WU ET AL.: ON ENERGY SECURITY OF SERVER SYSTEMS

865

On Energy Security of Server Systems

Zhenyu Wu, Member, IEEE, Mengjun Xie, Member, IEEE, and Haining Wang, Senior Member, IEEE

Abstract—Power management has become increasingly important for server systems. Numerous techniques have been proposed

and developed to optimize server power consumption and achieve energy proportional computing. However, the security perspective
of server power management has not yet been studied. In this paper, we investigate energy attacks, a new type of malicious exploits
on server systems. Targeted solely at abusing server power consumption, energy attacks exhibit very different attacking behaviors and
cause very different victim symptoms from conventional cyberspace attacks. First, we unveil that today’s server systems with improved
power saving technologies are more vulnerable to energy attacks. Then, we demonstrate a realistic energy attack on a stand-alone
server system in three steps: 1) by profiling energy cost of an open web service under different operation conditions, we identify the
vulnerabilities that subject a server to energy attacks; 2) exploiting the discovered attack vectors, we design an energy attack that can
be launched anonymously from remote; and 3) we execute the attack and measure the extent of its damage in a systematic manner.
Finally, we highlight the challenges in defending against energy attacks, and we propose an effective defense scheme to meet the

challenges and evaluate its effectiveness.

Index Terms—Energy attack, server security, energy-aware programming

1 INTRODUCTION

POWER management is one of the critical issues for server
systems nowadays. To date energy cost has become a
major factor in the total cost of ownership (TCO) of large-
scale server clusters [3], [17]. According to EPA [34], more
than 100 billion kilowatt hours, representing a $7.4 billion
annual cost, are estimated to be consumed by data centers
in US by 2011. As the price of hardware keeps dropping
while its performance continuously improves, the propor-
tion of energy cost in overall expense of server systems
tends to grow even larger [3], [17].

Previous research on server power management mainly
focuses on reducing power consumption while maintaining
acceptable quality of service. Numerous techniques have
been proposed to improve energy efficiency in a variety of
aspects, from low-level hardware features such as processor
Dynamic Voltage and Frequency Scaling (DVFS) [13], [19]
and hard disk spin-down [8], [16], to high-level system-wise
management schemes such as cluster load provisioning [9],
[27] and virtual machine consolidation [25]. While these
power management advancements have significantly im-
proved power savings, they have also opened up spaces for
energy misuse. However, the security aspect of server system
power management has not yet been paid attention to.

In this paper, we investigate energy attacks, a new type of
malicious exploits on server systems. Stealthily launched

o Z. Wu is with NEC Laboratories America, Inc., 4 Independence Way,
Suite 200, Princeton, NJ 08540. E-mail: adamwu@nec-labs.com.

o M. Xie is with the Department of Computer Science, University of
Arkansas at Little Rock, 2801 South University, Little Rock, AR 72204.
E-mail: mxxie@ualr.com.

o H. Wang is with the Department of Computer Science, College of William
and Mary, PO Box 8795, Williamsburg, VA 23187.

E-mail: hnw@cs.wm.edu.

Manuscript received 25 Aug. 2011; revised 28 Mar. 2012; accepted 24 July
2012; published online 2 Aug. 2012.

For information on obtaining reprints of this article, please send e-mail to:
tdsc@computer.org, and reference IEEECS Log Number TDSC-2011-08-0199.
Digital Object Identifier no. 10.1109/TDSC.2012.70.

1545-5971/12/$31.00 © 2012 IEEE

from remote by anonymous attackers, energy attacks increase
the power consumption of a server system nonproportionally
to its effective workload. Energy attacks are distinct from
conventional cyberspace attacks in three interrelated aspects:
objectives, attacking behaviors, and victim symptoms. First,
energy attacks aim solely at abusing power consumption.
They do not attempt to disrupt the normal service operations
of the victim servers, nor to acquire sensitive information
from the victim servers. Second, energy attacks are mounted
in a stealthy manner, and they deliver damages over a
relatively long period of time. An attacker’s network flow is
indistinguishable from those of the normal clients, in terms of
traffic patterns or data fingerprints. Third, energy attacks
manifest on victim servers only as increased energy usage,
and no other induced anomalies such as significant perfor-
mance degradation.

Although no immediately observable damages ensue, the
consequences of energy attacks are serious. A successfully
launched energy attack can cause a victim system to waste a
large amount of energy, which in turn becomes waste heat,
resulting in significantly increased power and cooling
expense, shortened hardware component lifespan, reduced
reliability, and sometimes even permanent hardware fail-
ure. Current power management and security mechanisms
provide virtually no defense against energy attacks.

To demonstrate the feasibility of launching an energy
attack, we perform a step-by-step design and execution of a
realistic energy attack on Wikipedia mirror server. First, we
profile the power consumption of the victim web server
under different page serving conditions, and identify a
condition that triggers high energy consumption as a viable
attack vector. We then proceed to design an energy attack
technique, achieving stealthiness by leveraging knowledge
of human web browsing behaviors. Finally, we evaluate our
design by executing the attack and systematically measure
the power consumption increases of the victim server under
different load conditions. We observe that the effect of the
energy attack is dependent on the existing workload of the

Published by the IEEE Computer Society

866 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL.9, NO.6, NOVEMBER/DECEMBER 2012

victim server system. And at typical workloads, our attack
is able to increase a victim server’s power consumption
from 21.7 to 42.3 percent.

In seeking of an effective defense against energy attacks,
we realize that the current server hardware lacks support
for fine-grained power measurement, a critical component
for building general purpose defense system. We propose
an application-oriented defense scheme utilizing energy-
aware programming to work around the missing hardware
support. We show a proof-of-concept implementation, and
evaluate its effectiveness in defending against an energy
attack.

The remainder of this paper is structured as follows:
Section 2 presents the background on server system energy
saving and the security implication. Section 3 details the
design of energy attacks. Section 4 evaluates the threat of
the proposed energy attack. Section 5 presents our software-
based defense scheme. Section 6 further discusses related
issues. Section 7 surveys related work on power manage-
ment and energy security for server systems and mobile
devices. Finally, Section 8 concludes the paper.

2 BACKGROUND

In this section, we first discuss the impact of energy
proportional computing on a server system and present
power measurements on our own server systems. Then, we
describe the threat of energy attacks exposed on today’s
server systems.

2.1 Power Distribution

The power consumption in a server is mainly attributed to
two sources, system component powering and cooling,
with the latter heavily dependent on the former. Server
system components mainly fall into the following cate-
gories: power supply, motherboard (chipset), processor,
memory, and disk storage.

The power supply is responsible for transforming high
voltage electricity input from a power outlet to a proper
form of electricity (e.g., 5 V, 12 V DC) for all other server
components. Although the power supply does not directly
participate in service processing, it consumes a portion of
input power due to conversion loss. The state-of-the-art
power supplies guarantee over 90 percent efficiency at
normal loads (i.e., 20-100 percent of rated output) [35].

The motherboard and chipset provide the basic inter-
connection for all other system components. Modern server
system chipset has nominal TDP' from 25 to 35 W. Processors
are usually the component that is capable of consuming the
most of power per unit. A typical server processor’s TDP is
rated at 65 to 130 W, and a server is usually equipped with
one to four processors. Memory, typical Fully Buffered
DRAM (FBDIMM) for servers, has per-unit TDP of approxi-
mately 12 W [20]. A server system usually has four to eight
memory modules installed, which add up the overall
memory power consumption to 48 to 96 W.

