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Abstract—The detection of covert timing channels is of increasing inter-
est in light of recent exploits of covert timing channels over the Internet.
However, due to the high variation in legitimate network traffic, detecting
covert timing channels is a challenging task. Existing detection schemes
are ineffective at detecting most of the covert timing channels known
to the security community. In this paper, we introduce a new entropy-
based approach to detecting various covert timing channels. Our new
approach is based on the observation that the creation of a covert
timing channel has certain effects on the entropy of the original process,
and hence, a change in the entropy of a process provides a critical
clue for covert timing channel detection. Exploiting this observation,
we investigate the use of entropy and conditional entropy in detecting
covert timing channels. Our experimental results show that our entropy-
based approach is sensitive to the current covert timing channels and is
capable of detecting them in an accurate manner.

Index Terms—Network security, covert timing channels, entropy-based
detection.

1 INTRODUCTION

As an effective way to exfiltrate data from a well-
protected network, a covert timing channel manipulates
the timing or ordering of network events (e.g., packet
arrivals) for secret information transfer over the Inter-
net, even without compromising an end-host inside the
network. On the one hand, such information leakage
caused by a covert timing channel poses a serious threat
to Internet users. Their secret credentials like passwords
and keys could be stolen through a covert timing channel
without much difficulty. On the other hand, detecting
covert timing channels is a well-known challenging task
in the security community.

In general, the detection of covert timing channels
uses statistical tests to differentiate covert traffic from
legitimate traffic. However, due to the high variation in
legitimate network traffic, detection methods based on
standard statistical tests are not accurate and robust in
capturing a covert timing channel. Although there have
been recent research efforts on detecting covert timing
channels over the Internet [1], [2], [3], [4], [5], some
detection methods are designed to target one specific
covert timing channel and therefore fail to detect other
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types of covert timing channels; the other detection
methods are broader in detection but are over-sensitive
to the high variation of network traffic. In short, none of
the previous detection methods are effective at detecting
a variety of covert timing channels.

In this paper, we propose a new entropy-based ap-
proach to detecting covert timing channels. The entropy
of a process is a measure of uncertainty or information
content, a concept that is of great importance in informa-
tion and communication theory [6]. While entropy has
been used in covert timing channel capacity analysis, it
has never been used to detect covert timing channels. We
observe that a covert timing channel cannot be created
without causing some effects on the entropy of the
original process1. Therefore, a change in the entropy of a
process provides a critical clue for covert timing channel
detection.

More specifically, we investigate the use of entropy
and conditional entropy in detecting covert timing chan-
nels. For finite samples, the exact entropy rate of a
process cannot be measured and must be estimated.
Thus, we estimate the entropy rate with the corrected
conditional entropy, a measure used on biological pro-
cesses [8]. The corrected conditional entropy is designed
to be accurate with limited data, which makes it excellent
for small samples of network data. To evaluate our
new entropy-based approach, we conduct a series of
experiments to validate whether our approach is capable
of differentiating covert traffic from legitimate traffic.
We perform the fine-binned estimation of entropy and
the coarse-binned estimation of corrected conditional
entropy for both covert and legitimate samples. We
then determine false positive and true positive rates
for both types of estimations. Our experimental results
show that the combination of entropy and corrected
conditional entropy is very effective in detecting covert
timing channels.

The remainder of this paper is structured as follows.
Section 2 covers background and related work in covert
timing channels and their detection schemes. Section
3 describes entropy measures. Section 4 validates the

1. This observation applies to complex processes, like network traffic,
but not to simple independent and identically distributed processes [7].
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effectiveness of our approach through experiments with
different covert timing channels. Section 5 describes
potential countermeasures against our entropy-based de-
tection scheme. Finally, Section 6 concludes the paper
and discusses directions for our future work.

2 BACKGROUND AND RELATED WORK

To defend against covert timing channels, researchers
have proposed different solutions to detect, disrupt, and
eliminate covert traffic. The disruption of covert timing
channels adds random delays to traffic, which reduces
the capacity of covert timing channels but degrades
system performance as well. The detection of covert
timing channels is accomplished using statistical tests to
differentiate covert traffic from legitimate traffic. While
the focus of earlier work is on disrupting covert timing
channels [9], [10], [11], [12], [13] or on eliminating them
in the design of systems [14], [15], [16], more recent re-
search has begun to investigate the design and detection
of covert timing channels [1], [2], [3], [4], [17], [5], [18]. In
the following subsections, we give an overview of recent
research on covert timing channels and detection tests.

2.1 Covert Timing Channels
There are two types of covert timing channels: active
and passive. In terms of covert timing channels, active
refers to covert timing channels that generate additional
traffic to transmit information, while passive refers to
covert timing channels that manipulate the timing of
existing traffic. In general, active covert timing channels
are faster, but passive covert timing channels are more
difficult to detect. On the other hand, active covert
timing channels often require a compromised machine,
whereas passive covert timing channels, if creatively
positioned, do not. The majority of the covert timing
channels discussed in this section are active covert tim-
ing channels, except where stated otherwise.

2.1.1 IP Covert Timing Channel
Cabuk et al. [2] developed the first IP covert timing
channel, which we refer to as IPCTC, and investigated
a number of design issues. A scenario where IPCTC can
be used is illustrated in Figure 1. In this scenario, a
machine is compromised, and the defensive perimeter,
represented as a perimeter firewall or intrusion detec-
tion system, monitors communication with the outside.
Therefore, a covert timing channel can be used to pass
through the defensive perimeter undetected. IPCTC uses
a simple interval-based encoding scheme to transmit
information. IPCTC transmits a 1-bit by sending a packet
during an interval and transmits a 0-bit by not sending
a packet during an interval. A major advantage to this
scheme is that when a packet is lost, a bit is flipped
but synchronization is not affected. The timing-interval
t and the number of 0-bits between two 1-bits determines
the distribution of IPCTC inter-packet delays. It is inter-
esting to note that if the pattern of bits is uniform, the

Fig. 1. IPCTC/TRCTC/MBCTC scenario
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Fig. 2. JitterBug scenario
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distribution of inter-packet delays is close to a Geometric
distribution. To avoid creating a pattern of inter-packet
delays at multiples of a single t, the timing-interval t is
rotated among different values.

2.1.2 Time-Replay Covert Timing Channel
Cabuk [1] later designed a more advanced covert timing
channel based on a replay attack, which we refer to as
TRCTC. TRCTC uses a sample of legitimate traffic Sin
as input and replays Sin to transmit information. Sin is
partitioned into two equal bins S0 and S1 by a value
tcutoff. TRCTC transmits a 1-bit by randomly replaying
an inter-packet delay from bin S1 and transmits a 0-
bit by randomly replaying an inter-packet delay from
bin S0. Thus, as Sin is made up of legitimate traffic, the
distribution of TRCTC traffic is approximately equal to
the distribution of legitimate traffic.

