
1

Maintaining Strong Cache Consistency for the
Domain Name System

Xin Chen, Haining Wang,Member, IEEE,Shansi Ren,Student Member, IEEE,and Xiaodong Zhang,Senior
Member, IEEE

Abstract— Effective caching in the Domain Name System
(DNS) is critical to its performance and scalability. Existing DNS
only supports weak cache consistency by using the Time-To-Live
(TTL) mechanism, which functions reasonably well in normal
situations. However, maintaining strong cache consistency in DNS
as an indispensable exceptional handling mechanism has become
more and more demanding for three important objectives: (1)to
quickly respond and handle exceptions, such as sudden and dra-
matic Internet failures caused by natural and human disasters,
(2) to adapt increasingly frequent changes of IP addresses due to
the introduction of dynamic DNS techniques for various stationed
and mobile devices on the Internet, and (3) to provide fine-grain
controls for content delivery services to timely balance server
load distributions. With agile adaptation to various exceptional
Internet dynamics, strong DNS cache consistency improves the
availability and reliability of Internet services. In this paper, we
first conduct extensive Internet measurements to quantitatively
characterize DNS dynamics; then we propose a proactive DNS
cache update protocol, calledDNScup, running as middleware
in DNS nameservers, to provide strong cache consistency for
DNS. The core of DNScup is an optimal lease scheme, called
dynamic lease, to keep track of the local DNS nameservers. We
compare dynamic lease with other existing lease schemes through
theoretical analysis and trace-driven simulations. Basedon the
DNS Dynamic Update protocol, we build a DNScup prototype
with minor modifications to the current DNS implementation.
Our system prototype demonstrates the effectiveness of DNScup
and its easy and incremental deployment on the Internet.

Keywords— Domain Name System, Cache Consistency,
Middleware, Lease.

I. I NTRODUCTION

The Domain Name System (DNS) is a distributed database
that provides a directory service to translate domain names
to IP addresses [22], [23]. DNS consists of a hierarchy
of nameservers, with thirteen root nameservers at the top.
For such a hierarchical system, caching is critical to its
performance and scalability. To determine the IP address
of a domain name, the DNS resolver residing at a client
sends a recursive query to its local DNS nameserver. If no
valid cached mapping exists, the local DNS nameserver will
resolve the query by iteratively communicating with a root
nameserver, a Top-Level Domain (TLD) nameserver, and a
series of authoritative DNS nameservers. All the replied DNS

X. Chen is with Ask.com, IAC/Search and Media, Edison, NJ 08837. E-
mail: xchen@ask.com.

H. Wang is with the Department of Computer Science, College of the
William and Mary, Williamsburg, VA 23187. E-mail: hnw@cs.wm.edu.

S. Ren and X. Zhang are with the Department of Computer Science and
Engineering, The Ohio State University, Columbus, OH 43210. E-mail:{sren,
zhang}@cse.ohio-state.edu.

messages including referrals and answers are cached at the
local DNS nameserver, so that subsequent queries for the
same domain name will be answered directly from the cache.
Therefore, DNS caching significantly reduces the workload of
root and TLD nameservers, lookup latencies and DNS traffic
over the Internet.

With the deployment of caches, cache consistency has be-
come a serious concern. Strong cache consistency is defined as
the model in which no stale copy of a modified original will be
returned to clients, while weak cache consistency is the model
in which a stale copy might be returned to clients. Currently,
DNS only supports weak cache consistency by using the
Time-To-Live (TTL) mechanism. The TTL field of each DNS
resource record indicates how long it may be cached. The
majority of TTLs of DNS resource records range from one
hour to one day [17]. While most of the domain-name-to-
IP-address (DN2IP) mappings are infrequently changed, the
current approach to coping with an expected mapping change
is cumbersome. Among numerous DNS related Request For
Comments (RFCs), only RFC 1034 [22] briefly describes how
to handle an expected mapping change: “if a change can be
anticipated, the TTL can be reduced prior to the change to
minimize inconsistency during the change, and then increased
back to its former value following the change”; but the RFC
does not specify how much and in what magnitude the TTL
value should be reduced. The propagation of the mapping
change may take much longer than expected. This pathology
is further aggravated by some local DNS nameservers that do
not follow the TTL expiration rule and violate it by a large
amount of time [24].

Therefore, without strong cache consistency among DNS
nameservers, it is cumbersome to invalidate the out-of-date
cache entries. The inefficient and pathological DNS cache
update due to weak consistency quite often causes service
disruption. More importantly, three recently-emerged reasons
in practice cast serious doubt on the efficacy of weak DNS
cache consistency provided by the TTL mechanism.

• There are many unpredictable mapping changes due to
emergency situations, such as terror attacks or natural
disasters, in which the loss or failure of network re-
sources (servers, links and routers) is inevitable [15] and
we have to immediately re-direct the affected Internet
services to alternative or backup sites. Maintaining DNS
cache consistency is critical under such an exceptional
circumstance, since people do need service availability at
the crucial moment.

• The dynamic DNS technique, which provides prompt IP

2

mapping for a server at home or a mobile host using a
temporary IP assigned by Dynamic Host Configuration
Protocol (DHCP), makes the association between a do-
main name and its corresponding IP address much less
stable.

• The TTL-based DNS redirection service provided by
Content Distributed Networks (CDNs) only supports a
coarse-grained load-balance, and is unable to support
quick reaction to network failures or flash crowds without
sacrificing the scalability and performance of DNS [24].

Thus,cache inconsistency poses a serious threat to the avail-
ability of Internet services. This is simply because during the
cache inconsistency period, the clients served with out-of-date
DN2IP mappings cannot reach the appropriate Internet servers
or end-hosts. Once it happens, the clients have no idea of
what is the cause of service unavailability: is it due to server
shutdown, network failure, or something else? An aggressively
small TTL (on the order of seconds) can lower the chance of
cache inconsistency, but at the expense of significant increase
of the DNS traffic, name resolution latency, and the workload
of domain nameservers [32], which seriously degrades the
scalability and performance of DNS.

In this paper, we propose a proactive DNS cache update
protocol, calledDNScup, working as middleware to maintain
strong cache consistency among DNS nameservers and im-
prove the responsiveness of DNS-based service redirection.
The core of DNScup uses a dynamic lease technique to keep
track of the local DNS nameservers whose clients are tightly
coupled with an Internet server1. Upon a DN2IP mapping
change of the corresponding Internet server, its authoritative
DNS nameserver proactively notifies these local DNS name-
servers still holding valid leases. While the notification mes-
sages are carried by UDP, dynamic lease also minimizes stor-
age overhead and communication overhead, making DNScup a
lightweight and scalable solution. Based on client query rates
(or service importance to their clients), it is the local DNS
nameservers themselves that decide on whether or not applying
for leases (or renewal) for an Internet service. On the other
side, the authoritative DNS nameserver grants and maintains
the leases for the DNS resource records of the Internet service.
The duration of a lease is dependent on the DN2IP mapping
change frequency of the specific DNS resource record.

While strong cache consistency may be optional for a
generic Internet service, DNScup is essential to provide
always-on service availability for critical Internet services
or some premium clients. In addition to maintaining cache
coherence among DNS nameservers, DNScup can also be used
to improve the responsiveness of DNS-based network control
as suggested in [24]. Also, we can apply the functionality
of DNScup to maintain state consistency between a DNS
nameserver of a parent zone2 and the DNS nameservers of
its child zones, preventing the lame delegation problem [27].

Based on the DNS dynamic update protocol [31], we build
a DNScup prototype with minimized modifications to current

1Either the clients frequently visit the Internet server or the services
provided by the Internet server is critical to the clients.

2Zone is a delegated authority unit that is a manageable domain name space.

DNS implementation [14], [23]. Our trace-driven simula-
tion and prototype implementation demonstrate that DNScup
achieves strong cache consistency of DNS and significantly
improves its performance and scalability. Note that DNScup
is backward compatible with the TTL mechanism, and can
be incrementally deployed over the Internet. Those local
DNS nameservers without valid leases still rely on the TTL
mechanism to maintain weak cache inconsistency.

The remainder of the paper is organized as follows. Sec-
tion II surveys related work. Section III presents our DNS
dynamics measurements. Section IV details the proposed
DNScup mechanism. Section V evaluates the performance of
DNScup based on the trace-driven simulations. Section VI
presents the prototype implementation of DNScup. Finally,we
conclude the paper in Section VII.

