
Swift: A Fast Dynamic Packet Filter

Zhenyu Wu Mengjun Xie Haining Wang
The College of William and Mary

{adamwu, mjxie, hnw}@cs.wm.edu

Abstract
This paper presentsSwift, a packet filter for high perfor-
mance packet capture on commercial off-the-shelf hard-
ware. The key features of Swift include (1) extremely
low filter update latency for dynamic packet filtering,
and (2) Gbps high-speed packet processing. Based on
complex instruction set computer (CISC) instruction set
architecture (ISA), Swift achieves the former with an
instruction set design that avoids the need for compi-
lation and security checking, and the latter by mainly
utilizing SIMD (single instruction, multiple data). We
implement Swift in the Linux 2.6 kernel for both i386
and x8664 architectures. The Swift userspace library
supports two sets of application programming interfaces
(APIs): a BPF-friendly API for backward compatibility
and an object oriented API for simplifying filter cod-
ing. We extensively evaluate the dynamic and static fil-
tering performance of Swift on multiple machines with
different hardware setups. We compare Swift with BPF
(the BSD packet filter)—thede factostandard for packet
filtering in modern operating systems—and hand-coded
optimized C filters that are used for demonstrating possi-
ble performance gains. For dynamic filtering tasks, Swift
is at least three orders of magnitude faster than BPF in
terms of filter update latency. For static filtering tasks,
Swift outperforms BPF up to three times in terms of
packet processing speed, and achieves much closer per-
formance to the optimized C filters.

1 Introduction
A packet filter is an operating system kernel facility that
classifies network packets according to criteria given by
user applications, and conveys the accepted packets from
a network interface directly to the designated application
without traversing the network stack. Since the birth of
the seminal BSD packet filter (BPF) [14], packet filters
have become essential to build fundamental network ser-
vices ranging from traffic monitoring [12, 21] to network
engineering [19] and intrusion detection [20]. In recent
years, with dramatically increasing network speed and
escalating protocol complexity, packet filters have been
facing intensified challenges posed by more dynamic fil-
tering tasks and faster filtering requirements. However,
existing packet filter systems have not yet fully addressed
these challenges in an efficient and secure manner.

Dynamic filtering tasks refer to on-line packet filtering
procedures in which filtering criteria frequently change
over time. Typically, when a filtering task cannot fully
specify its criteriaa priori and the unknown part can only
be determined at runtime, the filtering criteria have to be
updated throughout the filtering process. For example,
many network protocols, such as FTP, RTSP (Real Time
Streaming Protocol), and SIP (Session Initiation Proto-
col), establish connections with dynamically-negotiated
port numbers. Capturing the network traffic that uses
such protocols requires dynamic filtering. Even with pre-
determined filter criteria, quite often it is necessary to use
dynamic filtering. For instance, a network intrusion de-
tection system (NIDS) needs to perform expensive deep
traffic analyses on suspicious network flows. However,
applying such costly procedures to every packet in high
volume traffic would severely overload the system. In-
stead, an NIDS could first apply simple filtering criteria,
such as monitoring traffic to and from a honeypot or a
darknet only. When suspicious activities are detected, the
NIDS can then update its filtering criteria and capture the
traffic of suspicious hosts for deep inspection.

As thede factopacket filter on modern UNIX vari-
ants, BPF has shown insufficiency in handling both
static and dynamic filtering tasks, particularly the latter
[4, 7, 10]. A filter update in BPF must undergo three
“pre-processing” phases: compilation, user–kernel copy-
ing, and security checking. In the compilation phase, the
filtering criteria specified by the human-orientedpcapfil-
ter language [11] are translated and optimized into the
machine-oriented BPF filter program. In the user–kernel
copying phase, the compiled filter program is copied
into the kernel. Finally, in the security checking phase,
the kernel-resident BPF instruction interpreter examines
the copied filter program for potentially dangerous op-
erations such as backward branches, ensuring that user-
level optimizer errors cannot trigger kernel misbehavior
(e.g., infinite loops). Consequently, the whole process of
a filter update in BPF induces prolonged latency, which
ranges from milliseconds up to seconds depending on
criterion complexity and system workload. In high-speed
networks, hundreds or even thousands of packets of in-
terest might be missed by BPF during each filter update,
effectively leaving a “window of blindness.” Frequent fil-
ter updates, often required by a dynamic filtering task,

exacerbate the degree of blindness. A “window of blind-
ness” coinciding with the initialization of a new session
can cause serious problems on certain applications such
as NIDS, since the beginning of a network connection
normally is of particular interest for security analysis [9].

Recent packet filters such as xPF [10] and FFPF
[4] move more packet processing capabilities from
userspace into the kernel, which reduces context
switches and improves overall performance. However,
neither filter works well for dynamic filtering tasks. Be-
cause xPF uses the BPF-based filtering engine, it offers
no improvement on filter update latency. FFPF attempts
to solve this problem by using kernel space library func-
tions, called external functions, which are pre-compiled
binaries for specific functionalities such as parsing net-
work protocols and updating states. The use of external
functions increases filtering speed and eases extensibil-
ity, but also increases programming complexity. External
functions, unlike safety-checked BPF filters, have access
to the kernel’s full privileges. New external functions
should thus be carefully examined for potential security
bugs, making them a poor fit for frequently-changing dy-
namic filtering tasks.

In this paper, we proposeSwift, a packet filter that
takes an alternative approach to achieving high perfor-
mance, especially for dynamic filtering tasks. Like BPF,
Swift is based on a fixed set of instructions executed by
an in-kernel interpreter. Unlike BPF, Swift is designed
to optimize filtering performance with powerful instruc-
tions and a simplified computational model. Swift’s in-
struction set is able to accomplish common filtering tasks
with a small number of instructions. These powerful in-
structions of Swift resemble those in CISC ISAs and sup-
port optimizations analogous to SIMD (single instruc-
tion, multiple data). Running on the powerful instruc-
tions, Swift attains static filtering speedup due mainly
to SIMD extension and hierarchical execution optimiza-
tion, a special runtime optimization technique for avoid-
ing redundant instruction interpretation. More impor-
tantly, combining the powerful instructions with the sim-
plified computational model, Swift removes filter com-
pilation and security checking in filter update, and thus
significantly improves dynamic filtering performance in
terms of filter update latency.

We implement Swift in the Linux 2.6 kernel for both
i386 and x8664 architectures. The kernel implementa-
tion of Swift is fully compatible and can coexist with
LSF (Linux Socket Filter), “a BPF clone” in Linux. The
Swift userspace libraries provide a BPF-friendly applica-
tion programming interface (API) with textual filter syn-
tax for backward compatibility, and an object-oriented
API that simplifies filter coding. To validate the efficacy
of Swift, we conduct extensive experiments on multi-
ple machines with different hardware setups and proces-

sor speeds. We compare the performance of Swift with
that of LSF and optimized C filters. These C filters are
used for demonstrating the possible performance gains
obtainable by optimized binary code. For dynamic filter-
ing tasks, Swift achieves at least three orders of magni-
tude lower filter update latency than LSF, and reduces the
number of missing packets per connection by about two
orders of magnitude in comparison with LSF. For static
filtering tasks with simple filtering criteria, Swift runs
as fast as LSF; but with complex filtering criteria, Swift
outperforms LSF up to three times in terms of packet
processing speed, and performs much closer to the opti-
mized C filters than LSF.

The remainder of this paper is structured as follows.
Section 2 surveys related work on packet filters. Sec-
tion 3 details the design of Swift. Section 4 describes the
implementation of Swift. Section 5 evaluates the perfor-
mance of Swift. Section 6 concludes the paper.