The disk storage for a server system usually consists of
multiple hard drives. The power consumption of a hard drive

1. Thermal Design Power, a reference number of the typical amount of
power a processor or chipset draws during full utilization, which is usually
lower than its peak power consumption.

is mainly determined by its disk rotation speed: 7,200 and
10,000 Rotations Per Minute (RPM) drives consume 8 W
power while idling and 12 W on average [32], but 15,000 RPM
drives consume 12 W idle and 16 W on average [33].

2.2 Energy Proportionality

Energy proportional computing [4] is an important
concept in today’s server systems. It aims to address the
increasing energy concern and demand for power saving
by making servers consume energy proportional to its
workload. This goal is normally achieved by conditionally
trading off performance for power savings.

Processors are the primary targets for power optimiza-
tion, because of their high maximum power consumption
(hundreds of watts per unit). Nowadays, the majority of
server-class CPUs have employed power saving techniques
that are already used in desktop and mobile processors,
such as DVFS, multiple power states with reduced
performance, and even power-down of idle cores. Mother-
board and chipset feature the shutdown of unused circuitry,
and memory chips also have several standby states with
reduced power for no read/write cycles. Hard drives can
only save a small portion of energy at idleness, due to their
power demanding internal mechanical parts (spinning
platters). However, they have another power saving
mechanism called “spin-down,” which shuts down the
motor and thereby cutting down the majority of the power
consumption, at a high (latency) cost of resuming service.

The Advanced Configuration and Power Interface
(ACPI) specifications [1] are introduced to unify the power
management of various types of devices in computer
systems and provide well-defined power management
interfaces for both hardware and software. Within the
specifications, multiple performance states are defined for a
computer component. Each performance state corresponds
to a specification of the expected performance and power
consumption. At least one state is well defined: a full power
state corresponds to the maximum performance. Depending
on device type and manufacturing technology, additional
number of reduced performance states can be defined.

Although modern operating systems are all capable of
utilizing the ACPI to conserve energy under light load or in
idleness, previous generations of server systems (such as
our System A below) are not very energy proportional. This
is because performance and security used to be the primary
concerns for server systems, and thus the underlying
hardware provides little or no support of additional
performance states with reduced power consumption.
However, as energy concerns weigh increasingly heavily,
today’s server systems have been becoming more energy
proportional.

2.3 Real Server Measurements

We perform a small measurement study on system power
consumption, using two server systems with different
generations of hardware configurations, which are listed
in Table 1. System A was bought in 2006 and System B was
bought in mid-2009. We believe that both servers are
representative of the mainstream system configurations at
the time of purchase.

We measure the whole system power consumption in
three different load scenarios: completely idle (IDLE),

WU ET AL.: ON ENERGY SECURITY OF SERVER SYSTEMS

TABLE 1
Configurations for Server Systems
System A System B

CPU 2 * Xeon 5130 2 * Xeon 5520
Dual Core Quad Core

M 4 * 1GB 6 * 1GB

€MOry | PDR2 FBDIMM | DDR3 FBDIMM

4 * 7200RPM 6 * 7200RPM

HDD g arp SATA

processors being fully utilized (CPU), and processors and
hard drives being fully utilized (CPU+HDD). The “CPU”
workload is generated by running multiple instances of a
classic CPU benchmark program “linpack,” and the number
of instances corresponds to the number of logic cores. The
“CPU+HDD” workload is generated by running the “CPU”
workload with the highest nice value and, at the same
time, writing a large volume of data to the hard drives using
the dd utility. The power consumption data are collected
using a “Watts up? .Net” digital power meter [37], which is
capable of measuring power usage with accuracy of +1.5%,
at a time granularity of one second.

Two observations can be made from our measurement
results shown in Fig. 1: first, in high utilization scenarios
System B (the newer server) consumes slightly more power
than System A; second, and more interestingly, in the IDLE
scenario, the power consumption of System B is signifi-
cantly less than that of System A. While the first observation
can be explained by System B having increased overall
computation power than System A, the second observation
presents us the direct proof that newer server system is
becoming more energy proportional than previous genera-
tions. With higher computation power and improved
energy proportionality, one can expect System B to yield
more energy saving than System A under the same
workload. However, we make an additional, alarming
observation when we look at the advancements in energy
proportional computing from a security perspective.

2.4 Threat of Energy Attacks

The improved energy proportionality has significantly
changed the power profile of today’s server systems. For
example, our measurement data in Fig. 1 shows that
compared with IDLE, the CPU+HDD power consumption
of System A increases by only 35 percent, while that of
System B increases by 134 percent. The larger power
consumption increase of System B indicates that it has a
wider dynamic power range than System A. In other words,
the power consumption of System B (energy proportional
server) is more alterable than that of System A (nonenergy
proportional server). And the increased power consump-
tion alterability represents a new threat to server systems.
The power management mechanism of a server can be
attacked by maliciously crafted workloads that target at
consuming disproportional amount of energy, rendering
the power saving ineffective, and resulting in significant
energy wastage of the victim server.

Alarmingly, we realize that the threat of energy attacks is
in fact an exploitable vulnerability because currently there

867
350
304.1
300 || D2vtemA 288.8 275.9
m System B 269.8 >
250 -
Z 204.1
8 200 - -
S
@ 130.1
g 150
e
100
50 -
0
IDLE CcPU CPU+HDD

Fig. 1. System power consumptions.

is no effective defense against it. Existing power manage-
ment schemes mainly focus on improving energy efficiency
under normal operating conditions with benign workload,
and thus they do not provide any defense against energy
attacks. Moreover, most server systems do no have an
efficient mechanism to measure power consumption, and
thus could not even detect energy attacks, let alone defend
against them.

2.5 Feature of Energy Attacks

Energy attacks on server systems target at exploiting the
aforementioned power management vulnerability, and
increasing a victim servers power consumption dispropor-
tional to its effective workload. Compared to other
cyberattacks, the damage of increased power consumption
is delivered in an accumulative fashion over a relatively
long period of time. As a result, energy attacks must meet
two stealthiness requirements—low network-level signa-
ture and low performance degradation.

First, the attack should not exhibit traffic anomalies or
have unique traffic patterns, because network traffic is often
monitored for security purposes. Second, the attack should
cause minimal performance impact on the victim server, as
unusual performance degradation is a very visible sign that
the server is under attack. The first requirement precludes
high service request rate attacks, due to their obvious traffic
anomalies. The malicious requests in an energy attack need
to be sent at low to normal rate, and hence should be crafted
to ensure a high per-request energy cost. In order to fulfill the
second requirement, energy attacks must be adaptive to the
workload condition of the victim server. Because the victim
hosts an open service, its normal workload tends to vary
significantly in time (e.g., correlated with the diurnal and
weekly cycles). Inflicting a fixed malicious workload on the
victim may either result in performance anomaly during
high-load periods, or fail to incur the maximum damage
during low-load or idle periods.