II. RELATED WORK

DNS performance at either root nameservers [6], [12] or
local DNS nameservers and their caching effectiveness [17],
[19], [36] have been studied in the past decade. Danzig
et al. [12] measured the DNS performance at one root
nameserver and three domain nameservers. They identified
a number of bugs in DNS implementation, and these bugs
and misconfigurations produced the majority of DNS traffic.
Brownleeet al. [6] gathered and analyzed DNS traffic at the
F root nameserver. They found that several bugs identified
by Danziget al. still existed in their measurements, and the
wide deployment of negative caching would reduce the impact
caused by bugs and configuration errors. Observing a large
number of abnormal DNS update messages at the top of the
DNS hierarchy, Broidoet al. [5] discovered that most of them
are caused by default configurations in Microsoft DHCP/DNS
servers. The load distribution, availability and deployment
patterns in local and authoritative DNS nameservers have been
characterized in [25]. Based on a half year measurement,
Pappaset al. [27] thoroughly investigated the negative impact
of operational errors upon DNS robustness. Furthermore, they
presented a distributed troubleshooting tool to identify these
DNS configuration errors [26].

Jung et al. [17] measured the DNS performance at local
DNS nameservers (MIT and KAIST) and evaluated the effec-
tiveness of DNS caching. They conducted a detailed analysis
of collected DNS traces and measured the client-perceived
DNS performance. Based on trace-driven simulations, they
found that lowering the TTLs of typeA record to a few
hundred seconds has little adverse effect on cache hit rates;
and caching ofNS records and protecting a single nameserver
from overload are crucial to the scalability of DNS. Insteadof
collecting data at a few client locations, Listonet al. [19]
compared the DNS measurements at many different sites,
and investigated the degree to which they vary from site to
site. They identified the measures that are relatively consistent
throughout the study and those that are highly dependent
on specific sites. Based on both laboratory tests and live
measurements, Wesselset al. [36] found that existing DNS
cache implementations employ different approaches in query
load balancing at the upper levels. They suggested longer
TTLs for popular sites to reduce global DNS query load.

3

Shaikh et al. [32] demonstrated that aggressively small
TTLs (on the order of seconds) are detrimental to DNS per-
formance, resulting in the increases of name resolution latency
(by two orders of magnitudes), nameserver workload, and
DNS traffic. Their work further confirmed that DNS caching
plays an important role in determining client-perceived latency.
Wills and Shang [38] found that only 20% of DNS requests are
not cached locally and non-cached lookups cost more than one
second to resolve. The same authors explored the technique of
actively querying DNS caches to infer the relative popularity
of Internet applications [37]. Using graphs, Cranoret al. [11]
identified local and authoritative DNS nameservers from large
DNS traces, which is useful for locating the related DNS
caches.

CoDNS [28] identified internal failures as a major source
of delays in the PlanetLab testbed, and proposed a locality
and proximity-aware design to resolve the problem. They
utilized a cooperative lookup service, in which remote queries
are sent out when the local DNS nameserver experiences
problems, to mask the failure-induced local delay. In their
design, they considered the importance of cache at the local
DNS nameserver for providing shared information to all local
clients, and avoided a design that makes the cache useless.

However, none of the previous work focuses on DNS cache
consistency. DNS cache inconsistency may induce a loss of
service availability, which is much more serious than per-
formance degradation. By contrast, maintaining strong cache
consistency in the Web has been well studied. Liu and Cao
showed [20] that achieving strong cache consistency with
server invalidation is a feasible approach, and its cost is
comparable to that of a heuristic approach like adaptive TTL
for maintaining weak consistency. To further reduce the cost
of server invalidation and its scalability, Yinet al. proposed
volume lease [41] and its extension [40], [39] for maintaining
Web cache consistency. Instead of keeping per-client state,
Mikhailov and Wills [21] proposed MONARCH to provide
strong cache consistency for Web objects, in which invalida-
tion is driven by client requests. They evaluated MONARCH
by using snapshots of collected contents. The weakness of
MONARCH is that it does not consider the dynamics of Web
page structures.

The adaptive lease algorithm has been proposed in [13] to
maintain strong cache consistency for Web contents. A Web
server computes the lease duration on-the-fly based mainly
on either the state space overhead or the control message
overhead. However, in their analytical models, the space and
message overhead are considered separately without gauging
the possible tradeoffs. Thus, the performance improvementof
the adaptive lease algorithm is limited. Cohen and Kaplan [9]
proposed proactive caching to refresh stale cached DNS re-
source records, in order to reduce the name resolution latency.
However, the client-driven pre-fetching techniques only reduce
the client-perceived latency, and cannot maintain strong cache
consistency.

Cox et al. [10] considered using the Peer-to-Peer system
to replace the hierarchical structure of DNS nameservers. For
example, for a given Web server, we can search a distributed
hash table to find its IP address, instead of resolving it by

DNS. However, compared with conventional DNS, the main
drawback of this alternative approach is the significantly-
increased resolving latency due to P2P routing, although the
approach has a stronger support for fault-tolerance and load-
balance.

Based on Distributed Hash Tables (DHTs) [18], Beehive—
designed for domain name system [30]—provides O(1) lookup
latency. Different from widely used passive caching, it uses
proactive replication to significantly reduce the lookup latency.
In order to facilitate Web object references,Semantic Free
Reference(SFR) [34], which is also based on DHTs [18],
has been proposed to resolve the object locations. SFR relies
on the caches at different infrastructure levels to improve
the resolving latency. Note that these proposed schemes are
heavily dependent on a future and wide deployment of DHTs,
thus the consequent dramatic changes to the Internet directory
service will take a large amount of time and effort to become
a reality. In contrast, DNScup is an effective enhancement to
the current DNS implementation, which can fix the problem
in a timely and cost-effective manner.

While DNS caching does not support strong consistency,
the DNS Dynamic Update mechanism [31] maintains a strong
consistency between the primary master DNS nameserver of
a zone and its slave DNS nameservers within the same zone.
The DNS Dynamic Update mechanism [31] and its enhanced
secure version [35] have been proposed and implemented
to support dynamic addition and deletion of DNS resource
records within a zone, because of the widespread use of
DHCP. According to the DNS Dynamic Update protocol, once
the primary master has processed dynamic updates, its slaves
will be automatically notified about these changes via zone
transfers. Researchers have utilized the DNS Dynamic Update
protocol to achieve end-to-end host mobility [33]. In termsof
DNS semantics, our proposed DNS cache update mechanism
can be viewed as an external extension to the DNS Dynamic
Update protocol, which makes the implementation and deploy-
ment of DNScup much easier. The required modifications and
additions to the current DNS implementation are minimized.

III. DNS DYNAMICS MEASUREMENT

The purpose of our DNS dynamics measurement is to
answer the question of how often a DN2IP mapping changes.
In general, a mapping change may cause two different effects.
If the original DN2IP mapping is one-to-one, then the change
may lead to the loss of Internet services. We classify this
kind of changes as physical changes. However, if the original
DN2IP mapping is one to many, the changes may be antic-
ipated to balance the workload of a Web site as CDN does.
We classify these changes as logical changes.

To examine the DN2IP mapping change behaviors, one
possible way is to usedig to contact remote nameservers
directly without using a local cache. However, we observe
that only about half of authoritative DNS nameservers allow
direct communication with remote resolvers. Therefore, weset
up a local DNS nameserver using Bind 9.2.3 [3] to generate
probing DNS queries for a collection of Web sites (more than
15,000). In order to guarantee that each response comes from

4

an authoritative DNS nameserver, instead of the local cache,
we purge our local cache every time we probe a Web site.
The measurement experiments have conducted in two months.
In the rest of this section, we describe the DNS resource
record classification and the collection of domain names. Also
we present a technique to differentiate the domains using
CDN, in which most mapping changes are logical changes,
from the domains where most mapping changes are physical
changes. According to the affiliated Top-Level Domain (TLD)
and their popularities, we further categorize the domains
into several groups. Then, we measure the TTLs of their
DNS resource records and investigate the effect of domain
popularity upon DNS TTL behaviors. Based on the measured
TTLs, we choose the appropriate sampling resolution to detect
the DN2IP mapping changes.

A. DNS Resource Record Classification

The various mappings in the DNS name space are called
resource records. The most widely used resource records
include SOA records (authority indication for a zone),NS
records (authoritative name server reference lists for a zone),A
records (domain name to IP address mappings),PTR records
(IP address to domain name mappings),MX records (mail
exchangers for a domain name), andCNAME records (alias
to canonical name mappings). A typeA record provides the
standard domain name to IP address mapping, while the other
type records likeNS, CNAME and MX records are used as
references. Among these DNS resource records, the typeA
record is the most popular record being queried, accounting
for about 60% DNS lookups on the Internet [17].

Any type of resource records listed above may change
for various reasons. For example, the primary master DNS
nameserver within a zone may increase the serial number in
SOA records to keep the records of the zone’s slaves updated;
NS andMX records need to be updated if any authoritative DNS
nameserver or mail exchanger is renamed;A andPTR records
need to be changed if the domain name is either renamed or
mapped to a different IP address; changes onCNAME records
have already been utilized by CDN providers to redirect a
client request to different surrogates. Note that CDN providers
and popular Web sites rotate differentA records with small
TTLs for the same domain name to balance the workload of
Web servers.