2 Related Work
The CMU/Stanford Packet Filter (CSPF) [16], a kernel-
resident network packet demultiplexer, introduces the
packet filter concept. CSPF provides a fast path, instead
of the normal layered/stacked path, for network packets
to reach their destined userspace applications. Thus, the
literal meaning of filtering in CSPF isdelayered demulti-
plexing[25]. The original motivation behind CSPF is to
facilitate the implementation of network protocols such
as TCP/IP at userspace. Although the purposes and tech-
niques vary in subsequent packet filters, the CSPF model
of kernel-resident and protocol-independentpacket filter-
ing is inherited by all its descendants.

BPF [14] aims to support high-speed network moni-
toring applications such astcpdump [11]. Users inform
the in-kernel filtering machine of their interests through
a predicate-based filtering language [15], and then re-
ceive from BPF the packets that conform to filtering
criteria. To achieve high performance, BPF introduces
in-place packet filtering to reduce unnecessary cross-
domain copies, a register-based filter machine to fix the
mismatch between the filter and its underlying architec-
ture, and a control flow graph (CFG) model to avoid re-
dundant computations. BPF+ [3] further enhances the
performance of BPF by exploiting global data-flow op-
timization to eliminate redundant predicates across filter
criteria and employing just-in-time compilation to con-
vert a filtering criterion to native machine code. xPF [10]
increases the computation power of BPF by using persis-
tent memory and allowing backward jumps.

In response totcpdump’s inefficiency at handling dy-
namic ports, a special monitoring toolmmdump [24] has
been developed to capture Internet multimedia traffic, in
which dynamic ports are widely used.mmdump reduces
the cost of compilation by exploiting the uniformity of

its filtering criterion patterns. A customized function in
mmdump assembles new filtering criteria by using pieces
of pre-compiled criterion blocks preserved from the ini-
tial filter compilation. Swift’s high-level SIMD instruc-
tions and hierarchical instruction optimization can be
viewed as a generalization of this technique, but Swift’s
techniques apply to any type of filter and require no spe-
cial compiler techniques.

MPF (Mach Packet Filter) [26], PathFinder [2], and
DPF (Dynamic Packet Filter) [8] are filters designed to
demultiplex packets for user-level networking. To effi-
ciently demultiplex packets for multiple user-level appli-
cations and to dispatch fragmented packets, MPF extends
the instruction set of BPF with an associative match func-
tion. With the same goal of achieving high filter scal-
ability as MPF, PathFinder, abstracts the filtering pro-
cess as a pattern matching process and adopts a spe-
cial data structure for the abstraction. The abstraction
makes PathFinder amenable to implementation in both
software and hardware and capable of handling Gbps
network traffic. DPF utilizes dynamic code generation
technology, instead of a traditional interpreter-based fil-
ter engine, to compile packet filtering criteria into native
machine code. DPF-like dynamic code generation could
improve Swift’s performance on static filtering tasks.

The Fairly Fast Packet Filter (FFPF, later renamed as
Streamline) [4] is the most recent research on packet
filtering. Unlike traditional packet filters such as BPF,
FFPF is a framework for network monitoring. Within the
framework of FFPF, multiple packet filtering programs
can be simultaneously loaded into the kernel. The pro-
cessing flow among these programs is organized as a di-
rected graph. In comparison to the filtering architecture
of BPF, FFPF can significantly reduce the cost of packet
copying for multiple concurrent filtering programs by us-
ing flow group, shared circular buffers, and even hard-
ware (e.g., Network Processing Unit). Therefore, FFPF
achieves far greater scalability than BPF. FFPF expands
filter capacity via external functions, which are essen-
tially native code running in kernel space. In addition,
FFPF features language neutral design and provides
backward compatibility with BPF.

FFPF and Swift are complementary as they target
quite different problems. FFPF focuses on the packet fil-
tering framework and its main contribution lies in the
improvement of scalability for supporting multiple con-
current monitoring applications, while Swift aims at the
packet filtering engine and provides a fast, flexible, and
safe filtering mechanism for individual applications. By
virtue of the language neutral design of FFPF, Swift
can be implemented within the FFPF framework, taking
maximal advantage of both designs.

Besides software-based packet capture solutions, mul-
tiple hardware-based solutions [5, 18] have been pro-

posed to meet the challenge posed by extremely high
speed networks. Specifically, FPGAs and ASICs have
been widely used in recent intrusion detection and pre-
vention systems [9, 22]. Moreover, other than the packet-
filter-based network monitoring architecture, there exist
many specialized-architecture monitoring systems such
as OC3MAN [1], Windmill [13], Nprobe [17], and
SCAMPI [6]. Even with these hardware or specialized
system solutions, packet filtering still plays a major role
in network monitoring and measurement due to its sim-
plicity, universal installation, high cost-effectiveness, and
rich applications.

3 Design
In this section, we first present the motivation of Swift
and its design overview, then we detail the design of
Swift, including its unique ISA, and finally we analyze
the characteristics of Swift in terms of performance and
security.

3.1 Motivation
The inefficiency of BPF observed in our past experiences
directly motivated Swift’s design. The most significant
performance degradation of BPF occurs in dynamic fil-
tering tasks. This degradation is mainly caused by fre-
quent filter updates. As mentioned above, the unduly
long filter update latency in BPF is attributed to three fil-
ter pre-processing operations: filter re-compilation, user–
kernel copying, and security checking. While the latter
two play non-negligible roles in the long delay, the ma-
jority of the latency is introduced by filter re-compilation
[7, 24]. The duration of a filter update in BPF would be
significantly shortened if the re-compilation were selec-
tively performed only on the changed primitive, or totally
skipped, asmmdump accomplishes for selected filtering
tasks. However, for general purpose network monitoring
tasks, re-compiling the entire BPF filter is inevitable for
each update, because its instruction set architecture and
filter program organization are unsuitable for fast update.

BPF uses a RISC-like instruction set for a low-level
register machine abstraction. Thus, eachpcap language
primitive is translated into an instruction block that com-
prises avariablenumber of simple instructions. Chang-
ing a primitive in a filter often alters the size of the
corresponding instruction block. Without re-compiling,
we need to modify code-offset-related instructions (e.g.,
conditional branch) throughout the entire compiled filter
to accommodate the change. Control flow optimization,
which is indispensable for BPF to speed up filter execu-
tion, makes the matter even worse. The BPF control flow
optimization merges multiple identical instructions into
one. This significantly reduces both filter program size
and execution time, but complicates updates to instruc-
tions shared by several primitives.

In addition to filter update latency, we also find that
the filter execution efficiency of BPF can be improved
substantially. The RISC-like ISA in BPF induces high
instruction interpretation overhead. Interpretation over-
head refers to the operations an interpreter must perform
before executing an actual filter instruction, such as pro-
gram counter maintenance, instruction loading, opera-
tion decoding, and so forth. Those operations are un-
productive towards evaluating filter criteria, but cannot
be omitted. Because each BPF instruction accomplishes
merely a very simple task, such as loading, arithmetic,
and conditional branching, most of the CPU time in exe-
cuting a BPF program is spent uselessly as interpretation
overhead, and the CPU time spent in evaluating the ac-
tual packet filtering criteria only makes up a small frac-
tion of the total. Our measurement results (detailed in
Section 5.2) show that the BPF interpretation overhead is
about 5.2 nanoseconds on average in a machine with In-
tel 64-bit Xeon 2.0GHz CPU, and makes up nearly 56%
of the average instruction execution time.

BPF’s continuing widespread use can be mainly at-
tributed to (1) the generic pseudo-machine abstraction,
which guarantees cross-platform compatibility, and (2)
its natural-language-like, primitive based filter language,
which ensures ease of use to application developers and
network administrators. Therefore, we decide to inherit
from BPF the pseudo-machine abstraction and language
primitives, while developing our own filtering model to
achieve significant performance improvement.