Note that energy attacks on server systems belong to a
new attack class, which is very different from Denial-of-
Service (DoS) attacks [21], [31], [36] in terms of their
purpose, methodology and effects. Energy attacks aim to
stealthily abuse a victim server’s power consumption, and
try hard to avoid causing any tangible service irregularities.
In contrast, DoS attacks target at complete disruption of the
victims service, leveraging relatively simple attack strategies
such as request flooding. Moreover, because old generations
of server systems are not energy proportional, to date

868 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL.9, NO.6, NOVEMBER/DECEMBER 2012

190

180 A
17p.2

— 170
4
= | 157.9
%— 160 15p.8
$ 150 -
o
a

140

130 T

Fully Cached No MemCache No ObjCache

(a) Power Consumption vs. Caching Scenarios

2500

2000
)
£
< 146p.50
2 1500 -
E
[
€ 1000 -
Q
&
500 40%.13
174.98
0 [:
Fully Cached No MemCache No ObjCache

(b) Response Time vs. Caching Scenarios

Fig. 2. Power consumption and response time under different caching scenarios.

energy has never been a target for DoS attacks mounted on
server systems. And consequently, DoS attacks have mixed
energy effects. In other words, not all DoS attacks result in
increased power consumption of the victim server, and
some could even lead to power consumption decrease. As
an intuitive example, a TCP SYN flooding DoS attack
exhausts the victim server’s socket resource, and thus
prevents the victim from receiving normal service requests.
This attack causes the major components (e.g.,, CPUs and
hard drives) of the victim server to become idle, and hence
significantly reduces its power consumption.

3 ENERGY ATTACK ON SERVER SYSTEMS

In this section, we demonstrate the feasibility of launching
an energy attack. First, we describe the scenario selection.
We then design a realistic energy attack against an open
web server as a case study, covering the attack vector
discovery, exploitation, and detection avoidance.

3.1 Scenario Selection
A great variety of tactics can be used to mount energy
targeted attacks against server systems. For example, if
attackers obtain “root” or “administrator” privilege on a
victim system, they can deliberately misconfigure drivers
and/or firmware, e.g., overclock processor and memory, to
operate the hardware components out-of-specs. Even with
the privilege of a normal user, attackers can still easily
increase the power consumption by running badly behaving
programs such as a tight dead loop. However, the above-
mentioned scenarios are not the focus of our study, because
they are generally difficult to implement from remote (e.g.,
requiring privileged or physical access to the victim system).
We are interested in more commonly encountered
scenarios, in which energy attacks can be launched without
any special privileges. We assume that.

1. the victim server runs an open service, which
accepts service requests from the Internet;

2. the attackers have no physical access to the victim
server;

3. the attackers only have equivalent privileges of
“anonymous users” on the victim server (for
example, they cannot change system configurations
or execute arbitrary code); and

4. there are no exploitable security vulnerabilities on
the victim system to escalate the attackers’ privileges.

In other words, the attackers communicate with the victim
server using the same method as legitimate users, and the
major variable they can manipulate is the server’s work-
load, by crafting and submitting malicious service requests.

Thanks to the generic setting of attack environment, we
believe that our scenarios are applicable to a wide range of
servers, particularly, public web services such as news,
blogs, forums, public data services including file and image
sharing sites, and search engines.

3.2 Case Study: Wikipedia Mirror Server

We perform a case study of designing an energy attack
on an open web server. We use System B (i.e., the newer,
energy-proportional server) as the victim, running a
Wikipedia service with setup detailed in Section 4.1. We
choose Wikipedia mirror as our attack target because it is
a freely available, content-rich web service—a representa-
tive of real world production-use open web services.

3.2.1 Identifying an Attack Vector

The Wikipedia mirror is powered by MediaWiki, a large-
scale content management system. The contents of all
MediaWiki pages are stored in a marked up format different
from standard HTML, and pages are dynamically generated
when they are requested. Two levels of caching, “object
cache” and memory cache, help to optimize the performance.

MediaWiki stores the dynamically generated HTML
contents in an “object cache”—a database table. When a page
is requested repeatedly, the HTML content is retrieved
directly from the object cache without being repeatedly
generated. A cached HTML page expires either after a period
of inactivity or the associated page content has been
modified. In addition to the object cache, the MySQL
database speeds up operations by storing a portion of
frequently queried table entries, as well as table search
indices and query results in a memory, employing a modified
LRU replacement algorithm.

We profile the power consumption and service latency
characteristics of the two caching mechanisms on the target
server, using the “Watts up? .Net” digital power meter.
Figs. 2a and 2b show the average power usage and average
response time for serving page requests from a single client
in three different caching scenarios: pages being fully cached
(in both memory and object cache), pages only in object
cache, and pages not being cached. The lower bound of
Y-axis in Fig. 2a is set to 130 watts, the system idleness power
consumption. Thus, the columns in the figure represent the
additional power consumption caused by the service
requests.

WU ET AL.: ON ENERGY SECURITY OF SERVER SYSTEMS

250 -)\
T I 1
_. 230 T . 1
£ T 41
S 210 - T 1 +
2 —1
P T L
5 190 -
g .
o 170 4 ¢
150 -
130

10 20 30 40 50 60 70 80 90 100
Number of Clients

(a) Power Consumption vs. Workload

Fig. 3. Power consumption and response time profiles of victim server.

From this measurement, we can observe that compared
with fully cached requests, requests with memory cache
misses incur 3 percent power increase and 129 percent
processing time increase, and requests with object cache
misses incur 12.7 percent power increase and 840 percent
processing time increase. Because energy is defined as the
product of power and time, the effect of cache misses
on energy consumption increase is multiplicative. The high
energy cost rendered by cache misses forms an effective
energy attack vector to our Wikipedia mirror server.

3.2.2 Exploiting the Attack Vector

Our next step is devising a method to exploit the discovered
attack vector, that is, to generate requests that can cause
cache misses, especially object cache misses. We examine
previous studies in web browsing behaviors. According to
Barford and Crovella [2], webpage accesses on a web server
follow Zipf distribution, i.e., access frequency of a page
correlates with its rank, and most accesses concentrate on a
small number of pages while a large number of pages are
rarely accessed. It is clear that the caching mechanisms in
our web server work well in handling such an access pattern
because they are designed to optimize for similar access
patterns. However, this knowledge also hints at a practical
cache attack scheme. To generate page requests with high
probability of cache miss, we may access pages in patterns
following a very different distribution from Zipf. For the
ease of study and implementation, we choose a uniform
random page access pattern to exploit our attack vector.

3.2.3 Detection Avoidance

The selected attack vector enables us to increase the victim’s
energy consumption without sending a large amount of
requests. To avoid generating abnormal traffic patterns, we
model the attacking request rate after “normal” web clients.

The study by Barford and Crovella [2] also shows that
web browsing exhibits an “active-inactive” behavioral
pattern. During the active period, a client submits requests
in a bursty manner, which is attributed to the browser
downloading multiple resources (images, scripts, etc.)
linked to a document. During the inactive period, the client
pauses sending requests, presumably because of the user
reading the page content. The length of the inactive period
follows Pareto distribution.