In various DNS resource records, the inconsistency ofA
records may directly lead to service unavailability. In practice,
more than one authoritative nameservers and mail exchangers
serve for the same zone to improve reliability. However, the
inconsistency ofNS (or MX) records may also cause serious
performance degradation and access problems, due to lame
delegation [27]. In general, our solution is applicable to all
kinds of resource records, while our DNS measurement is
focused on the dynamics ofA records.

B. Domain Name Collection and Grouping

Since Web service is one of the most popular Internet
services, our measurements are focused on the dynamics of

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000 1e+06

N
um

be
r

of
 D

om
ai

ns

Number of Requests

.com
.edu
.net
.org

country
.mil

.gov
.biz

.coop

Fig. 1. The regular domain name distribution with the numberof requests
in each groups.

the mappings between Web domain names and their corre-
sponding IP addresses. We collected the Web domain names
from the recent IRCache [4] proxy traces. All Web domain
names are classified into three categories: domains using CDN
techniques, domains using dynamic DNS techniques, and the
rest of collected domains. We refer them as CDN domains,
Dyn domains, and regular domains, respectively. Because most
CDN domains and Dyn domains have specific text strings to
indicate the names of their providers (e.g.,Akamai for CDN
domains,DynDns.com for Dyn domains), we can distinguish
those domains from the regular ones by the specific strings. In
our measurement experiments, we examined 23 major CDN
providers [1] and 95 major dynamic DNS providers [2].

Due to the large number of regular domains we col-
lected, the regular domains are further divided into nine
groups with respect to their Top-Level Domains (TLDs). They
are ended with .com, .edu, .net, .org, .mil,
.gov, .biz, .coop, and country codes, respectively. The
regular domain name distribution with the number of requests
in each group is plotted in Figure 1. As shown in Figure
1, most regular domain names fall into the following five
major groups:.com, .net, .org, .edu, and country
domains. Each group consists of three sub-groups:

• popular domains (with the number of requests being
larger than or equal to 100 in our one week trace3);

• normal domains (with the number of requests being less
than 100 but larger than or equal to 10 in one week trace);
and

• unpopular domains (with the number of requests being
less than 10 in one trace).

We select 1,000 domain names from each sub-group of the five
major groups, except the popular one of.edu group where
we only have 514 domain names available. Note that not all
domain names in our regular domain groups follow the strict
one-to-one mapping between domain names and IP addresses.
Some domain names may useCNAME to avoid the direct use
of CDN/dynamic DNS providers.

3The limited client space and the hidden load factor of caching reduce the
number of requests we have seen.

5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000 100000 1e+06

C
D

F
 o

f N
um

be
r

of
 D

om
ai

ns

TTL (second)

.com
.edu
.net
.org

country
CDN
Dyn

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000 100000 1e+06

C
D

F
 o

f N
um

be
r

of
 D

om
ai

ns

TTL (second)

popular
normal

unpopular

(a) all (b) .com

Fig. 2. TTL distributions: (a) All kinds of domain names; (b).com domain names.

C. TTL Distribution

Different domain names have different TTL values for
caching their DNS replies. The TTL distribution of all mea-
sured domains is shown in Figure 2 (a). For CDN domains,
the majority of TTLs have the values of 20 or 120 seconds.
For Dyn domains, the majority of TTLs have the values of 30,
60, or 90 seconds. For regular domains, the majority of TTLs
have the values of 300, 3600, or 86400 seconds. The TTL
distribution of.com domain names with different popularities
is shown in Figure 2 (b). The TTL distributions for other
kinds of domains with different popularities are similar to
that of .com. We observe that the TTL of a domain name
is independent of the domain’s popularity.

The sampling resolution of detecting a DN2IP mapping
change is highly dependent upon the values of TTLs. On
one hand, our sampling resolution for a specific Web domain
should be at least as small as its TTL, in order to capture every
possible change that could cause cache inconsistency. On the
other hand, to minimize the impact of probing DNS traffic, our
sampling resolution should be set as large as possible. Based
on the measured TTLs’ distribution, we set different sampling
resolutions to detect DN2IP mapping changes at different Web
sites. The sampling resolutions with respect to the range of
TTLs are listed in Table I.

D. Measurement of Mapping Changes

Each domain name in our collection is periodically resolved
to check if the mapping has been changed. Depending on the
sampling resolution, the duration of a measurement experiment
varies from 1 day to 1 month. According to the sampling
resolution, the Web domain names being probed in our mea-
surements are divided into five classes as shown in Table I.
Since all CDN and Dyn domains’ TTL values are bounded by
300 seconds, they belong to either classes 1 or 2. The regular
domains of each TLD may fall in all five possible classes,
because of the wide spectrum of their TTLs.

1) Dynamics of Mapping Changes:A DN2IP mapping
change is detected when the responses of two consecutive
DNS probes for the same domain name are different from each
other. We define the relative change frequency of a domain
name as the ratio between the number of mapping changes
we detected and the total number of DNS probes we sent for

TABLE I

MEASUREMENTPARAMETERS

Class TTL (s) Resolution (s) Duration Num of Domains

1 [0,60) 20 1 day 803
2 [60,300) 60 3 days 934
3 [300,3600) 300 7 days 2020
4 [3600,86400) 3600 7 days 7217
5 [86400,∞) 86400 1 month 5307

that domain name. The absolute change rate is the product
of relative change frequency and the reciprocal of sampling
resolution. For ease of presentation, we employ relative change
frequency as the metric to study the dynamics of DN2IP map-
ping changes, and simply call it change frequency in the rest
of this paper. Note that the sampling resolution varies among
different classes. Given the same relative change frequency, the
corresponding absolute change rates under different classes are
different.

The change frequencies for five different classes are shown
in Figures 3 (a), (b), (c), (d) and (e), respectively.4 Based on the
DNS probing results, we identify three causes that lead to the
DN2IP mapping changes: (1) a domain name is relocated to a
different IP address; (2) the available IP addresses for a domain
name are increased; and (3) the IP address of a domain name
rotates around a set of IP addresses. The first cause results
in physical changes, while the second and third causes result
in logical changes. The distributions of the changes due to
different causes are shown in Figure 3 (f) for all five classes.

Physical Changes.As shown in Figures 3 (c), (d) and
(e), the domains in classes 3, 4 and 5 rarely change their
DN2IP mappings, with about 95% domains in these classes
remaining intact. Moreover, those domains that have changed
their DN2IP mappings have very low change frequencies.
For instance, in class 5, almost all changed domains have
their change frequencies below 10%5, which means a change
happens every 10 days. On average, the change frequencies
are about 3%, 0.1%, and 0.2% for the domains in classes 3,
4 and 5, respectively. This implies that the average life times

4We also monitored the mapping changes of the corresponding MX and
NS records. Our results show that their change frequencies are lower than
that of A records.

5In the 30-day measurement, 214 domains changed 1 to 3 times and only
7 domains changed 4 to 19 times among 5,307 domains in class 5.

6

10-4

10-3

10-2

10-1

100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
D

F
 o

f C
ha

ng
e

F
re

qu
en

cy

Change Frequency (Updates/Resolving Queries)

10-4

10-3

10-2

10-1

100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
D

F
 o

f C
ha

ng
e

F
re

qu
en

cy

Change Frequency (Updates/Resolving Queries)

10-4

10-3

10-2

10-1

100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
D

F
 o

f C
ha

ng
e

F
re

qu
en

cy

Change Frequency (Updates/Resolving Queries)

(a) Class 1 (b) Class 2 (c) Class 3

10-4

10-3

10-2

10-1

100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
D

F
 o

f C
ha

ng
e

F
re

qu
en

cy

Change Frequency (Updates/Resolving Queries)

10-4

10-3

10-2

10-1

100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
D

F
 o

f C
ha

ng
e

F
re

qu
en

cy

Change Frequency (Updates/Resolving Queries)
[0,60) [60,300) [300,3600) [3600,86400) [86400,inf)

0

0.2

0.4

0.6

0.8

1

Domains Grouped by TTLs

C
ha

ng
e

D
is

tr
ib

ut
io

n

New IPs Added
IP Rotation
IPs Changed

(d) Class 4 (e) Class 5 (f) Change Classifications

Fig. 3. The DN2IP mapping change for each class with different TTLs.

of DN2IP mappings are 2.5 hours, 42 days, and 500 days,
respectively. However, as shown in Figure 3 (f), nearly 40%
mapping changes in class 3 and the majorities of mapping
changes in classes 4 and 5 are physical changes. Any physical
change could cause a cache inconsistency, leading to a loss of
service availability. Considering the large number of domain
names in classes 3, 4 and 5, the probability of a physical
change happening per minute is close to one. Therefore,
maintaining strong cache consistency is essential to avoid
connection loss.

