to the invalid login pages of the targeted legitimate
Web sites; 11 of them keep a user at their local sites by using more faked
Web pages; and the last phishing site is very tricky because it verifies the
received credential in real time at the legitimate Web site and then sends
back a response based on the verification result. If a user submits a valid
credential, the phishing site steals the credential and then redirects the user to
the legitimate Web site; otherwise, it lets the user re-login on the phishing site.
All three types of response actions attempt to continue deceiving a victim and
prevent the victim from realizing that an attack has happened. But the third
type of response action not only obtains and verifies a credential in real time,
it is also more deceptive to vulnerable users. The defensive line of BogusBiter
indeed provides an excellent opportunity for a legitimate Web site to defend
against such attacks in real time.

5.3 Legitimate Site Experiments

In the legitimate site experiments, we ran BogusBiter against 20 legitimate
Web sites listed in Table III. None of these Web sites is classified as a phishing
site by either Firefox 2 or IE 7. We intentionally set the detection results
as phishing to simulate false positive cases, and used real accounts on these
legitimate Web sites to evaluate the usability of BogusBiter. We summarize the
major experimental results as follows.

First, as we expected, none of these legitimate Web sites lock a real account
during our extensive tests. Second, if the set size S is 4 or 8, none of these
legitimate Web sites require CAPTCHA tests. If the set size S is 12 or 16, only
two Web sites ask a user to do a CAPTCHA test after receiving S credentials.

ACM Transactions on Internet Technology, Vol. 10, No. 2, Article 6, Publication date: May 2010.

BogusBiter: A Transparent Protection Against Phishing Attacks • 6:23

Table III. The 20 Legitimate Web Sites

paypal.com amazon.com gmail.com cox.com myspace.com
ebay.com buy.com yahoo.com sprint.com walmart.com
citibank.com ecost.com msn.com geico.com careerbuilder.com
53.com ubid.com aol.com aaa.com my.wm.edu

This test is a burden to a user but will not block a user’s further interactions
with a Web server. Third, the delay caused by BogusBiter is very small when
the set size S is 4 or 8. Figure 6(b) depicts the percentage of legitimate sites
versus the delay caused by BogusBiter under four different set sizes. We can
see that if the set size S is 4 or 8, for all the 20 legitimate sites the delay is
less than 3 seconds, and for over 85% of legitimate sites the delay is less than
one second. Therefore, BogusBiter only induces a very small delay to users
even if false positives really occur. The delay on legitimate Web sites is much
smaller than that on phishing sites, since the request processing capability of
legitimate Web sites is generally higher than that of phishing sites.

6. DISCUSSIONS

In this section, we discuss the deployment scale of BogusBiter, the preparations
that may be needed for BogusBiter’s massive deployment, and the limitations
of BogusBiter.

6.1 Deployment Scale

As discussed in Section 3.3.2, the defensive line (the SCI procedure) enabled
by BogusBiter needs to be deployed only on those legitimate Web sites that
are really targeted by phishers. So, here we only discuss the deployment of the
BogusBiter browser extension. Like most client-side protection mechanisms,
BogusBiter protects only those users who install it. On one hand, due to its
scale-independency properties, the defensive line enabled by BogusBiter can
effectively identify the stolen credentials whose owners use BogusBiter, no
matter how many users install BogusBiter and what percentage of them are
real victims. On the other hand, the power of BogusBiter’s offensive line against
a phishing site is scaled to the number of users who install BogusBiter. With
the increase of BogusBiter users, victims’ real credentials can be better hidden
among bogus credentials. Therefore, in order to protect as many users as possi-
ble, BogusBiter should be deployed as widely as possible. Ideally, if BogusBiter
could be integrated into popular Web browsers as a built-in feature, a ubiqui-
tous deployment will be easily achieved and the benefits brought by BogusBiter
will be maximized.

6.2 Massive Deployment Preparation

When BogusBiter is integrated into popular Web browsers, it can be triggered
with high confidence for blacklisted phishing login pages; it can also be trig-
gered for suspicious (but not blacklisted) phishing login pages hosted on less
popular Web sites. The main concern about such a massive deployment of
BogusBiter is that if the login page of a legitimate site is wrongly flagged as a

ACM Transactions on Internet Technology, Vol. 10, No. 2, Article 6, Publication date: May 2010.