3.2 Design Overview
The primary objective of Swift is to achieve low filter
update latency. Our approach to reaching this goal is by
reducing filter criterion pre-processing on filter update as
much as possible. More specifically, we attempt to avoid
filter re-compilation and optimization, allow “in-place”
filter updating, and eliminate security checking.

To achieve “compilation free” update, filtering crite-
ria must mapdirectly onto interpreter instructions. This
makes a high-level, CISC-like instruction set architecture
a natural choice for Swift. In addition to saving compila-
tion time, the CISC-like instruction set also opens a door
for performance optimization. A complex Swift instruc-
tion is able to accomplish the same task as several simple
BPF instructions, thereby reducing instruction interpre-
tation overhead.

Two design choices are made to enable in-place fil-
ter modification: fixing instruction length and removing
filter optimization. By fixing the instruction length, we
avoid the need to shift instructions on instruction re-
placement. By removing filter optimization, not only do
we save precious time during a filter update, but also
preserve one-to-one mapping between filtering primi-
tives and filter program instructions: no instructions are

Figure 1: Filter organizations of BPF (a) and Swift (b)
for criteria matching HTTP and DNS traffic

shared. As a result, updates to a filter can be directly ap-
plied to the affected instructions without altering other
instructions or filter program structure. This feature fur-
ther helps to optimize filter update by reducing unneces-
sary user–kernel data copying. Only the updated part of
a filter criterion is copied from userspace to the kernel.

A simplified computational model ensures filter pro-
gram safety for Swift without security checking. With
the specialized ISA, each Swift instruction is able to per-
form a set of complex pattern matching operations. The
execution path of a filter program is determined by the
Boolean evaluation result of each instruction: either con-
tinue (“true”) or abort (“false”). Therefore, Swift does
not need storage or branch instructions to control the ex-
ecution path of a filter program. With a fixed set of in-
structions, acyclic execution path, and zero data storage,
any Swift filter program is safe to run in the kernel.

Our secondary objective is to increase filter execution
efficiency. We achieve this goal by exploring the fol-
lowing two optimizations: SIMD expansion to the Swift
instruction set and hierarchical execution optimization.
SIMD allows an interpreter to perform a single instruc-
tion interpretation and apply the same operation on many
sets of data, thereby significantly reducing the cost of
instruction interpretation. SIMD has been widely used
in contemporary high performance processors, such as
Intel Pentium series and IBM Power series processors.
While Swift’s design ensures low filter update latency,
it also forfeits the benefit associated with filter program
optimization. To offset the possible performance loss, we
introduce an alternative optimization method called hi-
erarchical execution optimization. This optimization is
based on our observation that during a dynamic filter-
ing process, the newly-added primitives are often related
to some existing ones. For example, the new primitives
quite often monitor the same host but on different ports or
capture the same protocol traffic but for different hosts.
Therefore, the existing primitives can be viewed as the
“parent” of the new primitives. Swift utilizes this hierar-

Figure 2: Swift filter structure

chical relationship among primitives to avoid redundant
instruction executions. Instead of actively optimizing fil-
ter programs, i.e., performing automatic optimization in
filter update, Swift makes the primitive hierarchy a hint
for the filter execution engine, and leaves applications re-
sponsible for constructing the hierarchy.

3.3 Detailed Design
The Boolean logic in a Swift filter is organized in dis-
junctive normal form. Figure 1 (b) illustrates the control
flow organization of Swift, while the control flow graph
of BPF, which is semantically equivalent, is shown in
Figure 1 (a) for comparison. In the Swift control flow
organization, each disjunct cluster—the rounded rectan-
gle with shaded background—specifies a complete set of
primitives that a packet must satisfy in order to be ac-
cepted by the Swift filter. In Swift, we name such a dis-
junct cluster aPass, meaning a “passage” of packets.

A pass consists of one or more literals. In a BPF fil-
ter, a literal corresponds to apcap language primitive.
Swift inherits the primitives from BPF. However, instead
of realizing a primitive with multiple simple instruc-
tions, Swift maps each type of primitives into a pseudo-
machine instruction—the basic building block of a filter
program. Figure 2 illustrates the structure of a Swift fil-
ter.

3.3.1 Swift Instruction Set

All Swift instructions have the same size, facilitating fast
instruction modification on filter update. The Swift in-
struction layout is shown in Figure 3, where one 32-bit
command field is followed by seven 32-bit parameter
fields. Such a nicely-aligned 32-byte structure ensures
efficient memory accesses.

Figure 3: The Swift instruction format

We formulate our instruction set based on BPF primi-
tives. We first classify BPF primitives into two categories
according to their addressing modes. “Direct addressing”
primitives, such as “ether proto” and “ip src host,” fetch

data from an absolute offset in a packet. “L1 indirect ad-
dressing” primitives, such as “tcp dst port,” address data
by calculating the variable header length of a protocol
layer and adding a relative offset to it. We then general-
ize the manipulation and comparison operations used in
the semantics of BPF primitives. There are three types
of basic operations: (1) test if equal, (2) mask and test if
equal, and (3) test if in range. Each type also has some
variations on operand width (short or long integer). Fi-
nally, we design the complex instructions to accomplish
the corresponding operations. We come up with 14 dif-
ferent operations that, alone or by combination, are able
to perform equivalent operations of any BPF primitives
except “expr, ” which involves arbitrary arithmetic.

To further exploit the CISC architecture and enhance
performance, we introduce a new addressing mode, “L2
indirect addressing,” with four additional instructions.In
the new addressing mode, filtering operations address
data by first performing “L1 indirect addressing” to re-
trieve the related information, which is used to calculate
the variable header length of a deeper layer, and then
adding the relative offset. While BPF does not provide
such primitives, there are practical demands such as fil-
tering based on TCP payload. Moreover, we add four
more “power instructions” that perform equivalent op-
erations of several frequently-used BPF primitive com-
binations, such as “ip src and dst net” and “tcp src or dst
port.” Therefore, in total Swift has 22 different types of
instructions.

Table 1 lists a selection of Swift instructions, which
captures the characteristics of Swift’s CISC-like ISA.
The four columns from leftmost to rightmost refer to
the addressing mode, the instruction type, the instruc-
tion functionality, and the equivalent BPF operation(s),
respectively. Swift instructions are fairly generic in that
given different parameters, one Swift instruction can
function as several differentpcap language primitives.
Examples are given in the fourth column. Based on the
Swift instruction set, we can derive alternative faster im-
plementations for some BPF primitives. For instance, the
“ip and tcp port” primitive in BPF requires three initial
steps with six instructions to examine whether a packet is
IP, non-fragment, and TCP. In Swift, we can take advan-
tage of the “continuous masked comparison” instruction
(D LEQ M), to perform the same examination in a single
instruction.

We add the SIMD feature into the Swift instruction
set by packing additional operands into unused parame-
ter fields. For instance, the “Direct addressing load, test if
equal” instruction (D EQ) uses only one 32-bit operand.
In contrast, the SIMD version of this instruction can
carry up to six additional operands, and the correspond-
ing operation becomes “Direct addressing load, and test
if equal to any of P[1] through P[7].”

Table 1: Sample of Swift instruction set

3.3.2 Swift Pass and Filter Program

A series of instructions connected by logic “AND” form
a pass. When a packet arrives, the instructions of a pass
are evaluated one by one. If all evaluation results are
“true,” the packet is accepted and copied to userspace.
Otherwise, if any evaluation result is “false,” the packet
fails the current pass, and will be tested by remaining
passes or dropped if it fails all passes. Passes are thus ef-
fectively independent and are combined by logic “OR.”