Logical Changes.The DN2IP mappings in classes 1 and
2 are changed frequently. In class 1, more than 70% domains
changed their IP addresses during a one-day measurement.
Most changed domains have their change frequencies around
0.1.6 In class 2, only about 20% domains changed their IP
addresses during a three-day measurement, but most changed
domains have relatively high frequencies (e.g., 0.8). On av-
erage, the change frequencies of classes 1 and 2 are about
10% and 8%, much higher than the previous classes. The
average life times of DN2IP mappings are 200 seconds and
750 seconds in classes 1 and 2, respectively. As shown in
Figure 3 (f), such frequent changes are mainly due to IP
address rotation (e.g., CDN’s load balancing over multiple
hosts), and most of the DN2IP mapping changes are logical
ones. The more detailed change frequencies of CDN and Dyn
domains are illustrated in Figure 4.

As shown in Figure 4, CDN domains have very high change
frequencies: 10% with TTLs between 0 and 60 seconds;
and close to 70% with TTLs between 60 and 300 seconds.
Two major CDN providers dominate the domains of the two
ranges: Akamai with TTL 20 seconds; and Speedera with

6442 domains changed every 200 seconds among all 803 domains in class
1.

TTL 120 seconds. The domain names served by Akamai
have change frequencies around 10%, while those served by
Speedera have change frequencies close to 100%. In contrast
to CDN domains, the Dyn domains have a low mapping
change frequencies: 0.4% with TTL larger than or equal to 300
seconds; and close to zero with TTL less than 300 seconds.
Compared with the actual change frequencies of CDN and
Dyn domains, the corresponding TTL values are aggressively
small, resulting in up to 10 and 25 times more DNS traffic than
necessary. This redundant DNS traffic would be significantly
reduced if server-initiated notification service were used.

2) Change Frequency vs. Domain Popularity:Within each
TLD domain group, we investigate the relationship between
DN2IP mapping change frequencies and domain popularities.
The measurement results of.com domains are shown in
Figure 5. The results of other TLD domains are similar
to those of.com. In classes 1 and 2 (most changes are
logical changes), we observe that a more poplar domain tends
to have a higher change frequency than a less poplar one.
This is because a popular Web site is prone to use CDN
or dynamic DNS techniques to improve its scalability and
performance. By contrast, in classes 3, 4 and 5 (most changes
are physical changes), there is no strong correlation between
change frequencies and domain popularities. One explanation
for this is that the the occurrence of mapping changes in these
classes is sporadic—irregular and random—over the entire
domain space.

IV. DNS CACHE UPDATE PROTOCOL (DNSCUP)

Basically, DNScup consists of three components, including
mapping change detection module, state-tracking module and
update notification module. The mapping change detection

7

[0,60) [60,300) [300,inf)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Domain Grouped by TTLs

C
ha

ng
e

F
re

qu
en

cy

CDN Domains
Dyn Domains

0.000126 0.000069 0

Fig. 4. CDN and Dyn domain change frequencies with
different TTLs.

[0,60) [60,300) [300,3600) [3600,86400) [86400,inf)
0

0.04

0.08

0.12

0.16

Domains Grouped by TTLs

C
ha

ng
e

F
re

qu
en

cy

Popular
Normal
Unpopular

Fig. 5. The change frequencies of .com domains with
different popularity and TTLs.

module is straightforward to implement, since only the au-
thoritative DNS nameserver has the privilege to change a DNS
resource record. There are two ways for an authoritative DNS
nameserver to change a DNS resource record: one is through
manual reconfiguration, and the other is through the DNS
dynamic update command such asnsupdate.

The update notification module is in charge of propagating
update notifications. To reduce communication overhead and
latency, we choose UDP as the primary transport carrier for
update propagation. TCP is used only when a firewall is set
on the path from the authoritative DNS nameserver to a DNS
cache. Also, we employ timers, retransmissions, and acknowl-
edgment mechanisms to achieve reliable communication for
cache updates. When a nameserver has sent a cache update
notification message but has not yet received the corresponding
acknowledgment, it retransmits the message three times before
aborting cache update. The timer is doubled at each expiration.

The core of DNScup is the state-tracking module, which
keeps track of the recent visitors, i.e., the other DNS name-
servers who query and cache a local resource record recently.
In the rest of the section, we detail our design on this module,
and then we present the whole working procedure of DNScup.

A. Design Choices

In general, there are three different approaches to main-
taining strong cache consistency: adaptive TTL, polling-every-
time, and invalidation. The major challenge of using TTL to
maintain cache consistency lies in the difficulty of setting
an appropriate TTL value for a record. Adaptive TTL [7]
adjusts the values of TTLs based on the prediction of record
lifetime, which has been applied in Web caching consistency
management [8]. Adaptive TTL may keep the staleness rate
very low, but it cannot provide strong cache consistency. The
polling-every-time approach is a simple strong consistency
mechanism, which validates the freshness of the cached con-
tent at the arrival of every query. However, its fatal drawback
lies in the poor scalability as shown in [20], incurring many
more control messages, higher server workload and longer
response time. The invalidation approach relies on the server
to notify the clients when an update happens, which is ef-
ficient when objects are rarely updated. Because most DNS

resource records are changed at very low rates, server-driven
invalidation is an appropriate approach to maintaining strong
cache consistency among DNS nameservers.

Lease [16] is a variant of server-driven invalidation mech-
anism. A lease is a contract between a server and a client7.
During leased period, the client is promised to receive an
invalidation notification if a leased object is changed. However,
if the client does not have a lease or the lease has already
expired, the client must validate a cached object upon the
arrival of a query. The lease mechanism is thus a combination
of polling and invalidation approaches. A critical question in
applying a lease mechanism is how to choose the appropriate
length of a lease. A long lease increases server storage and the
number of invalidation messages, while a short lease increases
the number of object requests and lease renewal messages.

A lease contract becomes valid either (1) upon the arrival
of a new client request if the current lease expires, or (2)
by the automatic renewal of an expired-to-be lease. The
resultant performance difference lies in the server storage
overhead and the client-perceived latency. Because most DNS
resource records do not change often, minimizing consistency
maintenance cost is more important than reducing latency. In
our study, we always use the first approach to reducing server
storage overhead.

To maintain strong cache consistency, DNScup requires the
authoritative DNS nameserver to keep track of the recent
visitors (i.e., local DNS nameservers) that access and cache
a DNS resource record. Therecentin this context implies that
the cached records should have not yet expired in these local
DNS nameservers’ caches. To make the presentation easier
to understand, we refer to these local DNS nameservers, i.e.,
recent visitors, as DNS caches in the rest of the paper. We
design a dynamic lease scheme to balance DNS nameserver
storage requirements and DNS traffic between the authoritative
DNS nameserver and the DNS caches.

Before detailing the design of dynamic lease, we sketch the
cache update process as follows. Once the authoritative DNS
nameserver has updated a DNS resource record either man-
ually or via an internal dynamic update message, it retrieves

7In the context of DNS, the client of an authoritative DNS nameserver is
just a local DNS nameserver or another authoritative DNS nameserver that
queries the authoritative DNS nameserver

8

Client

1

LAN
Internet

1

Client

(DNS Cache)
Local Nameserver

4

4. DNS cache update message.
3. DNS dynamic update message.

3

Authoritative Nameserver

2. Granted Lease (with selected lease length).
1. DNS query (with request rate in local nameserver).

2

� � � �� � � �

� � � �
� � � �
� � � �
� � � �

� � �
� � �
� � �
� � �

� � � �
� � � �
� � � �
� � � �

� � �
� � �
� � �
� � �

� � � �
� � � �
� � � �
� � � �

� � � �	 	 	 	

� � � �
� � � �

� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

Fig. 6. DNScup update process.

the track file and gets all local DNS nameservers that have
queried this record whose leases have not yet expired (i.e.,
DNS caches). The authoritative DNS nameserver then sends
cache update messages to these DNS caches through UDP. The
notified DNS caches will update their cached DNS resource
records and acknowledge the authoritative DNS nameserver.
The cache update process is shown as steps 3 and 4 in Figure
6, in which steps 1 and 2 are the process of granting a lease
to a DNS cache.

B. Lease Length Effectiveness

Lease storage overhead on the authoritative DNS name-
server is represented by the probability of the nameserver
holding a lease for each DNS cache. Its upper bound is 1,
indicating that the nameserver always keeps a lease for a
DNS cache. The communication overhead is represented by
the query rate between the nameserver and its DNS caches. If
the lease length is much shorter than the lifetime of a resource
record, most messages will be renewal requests from DNS
caches and only very few invalidation and update messages
may be observed. In the following analyses, since our practical
algorithms always set the maximal lease length much smaller
than the resource record lifetime, the communication overhead
incurred by invalidation and update messages from the server
can be ignored.