6:24 • C. Yue and H. Wang

phishing page, the load on the site’s authentication servers will increase by a
factor of S due to BogusBiter. However, the false positives produced by widely
deployed phishing detection mechanisms such as used in IE 7 and Firefox 2 are
rare, especially for popular Web sites that have a large number of users. This
is because otherwise the false positives would have been noticed and corrected
by these Web sites to prevent losing users. As reported in Zhang et al. [2007a],
both IE 7 and Firefox 2 achieve a zero false positive rate for 516 representative
legitimate Web sites. Thus, we expect that only few less popular and poorly
designed legitimate Web sites need to prepare for a massive deployment of
BogusBiter.

We suggest two simple solutions for these Web sites to prepare. Let us as-
sume that BogusBiter’s functionality is integrated into a new version of IE or
Firefox Web browser. Using the browser, the operator of a legitimate Web site
can easily verify whether the site’s login page will be incorrectly classified as
a phishing page. If a misclassification does occur, two simple solutions exist.
One solution is to report this misclassification and request the Web browser
vendor to either remove this legitimate site from the blacklist or add it to the
whitelist. The other solution is to revise the login page of this site, for exam-
ple by removing suspicious features, so that the page can pass heuristic-based
tests [Chou et al. 2004; Garera et al. 2007; Ludl et al. 2007; Zhang et al. 2007b].
We suggest these preparations not merely for the need of BogusBiter’s massive
deployment. Indeed, legitimate Web sites may lose customers if they do not
take active measures to reduce their chances of being misclassified.

6.3 Limitations of BogusBiter

Should BogusBiter become widely deployed, phishers may explore its limita-
tions to circumvent it. In general, the potential evasions can be divided into
offline evasions and online evasions.

6.3.1 Offline Evasions. In offline evasions, phishers analyze their col-
lected credentials by using local username filtering techniques, meaningful
credential filtering techniques, or statistical filtering techniques.

(1) Local username filtering. In BogusBiter’s design, we assume that a
phisher does not have a complete list of valid usernames for a targeted le-
gitimate Web site, and cannot directly query a targeted legitimate Web site for
the validity of a specific username. Otherwise, a phisher can simply conduct lo-
cal username filtering without doing remote credential verification. Currently,
this assumption may not be valid for some Web sites. For example, Bank of
America’s Web site can tell a user whether a login is valid before a password is
entered. For these Web sites, we recommend them to hide their username va-
lidity information by using some protection methods such as suggested in Bortz
et al. [2007] and Florêncio et al. [2007], thus not just to receive better protec-
tion from BogusBiter, but also to provide a necessary defense against privacy
leaking, invasive advertising and phishing, password guessing, and even DoS
attacks [Bortz et al. 2007; Florêncio et al. 2007].

(2) Meaningful credential filtering. Using current substitution rule,
BogusBiter may generate meaningless bogus credentials from users’

ACM Transactions on Internet Technology, Vol. 10, No. 2, Article 6, Publication date: May 2010.

BogusBiter: A Transparent Protection Against Phishing Attacks • 6:25

meaningful credentials (e.g., credentials containing dictionary words or hu-
man names), especially if an original username or original password does not
contain a digit. Thus, a phisher may only select meaningful credentials to verify,
while discarding the rest. Although this kind of meaningful credential filtering
is error-prone because a victim’s real credential may be indeed meaningless
and thus may be directly thrown away by a phisher, it can still be used by
phishers to evade BogusBiter. Perhaps this is less of a concern for passwords,
because the insecurity of low-entropy and guessable passwords has long been
recognized [Halderman et al. 2005; Klein 1990; Monrose et al. 1999; Morris and
Thompson 1979], and more and more high security Web sites require users to
choose passwords that contain at least one letter and one number.