For our experiments, we simplify our model by “con-
densing” the active period into a single request, and only

869

450
400 -
350 -
300 |
250
2007 1 1 1
104 & LI]
100
50

Time (ms)

10 20 30 40 50 60 70 80 90 100 110 120
Number of Clients

(b) Response Time vs. Workload

model the inactive period for request interarrival time. This
is because all Wikipedia pages are text-oriented and
structurally alike. The client behaviors in all the active
periods would be very similar.

In addition to traffic shaping, we also need to adaptively
adjust the injection of malicious requests based on the
workload of the victim server. This is achieved by associat-
ing the victim server’s workload with the response time.
During the attack, we monitor the response time, with which
we can infer the server’s workload, and adjust the amount of
malicious requests accordingly.

4 ATTACK EVALUATION

In this section, we first describe the experimental setup.
Then, we detail the preparation and measurements of the
energy attack. And finally we assess the achievable damage.

4.1 Configuration and Setup

We set up a Wikipedia mirror server on System B using the
classical LAMP combination (Linux, Apache, MySQL, and
PHP). The database is imported from a Wikipedia dump
containing 9,053,725 page entries. With a number of tests,
we find that the server is capable of caching about 10,000
pages in memory. Therefore, we randomly pick 50,000
pages for use in our experiment.

We simulate client requests using a custom program
running on a desktop computer. The client program
simulates multiple clients each running in a separate thread.
The “normal” clients are configured to access selected pages
following Zipf distribution with o =1, and the request
interarrival time follows Pareto distribution with k£ =1 and
a = 1.5. The “malicious” clients are configured to access
selected pages with the same request interarrival time
distribution as the “normal” clients, but in a uniform random
manner.

4.2 Workload—Response Time Profile

Before launching the attack, we first profile the victim server
and establish the correlation between its workload and
response time, as shown in Fig. 3b. Each data point is the
average of 250 samples of service response time obtained
under the corresponding workload. The error bar represents
the standard deviation of response time. For light and
moderate workloads (up to 50 clients), the server’s response
time increases quite slowly. When the workload increases
beyond 60 percent, or 60 clients, the response time starts to

870

100%

90% - | =»¢=Power Increase
80% -
70% -
60% -
50% -
40% -
30% -
20% -
10% -

—&—Latency Increase

Power/Latency Increase (%)

0% —_—
5 10 15

Number of Malicious Clients

(a)

100%
90% -
80% -
70% -
60% -
50% -
40%
30% -
20% -
10% -

0% —= = T —— —T

~»é-Power Increase

—&—Latency Increase

Power/Latency Increase (%)

5 10 15 20 25 30 35 40 45 50 55 60 65

Number of Malicious Clients

(©)
Fig. 4. Effects of attack under different Benign workload.

rise significantly. With workloads in which the number of
active clients is beyond 100, the server starts to show
symptoms of being overloaded—all clients experience inter-
mittent short burst of request failures in the form of “HTTP
500" errors. Therefore, we determine that the server is capable
of stably supporting up to 100 normal clients. Fig. 3a shows
the correlation between stable workload and system power
consumption, from which we can see that the server system
power consumption is indeed proportional to its workload.

4.3 Attack Measurements

We use server-side power consumption and client-side
perceived response latency to measure the effects of the
energy attack. We conduct the experiments using different
server workloads, which range from 10 to 100 normal clients
with the increment of 10 clients. For each workload, we inject
energy attack traffic by adding a number of malicious clients.
Due to the large volume of data, we only present the results
corresponding to 100, 50, and 10 normal clients and depict
them in Figs. 4a, 4b, and 4c, respectively. These figures show
the increases in power consumption and response latency
caused by the introduction of malicious workloads.

At 100 percent of the full load, as shown in Fig. 4a, the
response latency of the victim server is very sensitive to the
addition of malicious workloads. The malicious workload
of 10 malicious clients increases the response latency by
7.6 percent, and the workload of 15 malicious clients
increases the response latency by 50.2 percent. The power

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL.9, NO.6, NOVEMBER/DECEMBER 2012

100%
90% -
80% -
70% -
60% -
50% -
40% -
30% -
20% -
10%
0%

~»é~Power Increase
—&—Latency Increase

Power/Latency Increase (%)

L 4

5 10 15 20 25 30 35
Number of Malicious Clients

(b)

50.00% |
45.00% +
40.00%
35.00% +
30.00%
25.00%
20.00%

L

|

L
15.00% %

I

Response Time Increase

10.00%
5.00%
0.00%

< 5 Malicious

100 90
80 70 60 50 4 Clients

Normal Clients

30 20 10

(d

consumption, however, does not increase with the response
latency, as the server is already fully loaded.

At 50 percent of the full load, as shown in Fig. 4b, with 20
malicious clients, the attack results in 20.9 percent of extra
power being consumed while only incurs 7.1 percent
increase in response latency. However, with 30 or more
malicious clients, the response latency increase surpasses
the power consumption increase.

At 10 percent of the full load, as shown in Fig. 4c, the
energy increase caused by the attack becomes very
significant. With 40 malicious clients, the victim server’s
power consumption increases by 39.0 percent, while the
service response latency only increases by 7.4 percent.

4.4 Damage Assessment

Our measurement results show that, at any stable work-
load, energy attacks will cause increased power consump-
tion on the victim server. The more malicious clients, the
larger the power increase. However, a larger number of
malicious clients also results tangible performance degra-
dation. Fig. 4d presents the collective results of service
response time increases for all ten different workloads with
varying numbers of malicious clients. Note that samples
with response time increment larger than 50 percent are
omitted due to their unimportance.

To guarantee the success of an energy attack, low attack
profile takes precedence over the power consumption
increment. Therefore, the number of malicious clients

WU ET AL.: ON ENERGY SECURITY OF SERVER SYSTEMS

871

TABLE 2
Percentage of Power Increases due to Attack
Utilization 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% |100%
Power Increase | 39.0% [42.3% | 36.3% | 31.6% | 21.7% | 14.8% | 11.6% | 9.0% | 11.3% | 6.2%

needs to be limited to avoid significant response time
impact. We refer to the workload—response time profile
for a reasonable threshold. The standard deviation of
response time at stable workloads varies between 12.3
and 21.1 percent of the measured values. We thus use the
smallest percentage, 12.3 percent, as the upper limit of
response time increases. With the chosen constraint, we
determine the maximum power consumption achievable by
the attacks for each workload, and present them in Table 2.
We observe that, the power increase effect of the energy
attack is inversely correlated with the benign workload of
the server—an idle server suffers significant extra power
consumption, while a very busy server only incurs a small
power consumption increase.

To assess the nominal damage of this energy attack to a
server, we refer to the study of typical server workloads.
Barroso and Holzle [4] observe that most servers have
average utilization between 10 and 50 percent. Correspond-
ingly, under such utilization, our energy attack can result in
21.7-42.3 percent power consumption increase.

5 DEFENDING AGAINST ENERGY ATTACKS

The high potential damage of the energy attacks calls for an
effective defense. In this section, we first discuss the
difficulties in defending against energy attacks. Then, we
present our solution to meet the challenges, and finally we
validate the effectiveness of our defense scheme.