We assume that the query arrival rate from DNS caches for
a DNS resource record follows a Poisson distribution with an
average arrival rate ofλ. The rationale behind this assumption
is two-fold: (1) a DNS resolution precedes the beginning of a
session communication; and (2) Floyd and Paxson [29] have
shown that the session-level (like FTP and Telnet) arrival rate
still follows a Poisson distribution, although the packet arrival
rate is non-Poisson.

Since the time interval is exponentially distributed, the
time interval between two contiguous leases is equal to the
average interval of two contiguous queries,1

λ
. Suppose that

the authoritative DNS nameserver grants a fixed-length lease,
t, at the arrival of a query. The expected probability for the
nameserver to maintain the lease,P , is thus

P = t/(t +
1

λ
). (1)

The lease renewal message rate is defined as lease renewal
frequency. Since a lease is renewed at the interval oft + 1

λ
,

the lease renewal message rateM is

M =
1

t + 1

λ

. (2)

Here we assume that the arrival of queries for a DNS
resource record follows a Poisson distribution. The trace-based
validation of this assumption is presented in Section V-A.

Theorem 1: For a given resource record with a query rate
λ, the ratio between the reduction of message rate and the
increase of lease probability is a constant, which is equal to
λ.

Proof: Suppose the lease length is increased fromt1 to
t2. Given the query rateλ, the increase of lease probability
on the nameserver is:

4P = t2/(t2 +
1

λ
) − t1/(t1 +

1

λ
) =

λt2 − λt1
(λt1 + 1)(λt2 + 1)

.

The reduction of message rate is:

4M = 1/(t1 +
1

λ
) − 1/(t2 +

1

λ
) = λ ∗

λt2 − λt1
(λt1 + 1)(λt2 + 1)

.

Thus, the ratio between the reduction of message rate and
the increase of lease probability is equal toλ.

From Theorem 1, we conclude that leases should be as-
signed to caches with higher query rates to maximize the
message rate reduction. In Theorem 1, we ignore the cache
update messages in the calculation of the communication
overhead and the lease length is fixed. However, we have a
similar result if both query messages and update messages are
considered.

Theorem 2: In lease-based consistency schemes, if the re-
quest rateλq and the update dateλu of each resource record
follow the Poisson distribution, the ratio between the decrease
of message rate and the increase of lease probability is a
constant, which is equal toλq - λu.

Proof: Suppose a lease is assigned to a cache with length
t. The change of the query rate from the cache is:

4λ′

q = λq − 1/(t +
1

λq

) = λq −
λq

t ∗ λq + 1
= λq ∗ t/(t +

1

λq

).

And the change of the update rate from the server is:

4λ′

u = λu ∗ t/(t +
1

λq

).

The change of the lease probability in the server is:

4P = t/(t +
1

λq

).

Then, the ratio between the decrease of message rate and
the increase of lease probability is:

4M

4P
= λq − λu.

Varying lease length cannot have direct influence on the
effectiveness of dynamic lease, since it is only decided by the
query rate and the update rate. If a lease is assigned to a cache
with highestλq - λu, the cost-effectiveness is maximized.

9

C. Dynamic Lease Algorithms

Assuming the overhead allowance (storage or communica-
tion) is pre-defined, we propose two dynamic lease algorithms:
one minimizes the communication overhead given a constraint
on storage budget; and the other minimizes the storage over-
head, given a constraint on communication traffic. Whether
or not a lease is signed between the DNS nameserver and a
DNS cache is based on the DNS cache’s query rate, while the
length of a lease is determined by the DN2IP mapping change
rate at the DNS nameserver.

1) Storage-constrained Dynamic Lease:We define the stor-
age overhead allowance as the maximal number of valid
leases that a nameserver can manage. Given the storage
overhead allowancePmax, the storage-constrained dynamic
lease algorithm minimizes the message exchanges for signing
and keeping the leases at the nameserver.

Suppose that a total ofn DNS resource recordsRi(i =
1, ..., n), are maintained on the authoritative DNS nameserver,
each with maximal lease lengthLi(i = 1, ..., n). Each record
Ri is queried bym DNS cachesCj(j = 1, ..., m), with the
query rateλij . We defineMij andPi,j as the query rate and
lease probability of recordRi by cacheCj . Our objective
is to determine the appropriate lease length of every resource
record for each DNS cachelij , in order to minimize the overall
communication overheadMall, the sum ofMij . The decision
should be made under the following constraints:

• for the recordRi and DNS cacheCj , the lease lengthlij
should be within the range of0 andLi;

• the total storage consumptionPall should be less than the
predefined storage overhead allowancePmax, the sum of
Pij .

Thus, the consistency maintenance problem can be defined as
below:

minimize Mall =

n∑

i=1

m∑

j=1

Mij ,

subject to for anyRi andCij ,0 ≤ lij ≤ Li,

Pall =

n∑

i=1

m∑

j=1

Pij ≤ Pmax.

A consistency maintenance scheme that fulfills the above
constraint is a feasible solution. We refer this kind of opti-
mization as the storage-based lease problem (SLP). Since SLP
is equivalent to a Knapsack problem, it is NP-complete, but its
approximation solution can be found by utilizing the greedy
algorithm.

If we have multiple records with different maximal lease
lengths, we need to sort the4Mij

4Pij
, each of which is equal to

λij based on Theorems 1 and 2, and then we grant the lease
to the DNS cache with the highest query rate. It is clear that,
in order to reduce communication overhead, we should grant
the lease to the DNS cache with the highest query rate when
the lease probability is close to the storage constraint.

If the nameserver always grants leases with their maximal
lengths to the DNS caches selected as above until reaching
the storage constraint, we can guarantee that the total query
rate covered by leases is maximal.

2) Communication-constrained Dynamic Lease:Similarly,
given the communication overhead allowance, we can design
an algorithm that minimizes the storage overhead. It is alsoa
NP-completeproblem, and we employ the greedy algorithm
to find the optimal solution. Different from the storage-
constrained dynamic lease, at the beginning of the algorithm,
all DNS caches related to each resource record are granted
with the maximum-length leases. After that, we select the DNS
cache with the smallest query rate and deprive its lease. This
selection and deprivation continue until the communication
allowance is satisfied. In this way, we can guarantee that the
number of leases maintained by the nameserver under the
communication constraint is minimal.

D. Working Procedure of DNScup

DNS Cache

Respone + Lease Decision

Acknowledgement

Le
as

e

Lease Initiation

Update Propagation

Authoritative Nameserver

Updated Resource Record

Query + Query Rate

Fig. 7. DNScup Procedure

Although dynamic lease is an optimal solution in theory, it is
not easy to deploy in practice. This is because the parameters
of dynamic lease such as query rates and update rates are not
readily available. For the practical deployment of dynamic
lease, we design a simplified dynamic lease in DNScup.
Figure 7 illustrates the working procedure of DNScup. There
are two major communication processes in this procedure:
lease initiation and update propagation. The lease initiation is
prompted by a DNS cache sending a query to the authoritative
DNS nameserver. The query includes the local query rate on
the cache as well as its domain name. The authoritative DNS
name server evaluates the query rate by certain metrics (e.g.,
storage or communication constraint) to make a decision on
granting a lease to the DNS cache or not. If a lease is granted
to the DNS cache, the authoritative DNS nameserver records
the IP address of the DNS cache and the queried resource
record. The decision on granting lease is piggybacked to the
DNS cache with the response of the query.

Lease/TTL Lease/TTL

Client Query

RC=0 RC=0

RC=2

Server Response

Fig. 8. DNScup Cache Reference Counter.

The authoritative DNS nameserver initiates the update prop-
agation when one of its resource records has been changed.

10

 1

 1.1

 1.2

 1.3

 1.4

 1 10 100 1000 10000

M
e
a
n
 o

f
C

V

Cache Duration (second)

95% confidence interval

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1 10 100 1000 10000

M
e
a
n
 o

f
C

V

Cache Duration (second)

95% confidence interval

 1

 1.1

 1.2

 1.3

 1.4

 1 10 100 1000 10000

M
e
a
n
 o

f
C

V

Cache Duration (second)

95% confidence interval

(a) Nameserver I (b) Nameserver II (c) Nameserver III

Fig. 9. The mean of CV of query interval in DNS traces.

Notification messages, containing the updated resource record,
are sent to the DNS caches with valid leases. All notified
DNS caches need to acknowledge the receipt of the update
message. The following two auxiliary functions are important
to DNScup.