(3) Statistical filtering. A phisher may also analyze the variations of cre-
dentials and use statistical language models such as bigrams or trigrams to
identify victims’ real credentials. However, we argue that this type of statis-
tical filtering is also error-prone for the same reasons as already mentioned
in the meaningful credential filtering. Unfortunately, we cannot obtain repre-
sentative credential datasets to further analyze and support this argument.
In addition, we need to emphasize that other new rules (in addition to our
substitution rule) could also be designed to generate bogus credentials from an
original credential. Especially, if those new rules take into account the statisti-
cal characteristics of credentials in representative datasets, they could better
hide victims’ real credentials among generated bogus credentials. It is worthy
to design and apply such kinds of new rules, even if they may incur the cost of
increasing the derivable credentials (see Table II).

6.3.2 Online Evasions. Unlike offline evasions, in online evasions, phish-
ers have to redesign their phishing sites and use special techniques to identify,
in real time, which are real credentials submitted by victims. However, some
inherent drawbacks limit the application and effectiveness of online evasion
techniques. We now examine three representative classes of potential online
evasion techniques.

(1) JavaScript attacks. A phisher may use two basic forms of JavaScript
attacks to evade BogusBiter. One is an input-stealing attack that steals a user’s
credential using techniques such as keystroke monitoring, and then sends back
the results to the phishing site at form submission time or in real time. The
other is a rendering-based attack that manipulates response contents to discern
which are bogus credentials submitted by XMLHttpRequests. As discussed in
Section 4.1 and Section 4.4, BogusBiter defends against these two basic forms
of JavaScript attacks by using the keystroke intercepting technique and the
hidden DOM windows technique, respectively.

More sophisticated JavaScript attacks can be launched by phishers. For
example, a phisher can first have the phishing site code pause for a second or
two to wait for BogusBiter submitting all the S credentials. The phisher can
then present all of the S credentials back to a user, along with lines of a message
“To improve our security process and defend your account against automated
attacks, please select your username/password from this list of credentials.” If
a user is fooled by such an attack, the phisher obtains the user’s credential.

ACM Transactions on Internet Technology, Vol. 10, No. 2, Article 6, Publication date: May 2010.

6:26 • C. Yue and H. Wang

However, such attacks contain obvious hallmarks to distinguish themselves as
malicious attacks that are specially fabricated to evade BogusBiter. Therefore,
filtering functionalities can be added to BogusBiter to confidently detect and
disable malicious JavaScript code. Note that detecting and filtering of malicious
HTML content and JavaScript code is both desirable and feasible, and generic
solutions can be found in recent research work such as SpyProxy [Moshchuk
et al. 2007] and BrowserShield [Reis et al. 2006].

(2) Nonstandard login page. A phisher may use nonstandard login pages to
evade BogusBiter. A phisher may use a login form without the type=“password”
HTML attribute, may write the entire phishing page in Flash, and may even
display a virtual keyboard to users. For legitimate Web sites, using nonstandard
login pages is not popular because it may cause some problems. For example,
non-HTML login forms may create accessibility and usability problems [Wu
2006], and virtual keyboards are inconvenient to users and increase the risk
of shoulder surfing attacks [VirtualKeyboard 2007; EBankingSecurity 2008].
Meanwhile, for phishing sites, using non-HTML login forms is also not popular
because it makes a phishing attack more evident to users or phishing detection
tools if its surface-level or deep-level characteristics become deviated from that
of the targeted legitimate Web site. For these reasons, standard HTML pages
remain the central focus of most anti-phishing research work [Chou et al. 2004;
Kirda and Kruegel 2005; Ross et al. 2005; Wu et al. 2006b; Zhang et al. 2007b].

Indeed, BogusBiter can borrow some solutions proposed by other researchers
to defend against these attacks. For example, one solution can be borrowed from
Dynamic Security Skins [Dhamija and Tygar 2005]. More specifically, a cus-
tomized “trusted window in the browser dedicated to username and password
entry” [Dhamija and Tygar 2005] can also be used by BogusBiter. A user is
required to copy the entered username and password from the trusted window
and paste them to the user recognized username and password fields in a login
form. Using this solution, BogusBiter can intercept an original credential before
filling a phishing login form. Since BogusBiter only needs to use a user’s paste
actions to more accurately determine which are username and password fields,
it can just paste a replaced bogus credential into a phishing login form and then
do further replacements and submissions behind the screen. It is important to
note that for BogusBiter, such a “trusted window” only needs to be triggered
when a login page is classified as a phishing page and its username and pass-
word fields cannot be confidently identified. Also in such a case, BogusBiter will
not be transparent to security-conscious users. After a security-conscious user
clicks the “Get me out of here!” link on the phishing warning page, the user will
be provided with the option to either really leave the site, or use the “trusted
window” to help battle phishers by filling a bogus credential and identifying
the username and password fields. The power of BogusBiter’s offensive line
may be reduced because some users may just choose to leave a phishing site,
but perhaps some security-conscious users are willing to intentionally do some
volunteering work to help strike back at the phishers.