We achieve the hierarchical execution optimization
feature by establishing hierarchical relationships among
passes. When a Swift filter is initially set, the passes it
contains are created by the application from scratch. In
subsequent changes, if a new pass is related to one of
the existing passes, the application is entitled to add the
new pass by duplicating an existing pass and modifying
the copy, or “child” pass. Performing duplication, instead
of creating a pass afresh, has two benefits. First, the ap-
plication saves time in updating the criterion—only the
difference between the old and new control flows needs
to be updated. Second, the parent–child relationship is
noted by the filtering engine and is used to optimize fil-
ter execution.

When a pass is added by duplication, Swift makes a
bit-exact copy of the parent pass and then marks all the
instructions of the child pass as “copied,” a hint for the
filtering engine that the marked instruction is exactly the
same as the corresponding one in its parent pass. When
an instruction in the child pass is later modified, the as-
sociated “copied” mark is removed. To evaluate a Swift
filter, the filtering engine traverses the passes according
to their hierarchical relationships (if any) in a depth-first
manner. A parent pass is evaluated before its children. If
the parent pass succeeds, then, as for any pass, the fil-
tering engine halts. Otherwise, Swift records those in-
structions that succeeded. When evaluating child passes,

Figure 4: Hierarchical pass relation diagram

Swift need not re-execute any copied instruction that suc-
ceeded in the parent.

Figure 4 illustrates an example of the pass relation in
a Swift filter. Pass 1 is created from scratch, while the
other two passes are added by duplicating pass 1. The in-
structions bearing the “copied” mark have shaded back-
ground, so the filtering engine may skip their evaluations.

3.4 Analysis

Before giving detailed analysis of Swift in terms of per-
formance and security, we first summarize the shared de-
sign principles of Swift with other packet filters, espe-
cially BPF, as well as its unique design features that dis-
tinguish Swift from other packet filters. The shared fea-
tures are marked with “+,” and the unique ones marked
with “⋄.”

+ Runs as a kernel module, filtering packets in place.

+ Uses architecture-independent pseudo-machine.

⋄ Utilizes CISC ISA with SIMD support.

⋄ Enables compile-free, in-place filter modification.

⋄ Ensures security with simplified computational model.

3.4.1 Performance

The performance superiority of Swift mainly origins
from two aspects: high filter execution efficiency and low
filter update latency.

Using a complex instruction set and SIMD benefits
static filtering performance. Thanks to the capability of
aggregating multiple simple operations into one instruc-
tion, a Swift program has much fewer instructions than
its BPF counterpart. As a result, even though its per-
instruction interpretation overhead is slightly higher than
that of BPF, Swift achieves much lower interpretation
overhead of an entire filter program. While the filter en-
gine size of Swift (24KB) is much larger than that of BPF
(6KB), our experimental results show that the larger code
size has insignificant impact on performance. Even run-
ning Swift on the CPU with only 12KB L1 cache (“PC1”
in our experiment setup), there is still no observable per-
formance degradation indicating cache thrashing.

Swift’s superior dynamic filtering performance is
mainly attributed to its very low filter update latency.
For a filtering program withN primitives and experi-
encingM changes per update, the three pre-processing
phases in BPF—recompiling the entire filter, copying the
whole compiled filter code to the kernel, and security
checking—all takeO(N) runtime. However, performing
the same filter update in Swift involves neither compila-
tion nor security checking. The only required operations,
mapping the changed primitives into instruction opcodes
and parameters, and copying the modified instructions
into kernel, takeO(M) runtime. Because the filter update
in Swift is only related to the number of changes per up-
date (M), not to the complexity of the existing filter (N),
its filter update latency can be substantially lower than
that of BPF, especially whenN is large (i.e., the filtering
criteria are complicated). Furthermore, hierarchical exe-
cution optimization can avoid performance degradation
caused by redundant filter instructions.

3.4.2 Security

Security, and filter code safety in particular, have al-
ways been a concern in packet filter design. Since mod-
ern packet filters execute in kernel space, without proper
code safety checking, a faulty filter program containing
infinite loops, wild jumps, out-of-bound array indexes,
etc., could lead to unpredictable results. In addition, a
maliciously crafted filter program can bypass any user-
level access protection and can seriously undermine sys-
tem security.

Depending on the design model, different packet fil-
ters have different mechanisms to enforce the security
of the filter programs. The FFPF filter languages allow
memory allocation, and hence, FFPF has compile-time
checks to control resource consumption and run-time
checks to detect array boundary violations. In contrast,

BPF only needs to perform a security check in the ker-
nel just before the filter program is attached; any program
containing backward or out-of-bound jumps or illegal in-
structions is rejected. However, Swift enforces security
in its design and eliminates the necessity for run-time
security checks. Swift trades off some of its computa-
tional power, i.e., arbitrary data manipulation, for sim-
pler computational model. Because any Swift program
is an acyclic DFA (deterministic finite-state automaton),
the interpreter is always in a pre-determined state, the ex-
ecution of a finite-size filter program is always bounded,
and Swift requires no security check at all.

Two rationales justify this design tradeoff. First, the
reduction of computational power is harmless in the con-
text of packet filtering. A packet filter is a very spe-
cific system tool with a well defined set of operations.
PathFinder [2] shows that all operations in packet filter-
ing can be generalized as pattern matching. Thepcapfil-
ter language uses the special primitive “expr” to support
arbitrary data manipulation. However, this primitive is
rarely used in practice, because its main usage is to spec-
ify uncommon filtering criteria that are not covered by
regular primitives. Second, BPF’s support for arbitrary
data manipulation comes with a high cost of its perfor-
mance. Instead of following BPF’s strategy, we apply the
strategy of “optimize for the common case and prepare
for the worst” in Swift’s design.

BPF does not differentiate predefined and arbitrary
data manipulation operations. Instead, BPF executes any
data manipulation by breaking it down to multiple el-
ementary operations. Thus, BPF wastes a significant
amount of time in interpretation, and sometimes it takes
longer time to interpret an instruction than to execute it.
Swift supports well defined and commonly used data ma-
nipulations by incorporating each variant in a single in-
struction, and integrating their implementations into the
filtering engine. Since those operations are carried out
by native binary code, Swift achieves very high execu-
tion efficiency. Swift cannot perform data manipulations
that are not defined in its instruction set. Instead, the user
applications need to carry out the custom data manipula-
tions by themselves. However, in case an unsupported
data manipulation is desperately needed, for example,
when a new protocol requires a different data manipu-
lation, we can always add new instructions to Swift.

4 Implementation

We have implemented the Swift kernel engine and
userspace libraries in Linux 2.6. Currently we provide
implementations for both i386 and x8664 architectures,
and we plan to port Swift to other open-source UNIX
variants such as FreeBSD in the future.

Table 2: Selection oflibswift APIs
Routine Functionality

SPFOpen Create and attach an empty Swift filter
to a socket

SPFNewPass Create a new pass in the Swift filter
SPFDelPass Remove a pass from the Swift filter
SPFDupPass Create a copy of a given pass
SPFSelectOp Assign a predefined operation (equivalent

to apcaplanguage primitive) to an
instructionof a given pass

SPFAddParam Add an additional (SIMD) parameter to
an instructionin the given pass

SPFDelParam Remove a given parameter from an
instructionin the given pass

SPFPokeInst Change an arbitrary part of aninstruction
in the given pass

4.1 Kernel Implementation

Swift coexists with the Linux kernel’s LSF (Linux
Socket Filter). LSF is the module equivalent to BPF
in BSD UNIX and the default packet filtering module
for the widely usedlibpcap library. Our implementa-
tion requires little modification to the existing kernel
code, and is compatible with the existing packet filtering
framework. Swift’s user–kernel communication mecha-
nism uses thesetsockopt() system call. Swift filter
programs are attached to the same kernel data structure
sk filter as LSF filter programs, with a flag set to tell
two kinds of programs apart. Packets captured by Swift
and LSF share the same delivery path no matter which
packet filter is being used.

