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Abstract— This paper proposes a simple but very effective
approach called Gemini to prevent victim users from exposing
sensitive credentials to a phishing site. As an emergency line of
defense, Gemini assumes that a victim user is already deceived
into a phishing site and starts the user authentication procedure.
Gemini springs into action once the username field is filled in, and
tackles the phishing problem from a new perspective. In particular,
by exploiting username input, Gemini is able to provide more
accurate detection of a phishing site and much stronger protection
for a password, the most confidential and crucial information
for user authentication. To validate the efficacy of Gemini, we
implement different prototypes of Gemini as a browser extension
for IE, Firefox, and Chrome, respectively, and conduct extensive
live experiments over various legitimate and phishing websites
for more than one month. Our experimental results show that
Gemini can achieve zero false negative rate and less than 1%
false positive rate, and Gemini can effectively block the access
to a phishing site before a victim user begins to enter in a
password. Moreover, Gemini is complementary to existing anti-
phishing tools. The performance overhead induced by Gemini is
minor and has a negligible effect upon users’ browsing activities.

I. INTRODUCTION

Aiming at stealing Internet users’ credentials, phishing plays
an instrumental role in many online frauds. In a phishing attack,
a phisher sets up a fake website that imitates a corresponding le-
gitimate website. Then the phisher lures users to visit the phish-
ing site by publishing advertisements or sending out spam, and
acquire the victim users’ credentials like passwords. Although
numerous defense mechanisms have been developed, phishing
attacks are still rampant on the Internet nowadays and cause
significant financial loss to victim users. There were nearly
one million phishing URLs online reported during 2012 [8],
and there were more than 50,000 newly booted phishing sites
per quarter of 2012 [9], [10]. According to the RSA report,
during the first eight months of 2012 there were over 30,000
successful phishing attacks globally every month [11], resulting
in a total loss of more than $687 million [12].

As the most common way for user authentication, the text-
based username and password are the two key user credentials.
While username is less sensitive information and sometimes
even publicly available to a third-party like an email address,
password is much more confidential and crucial information
for user authentication. A strong protection to keep password
from falling into a phisher’s hand is essential to defend against
phishing attacks. Thus, various anti-phishing tools have been
proposed to achieve this goal, such as embedding a user-
selected image onto the login form and password hashing [30].

Complementary to all these existing anti-phishing solutions, we
propose an emergency line of defense called Gemini to block
victim users from releasing passwords to a phishing site. Here
“emergency” means that a victim user is already deceived into
a phishing site and starts the user authentication procedure.

Instead of detecting a phishing site based on its appear-
ance including contents and URLs, we leverage the important
information a victim user already typed in—username—for
more accurate phishing detection. For a legitimate website that
requires online authentication, each registered user must have
a unique username. The tuple of {username, domain name}
provides very useful information for detecting phishing sites.
Given a complete list of {username, domain name} pairs, if
the username in the current login form is a valid username
but the currently visited domain name does not match any
corresponding domain names associated with the username in
the list, we can infer that the currently visited website is a
phishing site with very high confidence. For example, say a
user has ”monkey” as the username on the legitimate websites
of domainA.com, domainB.com, and domainC.com. When the
user is detected to use ”monkey” as the username in the login
form of a newly appeared website domainX.com, it is highly
likely that the website of domainX.com is a phishing site.

Based on the observation above, we develop a browser
extension called Gemini to protect victim users from phishing
attacks. To make Gemini work well in the real world, we
have to build a complete list of {username, domain name}
mappings. We first initialize the mapping list by collecting the
majority of ground truth data and then continue to accumulate
the newly appeared and least-frequently-used mappings while
Gemini is in action. Thus, Gemini can obtain most mappings
within a short period and keep track of newly appeared and
least-frequently-used mappings throughout its lifetime.

To validate the efficacy of Gemini, we implement different
prototypes of Gemini as a browser extension for IE, Firefox,
and Chrome, respectively, and conduct extensive experiments
over various legitimate and phishing websites. Our experimen-
tal results show that Gemini can achieve zero false negative rate
and less than 1% false positive rate; and Gemini can effectively
block the access to a phishing site before a victim user begins
to enter a password. Moreover, Gemini is transparent to users
and complementary to existing anti-phishing tools. The induced
overhead of Gemini is minor and has negligible effect upon user
browsing.