(3) CAPTCHA testing attack. A phisher may use a CAPTCHA [Ahn et al.
2003] test to evade BogusBiter. CAPTCHA tests are mainly used to prevent
automated registrations, but are seldom used in user authentication processes.

ACM Transactions on Internet Technology, Vol. 10, No. 2, Article 6, Publication date: May 2010.

BogusBiter: A Transparent Protection Against Phishing Attacks • 6:27

As shown in our legitimate site experiments, none of the legitimate sites asked
a user to do a CAPTCHA test when the set size S is less than 10, and we actu-
ally assumed that false positives happened on all those Web sites. Introducing
CAPTCHA testing attacks may decrease the number of phishing victims be-
cause the look and feel of the phishing site becomes quite different from that of
the targeted legitimate Web site, and perhaps some users are unable or unwill-
ing to solve CAPTCHAs [Kandula et al. 2005; InaccessibilityCAPTCHA 2008].
Ignoring these disadvantages, a phisher may still want to invoke a CAPTCHA
testing attack at either a login page or a login response page.

These attacks may reduce the power of BogusBiter’s offensive line, but will
not affect the defensive line enabled by BogusBiter. If a phisher invokes the
CAPTCHA testing at the login page, the S−1 requests generated by BogusBiter
contain the same CAPTCHA answer as that of the original request; therefore,
it is difficult for a phisher to tell which credential is entered by a human. If
a phisher invokes the CAPTCHA testing at each of the S response pages, we
recommend letting BogusBiter to make a replacement so that the CAPTCHA
image on the first received response page is used on all the response pages.
Therefore, it is still difficult for a phisher to identify the credential entered by
a human. If there are legitimate Web sites that suffer from false positives and
meanwhile want to use CAPTCHA testing on each of their response pages after
seeing a small set of credential submissions from BogusBiter, they can simply
send back the same CAPTCHA image on each of the S response pages thus will
not be affected by this approach.

7. RELATED WORK

Basically the various client-side anti-phishing techniques can be classified into
three different approaches. The first approach focuses on building tools or tool-
bars to enhance the security of a login process. Ye and Smith [2002] designed a
prototype of “Trusted Path” to convey relevant trust signals from a Web browser
to a human user. Dhamija and Tygar [2005] proposed “Dynamic Security Skins”
to allow a legitimate Web site to prove its identity in a way that is easy for a
user to verify but hard for a phisher to spoof. Ross et al. [2005] designed
PwdHash to transparently produce different passwords for different domains,
so that passwords stolen at a phishing site are not useful at a legitimate Web
site. Wu et al. [2006b] introduced “Web Wallet” to direct an alternative safe
path to a user if the user’s intended Web site does not match the current Web
site. Yee and Sitaker [2006] developed Passpet to combine the advantages of
several previously devised techniques including petnames, password strength-
ening, and UI customization. Adida [2007] proposed BeamAuth to use a secret
token in a URL fragment identifier as a second factor for Web-based authenti-
cation. These tools are very helpful, but users must be well trained to use them
and must change some of their login habits. Usability is critical to the success
of anti-phishing tools [Chiasson et al. 2006].

The second approach focuses on improving the accuracy of automatic phish-
ing detection techniques. Chou et al. [2004] built SpoofGuard to compute spoof
indexes using heuristics and to provide warnings for suspected phishing Web

ACM Transactions on Internet Technology, Vol. 10, No. 2, Article 6, Publication date: May 2010.