5.1 Defense Challenges

To defend against energy attacks, it is necessary to
differentiate malicious users from benign users, by the
amount of energy consumed in serving their requests.
Unfortunately, although the power consumption of the
whole system can be measured in a coarse time granularity,
today’s servers are unable to provide fine-grained power
consumption measurement due to the lack of hardware
support. As a result, currently it is not possible to measure
and account for the actual power consumption of servicing
each individual request. And consequently, it is a very
challenging task to devise an effective and generalized
protection mechanism against energy attacks.

One may be tempted to suggest detecting an energy
attack by other metrics in place of fine-grained power
instrumentation. For example, the energy attack used in our
case study can be uncovered by detecting abnormal page
visit patterns, instead of referring to power consumption
measurements. However, this naive solution suffers in
terms of soundness and completeness. First, the cause-and-
effect relationships are not definitive, and thus detecting an
energy attack by other metrics may lead to high false
positives. For instance, our case study exploits an abnormal
page visit pattern. But not all page visit patterns that
deviate from the norm result in energy attacks. Second,

energy attacks could exploit a great variety of alternative
attack vectors, and render the monitoring system ineffec-
tive. Unlike buffer overflow or code injection vulnerabil-
ities, the energy security issue is rooted deep in the server
system’s design, and it can manifest itself as very different,
unrelated attack vectors. We discuss two alternative attack
vectors in Section 6.1, and the exploitation of each attack
vector requires a separate metric to discover.

Compared with the aforementioned “side-metric” mon-
itoring strategy, a more holistic approach is to build the
defense system based on fine-grained power consumption
information, and then derive the needed information by
measuring related metrics. Neugebauer and McAuley [26]
suggest using performance counter data such as CPU
cycles, disk operations, and screen pixels to approximate
power consumption for laptops and mobile devices.
Buennemeyer et al. [6] present a battery-sensing intrusion
protection system for mobile computers, which correlates
device power consumption with Wi-Fi and Bluetooth
communication activities. Kim et al. [22] propose a power-
aware malware detection framework by collecting applica-
tion power consumption signatures. While this approach
achieves good generalization, it suffers low accuracy on
server systems. This is because mobile devices are operated
by individuals, and they run few applications concurrently.
In contrast, server systems are designed to process a large
number of requests from multiple users in parallel. As a
result, performance counter readings of independent re-
quest-serving processes (especially at fine granularity) can
be heavily coupled and inaccurate for power approxima-
tion. For example, processors in a server share underlying
hardware, such as the memory bus and PCI devices. And
unrelated processes competing for shared resources can
lead to heavy interferences of each other’s cycle count
readings. For another example, modern hard drives can
intelligently reorder the sequence of operations to improve
efficiency. However, this optimization can cause the
operation latency disproportional to the complexity of a
data request.

5.2 Energy-Aware Programming

The lack of hardware support makes fine-grained power
measurement on today’s server systems unachievable. In
addition, the parallel processing nature of request servicing
renders low-level counter-based power approximation
inaccurate. To work around these limitations and enable
the design of an effective and generalized defense system,
we take an application-oriented approach and propose
energy-aware programming.

The key idea of energy-aware programming is to
capture the power consumption of individual request
servicing in the form of application code execution, and
enable an application to differentiate power consumption
of service requests. Energy-aware programming infers

872 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL.9, NO.6, NOVEMBER/DECEMBER 2012

(1)

Fig. 5. Example component flow chart.

power consumption information by leveraging high-level
application context. Thus, this technique is much less prone
to interferences than those low-level counter-based power
approximation techniques.

5.2.1 Power Consumption Characterization

In order to create an energy-aware application, application
developers need to characterize the power consumption of
the components in their applications, and embed such
information into the program code. This can be accom-
plished in three steps.

The first step is the analysis and collection of conditionally
invoked components. As shown by the two example flow
charts in Fig. 5, components C, G, and H are conditionally
invoked while all others are mandatory. The rationale
behind this design is that the mandatory executed code
contributes to the baseline power consumption for all request
services, but the conditionally invoked code is responsible
for the dynamic power consumption, which can increase
dramatically for servicing power-extensive requests.

The second step is to characterize the power consump-
tions of component collection {C4, Cs,...,C,}. This can be
done using basic profiling techniques. Given a fixed time
interval ¢t and a specific number of invocations r, each
component C; is invoked r times in ¢ seconds, and the
average system power consumption Psys; is measured. The
effective power consumption P; is then derived by con-
trasting Psys; with the system idle power consumption
P,gie. The power consumption readings do not have to be
very precise, because 1) in absence of fine-grained hardware
support, it can be difficult to obtain accurate power
consumption readings; and 2) the goal of this profiling is
to differentiate components by their power consumption,
and then use this information to infer the system dynamic
power state and the nature of future workload.

The final step is to annotate the power information in the
application. This is fulfilled by embedding the component
power consumption table and inserting power counters into

Benign
Workload

| Aly | Al | | Al,

£ [P |

2

[e]p | -

App
<‘7

(a) Measure Normal Power Consumption

Fig. 6. System power measurement and attack detection.

the program. For each component Cj, a counter I; is
assigned, and each invocation of the component results in
an increment of its associated counter.

5.2.2 Power State Inference

With embedded power information in an application, the
dynamic power state (Power for short) can be inferred by
computing P =) (P, - Al), referring to the embedded
component power consumption table and the increments
of power counters. This calculation applies to the entire
system as well as individual request servicing. In other
words, the Power of the whole system at any given interval
can be calculated by collecting the power counter increments
during that interval; and the Power for servicing a specific
request can be calculated by using the power counter
increments caused by servicing this request. Therefore, an
energy-aware application can self-monitor its power states
at coarse-grained and fine-grained levels, and thereby is
capable of detecting energy attacks, identifying attackers,
and reacting accordingly.

5.3 Defense System Design
With the help of energy-aware programming, we design a
simple and effective defense system to shield applications
from energy attacks. The system is composed of three
components, energy attack detection, power history main-
tenance, and defensive reaction.

The first component is responsible for detecting energy
attacks on the server system. Before an energy-aware
application is deployed, we first subject it to benign work-
loads, and record the system’s normal Power, Pnormai, as
shown in Fig. 6a. After the application has been deployed, the
attack detection component monitors the Power of the entire
system, and compares it with Pyorma. As shown in Fig. 6b,
when the system power consumption surges significantly
above the normal value, it asserts that the system is under an
energy attack.

Unknown

Workload
| Aly | Aly | | Al,

e 13
Clnl v

S

(b) System-wide Power Attack Detection

WU ET AL.: ON ENERGY SECURITY OF SERVER SYSTEMS

Client Client Power History

Request

b o | an

Client 1 | Average Prequest

Accumulate

O} |

Client 2 | Average Preguest

Client X | Average Prequest

\/

Fig. 7. Maintaining client power history for defensive throttling.

The second component is used for maintaining client
power history records. Illustrated in Fig. 7, for each
communicating client, its average power consumption for
request servicing is maintained. During an energy attack,
these records are used by the defensive reaction component
as a reference to classify malicious clients. To scale with the
client population growth, if necessary, we can maintain the
average power history record per subnet or per domain by
aggregating a group of clients into a single cluster.

The third component is designed for providing defensive
reactions when an energy attack is detected. It sorts the
power history records, and identifies the clients on top of
the sorted list as malicious, because they represent the
major sources of increased power consumption. It then
applies defensive operations to these clients to reduce their
energy impacts. For example, throttling down or blocking
their request servicing for a period of time until the system
is no longer under the energy attack. The choice of
defensive reaction is flexible, and can be fully customized
depending on the tolerance of false positives.