4.2 Userland Libraries

The libpcap library provides a set of well-designed rou-
tines for setting filter programs and processing pack-
ets, as well as utility functions for handling devices and
dumping captured packets. Instead of hackinglibpcapto
incorporate Swift, we developed a set of complementary
libraries. Applications based on Swift can seamlessly use
thoselibpcapfunctions that are unrelated to filter setting,
but must invoke a separate mechanism to communicate
with the Swift filter engine for filter program installation
and update.

As shown in Table 2, the C librarylibswift provides a
set of function APIs for the convenient manipulation of
Swift filter programs. We also implement a C++ library
ooswift, providing object-oriented filter program control
and manipulation and improved debugging support. Ta-
ble 3 shows a common filtering criterion expressed in
pcapprimitives, in Swift usingooswiftand in compiled
LSF code. The table illustrates the clear logical connec-
tion and easy transformation between the Swift filter pro-
gram and thepcaplanguage primitives.

Table 3: A filter expressed bypcap, Swift, and LSF
Filtering criterion by pcap

ip src net 192.168.254.0/24 and tcp dst port 23
Swift filter program

Pass.Inst(0)→EtherIPTCP NonFrag()
Pass.Inst(1)→Ether IPSrc(0xFFFFFF00, 0xC0A8FE00)
Pass.Inst(2)→EtherIPTCUDPDst(23)

LSF filter program
(00) ldh [12]
(01) jeq #0x800 jt 2 jf 13
(02) ld [26]
(03) and #0xffffff00
(04) jeq #0xc0a8fe00 jt 5 jf 13
(05) ldb [23]
(06) jeq #0x6 jt 7 jf 13
(07) ldh [20]
(08) jseq #0x1fff jt 13 jf 9
(09) ldxb 4*([14]&0xf)
(10) ldh [x + 16]
(11) jeq #0x17 jt 12 jf 13
(12) ret #96
(13) ret #0

5 Evaluation

In this section, we evaluate the performance of Swift on
both dynamic and static filtering tasks and compare it
with that of LSF and C kernel filters. The C kernel fil-
ters (“Opt-C” for short in the following) are hand-coded,
compiled (usinggcc “-O2” option) C programs that pro-
vide some indication of possible performance gains ob-
tainable by non-interpreted binary code. Each C kernel
filter is coded for a specific filtering task. We use the per-
formance of Opt-C filters as an approximation to the per-
formance of FFPF filters. An FFPF filter written in FPL-
3, which is FFPF’s native language, is first transformed
into a C program and compiled into native code bygcc,
and then loaded as a kernel module for use. Since both
FPL-3 filters and our Opt-C filters run inside the kernel
natively and only a single filter program runs in each ex-
periment, the performance difference between FFPF fil-
ters and Opt-C filters should be minimal.

Swift, LSF, and Opt-C filters share the same filtering
framework and only differ in filtering engine. Therefore,

Table 4: Testbed machine configurations
CPU L2 FSB

PC1
1× Intel Pentium 4 2.8GHz

1MB 533MHz
(32-bit)

PC2
2× Intel Xeon 2.8GHz

512KB 800MHz
(32-bit w/ HyperThreading)

PC3
2× Intel Xeon 2.0GHz

4MB 1333MHz
(EM64T DualCore)

PCS
1× Intel Pentium D 2.8GHz

2MB 800MHz
(EM64T DualCore)

0 50 100 150 200
0

20

40

60

80

100

120

140

160

Session Number

U
pd

at
e

La
te

nc
y

(m
s)

PC1−LSF

No bg
500 Kpps

0 50 100 150 200
0

20

40

60

80

100

120

140

160

Session Number

U
pd

at
e

La
te

nc
y

(m
s)

PC2−LSF

No bg
500 Kpps

0 50 100 150 200
0

20

40

60

80

100

120

140

160

Session Number

U
pd

at
e

La
te

nc
y

(m
s)

PC3−LSF

no bg
500 Kpps

Figure 5: LSF filter update latency

0 50 100 150 200
0

10

20

30

40

50

Session Number

U
pd

at
e

La
te

nc
y

(u
s)

PC1−Swift

No bg
500 Kpps

0 50 100 150 200
0

10

20

30

40

50

Session Number

U
pd

at
e

La
te

nc
y

(u
s)

PC2−Swift

No bg
500 Kpps

0 50 100 150 200
0

10

20

30

40

50

Session Number

U
pd

at
e

La
te

nc
y

(u
s)

PC3−Swift

No bg
500 Kpps

Figure 6: Swift filter update latency

we use the number of CPU cycles spent by the filter-
ing engine as the micro-benchmark metric. This metric
is computed by taking the difference of the x86 Time-
Stamp Counter (TSC) just before and right after a spe-
cific filter operation. For dynamic filtering tasks, the op-
eration is filter update, while for static filtering tasks, the
operation is filter evaluation. In order to compare filter
performance across different platforms, we further con-
vert CPU cycles into clock time based on the correspond-
ing machine’s processor frequency.

To evaluate the filters in a realistic but controllable en-
vironment, we set up a testbed using a Gbps SMC man-
aged switch to connect four different machines. We use
the mirror function of the switch to redirect the traffic on
the specified source port to the mirror port. The packet
generator machine (PCS) connected to the source port re-
plays traces, and one of the other three machines (PC1–3)
connected to the mirror port captures the replayed traf-
fic as a monitoring device. The four machines (PCS and
PC1–3) have different generations of processors ranging
from Pentium 4 32-bit to the latest Xeon dual core 64-bit.
The configurations of these machines are listed in Table
4.

5.1 Dynamic Filtering Performance
We use the task of capturing FTP passive mode traffic,
a typical dynamic filtering task, to measure the perfor-
mances among Swift, LSF, and Opt-C filters. We de-
veloped an application calledFTPCapto monitor FTP
traffic and collect performance statistics. Three variants
that use Swift, LSF, or Opt-C are called FTPCap-Swift,
FTPCap-LSF, and FTPCap-Opt-C, respectively.

5.1.1 Experimental Setup

In passive mode FTP, the server port of a control con-
nection is fixed (usually 21), but the server ports of data
connections are dynamically assigned. FTPCap-LSF ini-
tially employs “(ip and tcp port ftp)” to capture FTP
control packets. When a control packet containing the
port number for a new data connection is captured, the
server IP address and port number for the new connec-
tion will be recorded, and FTPCap-LSF will generate a
new criterion similar to “(ip and tcp port ftp) or (ip x1
and (tcp port y1 or tcp port y2)) or (ip x2 and (tcp port
y3 or tcp port y4)),” in which “x1” and “x2” refer to the
server IP addresses and “y1 . . . y4” refer to the port num-
bers. The LSF optimizer performs better when the port
numbers of the same server are grouped together. Corre-
spondingly, FTPCap-Swift initializes the first pass with
the criterion “(ip and tcp port ftp)” to capture FTP control
packets. When a data connection setup event is detected,
FTPCap-Swift either simply includes the new port num-
ber in the corresponding pass if the server is already ob-
served, or adds a pass using hierarchical execution opti-
mization otherwise. FTPCap-Opt-C, unlike the previous
two, has no code for filter setting and updating because
the work is already taken by the Opt-C filter. It simply
turns on/off the Opt-C filter.