6:28 • C. Yue and H. Wang

sites. Recent work by Zhang et al. [2007b] and Garera et al. [2007] demonstrate
that heuristic-based techniques can correctly identify over 90% of phishing
pages with about 1% false positives. Fette et al. [2007] demonstrated that their
machine-learning based techniques can correctly identify over 96% of phish-
ing emails while mis-classifying only 0.1% of legitimate emails. Many other
automatic phishing detection tools or toolbars have been developed, and both
Firefox 2 and IE 7 have automatic phishing detection as a built-in feature.
The evaluation of popular automatic phishing detection tools, toolbars, and
Web browser features can be found in [Ludl et al. 2007; Zhang et al. 2007a;
FirefoxPhishingTest 2006; Robichaux and Ganger 2006].

Researchers have also sought to develop nonpreventive anti-phishing ap-
proaches. Florêncio and Herley [2006] proposed a password rescue scheme that
relies on client-side reporting and server-side aggregation to detect and protect
stolen credentials. However, this scheme can only statistically make a detection
decision after several users become victims, and it also raises privacy concerns
by using an extra server to collect user activity information. Parno et al. [2006]
proposed a Phoolproof anti-phishing mechanism. Although their mechanism
eliminates reliance on perfect user behavior, a trusted mobile device must be
used to perform mutual authentications. Birk et al. [2006] introduced an “active
phishing tracing” method, which injects fingerprinted credentials into phishing
sites to trace money laundering. Their method can support forensic analyses
and enforce judicial prosecutions, but it cannot directly protect phishing vic-
tims. Anti-phishing companies such as Cyota (acquired by RSA Security) [RSA
2008] and Markmonitor [MarkMonitor 2008] have also experimented with in-
jecting special credentials into a phishing site. However, these solutions are less
effective than BogusBiter because they neither take the browser integration
approach nor enable legitimate Web sites to detect victims’ stolen credentials.

Finally, there is a related work in “spamming the spammers,” and IBM
actually offered a service to bounce unwanted email back to the computers that
sent them [IBM-FairUCE 2005]. The objective of a spammer is to send junk
emails, and IBM’s approach intends to offend spammers by consuming their
resources. In contrast, the objective of a phisher is to collect real credentials,
and our approach intends to make it less likely for phishers to succeed by
building both an offensive line and a defensive line.

8. CONCLUSION

We introduced BogusBiter, a new client-side anti-phishing tool to automati-
cally protect vulnerable users by injecting a relatively large number of bogus
credentials into phishing sites. These bogus credentials hide victims’ real cre-
dentials, and force phishers to verify their collected credentials at legitimate
Web sites. The credential verification actions initiated by phishers, in turn,
create opportunities for legitimate Web sites to detect stolen credentials in
a timely manner. BogusBiter is transparent to users and can be seamlessly
integrated with current phishing detection and warning mechanisms on Web
browsers. We implemented BogusBiter as a Firefox 2 extension and evaluated
its effectiveness and usability.

ACM Transactions on Internet Technology, Vol. 10, No. 2, Article 6, Publication date: May 2010.

BogusBiter: A Transparent Protection Against Phishing Attacks • 6:29

Phishing is a serious security problem today, and phishers are smart, eco-
nomically motivated, and adaptable. We must therefore actively pursue differ-
ent approaches and promote the cooperation of different solutions. The effec-
tiveness of BogusBiter depends on many factors, as we discussed in Section 6.
But we believe that its unique approach will make a useful contribution to the
anti-phishing research.

ACKNOWLEDGMENTS

We thank the anonymous reviewers and the associate editor, Dr. Marco Mag-
gini, for their careful and insightful comments. We also thank Barbara G.
Monteith for her valuable suggestions to this article.

REFERENCES

ADIDA, B. 2007. BeamAuth: Two-factor Web authentication with a bookmark. In Proceedings of
the Conference on Computer and Communication Security (CCS). 48–57.

AHN, L., BLUM, M., HOPPER, N., AND LANGFORD, J. 2003. CAPTCHA: Using hard AI problems for
security. In Proceedings of Eurocrypt. 294–311.