• Monitoring Query Rate at the DNS Cache: In order to
measure the query rate for a cached resource record, the
DNS cache uses a reference counter (RC) to record the
number of queries during a resource record’s lease (or
TTL period if no lease is signed yet). After the cached
resource record expires, the DNS cache book-keeps the
RC with the domain name by either writing into a specific
file or keeping it at the cache for a certain period.
When the resource record is queried again, the number
of queries during previous lease will be retrieved and
forwarded to the authoritative DNS nameserver. Upon the
arrival of the new response from the server, the counter
will be reset. Figure 8 illustrates the usage of reference
counter.

• Granting Leases in the Authoritative DNS Nameserver:
Using dynamic lease, DNScup sets a threshold on cache
query rate to determine whether or not the DNS name-
server should grant a lease for a DNS cache. The dynamic
lease algorithm can be either evoked periodically to
recompute the threshold or kept running to adjust it on-
the-fly. In both designs, a query rate monitor maintains
the statistics of all related cache query rates as the input
for the dynamic lease algorithm. An initial value is set
as the threshold, which is adjusted later according to the
monitored query rates.

V. PERFORMANCEEVALUATION

In this section, we evaluate the effectiveness of dynamic
lease of DNScup via trace-driven simulation. Our DNS traces
were collected in an academic environment, where three
local DNS nameservers provide DNS services for about two
thousand client machines. The one-week trace collection is
from July 2, 2003 to July 9, 2003. Based on the DNS traces,
we simulate a scenario in which a number of clients are using
three local DNS nameservers. The local DNS nameservers
decide whether or not granting a lease for one cached resource
record based on its query rate.

Considering the client caching effect on query intervals, we
assume that clients cache each resource record for 15 minutes,

since this is the default setting in Mozilla. The query rate
for each domain name is computed by analyzing the first-day
traces. For three categories of domain names (regular, CDN
and Dyn domains), we set different maximal lease length based
on their DN2IP mapping change rates. The maximal length for
a regular domain is set to six days, while those for DNS and
Dyn domains are set to 200 and 6,000 seconds, respectively.

A. Poisson Distribution Validation

The DNS query behavior is related to the Web request
access pattern. As most Web browsers cache DNS responses,
the time interval between two continuous queries for one
domain name likely follows the Poisson distribution. We use
the mean of Coefficient of Variation (CV) to study the query
interval distribution in our DNS traces. Figure 9 shows the
dynamics of the mean of CV with respect to the cache duration
at the client side. With the increase of the client cache duration,
as the mean of CV is closer to 1, the time intervals are more
likely to follow a Poisson distribution. It is also noticeable that
the 95% confidence interval of the mean is very small in all
cases.

B. Experimental Results

We introduce two relative system metrics to evaluate the
lease algorithms: storage percentage and query rate percentage.
The storage percentage is defined as the ratio between the
number of leases granted to querying DNS caches and the
maximal number of leases that an authoritative DNS name-
server could grant. There are two extreme cases: (1) if the
authoritative DNS nameserver grants a lease to each query
and all its resource records have valid leases all the time, the
storage percentage is 100%; and (2) if no lease is granted
to any query, the storage percentage is 0. The query rate
percentage is defined as the ratio between the query rate issued
from a DNS cache and the maximal query rate that the DNS
cache could generate. If no lease is granted, the lease algorithm
degrades to the polling scheme and generates the maximal
query rate. Thus, the query rate percentage becomes 100%
under this extreme scenario.

We compare the proposed dynamic lease scheme with the
simple fixed-length lease scheme, which grants the same
length lease to every incoming query, and the three adaptive
lease schemes [13], including random-space-based adaptive

11

100

20

10
 0 10 20 30 40 50 60 70

Q
u

e
ry

 R
a

te
 P

e
rc

e
n

ta
g

e

Storage Percentage

Dynamic Lease
Fixed Lease
Adaptive-RS
Adaptive-PS
Adaptive-PM

100

20

10
 0 10 20 30 40 50 60 70

Q
u

e
ry

 R
a

te
 P

e
rc

e
n

ta
g

e

Storage Percentage

Dynamic Lease
Fixed Lease
Adaptive-RS
Adaptive-PS
Adaptive-PM

100

20

10
 0 10 20 30 40 50 60 70

Q
u

e
ry

 R
a

te
 P

e
rc

e
n

ta
g

e

Storage Percentage

Dynamic Lease
Fixed Lease
Adaptive-RS
Adaptive-PS
Adaptive-PM

(a) Nameserver I (b) Nameserver II (c) Nameserver III

Fig. 10. Storage requirements for given query rates.

 0

 20

 40

 60

 80

 100

 0.001 0.01 0.1 1 10 100

Q
u

e
ry

 R
a

te
 P

e
rc

e
n

ta
g

e

Storage Percentage

Dynamic Lease
Fixed Lease
Adaptive-RS
Adaptive-PS
Adaptive-PM

 0

 20

 40

 60

 80

 100

 0.001 0.01 0.1 1 10 100

Q
u

e
ry

 R
a

te
 P

e
rc

e
n

ta
g

e

Storage Percentage

Dynamic Lease
Fixed Lease
Adaptive-RS
Adaptive-PS
Adaptive-PM

 0

 20

 40

 60

 80

 100

 0.001 0.01 0.1 1 10 100

Q
u

e
ry

 R
a

te
 P

e
rc

e
n

ta
g

e

Storage Percentage

Dynamic Lease
Fixed Lease
Adaptive-RS
Adaptive-PS
Adaptive-PM

(a) Nameserver I (b) Nameserver II (c) Nameserver III

Fig. 11. Query rates for given storage requirements.

100

80

60

40

 0 2 4 6 8 10

Q
u

e
ry

 R
a

te
 P

e
rc

e
n

ta
g

e

Storage Percentage

Dynamic Lease
Fixed Lease
Adaptive-RS
Adaptive-PS
Adaptive-PM

100

80

60
 0 0.2 0.4 0.6 0.8 1 1.2 1.4

Q
u

e
ry

 R
a

te
 P

e
rc

e
n

ta
g

e

Storage Percentage

Dynamic Lease
Fixed Lease
Adaptive-RS
Adaptive-PS
Adaptive-PM

100

80

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Q
u

e
ry

 R
a

te
 P

e
rc

e
n

ta
g

e

Storage Percentage

Dynamic Lease
Fixed Lease
Adaptive-RS
Adaptive-PS
Adaptive-PM

(a) Once Per Day (b) 10 Times Per Day (c) 20 Times Per Day

Fig. 12. Storage requirements for given query rates with different change rates.

 40

 60

 80

 100

 0.001 0.01 0.1 1 10

Q
u

e
ry

 R
a

te
 P

e
rc

e
n

ta
g

e

Storage Percentage

Dynamic Lease
Fixed Lease
Adaptive-RS
Adaptive-PS
Adaptive-PM

 60

 80

 100

 0.001 0.01 0.1 1

Q
u

e
ry

 R
a

te
 P

e
rc

e
n

ta
g

e

Storage Percentage

Dynamic Lease
Fixed Lease
Adaptive-RS
Adaptive-PS
Adaptive-PM

 80

 100

 0.001 0.01 0.1 1

Q
u

e
ry

 R
a

te
 P

e
rc

e
n

ta
g

e

Storage Percentage

Dynamic Lease
Fixed Lease
Adaptive-RS
Adaptive-PS
Adaptive-PM

(a) Once Per Day (b) 10 Times Per Day (c) 20 Times Per Day

Fig. 13. Query rates for given storage requirements with different change rates.

12

lease (Adaptive-RS), popularity-space-based adaptive lease
(Adaptive-PS) and popularity-message-based adaptive lease
(Adaptive-PM). Adaptive-RS equally assigns lease by ran-
domly selecting caches; Adaptive-PS takes the DNS record
popularities into consideration, and tune the selection proba-
bility of a record proportional to its popularity; Adaptive-PM
adjusts the lease length proportionally to the corresponding
DNS record popularity. Our simulation results clearly show
that the performance of dynamic lease is superior to those of
the Adaptive-RS and the fixed-length lease, and also is better
than those of Adaptive-PS and Adaptive-PM when the storage
percentage is small. Figures 10 and 11 illustrate the simulation
results of regular domains based on the traces at three different
DNS nameservers. Note that the X-axis in Figure 11 is in
logarithmic scale. For CDN and Dyn domains, we have similar
results. Due to space limit, we do not present them here. In our
trace-driven experiments, the storage percentage is bounded at
60%, since in pratice only a portion of resource records have
valid leases at a time.