The FTP traffic trace is obtained in a LAN environ-
ment. We set up 10 FTP servers with different IP ad-
dresses. For each server we make 20 concurrent passive-
mode file transfer connections, which are initiated one
by one. In other words, at maximum there are 200 con-
current passive FTP data connections. This trace lasts

0 50 100 150 200
0

30

60

90

120

150

180

Session Number

A
vg

. #
 o

f M
is

se
d

P
ac

ke
ts

PC1−LSF

No bg
500 Kpps

0 50 100 150 200
0

30

60

90

120

150

180

Session Number

A
vg

. #
 o

f M
is

se
d

P
ac

ke
ts

PC2−LSF

No bg
500 Kpps

0 50 100 150 200
0

30

60

90

120

150

180

Session Number

A
vg

. #
 o

f M
is

se
d

P
ac

ke
ts

PC3−LSF

No bg
500 Kpps

Figure 7: Missing packets per data connection by LSF

0 50 100 150 200
−1

0

1

2

3

4

5

Session Number

A
vg

. #
 o

f M
is

se
d

P
ac

ke
ts

PC1−Swift

No bg
500 Kpps

0 50 100 150 200
−1

0

1

2

3

4

5

Session Number

A
vg

. #
 o

f M
is

se
d

P
ac

ke
ts

PC2−Swift

No bg
500 Kpps

0 50 100 150 200
−1

0

1

2

3

4

5

Session Number

A
vg

. #
 o

f M
is

se
d

P
ac

ke
ts

PC3−Swift

No bg
500 Kpps

Figure 8: Missing packets per data connection by Swift

45 seconds with 3,948 packets per second (pps) on av-
erage. In addition, we emulate the scenario of monitor-
ing FTP packets under high-rate background traffic by
mixing the captured FTP traffic with a constant high-rate
(500 Kpps) non-FTP background traffic. The background
traffic is generated by usingtcpreplay [23] to play
back a large trace file, which is captured at the edge gate-
way of our campus network.

Besides using filter update latency as the micro-
benchmark performance metric, we also use the num-
ber of missing packets per data connection as the macro-
benchmark performance metric. The missing packets re-
fer to those packets that are not captured by FTPCap
at the beginning of a newly-established data connection.
The packet miss is caused by the filter update latency be-
ing larger than the FTP client acknowledgment delay—
the interval between the time when the client receives the
port assignment message and the time when the client
starts to communicate with the server on that port. The
metric is derived by counting the number of the trans-
mitted packets (including TCP control packets) prior to
the first packet captured by FTPCap, based on the offline
analysis of the replayed trace.

5.1.2 Experimental Results

We run FTPCap-LSF and FTPCap-Swift 20 times each
on PC1–3, 10 times with the FTP traffic trace replayed
and the other 10 times with the mixed traffic trace re-
played. We take the median of 10 experimental results
as the final result. FTPCap-Opt-C is also tested. Because
there is no filter update at userspace, its filter update la-
tency is zero and no packet is missed by FTPCap-Opt-

C for either FTP traffic or mixed traffic. Therefore, we
focus on the performance comparison between LSF and
Swift.

Figures 5 and 6 show how filter update latency
changes with an increase in concurrent data connec-
tions for LSF and Swift, respectively. The thick and thin
curves show the filter update latencies for the traces with
no background traffic and with 500 Kpps background
traffic, respectively. The most significant difference be-
tween Figures 5 and 6 lies in the scale of the y-axis.
While the filter update latency for LSF is on the order
of milliseconds (ms), the filter update latency for Swift
is only on the order of microsecond (µs). By eliminat-
ing filter compilation and security checking, Swift gains
at least three orders of magnitude speedup against LSF
in filter update. Over 99% of LSF’s latency is caused by
user-level filter recompilation, but the remaining user–
kernel copy and security check latency is still much
larger than Swift’s entire update latency. For example,
the user–kernel copy and security check latency on PC3
grows from 10µs to 20µs in the experiment. FTPCap
running on PC2 does not capture all control packets
that carry dynamic port information under mixed traffic,
which results in incomplete thin curves in “PC2-LSF”
and “PC2-Swift.” The missing critical control packets are
mainly due to PC2’s insufficient processing capacity.

As shown in Figure 5, both concurrent connections
and background traffic affect the filter update latency of
LSF. When the number of concurrent connections in-
creases, the filtering criterion expressed inpcaplanguage
becomes longer. And the compilation procedure and se-
curity checking consume more CPU cycles. In contrast,

Table 5: Static filters inpcaplanguage and their instruction counts in LSF and Swift
Filter Description LSF Inst.# Swift Inst.#

1 “” (Accept all packets) 1 0
2 “ip” 3 1
3 “ip src net 192.168.2.0/24 and dst net 10.0.0.0/8” 10 2
4 “ip src or dst net 192.168.2.0/24” 10 2
5 “ip and tcp port (ssh or http or imap or smtp or pop3 or ftp)” 23 2
6 “ip and (not tcp port (80 or 25 or 143) and not ip host (...))” 95 10

(The ellipsis mark stands for 38 IP addresses ORed together.)

the filter update latency of Swift is basically insuscepti-
ble to changes in concurrent connections and background
traffic: although all Swift curves in Figure 6 fluctuate
slightly, the thin curves overlap with the thick curves to
a great extent. This is because Swift filter updates are
incremental and adding filter instructions for a new con-
nection takes almost constant time. The large spikes of
Swift curves, which occur at the beginning and around
the addition of the 120th connection, are attributed to the
relatively large overheads caused by pass duplication.

Figures 7 and 8 illustrate the average number of miss-
ing packets per data connection by LSF and Swift, re-
spectively. The y-axis scales are again significantly dif-
ferent. The average numbers of missing packets per con-
nection for LSF range from 30 to 160, while those for
Swift are only one or two at maximum. Without back-
ground traffic, Swift does not miss any packet no mat-
ter how many concurrent connections exist. With back-
ground traffic, the average levels of the “500 Kpps”
curves slightly lift after around 120 concurrent connec-
tions, which coincides with the occurrence of the sec-
ond group of large spikes in Figure 6. The lift of fluc-
tuation level may be attributed to the added passes and
related pass duplication. The addition of more passes ex-
tends the filtering path for non-FTP packets and results in
more CPU time spent on non-FTP traffic filtering. Even
so, Swift only misses one or two packets per connection.

0 10 20 30 40 50
0

40

80

120

160

200

← 12.5

Time (ms)

of

 T
ra

ns
m

itt
ed

 P
ac

ke
ts

Figure 9: Initial transmission of a data connection

There are two additional issues associated with the
LSF curves in Figure 7. First, the ceiling phenomena—
both “No bg” and “500 Kpps” curves bounded by 160—
are caused by the rate-limiting of the FTP servers. As
illustrated by Figure 9, in the initial period of a data con-

nection, the servers first transmit about 160 packets in
tens of milliseconds and then stay idle for the next several
hundred milliseconds (not all shown) to limit download-
ing rate. Such bounding behavior occurs for a wide range
of rate-limit settings (e.g., from 100 KBps to 2 MBps).
Since an LSF filter update latency is always shorter than
the duration of the idle phase, the number of missing
packets in each update is bounded. Second, the round-
trip time (RTT) of the FTP trace is small, varying from
tens of microseconds to hundreds of microseconds, as the
trace is collected in a LAN environment. A larger RTT
would cause fewer packets to be transmitted during the
time window of a filter update, thus reducing the impact
of filter updates on packet missing. Compared to LSF,
Swift is almost insensitive to the variation of RTT, and
hence can support applications that require high-fidelity
data capture in diverse network environments.

5.2 Static Filtering Performance
We use six sets of filters with increasing complexity, as
shown in Table 5, for static filtering performance eval-
uation. The instruction numbers of these filters in LSF
and Swift are also listed for comparison. The Opt-C filter
programs show performance gains that could potentially
be achieved by improving LSF and Swift to native code
speeds.