APWG. 2008. Anti-Phishing Working Group (APWG). http://www.antiphishing.org/.
APWG-PSTC. 2008. APWG: Phishing Scams by Targeted Company.

http://www.millersmiles.co.uk/scams.php.
POETTERING, B. 2008. jssha256. http://point-at-infinity.org/jssha256/.
BIRK, D., DORNSEIF, M., GAJEK, S., AND GRÖBERT, F. 2006. Phishing phishers—tracing identity

thieves and money launderer. Tech. rep. Horst-Görtz Institute of Ruhr-University of Bochum.
BORTZ, A., BONEH, D., AND NANDY, P. 2007. Exposing private information by timing Web applica-

tions. In Proceedings of the International World Wide web Conference (WWW). 621–628.
CHIASSON, S., VAN OORSCHOT, P. C., AND BIDDLE, R. 2006. A usability study and critique of two

password managers. In Proceedings of the USENIX Security Symposium. 1–16.
CHOU, N., LEDESMA, R., TERAGUCHI, Y., AND MITCHELL, J. C. 2004. Client-side defense against web-

based identity theft. In Proceedings of the Network and Distributed System Security Symposium
(NDSS).

DHAMIJA, R. AND TYGAR, J. D. 2005. The battle against phishing: Dynamic security skins. In
Proceedings of the Symposium on Usable Privacy and Security (SOUPS). 77–88.

DHAMIJA, R., TYGAR, J. D., AND HEARST, M. 2006. Why phishing works. In Proceedings of the
Conference on Human Factors in Computing Systems (CHI). 581–590.

DOWNS, J. S., HOLBROOK, M. B., AND CRANOR, L. F. 2006. Decision strategies and susceptibility to
phishing. In Proceedings of the Symposium on Usable Privacy and Security (SOUPS). 79–90.

EBANKINGSECURITY. 2008. eBanking Security.
http://www.ebankingsecurity.com/ebanking bad for your bank balance.pdf.

EGELMAN, S., CRANOR, L. F., AND HONG, J. 2008. You’ve been warned: An empirical study of the
effectiveness of web browser phishing warnings. In Proceedings of the Conference on Human
Factors in Computing Systems (CHI). 1065–1074.

FELTEN, E. W., BALFANZ, D., DEAN, D., AND WALLACH, D. S. 1997. Web Spoofing: An Internet Con
Game. In Proceedings of the 20th National Information Systems Security Conference.

FETTE, I., SADEH, N., AND TOMASIC, A. 2007. Learning to detect phishing emails. In Proceedings of
the International World Wide Web Conference (WWW). 649–656.

FIELDING, R., GETTYS, J., MOGUL, J., FRYSTYK, H., MASINTER, L., LEACH, P., AND BERNERS-LEE, T. 1999.
RFC 2616, Hypertext Transfer Protocol – HTTP/1.1.

FIREFOXPHISHINGPROTECTION. 2008. Firefox Phishing Protection.
http://www.mozilla.com/en-US/firefox/phishing-protection/.

FIREFOXPHISHINGTEST. 2006. Firefox 2 Phishing Protection Effectiveness Testing.
http://www.mozilla.org/security/phishing-test.html.

FLORÊNCIO, D. AND HERLEY, C. 2006. Password rescue: A new approach to phishing prevention. In
Proceedings of the USENIX Workshop on Hot Topics in Security (HOTSEC).

ACM Transactions on Internet Technology, Vol. 10, No. 2, Article 6, Publication date: May 2010.

6:30 • C. Yue and H. Wang

FLORÊNCIO, D. AND HERLEY, C. 2007. A large-scale study of Web password habits. In Proceedings
of the International World Wide Web Conference (WWW). 657–666.

FLORÊNCIO, D., HERLEY, C., AND COSKUN, B. 2007. Do strong web passwords accomplish anything?
In Proceedings of the USENIX Workshop on Hot Topics in Security (HOTSEC).

FSTC-PHISHING. 2005. Understanding and countering the phishing threat. The Financial Ser-
vices Technology Consortium (FSTC) Project White Paper,
http://fstc.org/projects/counter phishing phase 1/.

GARERA, S., PROVOS, N., CHEW, M., AND RUBIN, A. D. 2007. A framework for detection and measure-
ment of phishing attacks. In Proceedings of the ACM Workshop On Recuring Malcode (WORM).