Dynamic lease is effective in reducing storage overhead.
As shown in Figure 10 (a), under the query rate percentage
of 20%, the storage percentage of dynamic lease is 19%
while the storage percentages are 58%, 47%, 28%, and 21%
for Adaptive-RS, Fixed lease, Adaptive-PM, and Adaptive-PS,
respectively. At the same time, dynamic lease is also effective
in reducing communication overhead. As shown in Figure
11 (a), under the storage percentage of 0.5%, the query rate
percentage of dynamic lease is 77% while for Fixed leases,
Adaptive-RS, Adaptive-PS, and Adaptive-PM, they are 100%,
99%, 91%, and 90%, respectively.

In another set of experiments, we evaluate the performance
of different lease schemes under the given DNS record change
rate at the server-side. No lease will be granted to a cache
if its query rate is lower than the change rate of a DNS
record. We only present the results based on the DNS traces
collected at nameserver I, since we have similar results at
other nameservers. Figure 12 shows the storage requirements
of lease schemes under the three different record change
rates: once per day, 10 times per day, and 20 times per day,
respectively. Figure 13 shows the corresponding query rate
reductions. The dynamic lease is better than other schemes in
most cases. The differences become more obvious with the
increase of the change rates. Since the server-side notification
messages increase the query rate, two schemes, the fixed lease
and Adaptive-PM, have higher query rates if short lease length
is used. It is noticeable that the fixed lease and Adaptive-PM
are slightly better when their storage requirements are close
to the maximal value, as shown in Figures 12(b) and (c).

In our experiments, due to the limitation of the trace length
(seven days), the maximal length for regular domains is
relatively small. Since regular domains seldom change their
DN2IP mappings, we may use a much higher lease length to
gain a better performance. Note that the lease selection in our
experiment is done off-line based on the trace analyses, and
the lease length remains constant. In reality, a DNS cache may
monitor the rates of cached records in the incoming queries.
When it detects a significant change in query rates, the DNS
cache will notify the authoritative DNS nameserver to re-

negotiate the current leases.

VI. PROTOTYPE IMPLEMENTATION

We have built our DNScup prototype on top of BIND
9.2.3. In this section, we first present the extension on the
DNS message format to support DNScup mechanism. Then,
we describe the structure of the DNScup prototype. Finally,
we discuss the security issue related to DNScup. Note that
DNScup only keeps cached resource records with valid leases
updated, and the rest of the cached resource records still rely
on the TTL mechanism to refresh themselves.

A. Message Formats

In the header of DNS messages, a 1-bit fieldQR is used to
specify whether it is a query (0) or a response (1). A 4-bit
field OPCODE is used to specify the type of the message. In
current implementation of BIND, only types 0, 1, 2, 4 and 5
are used and the rest are reserved for future use. To support
DNScup, a new opcode 6 in the query/response headers is
introduced for lease negotiation. Each DNS query includes
the query rate originated from the local clients, and the query
rate is expressed in a new 16-bit fieldRRC (recent reference
counter) with the domain name being queried at the question
section. The authoritative DNS nameserver usesOPCODE 6
in the response header to indicate that the lease information
is included. If a lease is granted, its duration is specified in a
new 16-bit fieldLLT (lease length time) at the answer section.

ID: (new)

op: CACHE−UPDATE(7)

Zone zcount: 1

Zone zname: (zone name)

Zone zclass: (zone class)

Zone ztype: T_SOA

Fig. 14. Format of aCACHE-UPDATE Message Header

In the BIND 9.2.3 implementation, a message withOPCODE
of 4 is used for the internal master-slave notification. In order
to deal with the wide-area DNS cache update propagation, we
define a new type of message calledCACHE-UPDATE. This
message has the same fields as those in theUPDATE message
except for the “op” field in the message header, which is shown
in Figure 14.

B. Structure of DNScup Prototype

We have modified the prompt notification of the zone
mechanism in the BIND 9.2.3 implementation. According to
our design, three core components of DNScup have been
added to BIND 9.2.3, including the detection module, the
listening module, and the notification module. The detection
module detects a DNS record change; the listening mod-
ule monitors incoming DNS queries and updates the track
file when necessary; and the notification module propagates
DNSCACHE-UPDATEmessages. The normal DNS operations

13

DNS
database

dynamic
update

notification module

check changes

named modules
unchanged

inform updates

fetch servers list

message

normal DNS queries

dynamic update queries

normal DNS queries

fetch results

CACHE−UPDATE

CACHE−UPDATE messages

DNScup Structure

normal DNS responses

CACHE−UPDATE ACKs

detection module listening module

update cache
check updates

 message
CACHE−UPDATE lease−track

file

Fig. 15. Structure of DNScup Prototype

remain intact. The interactions among all components are
illustrated in Figure 15.

For DNS resource records of the authoritative DNS name-
server, thenamed daemon creates a database file to keep track
of the incoming DNS queries. Each tuple in this file consists
of five fields, which are the source IP address, queried zone
name, query type, query time, and lease length. When a DNS
query comes in, thenamed first decides if a lease should be
granted based on the query rate carried with the query. If yes,
a new tuple is added to the track file, and the corresponding
response is sent back.

C. Secure DNScup

In our current implementation, we transmit DNS messages
in plain text for simplicity and efficiency. However, to protect
DNS caches against poisoned CACHE-UPDATE messages
originated from a compromised DNS nameserver, we need a
secure communication channel for cache update. Fortunately,
DNSSEC [14] and the secure DNS Dynamic Update proto-
cols [38] have been proposed. Coupled with the proposed
secure DNS mechanisms, DNScup can achieve a secure cache
update without much difficulty.

D. Experimental Results

DNS Cache 2

Root Server DNS Cache 1

LAN

Name Server

Name Server Name Server
(slave 1) (slave 2)

(master)

Fig. 16. DNScup Implementation Testbed

We examine our prototype implementation in a testbed—a
hierarchy of DNS nameservers in a LAN environment. The
testbed is shown in Figure 16. By utilizing multiple virtualIP

addresses, we run a master authoritative DNS nameserver and
its two slaves on a machine. The root nameserver and two DNS
caches are mimicked at three different machines, respectively.
The machines used in our experiments are 1GHz Pentium IIIs
with 128MB RAM running RedHat Linux 9.1, connected by a
100 Mbps Ethernet. From IRcache [4] proxy traces, we select
50 most popular domain names (46 if excluding ”localhost”
and three individual IP addresses). A total of 40 zones are
constructed for the 46 domain names on the authoritative DNS
nameservers, with their glues recorded on the root server. The
zone file data are collected through issuing necessary queries
to the Internet.

Type DNScup (Bytes) TTL (Bytes) Increment

DNS query 40.8 36.8 10.9%
DNS response 217.8 203.7 6.9%
cache update 80.3 – –
cache update ack 25.0 – –

TABLE II

AVERAGE MESSAGEOVERHEAD OF DNSCUP

The average lengths of different messages in DNScup are
shown in Table II. Compared with the existing TTL-based
mechanism, the sizes of both query and response messages
are increased due to the addition of new fields. However, they
are still far below the limitation set by RFC 1035 [23]—a DNS
message carried in UDP cannot exceed 512 bytes. Both cache
update and its acknowledgment messages are small, having
sizes similar to those of messages in the DNS dynamic update
protocol [31].

In order to measure the processing overhead of DNS
queries, we set two timers in Bind 9.2.3, one right after
receiving a query and the other right before the corresponding
response is sent out. The two DNS caches repeat sending
queries to the master authoritative DNS nameserver for the 46
collected domain names. After each round, we flush out their
cached contents so that the authoritative DNS nameserver can
continuously receive and process the queries. Figure 17 shows

14

the CDF of processing times of 5,000 continuous queries with
and without DNScup support, respectively. Although DNScup
needs to maintain the query rate statistics, the differencein
computational overhead between TTL and DNScup is hardly
noticeable.

 0

 20

 40

 60

 80

 100

 100 150 200 250 300 350

C
D

F
 o

f P
ro

ce
ss

in
g

T
im

e
(%

)

Processing Time (usec)

TTL+DNScup
TTL

Fig. 17. DNS nameserver processing overhead: DNScup vs TTL

VII. C ONCLUSION

In this paper, we have proposed a DNS cache update
protocol, calledDNScup, working as middleware to maintain
strong consistency in DNS caches. To investigate the dynamics
of DN2IP mapping changes, we have conducted a wide range
of DNS measurements. Our major findings are summarized as
follows:

• While the physical mapping changes per Web domain
name rarely happen, the probability of a physical change
per minute within a class is close to one.

• Compared with the frequencies of logical mapping
changes, the values of the corresponding TTLs are much
smaller, resulting in a large amount of redundant DNS
traffic.

• The TTL value of a Web domain name is independent on
its popularity, but its logical mapping change frequency
is dependent on the popularity of the Web domain.

Based on our measurements, we conclude that maintaining
strong cache consistency is essential to prevent potentiallosses
of service availability. Furthermore, with strong cache consis-
tency support, CDNs and other mechanisms can provide fine-
grained load-balance, quick responsiveness to network failure
or flash crowd, and end-to-end mobility, without degrading the
scalability and performance of DNS.