2.1.3 Model-Based Covert Timing Channel
Gianvecchio et al. [5] developed an automated frame-
work for building model-based covert timing channels,
which we refer to as MBCTC, to mimic legitimate traffic.
MBCTC fits a sample of legitimate traffic to several mod-
els, such as Exponential or Weibull, and selects the model
with the best fit. MBCTC then uses the inverse distribu-
tion function and cumulative distribution function for
the selected model as encoding and decoding functions.
MBCTC transmits by generating pseudo-random inter-
packet delays using the inverse transform method of
variate generation [19] to transmit hidden messages,
i.e., messages are encoded using the inverse cumulative
distribution function and decoded using the cumulative
distribution function. Thus, as the distribution of the
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pseudo-random inter-packet delays is determined by a
model that approximates legitimate traffic, the distribu-
tion of MBCTC is close to that of legitimate traffic. To
better model changes in the traffic, MBCTC refits the
model in sets of 100 packets.

2.1.4 JitterBug

Shah et al. [3] developed a keyboard device called
JitterBug that slowly leaks typed information over the
network. JitterBug is a passive covert timing channel, so
new traffic is not created to transmit information. Jitter-
Bug demonstrates how a passive covert timing channel
can be positioned so that the target machine does not
need to be compromised. A scenario where JitterBug can
be used is illustrated in Figure 2. In this scenario, an
input device is compromised, and the attacker is able
to leak typed information over the network. JitterBug
operates by creating small delays in keypresses to affect
the inter-packet delays of a networked application. Jitter-
Bug transmits a 1-bit by increasing an inter-packet delay
to a value modulo w milliseconds and transmits a 0-bit
by increasing an inter-packet delay to a value modulo
dw2 e milliseconds. The timing-window w determines the
maximum delay that JitterBug adds to an inter-packet
delay. For small values of w, the distribution of JitterBug
traffic is very similar to that of the original legitimate
traffic. To avoid creating a pattern of inter-packet delays
at multiples of w and dw2 e, a random sequence si is
subtracted from the original inter-packet delay before the
modulo operation.

2.1.5 Other Covert Timing Channels

Berk et al. [20] implemented a simple binary covert
timing channel based on the Arimoto-Blahut algorithm,
which computes the input distribution that maximizes
the channel capacity [21], [22]. Luo et al. [4] designed
a combinatorics-based scheme, called Cloak, to transmit
information in the ordering of packets within different
flows. Cloak can be considered as a storage and tim-
ing channel, as the encoding methods require packets
and/or flows to be distinguishable by their contents.
The same authors also proposed a covert timing channel
based on the timing of TCP bursts [17]. Similar to Cloak,
El-Atawy et al. [23] built a covert timing channel based
on packet ordering and showed how code selection can
make this technique effective at evading packet order
metrics. Sellke et. al [18] showed that with independent
and identically distributed (i.i.d.) traffic as cover, it is
theoretically possible to create “provably secure” covert
timing channels, i.e., covert timing channels that are
computationally non-detectable. The same basic proof as
[18] can be used to show that TRCTC is computationally
non-detectable for i.i.d. cover traffic when its input mes-
sages are XOR’d with cryptographically-secure random
numbers. Although not a covert timing channel, Giffin et
al. [24] showed that low-order bits of the TCP timestamp
can be exploited to create a covert storage channel, which

is related to timing channels due to the shared statistical
properties of timestamps and packet timing.

2.1.6 Timing-Based Watermarks
A number of efforts have investigated timing-based wa-
termarking systems [25], [26], [27], [28], [29], [30], which
are related to covert timing channels. A timing-based
watermarking system is basically a side-channel that
is augmented by a low-capacity covert timing channel.
Wang et al. [26] proposed a method for watermark-
ing inter-packet delays to track anonymous peer-to-peer
voice-over-IP (VoIP) calls. More recently, Houmansadr et.
al [30] proposed a subtle watermark called RAINBOW
that is non-blind, i.e., it records both incoming and
outgoing flows, allowing it to differentiate flows by
adding only small delays. By doing so, RAINBOW is
able to evade several detection tests, including entropy-
based methods. However, the assumptions of timing-
based watermarking systems, like RAINBOW, are quite
different than those of covert timing channels. The en-
tropy, if any, that is added by a watermarking system
can be very small. For example, if a set of flows are
naturally differentiable, a watermarking system need
not add any delays to differentiate them. Generally,
timing-based watermarking systems are passive timing
channels in that new traffic is not created. Such systems
again demonstrate how a passive timing channel can
be positioned so that the target, i.e., the anonymizing
network, does not need to be compromised.

2.2 Detection Tests
There are two broad classes of detection tests: shape tests
and regularity tests. The shape of traffic is described
by first-order statistics, e.g., mean, variance, and distri-
bution. The regularity of traffic is described by second
or higher-order statistics, e.g., correlations in the data.
Note that in previous research the term regularity is
sometimes used to refer to frequency-domain regularity
[2], [3], whereas here we use this term exclusively to
refer to time-domain regularity, i.e., the regularity of a
process over time.

2.2.1 Kolmogorov-Smirnov Test
Peng et al. [27] showed that the Kolmogorov-Smirnov
test is effective to detect watermarked inter-packet de-
lays, a form of timing channel [25]. The watermarked
inter-packet delays are shown to have a distribution that
is the sum of a normal and a uniform distribution. Thus,
the Kolmogorov-Smirnov test can be used to determine
if a sample comes from the appropriate distribution.
The Kolmogorov-Smirnov test determines whether or
not two samples (or a sample and a distribution) differ.
The use of the Kolmogorov-Smirnov test to detect covert
timing channels is described in more detail in Section
4.1.2. The Kolmogorov-Smirnov test is distribution free,
i.e., the test is not dependent on a specific distribu-
tion. Thus, the Kolmogorov-Smirnov test is applicable
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to different types of traffic with different distributions.
The Kolmogorov-Smirnov test statistic measures the
maximum distance between two empirical distribution
functions:

KSTEST = max | S1(x)− S2(x) |, (1)

where S1 and S2 are the empirical distribution functions
of the two samples.

2.2.2 Regularity Test

Cabuk et al. [2] investigated a method of detecting
covert timing channels based on regularity. This detec-
tion method, referred to as the regularity test, determines
whether or not the variance of the inter-packet delays is
relatively constant. This detection test is based on the fact
that for most network traffic, the variance of the inter-
packet delays changes over time, whereas with covert
timing channels, if the encoding scheme does not change
over time, then the variance of the inter-packet delays
remains relatively constant. The use of the regularity test
to detect covert timing channels is discussed in more
detail in Section 4.1.2. For the regularity test, a sample
is separated into sets of w inter-packet delays. Then, for
each set, the standard deviation of the set σi is computed.
The regularity is the standard deviation of the pairwise
differences between each σi and σj for all sets i < j.

regularity = STDEV

(
| σi − σj |

σi
, i < j,∀i, j

)
(2)

2.2.3 Other Detection Tests

Cabuk et al. [2] investigated a second method of detect-
ing covert timing channels, referred to as ε-similarity,
based on measuring the proportion of similar inter-
packet delays. The ε-similarity test is based on the fact
that IPCTC creates clusters of similar inter-packet delays
at multiples of the timing-interval. Luo et al. [4] devel-
oped a detection method that targets the Cloak channel
by measuring the intervals between acknowledgment
and data packets. While both detection methods are
effective at detecting the specific covert timing channels
for which they are designed, namely IPCTC and Cloak,
their respective scopes of detection are very limited. In
comparison with more generic detection methods, they
are less effective at detecting other types of covert timing
channels. Berk et al. [20] used a simple mean-max ratio to
test for bimodal or multimodal distributions that could
be induced by binary or multi-symbol covert timing
channels. Giani [31], continuing this research, explored
the tradeoff between detection and covert timing channel
capacity. Although entropy estimation has not been used
previously to detect covert timing channels, it has been
employed in related research on timing-based traffic
analysis [32], [33] and network anomaly detection [34].