The remainder of the paper is organized as follows. Section
2 surveys related work. Section 3 describes the basic idea
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of Gemini and presents our study on user login behaviors
and features of login pages. Section 4 details the design of
Gemini, while Section 5 presents its implementation. Section
6 shows the evaluation results of Gemini, and finally Section
7 concludes the paper.

II. RELATED WORK

To defend users against phishing attacks, both industry
and academia propose various techniques to identify phishing
websites and protect users’ passwords.

Gemini provides a defense against phishing during the user
login process. Similarly, some anti-phishing techniques have
been developed that aim at securing the login process to prevent
users from submitting their credentials to a phishing site. Some
legitimate sites place security indicator on their web pages or
URL bars for users to easily identify the legitimage sites [31],
[35]. For instance, Sitekey [14] has been employed by some
online banking sites such as Bank of America [3]. Users can
select a personal image, i.e. a ”key” that will be presented to
users every time they attempt to log in. If the key is absent or
incorrect, a user is supposed not to continue the login process.
However, recent user studies demonstrate that in the real world
even if such a security indicator is absent or mis-presented, few
users refrain from entering their passwords [31].

Dhamija et al. [17] proposed ”dynamic security skins” to
enable a remote server to provide an identity that can be
easily verified by users. A phishing site will fail to prove
itself and therefore users can easily detect the phishing site
during the login process. Parno et al. [28] developed an anti-
phishing tool using trusted devices, such as smart phones, for
mutual authentication. By enforcing trusted authentication, even
if a user runs into a phishing site, their approach can prevent
phishers from stealing user credentials. Compared with these
existing defenses, Gemini does not require additional devices
and is more transparent to users.

Similar to our work, some previous anti-phish systems such
as Antiphish [22] and Webwallet [37] aim at identifying the
true intention of user browsing to help users be aware of
phishing attacks. Different from these approaches, instead of
using password information, we exploit the input of username
to activiate the anti-phishing procedure to prevent users from
entering their passwords. Moreover, Gemini is capable of
coping with more comprehensive real world scenarios and is
more user transparent.

Some previous anti-phishing technqiues are able to protect
users’ credentials even after a user submits its credentials to a
phishing site. Yue et al. [39] introduced a transparent way to
protect credentials submitted to a phishing site by concealing
the real credential among bogus credentials. Their approach
can make the phisher hardly extract the real credential before
victims are alerted by their legitimate sites. Some password
manager tools such as PwdHash [30], Password Multiplier [21],
and passpet [38] provide password hashing for enforcing
password strength. By salting users’ passwords with domain
specific features such as site name, a phisher cannot reuse
the stolen password on a legitimate site due to the different

Fig. 1: The basic idea of Gemini

hashing. Unfortunately, a usability study [16] reveals that the
effectiveness of these password manager tools is not as high as
expected and there exist several usability problems.

Florêncio et al. [19] proposed a scheme to rescue the
passwords stolen by phishers through client-side reporting and
server-side aggregation. However, their solution takes effect
only after a certain number of users become victims of a
phishing attack. Birk et al. [15] proposed a technique to inject
fingerprinted credentials to phishing sites in order to trace those
stolen credentials and reveal the phisher’s identity.

There are several large online databases such as phish
tank [8] and OpenDNS [6] that maintain lists of reported
phishing sites. These blacklists are populated by mainstream
browsers [4], [5] and commercial security tools such as um-
brella [13]. Once a website is detected to be within a blacklist,
the site will be blocked and users will be alerted. There are also
some studies to enhance the effectiveness of blacklists [18],
[33].

The URL information and page contents have been widely
used to identify a phishing site. The structural, lexical features,
as well as host-based features, such as IP address and time of
registration of URLs within a domain, can be used to classify
legitimate sites and malicious sites [20], [25], [26], [32]. Some
existing approaches are able to detect a phishing site based
on its content information, such as lexical features, layout
similarity with legitimate sites, and content anomaly [27],
[29], [34], [40]. Many machine learning based approaches can
identify phishing sites based on both URL information and page
contents [24], [36].

III. GEMINI: AN EMERGENCY LINE OF DEFENSE AGAINST
PHISHING ATTACKS

The usability studies have shown that with the existing
phishing detection techniques, vulnerable users still fall into
the trap and visit a phishing site. With the goal of preventing
these vulnerable users from further exposing their passwords to
a phishing site, we propose the Gemini system as an emergency
line of defense to detect the phishing site in a timely fashion
and then block the password field from user access.