Thanks to energy-aware programming, our defense
system can uncover the stealthiness of malicious energy
attack clients, and thus prevent potential evasion attempts.
An attacker may utilize a large number of compromised
machines (such as a botnet) and make each client very low
profile. However, the attacking clients can still be identified
and reacted upon by our defense system. This is because
the service requests from each malicious client, although
low in intensity, still consist of a high percentage of power-
consuming service requests.

Although determined attackers might evade our defense
system by lowering the concentration of malicious requests,
and thus making a malicious client’s power consumption
comparable to that of a benign client. However, doing so
would also significantly reduce the effectiveness of the
energy attack, and require the attacker to exploit a much
larger number of compromised clients and to generate
much higher traffic volume to achieve the same effect. Such
a practice would degrade an energy attack to a regular
Distributed DoS (DDoS) attack, which can be defended by
various previously proposed work [21], [31], [36]. The
discussion of defending against DDoS attacks is beyond the
scope of this paper.

5.4 Defense Experiment

To validate the effectiveness of our defense scheme, we
have implemented a prototype defense system in our
Wikipedia mirror server. In the following, we first briefly
describe the implementation and then present the experi-
mental results.

According to our profile measurements in Section 2, an
object cache miss in page request servicing incurs high

873

Incoming
page request

Preparation
(Localization etc.)

Try Parser Cache

Hit Parser

A

Maintenance
(Page visit counter, etc)

Page content
output

Fig. 8. MediaWiki flow chart.

power consumption. We thus analyze the MediaWiki page
request handling routine, and present its abstract flow
chart in Fig. 8. The main difference between object cache
hit and miss lies in the invocation of the “Parser”
component, which performs a processor intensive opera-
tion that dynamically generates HTML content from the
Wiki style mark up text. Consequently, we can build an
effective defense against energy attacks by protecting this
single component.

We augment MediaWiki with “energy-awareness” by
counting the parser invocations. Since there is only one
power-extensive component, we simply omit power profil-
ing, and assign 1.0 as this component’s symbolic Power.
That is, if the parser is invoked while serving a page, the
application’s dynamic power consumption is 1.0; otherwise,
the dynamic power consumption is 0.0 . Thus, the Power we
are interested in can be expressed as the parser invocation
ratio.

The storage and computation overhead of the defense
system is minor. For each client, a 12-byte power history
record is used to maintain the client’s identity, number of
page visits, and dynamic power consumption. For each
request servicing, a hash table look-up is performed to
retrieve client’'s power history record, and then several
arithmetic operations are performed to update the record.
Overall, the overhead is negligible compared with the storage
and processing time required to serve a Wikipedia page.

We first test our defense system’s ability to differentiate
benign and malicious clients, as well as collecting the
system’s normal dynamic power consumptions for defense
purposes. When we subject the server to benign requests,
we observe that the system dynamic power stays around
0.04-0.05. However, when we inflict malicious requests on
the server, the system dynamic is increased to 0.6-0.8. We
heuristically set the system normal dynamic power to 0.3,
and set the protection threshold to be 30 percent parser
invocations with 128 accesses. Therefore, when the victim
server’s system wide dynamic power exceeds 0.3, users
will be throttled down if they have over 128 recorded
accesses, and have triggered the page parser invocation
over 30 percent of the time.

874 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL.9, NO.6, NOVEMBER/DECEMBER 2012

100%
90% -
80%
70% -
60% -
50% -
40%
30% -
20%
10%
% T e s e n—t—a |
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85
Time (Seconds)

==#=10 Normal Client
50 Normal Client

Energy Constraint
Threshold Exceeded

—0—100 Normal Client

Power Increase (Percentage)

Fig. 9. Defense of attack at different workloads.

We then configure and activate our defense system
online. We measure the actual power consumption in-
creases of the victim server under the same energy attack,
and present the results in Fig. 9. We use the same server
workloads in Section 4. For 10 normal clients (i.e., low
workload), the increase of server power consumption
reaches about 50 percent at the beginning of attack.
However, the attacker is unable to sustain the high power
consumption increase. The parser invocation ratio quickly
exceeds the threshold of our defense system, and the
attacker’s service requests are discarded afterwards. Corre-
spondingly, the power consumption increase of the server
is reduced to 19 percent. We can observe similar effects for
50 and 100 normal clients—our defense lowers the power
consumption increments from 21 to 4 percent, and from
6 percent to near zero, respectively. Meanwhile, page
accesses from normal clients at all workloads are served
without interruption.

6 DiscussIiOoN

In this section, we first describe two other possible energy
attack vectors, then discuss the applicability limitation of
energy attacks, and finally discuss the limitation of energy-
aware programming and the potentials of hardware
assisted defenses against energy attacks.

6.1 Attack Variations

In addition to using cache miss as an attack vector, energy
attacks can also be launched by exploiting other energy
related vulnerabilities. For example, a file depositing server
running an unmodified Linux kernel and allows users to
control the names for stored files (such as a public FTP
server) is vulnerable to energy attacks. The attacker can
exploit a well-known *nix kernel file name resolution
vulnerability and launch a low-rate algorithmic complexity
attack [7], [10] to stealthily increase processor utilization.
Because a file depositing service is storage and network
bandwidth bound, a well-controlled energy attack can
avoid generating any throughput anomalies.

Besides the processors, other components with large
dynamic power range can also be exploited by energy
attacks. For example, hard drives normally consume 12 to
16 watts during operation, but their power consumption can
be reduced to under 1 watt by spin-down the platters during
long period of idleness. As a result, an energy attack on hard
drives can be mounted by performing sleep deprivation

attack [23], [28] to prevent expected spin-down. Although
the energy cost of a single attacked hard drive seems to be
insignificant, the damage can accumulate to a significant
amount when the energy attack targets at a decent sized
storage server with 10 to 20 installed hard drives.

6.2 Attack Applicability

We have thoroughly investigated the proposed energy
attack against a stand-alone server system. We use the case
of single stand-alone server as the first step to study energy
attack, because it is relatively easy to perform a clear
analysis and repeatable evaluations. However, the attack
vectors on a stand-alone server are not applicable to other
hosting configurations, such as clustered servers and load
balanced server farm. For example, our proposed energy
attack on our Wikipedia mirror server is not effective on the
actual Wikipedia website, which employs load balanced
server clusters and heavy proxy caching techniques. In
order to launch energy attack against a service configured
in multiserver setup, one needs to discover and exploit new
attack vectors.

Nevertheless, we believe energy attacks also pose serious
threats to large scaled systems. For example, in a cloud
hosting environment [14], competing cloud vendors may use
energy attack as a powerful weapon to increase the operation
cost of their opponents, and make the attackers’ service rates
more attractive. To extend the scope of this work, we plan to
study and profile the interactions of workload and power
consumption of server clusters, discover viable attack
vectors, as well as devise defending techniques.