3 ENTROPY MEASURES

In this section, we first describe entropy, conditional
entropy, and corrected conditional entropy, and then
explain how these measures relate to first-order statistics,
second or higher-order statistics, and the regularity or
complexity of a process. Finally, we present the design
and implementation of the proposed scheme to detect
covert timing channels, based on the concept of entropy.

3.1 Entropy and Conditional Entropy
The entropy rate, which is the average entropy per
random variable, can be used as a measure of complexity
or regularity [8], [35], [33]. The entropy rate is defined as
the conditional entropy of a sequence of infinite length.
The entropy rate is upper-bounded by the entropy of
the first-order probability density function or first-order
entropy. A simple i.i.d. process has an entropy rate equal
to the first-order entropy. A highly complex process has
a high entropy rate, but less than the first-order entropy.
A highly regular process has a low entropy rate, zero for
a rigid periodic process, i.e., a repeated pattern.

A random process X = {Xi} is defined as an indexed
sequence of random variables. To give the definition of
the entropy rate of a random process, we first define the
entropy of a sequence of random variables as:

H(X1, ..., Xm) =

−
∑

X1,...,Xm

P (x1, ..., xm) logP (x1, ..., xm), (3)

where P (x1, ..., xm) is the joint probability P (X1 = x1, ...,
Xm = xm).

Then, from the entropy of a sequence of random
variables, we define the conditional entropy of a random
variable given a previous sequence of random variables
as:

H(Xm | X1, ..., Xm−1) =
H(X1, ..., Xm)−H(X1, ..., Xm−1). (4)

Lastly, the entropy rate of a random process is defined
as:

H(X) = lim
m→∞

H(Xm | X1, ..., Xm−1). (5)

The entropy rate is the conditional entropy of a se-
quence of infinite length and, therefore, cannot be mea-
sured for finite samples. Thus, we estimate the entropy
rate with the conditional entropy of finite samples. It is
also important to note that the definition of entropy rate
is for stationary stochastic processes [36] and the extent
to which measured data is non-stationary could affect
the accuracy of entropy rate estimates.

3.2 Corrected Conditional Entropy
The exact entropy rate cannot be measured for finite
samples and must be estimated. In practice, we replace
probability density functions with empirical probability
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density functions based on the method of histograms.
The data is binned in Q bins. The specific binning strat-
egy being used is important to the overall effectiveness
of the test and is discussed in Section 3.3. The empirical
probability density functions are determined by the pro-
portions of patterns in the data, i.e., the proportion of a
pattern is the probability of that pattern. Here a pattern
is defined as a sequence of bin numbers. The estimates
of the entropy or conditional entropy, based on the
empirical probability density functions, are represented
as: EN and CE, respectively.

There is a problem with the estimation of CE(Xm |
X1, ..., Xm−1) for some values of m. The conditional
entropy tends to zero as m increases, due to limited data.
If a specific pattern of length m − 1 is found only once
in the data, then the extension of this pattern to length
m will also be found only once. Therefore, the length m
pattern can be predicted by the length m−1 pattern, and
the length m and m−1 patterns cancel out. If no pattern
of length m is repeated in the data, then CE(Xm | Xm−1)
is zero, even for i.i.d. processes.

To solve the problem of limited data, without fixing
the length of m, we use the corrected conditional entropy
(CCE) [8]. The corrected conditional entropy is defined
as:

CCE(Xm | X1, ..., Xm−1) =
CE(Xm | X1, ..., Xm−1) + perc(Xm) · EN(X1), (6)

where perc(Xm) is the percentage of unique patterns of
length m and EN(X1) is the entropy with m fixed at
one, i.e., only the first-order entropy.

The estimate of the entropy rate is the minimum of
the corrected conditional entropy over different values
of m. The minimum of the corrected conditional entropy
is considered to be the best estimate of the entropy
rate with the available data. The corrected conditional
entropy has a minimum, because the conditional en-
tropy decreases while the corrective term increases. The
corrected conditional entropy has been mainly used
on biological data, such as electrocardiogram [8] and
electroencephalogram data [35]. Although not related to
our work, it is interesting to see how such a measure can
differentiate the states of complex biological processes.
For example, with the electroencephalogram, an increase
in the entropy rate indicates a decrease in the depth of
anesthesia, i.e., the subject is becoming more conscious.

3.3 Binning Strategies
The strategy of binning the data is critical to the overall
effectiveness of the test. The binning strategy mainly
decides: (1) how the data is partitioned and (2) the
bin granularity or the number of bins Q. In previous
work, partitioning data into equiprobable bins seems
to be most effective [8], [35]. The use of equiprobable
bins is illustrated in Figure 3, showing the partitioning
of Exponential data into bins of equal area. The bins,

Fig. 3. The equiprobable binning of Exponential data in
Q = 5 bins
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numbered 1 through 5, are small in width when the
proportion of values is high and large in width when the
proportion of values is low. Thus, while the bins have
different widths, the total area of each bin is equal. The
bin number for a value can then be determined based
on the cumulative distribution function:

bin = bF (x) ∗Qc, (7)

where F is the cumulative distribution function and x is
the value to be binned.

The bin numbers can also be determined based on
ranges, e.g., 0.0 < bin1 ≤ 0.22, 0.22 < bin2 ≤ 0.51,
0.51 < bin3 ≤ 0.91, and so on, which requires a search
of the ranges to determine the correct bin number for a
value. Meanwhile, the cumulative distribution function
can determine the correct bin in constant time, which is
important for performance when the number of bins is
large.

The choice of the number of bins offers a tradeoff.
While a larger number of bins retains more information
about the distribution of the data, it increases the number
of possible patterns Qm and, thus, limits the ability of
the test to recognize longer patterns due to the limited
data. In contrast, a small number of bins captures less
information about the distribution, but is better able to
measure the regularity of the data. Therefore, as both
strategies have advantages and disadvantages, we use
both coarse-grain and fine-grain binning.

To determine the best choice of Q for coarse-grain
binning, we run tests on correlated and uncorrelated
samples for Q = 2 through 10. The correlated samples
are 100 traces of 2,000 HTTP inter-packet delays. The
uncorrelated samples are random permutations of the
correlated samples. We then count the number of uncor-
related samples with scores that overlap with the scores
of correlated samples. There is no overlap for the values
of Q = 5 to 8. Therefore, to retain the ability of the test
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to recognize longer patterns and measure regularity, we
use Q = 5 for coarse-grain binning.