GARTNERSURVEY. 2006. Gartner, inc.,. http://www.gartner.com/it/page.jsp?id=498245.
HALDERMAN, J. A., WATERS, B., AND FELTEN, E. W. 2005. A convenient method for securely managing

passwords. In Proceedings of the International World Wide Web Conference (WWW). 471–479.
IBM-FAIRUCE. 2005. IBM set to use spam to attack spammer.

http://money.cnn.com/2005/03/22/technology/ibm spam/index.htm.
INACCESSIBILITYCAPTCHA. 2008. Inaccessibility of CAPTCHA.

http://www.w3.org/TR/turingtest/.
JAGATIC, T. N., JOHNSON, N. A., JAKOBSSON, M., AND MENCZER, F. 2007. Social phishing. Comm.

ACM 50, 10, 94–100.
JAKOBSSON, M. AND MYERS, S. 2006. Phishing and Countermeasures: Understanding the Increas-

ing Problem of Electronic Identity Theft. Wiley-Interscience.
JAKOBSSON, M. AND RATKIEWICZ, J. 2006. Designing ethical phishing experiments: A study of

(ROT13) rOnl query features. In Proceedings of the International World Wide Web Conference
(WWW). 513–522.

JAKOBSSON, M. AND YOUNG, A. 2005. Distributed phishing attacks. In Proceedings of the Workshop
on Resilient Financial Information Systems.

KANDULA, S., KATABI, D., JACOB, M., AND BERGER, A. W. 2005. Botz-4-Sale: Surviving organized
DDoS attacks that mimic flash crowds. In Proceedings of the 2nd Symposium on Networked
Systems Design and Implementation (NSDI). 287–300.

KIRDA, E. AND KRUEGEL, C. 2005. Protecting users against phishing attacks with AntiPhish.
In Proceedings of the Annual International Computer Software and Applications Conference
(COMPSAC). 517–524.

KLEIN, D. V. 1990. Foiling the cracker—A survey of, and improvements to, password security. In
Proceedings of the 2nd USENIX Workshop on Security. 5–14.

KUMARAGURU, P., RHEE, Y., ACQUISTI, A., CRANOR, L. F., HONG, J., AND NUNG, E. 2007. Protecting
people from phishing: The design and evaluation of an embedded training email system. In
Proceedings of the Conference on Human Factors in Computing Systems (CHI). 905–914.

KYE-PHISHING. 2008. Know Your Enemy: Phishing. http://www.honeynet.org/papers/phishing/.
LUDL, C., MCALLISTER, S., KIRDA, E., AND KRUEGEL, C. 2007. On the effectiveness of techniques to

detect phishing sites. In Proceedings of the International Conference on Detection of Instructions
and Malware & Vulnerability Assessment (DIMVA).

MARKMONITOR. 2008. MarkMonitor: Internet Fraud Prevention and Brand Protection.
http://www.markmonitor.com/.

MICROSOFTPHISHINGFILTER. 2008. Microsoft Phishing Filter.
http://www.microsoft.com/protect/products/yourself/.

MONROSE, F., REITER, M. K., AND WETZEL, S. 1999. Password hardening based on keystroke dy-
namics. In Proceedings of the Conference on Computer and Communication Security (CCS).
73–82.

MOORE, T. AND CLAYTON, R. 2007. Examining the impact of website take-down on phishing. In
Proceedings of the APWG eCrime Researchers Summit.

MORRIS, R. AND THOMPSON, K. 1979. Password security: A case history. Comm. ACM 22, 11, 594–
597.

MOSHCHUK, A., BRAGIN, T., DEVILLE, D., GRIBBLE, S. D., AND LEVY, H. M. 2007. Spyproxy: Execution-
based detection of malicious web content. In Proceedings of the USENIX Security Symposium.
27–42.

PARNO, B., KUO, C., AND PERRIG, A. 2006. Phoolproof phishing prevention. In Proceedings of the
Financial Cryptography. 1–19.

ACM Transactions on Internet Technology, Vol. 10, No. 2, Article 6, Publication date: May 2010.