6.3 Limitation of Defense

Even as an effective workaround of the missing hardware
support, we acknowledge that energy-aware programming
places the nontrivial duty of power profiling and energy
accounting onto the application developers. For more
scalable and accurate solutions, we advocate enabling fine-
grained power measurement at the hardware and operating
system level, making energy consumption information as
accessible as the performance data. For example, the
processor can include an “energy counter” similar to
performance counters, and account the amount of energy
consumed by a particular thread at given time period, based
on the amount and variety of circuitry being activated.

7 RELATED WORK

As energy cost of server systems takes a significant
proportion of IT expenditures, research on power man-
agement techniques for server systems has been very
active in recent years. A survey of power and energy
research for server systems can be found in [5]. Elnozahy
et al. [13] present two power management mechan-
isms—dynamic voltage scaling (DVS) and request batch-
ing—to reduce energy consumption in web servers.
Horvath et al. [19] explore the benefits of using DVS in
multistage service pipelines for power management in
server farms. Felter et al. [15] study power shifting, which
reduces peak power with minimal performance impact by
dynamically reallocating power to performance critical
components. Meisner et al. [24] design a system called

WU ET AL.: ON ENERGY SECURITY OF SERVER SYSTEMS

Powernap, which can reduce server idle power by rapidly
transitioning the entire system between an active state
and a near-zero-power idle state.

In [4], Barroso and Holzle present the concept of Energy-
Proportional Computing. They call for improvements in the
energy usage profile of every system components, particu-
larly the memory and disk subsystems to achieve energy
proportionality. Barroso and Hélzle also point out that
server systems may not benefit as much as the mobile
systems from the energy-efficiency schemes targeting
mobile devices, due to the distinct behavior of server
workloads. To make the entire server system energy
efficient, energy proportionality must be included in the
design objectives for each component.

Energy management in server clusters has also been
extensively studied. Chase et al. [9] design a resource
management system for called Muse with a primary focus
on energy for large server clusters. Muse promotes energy
efficiency of server clusters by balancing the cost of
resources against the achieved benefit. Pinheiro et al. [27]
propose a load concentration technique that can dynami-
cally distribute the load and set some hardware resources in
low-power modes to conserve energy. Elnozahy et al. [12]
evaluate different combinations of cluster reconfiguration
and dynamic voltage scaling. Rajamani and Lefurgy [30]
investigate the key factors in the system-workload context
that affect energy saving policies in server clusters. Heath
et al. [18] study the energy conservation in heterogeneous
server clusters using a model-based cooperative web server.
Fan et al. [14] present the aggregate power usage
characteristics of several large-scale workloads from a data
center over a period of six months, and they find that the
opportunities for energy savings at the cluster level are
greater than at the rack level.

Different from the research on power management in
server systems that mainly focus on energy conservation,
the security issue of power and energy has gained much
attention in mobile computing community, because the
power of battery is a critical and scarce resource for mobile
computing devices. In [11], Dagon et al. categorize a
number of security problems caused by mobile malware
and point out that battery exhaustion, a type of DoS attacks,
is a serious threat to mobile computing. Three types of
battery depletion attacks are presented in [23]. Racic et al.
[29] demonstrate that the attack that on mobile phones’
battery can be stealthily launched by exploiting the
vulnerability of cellular service Multimedia Messaging
Service (MMS) and that the attack can drain the power of
batteries up to 22 times faster.

A number of research efforts have been spent in
detecting and preventing attacks on battery power of
mobile devices. Martin et al. [23] propose a power-secure
architecture, which employs multilevel authentication and
energy signatures, to counter power attacks. Buennemeyer
et al. [6] present a battery-sensing intrusion protection
system for mobile computers that correlates device power
consumption with Wi-Fi and bluetooth communication
activities. Kim et al. [22] propose a power-aware malware
detection framework that can detect previously unknown
energy-depletion attacks by collecting power consumption
information of applications and comparing their power
signatures with the signatures of normal applications.

875

8 CONCLUSION

Server systems have become more power efficient and
energy proportional as power management technologies
advance. However, the security aspect of power manage-
ment has not yet been studied. In this paper, we investigated
the potential vulnerabilities in server power management.
First, we exposed the threat of energy attacks by measuring
the power consumption of real server systems. Then, we
designed and evaluated an energy abusing attack on server
systems. In particular, we validated the threat of energy
attacks on an open web server running Wikipedia mirror
service. By profiling power consumption of the target server
under different operation conditions, we realized a viable
energy attack vector. We conducted a series of experiments,
in which energy attacks with varying attack intensities were
carefully mounted to avoid incurring tangible degradation of
server performance. Our experimental results show that the
proposed energy attack can incur significant increase of
power consumption on the victim server. Finally, we
presented an application-oriented defense approach to work
around the current limitations of the hardware. Our evalua-
tion shows that this software-based defense scheme is
effective in protecting victim servers against energy attacks.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their detailed and insightful comments, which have
helped to greatly improve the quality of the paper. This work
was partially supported by US National Science Foundation
(NSF) grant 0901537 and ONR grant N00014-09-1-0746.

REFERENCES

[1] “Advanced Configuration and Power Interface,” http://www.
acpi.info, 2009.

[2] P. Barford and M. Crovella, “Generating Representative Web
Workloads for Network and Server Performance Evaluation,”
Proc. ACM SIGMETRICS Joint Int’l Conf. Measurement and Modeling
of Computer Systems, pp. 151-160, 1998.

[3] L.A. Barroso, “The Price of Performance,” ACM Queue, vol. 3,
no. 7, pp. 48-53, Sept. 2005.

[4] L.A. Barroso and U. Holzle, “The Case for Energy-Proportional
Computing,” Computer, vol. 40, no. 12, pp. 33-37, Dec. 2007.

[5] R. Bianchini and R. Rajamony, “Power and Energy Management
for Server Systems,” Computer, vol. 37, no. 11, pp. 68-74, Nov.
2004.

[6] T.XK. Buennemeyer, M. Gora, R.C. Marchany, and].G. Tront,
“Battery Exhaustion Attack Detection with Small Handheld
Mobile Computers,” Proc. IEEE Int’l Conf. Portable Information
Devices (PORTABLE), 2007.

[71 X.Cai, Y. Gui, and R. Johnson, “Exploiting Unix File-System Races
via Algorithmic Complexity Attacks,” Proc. IEEE 30th Symp.
Security and Privacy, May 2009.

[8] E.V. Carrera, E. Pinheiro, and R. Bianchini, “Conserving Disk
Energy in Network Servers,” Proc. 17th Ann. Int'l Conf. Super-
computing (ICS), pp. 86-97, 2003.

[9] J.S. Chase, D.C. Anderson, P.N. Thakar, AM. Vahdat, and R.P.
Doyle, “Managing Energy and Server Resources in Hosting
Centers,” Proc. 18th ACM Symp. Operating Systems Principles
(50SP), pp. 103-116, 2001.

[10] S.A. Crosby and D.S. Wallach, “Denial of Service via Algorithmic
Complexity Attacks,” Proc. 12th Conf. USENIX Security Symp., 2003.

[11] D. Dagon, T. Martin, and T. Starner, “Mobile Phones as
Computing Devices: The Viruses Are Coming!” IEEE Pervasive
Computing, vol. 3, no. 4, pp. 11-15, Oct.-Dec. 2004.