It is much simpler to determine the best choice of Q
for fine-grain binning. With increasing values of Q, the
number of possible patterns Qm becomes much larger
than the size of the sample being tested. At this point, the
test scores are dominated by the estimate of the entropy
for length one. Then, as we increase the value of Q,
the bins continue to become more precise, leading to a
better estimate of the entropy for length one than that
for smaller values of Q. Therefore, as Q can be made
arbitrarily precise, we use Q = 216 = 65,536 for fine-
grain binning.

3.4 Implementation Details

Our design goal is to be effective in detection and
efficient in terms of run-time and storage. The efficiency
of tests is particularly important if tests are conducted
in real-time for online processing of data. Thus, we are
careful to optimize our implementation for performance.
We implement the corrected conditional entropy in the C
programming language. The patterns are represented as
nodes in a Q-ary tree of height m. The nodes of the tree
include pattern counts and links to the nodes with longer
patterns. The level of the tree corresponds to the length
of patterns. The children of the root are the patterns of
length 1. The leaf nodes are the patterns of length m.

To add a new pattern of length m to the tree, we move
down the tree towards the leaves, updating the counts
of the intermediate nodes and creating new nodes. Thus,
when we reach the bottom of the tree, we have counted
both the new pattern and all of its sub-patterns. After all
patterns of length m are added, we perform a breadth-
first traversal. The breadth-first traversal computes the
corrected conditional entropy at each level and termi-
nates when the minimum is obtained. If the breadth-first
traversal reaches the bottom of the tree without having
the minimum, then we must increase m and continue.

The time and space complexities are O(n ·m), where
n is the size of the sample, if we assume a priori
knowledge of the distribution and use the cumulative
distribution function to determine the correct bin for
each value in constant time. Otherwise, the time com-
plexity increases to O(n ·m · log(Q)). In practice, running
our program on a sample of size 2,000 with Q = 5
and a pattern of length 10 on our test machine, an
Intel Pentium D 3.4Ghz, takes 16 milliseconds. However,
small changes in the implementation can have significant
impact on performance.

To demonstrate this, we evaluate the computation
overhead of our implementation and that of a previous
implementation [35]. The computation time of both im-
plementations with increasing pattern length is shown in
Figure 4. For small values of m, our computation time
is slightly longer, because of the overhead of creating
our data structure. However, as m increases, the pre-
vious implementation increases quadratically, whereas

Fig. 4. CCE performance
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our implementation increases linearly. The quadratic
growth is caused by the separate processing of patterns
of different lengths, i.e., the patterns of length 1, then
the patterns of length 2, and so on, which introduces
a quadratic term due to the summation of the pattern
lengths:

∑m
i=1 i = m2+m

2 .

4 EXPERIMENTAL EVALUATION

In this section, we validate the effectiveness of our
proposed approach through a series of experiments. The
focus of these experiments is to determine if our entropy-
based methods (entropy and corrected conditional en-
tropy) are able to detect covert timing channels. We test
our entropy-based methods against four covert timing
channels: IPCTC [2], TRCTC [1], MBCTC [5] and Jitter-
Bug [3]. Furthermore, we compare our entropy-based
methods to two other detection tests: the Kolmogorov-
Smirnov test and the regularity test [2].

The purpose of a detection test is to differentiate
covert traffic from legitimate traffic. The performance of
a detection test can be measured based on false positive
and true positive rates, with low false positive rate
and high true positive rate being desirable. In practice,
because of the large variation in legitimate network
traffic, it is important that tests work well for typical
traffic and occasional outliers. If a detection test gives
test scores with significant overlap between legitimate
and covert samples, then it fails on detection. Therefore,
the mean, variance, and distribution of test scores are
critical metrics to the performance of a detection test.

4.1 Experimental Setup

The defensive perimeter of a network, made up of
firewalls and intrusion detection systems, is designed
to protect the network from malicious traffic. Typically,
only a few specific application protocols, such as HTTP
and SMTP, although heavily monitored, are allowed to
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pass through the defensive perimeter. In addition, other
protocols, such as SSH, might be permitted to cross the
perimeter but only to specific trusted destinations.

We now consider the scenarios discussed in Section 2.
In the first scenario, which relates to IPCTC, TRCTC and
MBCTC, a compromised machine uses a covert timing
channel to communicate with a machine outside the
network. For IPCTC, TRCTC and MBCTC, we utilize
outgoing HTTP inter-packet delays as the medium, due
to the wide acceptance of HTTP for crossing the net-
work perimeter and the high volume of HTTP traffic.
In the second scenario, which relates to JitterBug, a
compromised input device uses a covert timing channel
to leak typed information over the traffic of a networked
application. For JitterBug, we utilize outgoing SSH inter-
packet delays as the medium, based on the original de-
sign [3] and the high volume of keystrokes in interactive
network applications.

4.1.1 Dataset

The covert and legitimate samples that we use for our
experiments are from two datasets: (1) HTTP traces we
collected on a medium-size campus network and (2) a
dataset obtained from the University of North Carolina
at Chapel Hill (UNC). In total, we have 12GB of tcpdump
packet header traces (HTTP protocol) that we collected
and 79GB of tcpdump packet header traces (all proto-
cols) from the UNC dataset [37]. In our experiments, we
use several subsets of the two datasets, including:
• HTTP training set: 200,000 HTTP packets
• HTTP test set: 200,000 HTTP packets
• TRCTC test set: 200,000 HTTP packets
• MBCTC test set: 200,000 HTTP packets
• SSH training set: 200,000 SSH packets
• SSH test set: 200,000 HTTP packets
• JitterBug test set: 200,000 SSH packets
The packets in each dataset are grouped into flows.

The flows represent outgoing traffic from a host to a
specific port, e.g., port 80 for HTTP or port 22 for SSH.
The flows are based on a 3-tuple of source host, destina-
tion port, and protocol, rather than a 5-tuple of source
address, source port, destination address, destination
port, and protocol. The subsets contain 100 samples and
each sample has 2,000 packets from a flow.

In our experiments, we test a number of covert sam-
ples, which are generated from these subsets and from
the encoding methods for IPCTC, TRCTC, MBCTC,
and JitterBug. The covert timing channels are config-
ured with the recommended settings from their original
works, and we use the most advanced version if mul-
tiple versions of a covert timing channel are available.
Specifically, IPCTC rotates the timing-interval t amongst
40ms, 60ms and 80ms; TRCTC is the BMC type; and
JitterBug subtracts the random sequence si before the
modulo operation. The input messages transmitted in
our tests are random bits generated by a pseudo-random
number generator, which avoids creating patterns in the

output due to repeated bit sequences, such as 01100101
for the letter ‘e’ in ASCII-encoded text. For TRCTC,
we generate the covert samples from a set of 200,000
legitimate HTTP inter-packet delays. For MBCTC, we
generate the covert samples from a model that is selected
by fitting multiple models to a set of 200,000 legitimate
HTTP inter-packet delays. For JitterBug, we generate the
covert samples from a set of 200,000 legitimate SSH inter-
packet delays. A test machine replays the set of 200,000
SSH inter-packet delays and adds JitterBug delays. Note
that our version of JitterBug is implemented in software.
A monitoring machine on the campus backbone then col-
lects a trace of the JitterBug traffic, which adds network
delays after the addition of JitterBug delays. Since the
monitoring machine is only four hops away from the
test machine, with a RTT of 0.3ms, the added network
delays are small. This JitterBug scenario is illustrated in
Figure 2, where a defensive perimeter monitors outgoing
traffic.