The trace for static filtering is captured at the gate-
way of our campus network. It contains over 14 mil-
lion packets (75 bytes snap length) and its size is around
1.1GB. We play back the trace file at 250 Kpps rate us-
ing tcpreplay. Assuming an average of 500 bytes
per packet, the playback rate represents a fully utilized
1Gbps link bandwidth. We record the average time spent
in accepting and rejecting packets separately, and select
the larger value of the two as the filter performance data.
We choose the larger value, instead of the smaller one
or the average, because the worse case runtime is much
less affected by network traffic conditions, such as traffic
speed and composition.

Figure 10 illustrates the per-packet processing time
of LSF, Swift, and Opt-C on all machines for each
filter. In addition, Table 6 details the breakdown of
the per-packet processing time for both LSF and Swift

Figure 10: Per-packet processing time of each static filter (nanoseconds)

on PC3. The “Exec.” column shows the average ex-
ecution time per instruction and the average number
of instructions executed per packet, in the format of
(time/instruction)×(instruction count). The “Aux.” col-
umn shows the auxiliary processing time spent on filter
engine setup and shutdown operations, such as call/ret
instructions and local stack maintenance.

Filters 1 and 2 are the simplest criteria designed to
show the minimum overhead induced by the filtering en-
gine. The corresponding results in Figure 10 demonstrate
that Swift and LSF have approximately the same pro-
cessing speed with these two simple filters. Both Swift
and LSF run slower than Opt-C. Table 6 further sheds
some light on the performances of both LSF and Swift
filter engines. For filter 1, the LSF filter program only
consists of a simple “ret” instruction, and thus the 5.2
nanoseconds per-instruction execution time is mainly de-
termined by LSF’s interpretation overhead. In contrast,
the Swift filter engine is designed to accept all packets
by default. Therefore, the Swift filter program does not
contain any code, and its processing time is spent en-
tirely on the filter engine setup and shutdown. By adding
a “nop” instruction for Swift to execute before accepting
a packet, we estimate Swift’s interpretation overhead to
be about 8.2 nanoseconds. For filter 2, although the per-
instruction execution time of LSF is 29% shorter than
that of Swift, its overall execution time is longer than
that of Swift. This is because the instruction count ratio
between LSF and Swift is three to one.

Filters 3 and 4 are light load criteria designed to
demonstrate filtering engine performance on basic packet

Table 6: Processing time breakdown for LSF and Swift

Filter
LSF Swift

Exec. Aux. Exec. Aux.
1 5.2ns×1.0 13.8ns (N/A)×0 23.1ns
2 10.3ns×3.0 14.1ns 14.5ns×1.0 22.1ns
3 9.4ns×9.0 12.9ns 13.8ns×2.0 20.9ns
4 8.4ns×6.0 12.5ns 13.7ns×2.0 21.2ns
5 10.3ns×19.8 14.8ns 25.4ns×1.9 21.3ns
6 8.0ns×78.6 13.4ns 29.5ns×7.4 21.5ns

classification. The corresponding results in Figure 10 in-
dicate that Swift has a moderate performance advantage
over LSF on all machines. For filter 3, compared to Opt-
C, LSF takes a factor of 2.32 to 2.92 more time to pro-
cess a packet, with an average slowdown of 2.67 times;
Swift takes a factor of 1.22 to 2.07 more time to pro-
cess a packet, with an average slowdown of 1.61 times.
The average speedup of Swift over LSF is 1.43. For fil-
ter 4, compared to Opt-C, LSF takes a factor of 0.84 to
1.87 more time to process a packet, with an average slow-
down of 1.48 times; Swift takes a factor of 0.65 to 0.95
more time to process a packet, with an average slowdown
of 0.80 times. The average speedup of Swift over LSF
is 1.39. Similar to the cases of filters 1 and 2, Table 6
shows that for filters 3 and 4, the per-instruction execu-
tion time of Swift is about 50% longer than that of LSF,
but the much larger instruction count makes LSF slower
than Swift in packet processing.

Filter 5 is a moderate load criterion designed to test
the filtering engine’s capability of handling highly spe-

Table 7: Optimization effects of Swift filter 5
Filter 5 Original Less-optimized Unoptimized

Exec. Time 69.7ns 178.4ns 204.5ns

cific operation. The corresponding results in Figure 10
show that Swift outperforms LSF by a significant amount
on all machines. Compared to Opt-C, LSF takes a factor
of 3.68 to 6.38 more time to process a packet, with an
average slowdown of 4.68 times; Swift takes a factor of
0.70 to 2.60 more time to process a packet, with an av-
erage slowdown of 1.39 times. The average speedup of
Swift over LSF is 2.50. The significant speedup of Swift
is due to its architectural advantages and specifically
SIMD instructions. The ability to pack many operands
(12 for TCP/DUP ports) in one instruction and batch the
execution of comparison operations within a single fil-
ter engine “cycle” enables many-fold reduction at the
cost of instruction interpretation, and improves the per-
formance of Swift close to that of Opt-C. As shown in
Table 6, compared to previous filters, LSF maintains its
per-instruction execution time, but executes much more
instructions. By contrast, Swift maintains its instruction
count, and packs more operations in each instruction.

Filter 6 is a heavy load, “real life” criterion obtained
from the campus network administrator. This filter is
used by an application to detect suspicious IRC traffic.
The filter is sufficiently complex for Swift to utilize the
optimizations discussed earlier, namely SIMD instruc-
tions and hierarchical execution optimization. The cor-
responding results in Figure 10 show even higher perfor-
mance increase of Swift against LSF. Compared to Opt-
C, LSF takes a factor of 7.83 to 12.94 more time to pro-
cess a packet, with an average slowdown of 10.09 times;
Swift takes a factor of 1.79 to 5.21 more time to pro-
cess a packet, with an average slowdown of 3.18 times.
The average speedup of Swift over LSF is 2.79. Accord-
ing to Table 6, even though the per-instruction execution
time of LSF is less than one third of Swift, the instruction
count ratio between LSF and Swift is ten to one.

For all these filters, the auxiliary processing time for
both LSF and Swift is fairly steady, as shown in Table
6. Although the auxiliary cost of Swift is about 8 to 9
nanoseconds more than that of LSF, the extra cost is in-
significant as the filter becomes more complex and re-
quires more time to execute.

We further measure the average execution time
of Swift filter 5 with no SIMD extension (“Less-
optimized”) and with neither SIMD extension nor hier-
archical execution (“Unoptimized”) to provide more in-
sights into the effect of Swift optimizations on perfor-
mance improvement.The corresponding results are listed
in Table 7. The removal of SIMD instructions exerts a
great impact on the performance of the Swift filter, re-
sulting in a slowdown of 156%. The comparatively small

Figure 11: Per-packet processing time on all machines

increase of execution time after the removal of hierar-
chical execution indicates that the hierarchical execution
has a minor effect on the performance of the Swift fil-
ter. For Swift filter 6, due to filter program organization,
we remove hierarchical execution optimization for the
”Less-optimized” experiment, and remove both hierar-
chical execution and SIMD extension for the ”Unopti-
mized” experiment. Again, the impact of SIMD exten-
sion is far greater than that of hierarchical execution on
the average execution time.

Overall, we find that (1) the SIMD extension plays a
very important role in speeding up Swift filter execution,
and (2) the hierarchical execution also helps the speedup
but its effect is much smaller than that of SIMD exten-
sion, especially with a large instruction count. Without
the SIMD extension and hierarchical execution, Swift
can only perform comparably to optimized LSF for static
filter tasks. These results are consistent with our observa-
tion from Figure 10 and Table 6: the speedup of Swift is
mainly attributed to its use of much fewer instructions
than LSF.