BogusBiter: A Transparent Protection Against Phishing Attacks • 6:31

PHISHTANK. 2008. PhishTank. http://www.phishtank.com/.
PINKAS, B. AND SANDER, T. 2002. Securing passwords against dictionary attacks. In Proceedings

of the Conference on Computer and Communication Security (CCS). 161–170.
REIS, C., DUNAGAN, J., WANG, H. J., DUBROVSKY, O., AND ESMEIR, S. 2006. Browsershield:

Vulnerability-driven filtering of dynamic html. In Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation (OSDI). 61–74.

ROBICHAUX, P. AND GANGER, D. L. 2006. Gone phishing: Evaluating anti-phishing tools for Win-
dows. http://www.3sharp.com/projects/antiphishing/gone-phishing.pdf.

ROSS, B., JACKSON, C., MIYAKE, N., BONEH, D., AND MITCHELL, J. C. 2005. Stronger password authen-
tication using browser extensions. In Proceedings of the USENIX Security Symposium. 17–32.

RSA. 2008. Home - RSA, The Security Division of EMC. http://www.rsa.com/.
SCHECHTER, S. E., DHAMIJA, R., OZMENT, A., AND FISCHER, I. 2007. The emperor’s new security

indicators: An evaluation of Website authentication and the effect of role playing on usability
studies. In Proceedings of the IEEE Symposium on Security and Privacy. 51–65.

SHENG, S., MAGNIEN, B., KUMARAGURU, P., ACQUISTI, A., CRANOR, L. F., HONG, J., AND NUNGE, E. 2007.
Anti-Phishing Phil: the design and evaluation of a game that teaches people not to fall for phish.
In Proceedings of the Symposium on Usable Privacy and Security (SOUPS). 88–99.

TCPMON. 2008. tcpmon: An open-source utility to Monitor A TCP Connection.
https://tcpmon.dev.java.net/.

VIRTUALKEYBOARD. 2007. Hacker demos how to defeat Citibanks virtual keyboard.
http://blogs.zdnet.com/security/?p=195.

WHALEN, T. AND INKPEN, K. M. 2005. Gathering evidence: use of visual security cues in web
browsers. In Proceedings of the Conference on Graphics Interface. 137–144.

WU, M. 2006. Fighting Phishing at the User Interface. Ph.D. thesis, MIT.
WU, M., MILLER, R. C., AND GARFINKEL, S. L. 2006a. Do security toolbars actually prevent phishing

attacks? In Proceedings of the Conference on Human Factors in Computing Systems (CHI). 601–
610.

WU, M., MILLER, R. C., AND LITTLE, G. 2006b. Web Wallet: Preventing phishing attacks by reveal-
ing user intentions. In Proceedings of the Symposium on Usable Privacy and Security (SOUPS).
102–113.

WU, T. 1998. The secure remote password protocol. In Proceedings of the Network and Distributed
System. Security Symposium (NDSS).

XMLHTTPREQUEST. 2008. http://www.w3.org/TR/XMLHttpRequest/.
YE, Z. E. AND SMITH, S. 2002. Trusted paths for browsers. In Proceedings of the USENIX Security

Symposium. 263–279.
YEE, K.-P. AND SITAKER, K. 2006. Passpet: Convenient password management and phishing pro-

tection. In Proceedings of the Symposium on Usable Privacy and Security (SOUPS). 32–43.
YUE, C. AND WANG, H. 2008. Anti-phishing in offense and defense. In Proceedings of the Annual

Computer Security Applications Conference (ACSAC). 345–354.
ZHANG, Y., EGELMAN, S., CRANOR, L. F., AND HONG, J. 2007a. Phinding phish: Evaluating anti-

phishing tools. In Proceedings of the Network and Distributed System Security Symposium
(NDSS).

ZHANG, Y., HONG, J., AND CRANOR, L. 2007b. CANTINA: A content-based approach to detecting
phishing web sites. In Proceedings of the International World Wide Web Conference (WWW).
639–648.

Received January 2009; revised October 2009; accepted November 2009

ACM Transactions on Internet Technology, Vol. 10, No. 2, Article 6, Publication date: May 2010.