The training sets of legitimate traffic are useful for
some of the detection tests. The Kolmogorov-Smirnov
test uses the training sets to represent the behavior of
legitimate traffic. The Kolmogorov-Smirnov test then
measures the distance between the test sample and
the training set. The entropy and corrected conditional
entropy tests use the training sets to determine the range
of each bin, based on equiprobable binning. These tests
do not require a priori binning, but doing so improves
performance, as the data does not need to be partitioned
online.

4.1.2 Detection Methodology
In our experiments, we run detection tests on samples
of covert and legitimate traffic. We use the resulting test
scores to determine if a sample is covert or legitimate
as follows. First, we set the targeted false positive rate
at 0.01. To achieve this false positive rate, the cutoff
scores—the scores that decide whether a sample is le-
gitimate or covert—are set at the 99th or 1st percentile
(high scores or low scores for different tests) of legitimate
sample scores from the HTTP or SSH training set. Then,
samples with scores worse than the cutoff are identified
as covert, while samples with scores better than the
cutoff are identified as legitimate. The false positive rate
is the proportion of legitimate samples in the test set that
are wrongly identified as covert, while the true positive
rate is the proportion of covert samples in the test set
that are correctly identified as covert.

Considering the properties of the detection tests, we
can classify them as tests of shape or regularity. The
shape of traffic is described by first-order statistics, and
the regularity of traffic is described by second or higher-
order statistics. The Kolmogorov-Smirnov test and en-
tropy test are tests of shape, while the regularity test and
corrected conditional entropy test are tests of regularity.
The test scores are interpreted as follows.

In the Kolmogorov-Smirnov test, we measure the dis-
tance between the test sample and the training set that
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represents legitimate behavior. Thus, if the test score is
small, it implies that the sample is close to the normal
behavior. However, if the sample does not fit the normal
behavior well, the test score will be large, indicating
the possible occurrence of a covert timing channel. By
contrast, in the regularity test, we measure the standard
deviation of the normalized standard deviations of sets
of 100 packets. If the regularity score is low, then the
sample is highly regular, indicating the possible exis-
tence of a covert timing channel.

The entropy test estimates the first-order entropy,
whereas the corrected conditional entropy test estimates
the higher-order entropy. The entropy test is based on
the same algorithm as the corrected conditional entropy
test, except that the corrective term is not added. The
corrected conditional entropy test uses Q = 5, whereas
the entropy test uses Q = 65, 536 and m fixed at one.
If the entropy test score is low, it suggests a possible
covert timing channel, because the sample does not fit
the appropriate distribution. If the conditional entropy
test score is lower or higher than the cutoff scores, it
suggests a possible covert timing channel. When the
conditional entropy test score is low, the sample is highly
regular. When the conditional entropy test score is high,
near the first-order entropy, the sample shows a lack of
correlations.

4.2 Experimental Results
In the following, we present our experimental results
in detail. The four detection tests are: the Kolmogorov-
Smirnov test, regularity test, entropy test, and corrected
conditional entropy test. The four covert timing channels
are: IPCTC, TRCTC, MBCTC, and JitterBug. The exper-
iments are organized by covert timing channels, which
are ordered in terms of increasing detection difficulty.

4.2.1 IPCTC
Our first set of experiments investigates how the de-
tection tests perform against IPCTC [2]. IPCTC is the
simplest among the three covert timing channels being
tested and the easiest to detect, because it exhibits ab-
normality in both shape and regularity. The abnormal
shape of IPCTC is caused by the encoding scheme.
The encoding scheme encodes a 1-bit by transmitting a
packet during an interval, and encodes a 0-bit with no
packet transmission. Thus, the number of 0-bits between
two 1-bits determines the inter-packet delays. If the
bit sequence is random, then we can view the bit se-
quence as a series of Bernoulli trials and, thus, the inter-
packet delays approximate a Geometric distribution. The
timing-interval t is rotated among 40 milliseconds, 60
milliseconds, and 80 milliseconds after each 100 packets,
as suggested by Cabuk et al. [2], to avoid creating a
regular pattern of inter-packet delays at multiples of a
single t. However, this instead creates a regular pattern
of inter-packet delays at multiples of 20 milliseconds.
The regularity of IPCTC is due to the lack of significant

correlations between inter-packet delays. That is, the
inter-packet delays are determined by the bit sequence
being encoded, not by the previous inter-packet delays.

We run each detection test 100 times for 2,000 packet
samples of both legitimate traffic and IPCTC traffic. The
mean and standard deviation of the test scores are shown
in Table 1. The detection tests all achieve lower average
scores for IPCTC than those for legitimate traffic. The
regularity test has a very high standard deviation for
legitimate traffic, which suggests that this test is sensitive
to variations in the behavior of legitimate traffic. The
corrected conditional entropy test has a mean score
for covert traffic that appears somewhat close to that
of legitimate traffic, 1.96 for legitimate and 2.22 for
covert. However, in relative terms, these scores are not
that close, since the standard deviation of the corrected
conditional entropy test is relatively low. The mean score
for IPCTC is much closer to the maximum entropy than
to the mean score of legitimate traffic. The maximum
entropy is the most uniform possible distribution [36].
The maximum entropy for Q = 5 is:

H(X) = Q · 1
Q

log
(

1
Q

)
= 5 · 1

5
log
(

1
5

)
≈ 2.3219 (8)

The corrected conditional entropy score is bounded
from above by the first-order entropy. The first-order
entropy is then bounded from above by the maximum
entropy. Therefore, the corrected conditional entropy
scores for IPCTC are close to the highest values possible.

As shown in Table 2, the detection rates for IPCTC
(i.e. true positive rates for detecting IPCTC) are 1.0 for
all tests except the regularity test, whose detection rate
is only 0.54. The regularity test measures sets of 100
packets and the timing-interval t is rotated after each
set of 100 packets, so the regularity test observes three
distinct variances and accurately measures the regularity
of IPCTC. The problem though is not measuring IPCTC,
but measuring legitimate traffic. The very high stan-
dard deviation of the regularity test against legitimate
traffic makes it impossible to differentiate IPCTC from
legitimate samples without a higher false positive rate.
Moreover, if we increase the timing-interval t to greater
than 100 packets, the regularity test observes a different
number of packets for each t value within each window,
as the sets of t packets overlap with the window at
different points, making the test less reliable. However,
if we decrease the timing-interval t to much less than 100
packets, the regularity test observes a similar number of
packets for each t value within each window and the
variance for each window is similar, which makes the
test more reliable.