876

[12]

(13]

(14]

[15]

[10]

(171

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

(26]

[27]

(28]

(29]

(30]

(31]

(32]

(33]

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL.9, NO.6, NOVEMBER/DECEMBER 2012

M. Elnozahy, M. Kistler, and R. Rajamony, “Energy-Efficient
Server Clusters,” Proc. Second Workshop Power-Aware Computing
Systems, pp. 179-196, 2002.

M. Elnozahy, M. Kistler, and R. Rajamony, “Energy Conservation
Policies for Web Servers,” Proc. Fourth Conf. USENIX Symp.
Internet Technologies and Systems (USITS), 2003.

X. Fan, W.-D. Weber, and L.A. Barroso, “Power Provisioning for a
Warehouse-Sized Computer,” Proc. 34th Ann. Int’l Symp. Computer
Architecture (ISCA), pp. 13-23, 2007.

W. Felter, K. Rajamani, T. Keller, and C. Rusu, “A Performance-
Conserving Approach for Reducing Peak Power Consumption in
Server Systems,” Proc. 19th Ann. Int’l Conf. Supercomputing (ICS),
pp- 293-302, 2005.

S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, and H.
Franke, “DRPM: Dynamic Speed Control for Power Management
in Server Class Disks,” Proc. 30th Ann. Int’l Symp. Computer
Architecture (ISCA), pp. 169-182, 2003.

J. Hamilton, “Where Does the Power Go and What to Do About
1t?” Proc. USENIX Workshop Power Aware Computing and Systems
(HotPower), 2008.

T. Heath, B. Diniz, E.V. Carrera, W. Meira Jr., and R. Bianchini,
“Energy Conservation in Heterogeneous Server Clusters,” Proc.
10th ACM SIGPLAN Symp. Principles and Practice of Parallel
Programming (PPoPP), pp. 186-195, 2005.

T. Horvath, T. Abdelzaher, K. Skadron, and X. Liu, “Dynamic
Voltage Scaling in Multitier Web Servers with End-to-End Delay
Control,” IEEE Trans. Computers, vol. 56, no. 4, pp. 444-458, Apr.
2007.

Intel 6400/6402 Advanced Memory Buffer: Thermal/Mechanical Design
Guide, Intel, Dec. 2006.

S. Kandula, D. Katabi, M. Jacob, and A. Berger, “Botz-4-Sale:
Surviving Organized DDoS Attacks That Mimic Flash Crowds,”
Proc. Second USENIX Symp. Networked Systems Design and
Implementation (NSDI), May 2005.

H. Kim, J. Smith, and K.G. Shin, “Detecting Energy-Greedy
Anomalies and Mobile Malware Variants,” Proc. Sixth Int’l Conf.
Mobile Systems, Applications, and Services (MobiSys), pp. 239-252,
June 2008.

T. Martin, M. Hsiao, D. Ha, and]. Krishnaswami, “Denial-of-
Service Attacks on Battery-Powered Mobile Computers,” Proc.
IEEE Second Int’l Conf. Pervasive Computing and Comm. (PerCom),
2004.

D. Meisner, B.T. Gold, and T.F. Wenisch, “PowerNap: Eliminating
Server Idle Power,” Proc. 14th ACM Int’l Conf. Architectural Support
for Programming Languages and Operating Systems (ASPLOS),
pp- 205-216, Mar. 2009.

R. Nathuji and K. Schwan, “VirtualPower: Coordinated Power
Management in Virtualized Enterprise Systems,” Proc. 21st ACM
SIGOPS Symp. Operating Systems Principles (SOSP), pp. 265-278,
2007.

R. Neugebauer and D. McAuley, “Energy Is Just Another
Resource: Energy Accounting and Energy Pricing in the Nemesis
OS,” Proc. Eighth Workshop Hot Topics in Operating Systems
(HOTOS), 2001.

E. Pinheiro, R. Bianchini, E.V. Carrera, and T. Heath, Dynamic
Cluster Reconfiguration for Power and Performance, pp. 75-93.
Kluwer Academic Publishers, 2003.

M. Pirretti, S. Zhu, V. Narayanan, P. Mcdaniel, and M. Kandemir,
“The Sleep Deprivation Attack in Sensor Networks: Analysis and
Methods of Defense,” Proc. Innovations and Commercial Applications
of Distributed Sensor Networks Symp. (ICA DSN), 2005.

B.R. Racic, D. Ma, and H. Chen, “Exploiting MMS Vulner-
abilities to Stealthily Exhaust Mobile Phone’s Battery,” Proc.
Second Int’l Conf. Security and Privacy in Comm. Networks
(SecureCommy), pp. 1-10, Sept. 2006.

K. Rajamani and C. Lefurgy, “On Evaluating Request-Distribution
Schemes for Saving Energy in Server Clusters,” Proc. IEEE Int’]
Symp. Performance Analysis of Systems and Software (ISPASS),
pp. 111-122, 2003.

S. Ranjan, R. Swaminathan, M. Uysal, and E. Knightly, “DDoS-
Resilient Scheduling to Counter Application Layer Attacks Under
Imperfect Detection,” Proc. IEEE INFOCOM, Apr. 2006.

Seagate, “Barracuda ES.2 Data Sheet,” http:/ /www.seagate.com/
docs/pdf/datasheet/disc/ds_barracuda_es_2.pdf, 2012.

Seagate, “Cheetah 15K.6 Data Sheet,” http:/ /www.seagate.com/
docs/pdf/datasheet/disc/ds_cheetah_15k_6.pdf, 2012.

(34]
(35]

(30]

(371

US Environmental Protection Agency, “Report to Congress on
Server and Data Center Energy Efficiency,” 2007.

US Environmental Protection Agency, “The ENERGY STAR
Version 5.0 Specification for Computers,” 2008.

H. Wang, C. Jin, and K.G. Shin, “Defense Against Spoofed
IP Traffic Using Hop-Count Filtering,” IEEE/ACM Trans. Network-
ing, vol. 15, no. 1, pp. 40-53, Feb. 2007.

Watts Up?, “Watts Up? .Net Digital Power Meter,” https://
www.wattsupmeters.com/secure/products.php?pn=0, 2009.

Zhenyu Wu received his PhD degree in
Computer Science from the College of William
and Mary, Williamsburg, in 2012. He is a
research staff member at NEC Laboratories
America Inc., Princeton, New Jersey. His re-
search focuses on enterprise system security
and mobile application security. His research
interests also lie in general system and network
security, including but not limited to malware
analysis, packet filters, and Internet chat and

online game security. He is a member of the IEEE.

Mengjun Xie (S'08-M’10) received the PhD
degree in computer science from the College
of William and Mary, Williamsburg, in 2009. He
is an assistant professor of computer science at
the University of Arkansas at Little Rock, Little
Rock. His research interests include network
security, information security, network systems,
and operating systems. He is a member of the
IEEE.

Haining Wang received the PhD degree in
computer science and engineering from the
University of Michigan at Ann Arbor in 2003.
He is an associate professor of computer
science at the College of William and Mary,
Williamsburg, Virginia. His research interests lie
in the areas of security, networking systems, and
distributed computing. He is a senior member of
the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

Copyright of IEEE Transactions on Dependable & Secure Computing is the property of IEEE Computer Society
and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright
holder's express written permission. However, users may print, download, or email articles for individual use.