Figure 11 presents a comprehensive picture of filter
execution time for LSF, Swift, and Opt-C filters among
all machines categorized by six filtering criteria. It pro-
vides a good overview of the static filtering performance
for cross comparison. When the filtering criteria are sim-
ple, LSF, Swift and Opt-C have nearly indistinguishable
performance. As the criteria become more complex, the
differences of filter execution time among the three fil-
tering engines grow. Although both Swift and LSF run
slower than Opt-C, the filter execution time of Swift
grows at a much slower rate than that of LSF, and thus
Swift achieves much closer performance to Opt-C than
LSF.

6 Conclusion
This paper presents the design and implementation of the
Swift packet filter. Swift provides an elegant, fast, and ef-
ficient packet filtering technique to handle the challenge
of high speed network monitoring with dynamic filter up-
dates. The key features of Swift lie in its low filter up-

date latency and high execution efficiency. Swift attains
these performance advantages by embracing several ma-
jor design innovations: (1) a specialized CISC instruction
set increases filter execution efficiency and eliminates fil-
ter re-compilation, resulting in significantly reduced fil-
ter update latency; (2) a simple computational model re-
moves the necessity of security checking and improves
filter update latency; and (3) SIMD extensions further
boost filter execution efficiency.

Our extensive experiments have validated Swift’s effi-
cacy and demonstrated the superiority of Swift against
the de facto packet filter, BPF. For dynamic filtering
tasks, the filter update latency of Swift is three orders of
magnitude lower than that of BPF, and on each filter up-
date, the number of packets missed by Swift is about two
orders of magnitude less than that by BPF. For static fil-
tering tasks, Swift runs as fast as BPF on simple filtering
criteria, but is up to three times as fast as BPF on com-
plex filtering criteria. Swift also performs much closer to
optimized C filters than BPF.

There are many avenues we would like to further ex-
periment and exploit in Swift. For instance, we will ex-
plore the multi-thread expansion of Swift, and develop
a hardware optimized filter engine. We will make use of
the extra registers supplied in the x8664 processors for
further performance improvement. Moreover, we envi-
sion that x86 high performance multimedia instructions
(such as MMX and SSE) can also be used to accelerate
the packet processing.

Acknowledgments
We are very grateful to our shepherd Eddie Kohler and
the anonymous reviewers for their insightful and detailed
comments, which have greatly improved the quality of
the paper. This work was partially supported by NSF
grants CNS-0627339 and CNS-0627340.

References
[1] J. Apisdorf, k claffy, K. Thompson, and R. Wilder. OC3MON:

Flexible, affordable, high performance statistics collection. In
Proc. USENIX LISA’96, pages 97–112, 1996.

[2] M. L. Bailey, B. Gopal, M. A. Pagels, L. L. Peterson, and
P. Sarkar. PathFinder: A pattern-based packet classifier. In Proc.
USENIX OSDI’94, pages 115–123, 1994.

[3] A. Begel, S. McCanne, and S. L. Graham. BPF+: Exploiting
global data-flow optimization in a generalized packet filterarchi-
tecture. InProc. ACM SIGCOMM’99, pages 123–134, 1999.

[4] H. Bos, W. de Bruijn, M. Cristea, T. Nguyen, and G. Portokalidis.
FFPF: Fairly fast packet filters. InProc. USENIX OSDI’04, pages
347–363, 2004.

[5] J. Cleary, S. Donnelly, I. Graham, A. McGregor, and M. Pearson.
Design principles for accurate passive measurement. InProc. of
IEEE PAM’00, pages 1–8, 2000.

[6] J. Coppens, E. Markatos, J. Novotny, M. Polychronakis, V. Smot-
lacha, and S. Ubik. Scampi - a scaleable monitoring platform
for the internet. InProc. 2nd Int’l Workshop on Inter-Domain
Performance and Simulation, 2004.

[7] H. Dreger, A. Feldmann, V. Paxson, and R. Sommer. Operational
experiences with high-volume network intrusion detection. In
Proc. ACM CCS’04, pages 2–11, 2004.

[8] D. R. Engler and M. F. Kaashoek. DPF: Fast, flexible message
demultiplexing using dynamic code generation. InProc. ACM
SIGCOMM’96, pages 53–59, 1996.

[9] J. M. Gonzalez, V. Paxson, and N. Weaver. Shunting: A hard-
ware/software architecture for flexible, high-performance net-
work intrusion prevention. InProc. ACM CCS’07, pages 139–
149, 2007.

[10] S. Ioannidis, K. G. Anagnostakis, J. Ioannidis, and A. D.
Keromytis. xPF: Packet filtering for low-cost network monitor-
ing. In Proc. IEEE HPSR’02, pages 121–126, 2002.

[11] V. Jacobson, C. Leres, and S. McCanne. Tcpdump(1).Unix Man-
ual Page, 1990.

[12] S. Kornexl, V. Paxson, H. Dreger, A. Feldmann, and R. Sommer.
Building a time machine for efficient recording and retrieval of
high-volume network traffic. InProc. ACM/USENIX IMC 2005,
pages 267–272, 2005.

[13] G. R. Malan and F. Jahanian. An extensible probe architecture
for network protocol performance measurement. InProc. ACM
SIGCOMM’98, pages 215–227, 1998.

[14] S. McCanne and V. Jacobson. The BSD packet filter: A new
architecture for user-level packet capture. InProc. 1993 Winter
USENIX Technical Conference, pages 259–269, 1993.

[15] S. McCanne, C. Leres, and V. Jacobson. Libpcap. Available at
http://www.tcpdump.org/. Lawrence Berkeley Labora-
tory, Berkeley, CA.

[16] J. C. Mogul, R. F. Rashid, and M. J. Accetta. The packet filter:
An efficient mechanism for user-level network code. InProc.
11th ACM SOSP, pages 39–51, 1987.

[17] A. Moore, J. Hall, C. Kreibich, E. Harris, and I. Pratt. Archi-
tecture of a network monitor. InProceedings of IEEE PAM’03,
2003.

[18] U. of Waikato. The DAG project. Available athttp://dag.
cs.waikato.ac.nz/.

[19] C. Partridge, A. C. Snoeren, W. T. Strayer, B. Schwartz,M. Con-
dell, and I. Castineyra. FIRE: Flexible intra-AS routing environ-
ment. InProc. SIGCOMM’00, pages 191–203, 2000.

[20] V. Paxson. Bro: A system for detecting network intruders in
real-time.Computer Networks, 31(23-24):2435–2463, December
1999.

[21] S. Saroiu, S. D. Gribble, and H. M. Levy. Measurement andanal-
ysis of spyware in a university environment. InProc. USENIX
NSDI’04, pages 141–153, 2004.

[22] H. Song and J. W. Lockwood. Efficient packet classification for
network intrusion detection using fpga. InProc. ACM FPGA’05,
pages 238 – 245, 2005.

[23] A. Turner. Tcpreplay.http://tcpreplay.synfin.net/
trac/.

[24] J. van der Merwe, R. Caceres, Y. hua Chu, and C. Sreenan. mm-
dump - a tool for monitoring internet multimedia traffic.ACM
Computer Communication Review, 30(4), October 2000.

[25] G. Varghese. Network algorithmics - an interdisciplinary ap-
proach to designing fast networked devices. InMorgan Kauf-
mann Publishers, 2005.

[26] M. Yuhara, B. N. Bershad, C. Maeda, and J. E. B. Moss. Efficient
packet demultiplexing for multiple endpoints and large messages.
In Proc. 1994 Winter USENIX Technical Conference, pages 153–
165, 1994.