Still, the main problem with the regularity test is
its high standard deviation for legitimate traffic. The
regularity test is very sensitive to outliers in legitimate
traffic. For example, if σi is very small, due to a sequence
of similar inter-packet delays, and σj is average or larger,
then |σi−σj |

σi
is very large, especially for the values of

σi close to zero, which are not uncommon. In fact, one
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TABLE 1
IPCTC test scores

HTTP-TEST IPCTC
test mean stdev mean stdev

KSTEST 0.180 0.077 0.708 0.000
regularity 35.726 36.635 0.330 0.056

EN 10.454 0.152 6.250 0.028
CCE 1.964 0.149 2.216 0.013

TABLE 2
IPCTC detection rates

HTTP-TEST IPCTC
test false positive true positive

KSTEST ≥ 0.36 .00 1.00
regularity ≤ 0.41 .01 .54

EN ≤ 8.56 .01 1.00
CCE ≥ 2.16 .01 1.00

such outlier in a sample is more than sufficient to make
a covert sample appear to be a legitimate sample. The
high variance of the regularity test demonstrates that
it is important to examine more than the average test
score, since the variance and distribution of test scores
are critical to the successful detection of covert timing
channels.

4.2.2 TRCTC
Our second set of experiments investigates how our
detection tests perform against TRCTC [1]. TRCTC is a
more advanced covert timing channel that makes use of
a replay attack. TRCTC replays a set of legitimate inter-
packet delays to approximate the behavior of legitimate
traffic. Thus, TRCTC has approximately the same shape
as legitimate traffic, but exhibits abnormal regularity, like
IPCTC. The regularity of TRCTC, like IPCTC, is due to
the lack of significant correlations between inter-packet
delays. Although TRCTC replays inter-packet delays,
the replay is in random order, as determined by the
bit sequence that is being encoded, thus breaking the
correlations in the original inter-packet delays.

We run each detection test 100 times for 2,000 packet
samples of both legitimate traffic and TRCTC traffic. The
mean and standard deviation of the test scores are shown
in Table 3. The test scores for TRCTC and legitimate
traffic are approximately equal for the Kolmogorov-
Smirnov and entropy tests. These tests strictly measure
first-order statistics, and, as such, are not able to detect
TRCTC. The regularity test achieves a much lower av-
erage score for TRCTC than that for legitimate traffic,
which is due to the similar variance between groups
of packets in TRCTC. However, the standard deviation
of the regularity test is again very high for legitimate
traffic and, this time, is high for covert traffic as well.
At the same time, the corrected conditional entropy test
gives similar results to those for IPCTC. The corrected
conditional entropy test has a mean score for TRCTC that

TABLE 3
TRCTC test scores

HTTP-TEST TRCTC
test mean stdev mean stdev

KSTEST 0.180 0.077 0.180 0.077
regularity 35.726 36.635 7.845 9.324

EN 10.454 0.152 10.454 0.152
CCE 1.964 0.149 2.217 0.012

TABLE 4
TRCTC detection rates

HTTP-TEST TRCTC
test false positive true positive

KSTEST ≥ 0.36 .00 .01
regularity ≤ 0.41 .01 .04

EN ≤ 8.56 .01 .02
CCE ≥ 2.16 .01 1.00

appears somewhat close to that of legitimate, 1.96 for
legitimate and 2.22 for covert. However, if we examine
the distribution of test scores for TRCTC and legitimate
traffic, as illustrated in Figure 5, then we can see that,
although some scores are in adjacent bins, there is no
overlap between the distributions. Furthermore, the dis-
tribution of legitimate test scores is strongly skewed to
the left, away from the distribution of TRCTC test scores.
The detection rates for TRCTC, as shown in Table 4,
are very low (0.04 or less) for all the detection tests
except the corrected conditional entropy test, which has
a detection rate of 1.0. The corrected conditional entropy
test scores of TRCTC are again close to the maximum
entropy, therefore the corrected conditional entropy test
is successful in detecting TRCTC.

4.2.3 MBCTC
Our third set of experiments investigates how our de-
tection tests perform against MBCTC [5]. MBCTC is a

Fig. 5. CCE test scores for TRCTC
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more advanced covert timing channel that exploits traffic
modeling to mimic legitimate traffic. The traffic model
is determined by using maximum likelihood estimation
(MLE) to determine model parameters and then selecting
the model with the lowest root mean squared error
(RMSE) from several models. The model selected for
legitimate HTTP traffic is Weibull with a mean scale
parameter λ of 0.125 and a mean shape parameter k
of 0.426. With these parameters, the mean inter-packet
delay is 0.3524, approximately 3 packets per second. The
model is then refitted in sets of 100 packets to better
model changes in the traffic over time. Thus, MBCTC
has a similar shape to legitimate traffic, due to modeling
the distribution, and a similar regularity for sets of 100
packets or more, due to the refitting process.

We run each detection test 100 times for 2,000 packet
samples of both legitimate traffic and MBCTC traffic. The
mean and standard deviation of the test scores are shown
in Table 5. The test scores of MBCTC are higher than
those of legitimate traffic for the Kolmogorov-Smirnov
test, though less than the standard deviation, due to
the model being very close but not a perfect fit. The
regularity test achieves a lower average score for MBCTC
than that of legitimate traffic, though the standard devi-
ation is again very high for legitimate traffic and covert
traffic. The entropy test scores of MBCTC are higher on
average than those of legitimate traffic, indicating that
MBCTC traffic is consistently a somewhat close fit to the
legitimate traffic distribution. The corrected conditional
entropy test scores are significantly lower for MBCTC
than for legitimate traffic. However, when we examine
the distribution of test scores for MBCTC and legitimate
traffic, as illustrated in Figure 6, we can see that there
is a slight overlap between the distributions. This shows
that the refitting process used by MBCTC, i.e., changing
the model after each set of 100 packets, is relatively
successful, but not sufficient to capture the true regu-
larity of legitimate traffic. In particular, MBCTC traffic
is more regular over time than legitimate traffic, i.e., the
sequences of inter-packet delays are more predictable.
For example, if a burst occurs, then the expected value
of the model will be small and MBCTC will generate
a larger portion of small inter-packet delays for the
next 100 inter-packet delays. As a result, small inter-
packet delays will be more likely to be followed by small
inter-packet delays in MBCTC traffic than in legitimate
traffic, which results in lower scores for the corrected
conditional entropy test. The detection rates of MBCTC,
as shown in Table 4, are very low (0.04 or less) for
all the detection tests except the entropy test and the
corrected conditional entropy test. The entropy test is
able to sometimes detect MBCTC, with a detection rate
of 0.55. The corrected conditional entropy test is very
successful in detecting MBCTC, with a detection rate of
0.95.