To keep track of the local DNS nameservers whose
clients need strong cache consistency for always-on Internet
services, DNScup uses dynamic lease to reduce the storage
overhead and communication overhead. Based on the
DNS Dynamic Update protocol, we have built a DNScup
prototype with minor modifications to the current DNS
implementation. The major components of the DNScup
prototype include the detection module, the listening module,
the notification module, and the lease-track file. Our trace-
driven simulation and prototype implementation demonstrate

that DNScup achieves the strong cache consistency in DNS
and significantly improves its availability, performance and
scalability.

Acknowledgment: We thank Songkuk Kim for providing
DNS traces of Department of EECS at the University of
Michigan, Phil Kearns for supporting the experimental envi-
ronments, and William Bynum for his valuable comments.

REFERENCES

[1] Content delivery and distribution networks. http://www.web-
caching.com/cdns.html.

[2] Dynamic DNS provider list. http://www.technopagan.org/dynamic/.
[3] Internet systems consortium. http://www.isc.org.
[4] Ircache home. http://www.ircache.net/.
[5] A. Broido, E. Nemeth, and K. Claffy. Spectroscopy of DNS update

traffic. In Proceedings of ACM SIGMETRICS’2003, pp. 320–321, San
Diego, CA, June 2003.

[6] N. Brownlee, K. Claffy, and E. Nemeth. DNS Root/gTLD performance
measurements. InProceedings of USENIX LISA’2001, pp. 241–256, San
Antonio, TX, December 2001.

[7] V. Cate. Alex - a global file system. InProceedings of USENIX File
System Workshop’92, pp. 1–11, Ann Arbor, MI, May 1992.

[8] A. Chankdunthod, P. Danzig, C. Neerdaels, M. Schwartz, and K. Worrell.
A hierarchical Internet object cache. InProceedings of USENIX Annual
Technical Conference’96, pp. 153–164, San Diego, CA, January 1996.

[9] E. Cohen and H. Kaplan. Proactive caching of DNS records:Addressing
a performance bottleneck. InProceedings of IEEE Symposium on
Applications and the Internet’2001, pp. 85–94, San Diego, CA, January
2001.

[10] R. Cox, A. Muthitacharoen, and R. Morris. Serving DNS using a peer-
to-peer lookup service. InProceedings of IPTPS’2002, pp. 155–165,
Cambridge, MA, March 2002.

[11] C. Cranor, E. Gansner, B. Krishnamurthy, and O. Spatscheck. Character-
izing large DNS traces using graphs. InProceedings of ACM IMW’2001,
pp. 55–67, San Francisco, CA, November 2001.

[12] P. Danzig, K. Obraczka, and A. Kumar. An analysis of wide-area
name server traffic: A study of the Internet domain name system.
In Proceedings of ACM SIGCOMM’92, pp. 281–292, Baltimore, MD,
August 1992.

[13] V. Duvvuri, P. Shenoy, and R. Tewari. Adaptive leases: Astrong consis-
tency mechanism for the world wide web.IEEE Transactions on Knowl-
edge and Data Engineering, 15(5):1266–1276, September/October 2003.

[14] D. Eastlake. Domain name system security extensions. In RFC 2535,
March 1999.

[15] J. Eisenberg and C. Partridge. The Internet under crisis conditions:
Learning from september 11.ACM Computer Communication Review,
33(2), April 2003.

[16] C. Gray and D. Cheriton. Leases: An efficient fault-tolerant mechanism
for distributed file cache consistency. InProceedings of ACM SOSP’89,
pp. 202–210, Litchfield Park, AZ, December 1989.

[17] J. Jung, E. Sit, H. Balakrishnan, and R. Morris. DNS performance and
the effectiveness of caching. InProceedings of ACM IMW’2001, pp.
153–167, San Francisco, CA, October 2001.

[18] D. Karger, E. Lehman, F. Leighton, M. Levine, D. Lewin, and R. Pan-
igrahy. Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the world wide web. InProceedings
of ACM STOC’97, pp. 654–663, El Paso, TX, USA, May 1997.

[19] R. Liston, S. Srinivasan, and E. Zegura. Diversity in DNS performance
measures. InProceedings ACM IMW’2002, pp. 19–31, Marseille,
France, November 2002.

[20] C. Liu and P. Cao. Maintaining strong cache consistencyin the World-
Wide Web. IEEE Transactions on Computers, 47(4):445–457, April
1998.

[21] M. Mikhailov and C. Wills. Evaluating a new approach to strong web
cache consistency with snapshots of collected content. InProceedings
of WWW’2003, pp. 599–608, Budapest, Hungary, May 2003.

[22] P. Mockapetris. Domain names-concepts and facilities. In RFC1034,
November 1987.

[23] P. Mockapetris. Domain names-implementation and specification. In
RFC 1035, November 1987.

15

[24] J. Pang, A. Akella, A. Shaikh, B. Krishnamurthy, and S. Seshan. On the
responsiveness of DNS-based network control. InProceedings of ACM
IMC’2004, pp. 21–26, Taormina, Sicily, Italy, October 2004.

[25] J. Pang, J. Hendricks, A. Akella, R. De Prisco, B. Maggs,and S. Seshan.
Availability, usage and deployment characterisitics of the domain name
system. InProceedings of ACM IMC’2004, pp. 1–14, Taormina, Sicily,
Italy, October 2004.

[26] V. Pappas, P. Faltstrom, D. Massey, and L. Zhang. Distributed DNS
troubleshooting. InProceedings of ACM SIGCOMM’2004 Network
Troubleshooting Workshop, pp. 265–270, Portland, OR, August 2004.

[27] V. Pappas, Z. Xu, S. Lu, D. Massey, A. Terzes, and L. Zhang. Impact
of configuration errors on DNS robustness. InProceedings of ACM
SIGCOMM’2004, pp. 319–330, Portland, OR, August 2004.

[28] K. Park, V. S. Pai, L. Peterson, and Z. Wang. CoDNS: Improving DNS
performance and reliability via cooperative lookups. InProceedings of
USENIX OSDI’2004, pp. 199–214, San Francisco, CA, December 2004.

[29] V. Paxson and S. Floyd. Wide-area traffic: The failure ofpoisson
modeling. IEEE/ACM Transactions on Networking, 3(3):226–244, June
1995.

[30] V. Ramasubramanian and E. Sirer. The design and implementation of a
next generation name service for the Internet. InProceedings of ACM
SIGCOMM’2004, pp. 331–342, Portland, Oregon, USA, August 2004.

[31] Y. Rekhter, S. Thomson, J. Bound, and P. Vixie. Dynamic updates in
the domain name system. InRFC2136, April 1997.

[32] A. Shaikh, R. Tewari, and M. Agrawal. On the effectiveness of DNS-
based server selection. InProceedings of IEEE INFOCOM’2001, pp.
1801–1810, Anchorage, AK, April 2001.

[33] A. Snoeren and H. Balakrishnan. An end-to-end approachto host
mobility. In Proceedings of ACM MobiCom’2000, pp. 155–166, Boston,
MA, August 2000.

[34] M. Walfish, H. Balakrishnan, and S. Shenker. Untanglingthe web
from DNS. In Proceedings of USENIX NSDI’2004, pp. 225–238, San
Francisco, CA, USA, March 2004.

[35] B. Wellington. Secure domain name system dynamic update. In
RFC3007, November 2000.

[36] D. Wessels, M. Fomenkov, N. Brownlee, and K. Claffy. Measurement
and laboratory simulations of the upper DNS hierarchy. InProceedings
of PAM’2004, Antibes Juan-les-Pins, France, April 2004.

[37] C. Wills, M. Mikhailov, and H. Shang. Inferring relative popularity of
Internet applications by actively querying DNS caches. InProceedings
of ACM IMC’03, pp. 78–90, Miami, FL, October 2003.

[38] C. Wills and H. Shang. The contribution of DNS lookup costs to web
object retrieval. InTechnical Report TR-00-12, Worcester Polytechnic
Institute, July 2002.

[39] J. Yin, L. Alvisi, M. Dahlin, and A. Iyengar. Engineering web cache
consistency.ACM Transactions on Internet Technologies, 2(3):224–259,
August 2002.

[40] J. Yin, L. Alvisi, M. Dahlin, and C. Lin. Hierarchical cache consistency
in a WAN. In Proceedings of USENIX USITS’99, pp. 13–24, Boulder,
CO, USA, October 1999.

[41] J. Yin, L. Alvisi, M. Dahlin, and C. Lin. Volume leases for consistency
in large-scale systems.IEEE Transactions on Knowledge and Data
Engineering, 11(4):563–576, July/August 1999.