TABLE 5
MBCTC test scores

HTTP-TEST MBCTC
test mean stdev mean stdev

KSTEST 0.180 0.077 0.208 0.073
regularity 35.726 36.635 18.440 22.605

EN 10.454 0.152 10.739 0.078
CCE 1.964 0.149 1.156 0.223

TABLE 6
MBCTC detection rates

HTTP-TEST MBCTC
test false positive true positive

KSTEST ≥ 0.36 .00 .03
regularity ≤ 0.41 .01 .02

EN ≥ 10.74 .01 .55
CCE ≤ 1.50 .00 .95

4.2.4 JitterBug

Our fourth set of experiments investigates how our
detection tests perform against JitterBug [3]. JitterBug is
a passive covert timing channel, so no additional traffic
is generated to transmit information. Instead, JitterBug
manipulates the inter-packet delays of existing legitimate
traffic. The timing-window w, which determines the
maximum delay that JitterBug adds, is set at 20 millisec-
onds, as suggested by Shah et al. [3]. The average inter-
packet delay of the original SSH traffic is 1.264 seconds,
whereas, with JitterBug, the average inter-packet delay
is 1.274 seconds. In addition, while 10 milliseconds on
average might be noticeable with other protocols, SSH
traffic has a small proportion of short inter-packet delays,
i.e., only about 20% of inter-packet delays are less than
30ms in the training set. Therefore, because of having
legitimate traffic as a base and only slightly increasing
the inter-packet delays, JitterBug is able to retain much

Fig. 6. CCE test scores for MBCTC
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of the original correlation from the legitimate traffic.
Moreover, by slightly increasing the inter-packet delays,
JitterBug only slightly affects the original shape. Thus,
JitterBug has similar shape and regularity to legitimate
traffic.

Also JitterBug is very difficult to detect for several
other reasons. From a practical perspective, the machine
itself has not been compromised, so conventional host-
based intrusion detection methods fail. Moreover, the
traffic is encrypted, so the contents of the packets cannot
be used to predict the appropriate behavior. Addition-
ally, the position of JitterBug, between the machine and
the human, further complicates detection because of
the variation in human behavior, i.e., different typing
characteristics. However, as JitterBug is a covert timing
channel and transmits information, there is some effect
on the entropy of the original process.

We run each detection test 100 times for 2,000 packet
samples of both legitimate traffic and JitterBug traffic.
The mean and standard deviation of the test scores
are shown in Table 7. The test scores for JitterBug and
legitimate traffic are close to each other for all the tests
except the entropy test. If we examine the distribution of
entropy test scores for JitterBug and legitimate traffics, as
illustrated in Figure 5, we can see that the distributions
of JitterBug and legitimate test scores are quite distinct.
The detection rates for JitterBug shown in Table 8, are
very low (0.04 or less) for all the detection tests except
the entropy test, which has a detection rate of 1.0. Note
that the other tests do detect some difference between
JitterBug and legitimate traffic, but the differences are so
small that it is impossible for these tests to differentiate
JitterBug from legitimate traffic without a much higher
false positive rate. Although the corrected conditional
entropy test is successful at detecting all the other covert
timing channels, it is unable to detect JitterBug. The
corrected conditional entropy test bins the data into
Q = 5 bins. For SSH traffic, the typical bin ranges
(based on equiprobable binning) are 0.0 < bin1 ≤
0.032, 0.032 < bin2 ≤ 0.088, 0.088 < bin3 ≤ 0.160,
0.160 < bin4 ≤ 0.305, and 0.305 < bin5. JitterBug adds
a maximum of 20ms (10ms on average) to the inter-
packet delays, so the bin numbers for inter-packet delays
are rarely changed. Therefore, the corrected conditional
entropy scores of JitterBug traffic are close to those of
the original legitimate SSH traffic. In short, the corrected
conditional entropy test is simply insensitive to small
changes in the distribution.

In contrast, the entropy test is able to detect JitterBug.
The entropy test uses a large number of bins, with
bin widths determined by the distribution of legitimate
traffic. The entropy test measures how uniformly the
inter-packet delays are distributed into the bins, and how
uniformly the inter-packet delays fit the legitimate traffic
distribution. JitterBug creates small changes throughout
the distribution. Since these changes fall within the
variance that is typical of legitimate traffic, the tests that
measure the maximum distance, like the Kolmogorov-

TABLE 7
JitterBug test scores

SSH-TEST JitterBug
test mean stdev mean stdev

KSTEST .270 .133 .273 .123
regularity 6.230 5.847 6.038 5.624

EN 10.663 0.374 8.199 0.720
CCE 1.779 0.261 1.837 0.220

TABLE 8
JitterBug detection rates

SSH-TEST JitterBug
test false positive true positive

KSTEST ≥ 0.60 .02 .03
regularity ≤ 0.15 .03 .03

EN ≤ 8.84 .01 1.00
CCE ≥ 2.16 .01 .04

Smirnov test, fail to detect the changes. However, the
entropy test is sensitive to such changes throughout the
distribution. JitterBug increases the inter-packet delays
and, due to the rotating window, redistributes the inter-
packet delays in an Equilikely distribution. However,
the increases do not follow the legitimate distribution,
leading to slight increases or decreases in the proportion
of inter-packet delays for different bins. The entropy test
measures how evenly the inter-packet delays are dis-
tributed into the bins, with the legitimate traffic distribu-
tion resulting in the most even or uniform distribution of
bins and the most entropy, since the bins are sized to be
equiprobable for the legitimate distribution. Therefore,
the entropy test score for JitterBug is lower than that for
legitimate traffic, which can be easily detected.

4.2.5 All Channels - Variable Sample Size
Our last set of experiments investigates how our detec-
tion tests perform with different sample sizes against all

Fig. 7. EN test scores for JitterBug
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four covert timing channels, IPCTC, TRCTC, MBCTC,
and JitterBug. We vary sample sizes from 500 to 2,200
inter-packet delays for the entropy test and the corrected
conditional entropy test. The sample size is important
because it determines (along with the packet rate) the
amount of time it takes to detect a covert timing channel,
and thus, the amount of information that a covert timing
channel can transmit before it is detected. Of course, the
faster a covert timing channel is detected, the less infor-
mation it transmits prior to detection. However, there is a
tradeoff between detection speed and detection accuracy.
While a smaller sample size means faster detection, it
tends to be less accurate compared to larger sample sizes.

The true positive rates for the entropy test against
IPCTC, TRCTC, MBCTC, and JitterBug with 500 to 2,200
inter-packet delays are shown in Figure 8. The true pos-
itive rates degrade at different rates in different covert
timing channels. On one extreme, for IPCTC there is no
decrease in true positive rate and it is easily detected
with as little as 500 inter-packet delays. The pattern of
IPCTC is obvious, so there is no need for a large amount
of data. On the other extreme, the true positive rates
of JitterBug degrade more rapidly with the decrease of
sample size, and it is difficult to detect JitterBug with
less than 1,600 inter-packet delays. JitterBug is more
subtle. It adds only small delays and has a relatively low
capacity, so its inter-packet delays are indistinguishable
from normal without more traffic. In the middle, the
true positive rates of MBCTC degrade gradually with
the decrease of sample size, starting at 0.59 and ending
at 0.14, showing approximately a linear relationship
between its true positive rate and its sample size. Lastly,
TRCTC is not detected by the entropy test, so its true
positive rates remain close to zero.

The true positive rates for the corrected conditional
entropy test against IPCTC, TRCTC, MBCTC, and Jit-
terbug with 500 to 2,200 inter-packet delays are shown
in Figure 9. IPCTC and TRCTC demonstrate a similar
trend in their true positive rates. Both have true posi-
tive rates close to 1.0 with more than 700 inter-packet
delays and then degrade quickly with the decrease of
sample size. As neither covert timing channel attempts
to capture inter-dependencies between inter-packet de-
lays, this likely indicates that the minimum sample size
required by the corrected conditional entropy test for
accurate detection is around 700. The true positive rates
of MBCTC again decline gradually with the decrease of
sample size, starting at 1.00 and ending at 0.27, similar
to the corresponding entropy test results. JitterBug is not
detected by the corrected conditional entropy test, so its
true positive rates are close to zero for all sample sizes.

Overall, combining the results of both tests, we can
see that IPCTC and TRCTC are easier to be detected
than MBCTC and Jitterbug when sample size is small.
IPCTC and TRCTC can be accurately detected at the
true positive rates of 1.0, with as little as 500 inter-
packet delays and 1,000 inter-packet delays, respectively.
MBCTC and JitterBug are much more difficult to detect,

and they require close to 2,000 inter-packet delays or
more for accurate detection. These results are attributed
to the fact that MBCTC and JitterBug effectively capture
both traffic shape and traffic regularity, while TRCTC
only captures traffic shape and IPCTC captures neither
of these two properties.

4.3 Discussion
The detection tests that we present are all able to detect
some covert timing channels under certain conditions.
However, the previous methods fail for detecting most of
the tested covert timing channels. One major reason lies
in the high variation of legitimate traffic. For example,
the regularity test exhibits obvious weakness in this
regard. Interestingly, the regularity test is the only test,
other than the corrected conditional entropy test, that
achieves lower average scores for all the covert timing
channels. However, due to the high standard deviation
of the regularity test in measuring legitimate traffic, the
regularity test is not an effective detection method.

The other main reason lies in the properties of covert
traffic. For example, while the Kolmogorov-Smirnov test
is better able to deal with legitimate traffic variation,
it has problems with covert timing channels whose
distribution is very close to that of legitimate traffic.
The Kolmogorov-Smirnov test measures the maximum
distance between the two distributions, rather than mea-
suring differences throughout the distribution. Thus,
when the distribution of covert traffic is very close to
that of legitimate traffic, the variance of the test scores
is sufficiently large so that the test cannot differentiate
covert traffic from legitimate traffic.

Our entropy-based approach proves more effective
than previous schemes. Based on the advantages of
different binning strategies, we make use of both entropy
and corrected conditional entropy for detecting covert
timing channels. The entropy test is sensitive to small
changes throughout the distribution. However, for a
covert timing channel whose distribution is nearly iden-
tical to that of legitimate traffic, the entropy test fails. By
contrast, the corrected conditional entropy test measures
the regularity or complexity of the traffic, rather than the
distribution. Thus, it is effective to detect such a covert
timing channel. However, if the original correlations of
traffic are retained and the distribution is changed, then
the conditional entropy test fails; but the entropy test
works in this scenario by detecting slight changes in the
distribution. Therefore, when both tests are combined,
our entropy-based approach is effective in detecting all
the tested covert timing channels.

5 POTENTIAL COUNTERMEASURES

In this section, we discuss possible countermeasures
that could be used to harden covert timing channels
against our entropy-based approach. Our discussion fo-
cuses on TRCTC, MBCTC and JitterBug. TRCTC and
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Fig. 8. EN true positive rate vs. sample size
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Fig. 9. CCE true positive rate vs. sample size
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MBCTC are detected by the corrected conditional en-
tropy test and JitterBug is detected by the entropy test.

In an attempt to evade the corrected conditional
entropy test, TRCTC could be redesigned to replay
longer correlated sequences of inter-packet delays. The
corrected conditional entropy test could counter this
technique for short sequences by increasing the min-
imum pattern length. Of course, with increasing se-
quence length, the corrected conditional entropy test
would lose its capability to measure regularity, because
of the issues discussed in Section 3, unless the sample
size were increased. However, this is not a significant
threat, because replaying long correlated sequences of
inter-packet delays would greatly reduce the capacity of
TRCTC. In an attempt to evade the corrected conditional
entropy test, MBCTC could be changed to refit the model
more frequently so as to better capture the regularity
of traffic. Moreover, MBCTC could be redesigned to
model conditional distributions to better capture inter-
dependencies in traffic.

In an attempt to evade the entropy test, JitterBug could
be reconfigured to use a smaller timing-window w. Even-

tually, as w becomes smaller, the entropy test would need
a larger sample size to detect the JitterBug. However,
using a smaller timing-window would, similar to our
discussion of TRCTC, reduce the capacity of JitterBug.
Additionally, JitterBug could be changed to transmit
packets at more precise timing than milliseconds, as
the millisecond-level precision could create a detectable
pattern when the network delays are small. As another
alternative, since a large number of inter-packet delays
are required to detect JitterBug, JitterBug could attempt
to transmit with fewer inter-packet delays than the min-
imum required for the entropy test. However, there is a
problem with this approach. JitterBug uses forward error
correction with repeated transmissions. This mechanism
provides reliable communication even if packets are
lost or some of the perturbed keystrokes go to a non-
network application, neither of which can be detected by
a JitterBug embedded in the keyboard. By reducing the
number of repetitions, JitterBug could evade detection,
but could also fail to deliver its message. It remains an
open question whether these countermeasures would be
practical.

6 CONCLUSION AND FUTURE WORK

In this paper, we introduced an entropy-based technique
to detect covert-timing channels by employing both en-
tropy and corrected conditional entropy. We designed
and implemented the proposed entropy-based detection
tool. The development of this tool addresses a number of
non-trivial design issues, including efficient use of data
structures, data partitioning, bin granularity, and pattern
length. We observed that as bin granularity increases,
entropy estimates become more precise, whereas cor-
rected conditional entropy estimates become less precise.
Therefore, based on this observation, we utilized the
fine-binned entropy estimation and the coarse-binned
corrected conditional entropy estimation for covert tim-
ing channel detection.

We then applied our entropy-based techniques for de-
tecting covert timing channels. The corrected conditional
entropy test is able to detect the covert timing channels
with abnormal regularity, while the entropy test is able to
detect the covert timing channels with abnormal shape.
Our experimental results show that the combination of
entropy and corrected conditional entropy is capable of
detecting a variety of covert timing channels. In contrast,
for a covert timing channel whose distribution is close
to that of legitimate traffic, all the previous detection
methods fail. In light of our results and the importance
of entropy in covert timing channel capacity, we believe
that entropy could be the key metric for covert timing
channel detection.

There are a number of possible directions for our
future work. We plan to further investigate the possible
countermeasures that could be used by attackers to
evade entropy-based detection. We also plan to explore
the connection between our entropy-based detection
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methods and entropy as it relates to covert timing chan-
nel capacity. With detection methods that limit entropy,
it could be possible to reduce the capacity available to
covert timing channels. We believe that this exploration
could lead to better detection methods or lower overall
bounds on the capacity of covert timing channels.
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