A. Basic idea of Gemini

As illustrated in Figure 1, the main idea of Gemini is simple:
a user will always have a username (or multiple usernames)
corresponding to a legitimate website. Since a phishing site
cannot make its domain name identical to the corresponding
legitimate site, by checking the pair of {username, domain
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name} appearing on a website, we can identify whether the
website is a phishing site in an accurately and timely manner.

Despite of the simple idea, Gemini needs to address the
following technical challenges.

1) What are the inherent features of a login page? To extract
the username information, Gemini first should correctly
identify a login page. Unfortunately, due to the various
designs and implementations of login pages, there is
no precise way to identify a login page at present. To
make Gemini work well, we should seek a reliable way
to identify a login page and make Gemini tolerant to
inaccurate login page identification.

2) How to initialize Gemini with a complete list of
{username, domain name} pairs, i.e., how to collect
ground truth data? Gemini works based on an accumula-
tive user history data collection, and a clean initialization
process is required to garner legitimate {username, domain
name} mappings.

To handle these challenging tasks well, we conduct a survey
on user login behaviors and systematically characterize various
login pages including both legitimate ones and phishing ones.

B. A survey on user login behaviors

We conduct a user-behavior survey of 50 web users. These
users include ordinary workers, non-computer science students,
computer science major students, and professional IT engineers.
Table I shows the questions asked and the users’ responses.
These questions are designed to provide some useful guidelines
for the design and implementation of Gemini.

The survey results show that users usually have a moderate
number of online accounts and usernames. Among the 50 users,
43 of them have fewer than 50 online accounts and 49 of them
have fewer than 50 distinct usernames. This indicates that the
information Gemini needs to record is small. Thus, the search
through the {username, domain name} mapping list should be
a swift process and the memory consumption of Gemini should
be insignificant.

The survey results also indicate that collecting ground truth
data for Gemini can hardly be a one-time task, as 48 out of
50 users cannot recall all of their usernames and corresponding
domain names. Therefore, it is impractical to require users to
complete the mapping information manually. The collection
of ground truth data should be done in an automatic and
accumulative manner. Moreover, many users have accounts that
will be accessed very rarely, and 29 out of 50 users will log
in their least-frequently used accounts every three months or
even longer. This implies that the collection of ground truth
data should persist for the lifetime of Gemini.

All 50 users admit that they will always input their usernames
before a verification code. This observation can provide a
guideline for extracting username from a login page. Within
a login form, there are some input fields that might be similar
to the username field. The verification code field is the most
confusing field, since it has the same input type as the username
field. According to the survey results, to distinguish a username

Question Number of Users
How many online accounts do you have?
10 and below 6
10 to 30 32
30 to 50 5
50 to 100 5
100 and above 2
How many distinct usernames do you have?
5 and below 8
5 to 20 35
20 to 50 6
50 to 100 1
100 and above 0
Can you recall all of your account names all at once?
Yes 2
No 48
How often do you log in your least-frequently-used account?
Every week 0
Every two weeks 3
Every one month 18
Every three months 8
Every half a year 20
Every a year and above 1
Will you always input username and password before typing
in verification code?
Yes 50
No 0

TABLE I: The results of user behavior survey

field from a verification code, we have to identify their locations
within a form and the order in which the user types them in.

C. Features of legitimate login sites and phishing sites

To design an effective Gemini system, we need to understand
the genuine differences between legitimate sites and phishing
sites. We select 50 legitimate login pages and 50 phishing sites
for this comparison purpose. The 50 legitimate sites are selected
from the most popular websites, including online shopping
sites, online banking, college account systems, email, and utility
payment websites. The 50 phishing sites are selected from
Phishtank [8].

We observe that a browser usually caches the usernames
for legitimate websites where a user has successfully logged
in. For mainstream browsers, once a user successfully logs in
a legitimate website, its username or even password can be
cached so that the user does not need to input them again when
the site is re-visited. This observation can help to identify a
legitimate site: every cached username and its corresponding
domain name should be a legitimate mapping.

For both legitimate and phishing sites, a login page always
presents some information to navigate user through the brows-
ing. For instance, among the 100 login pages, 92 of them con-
tain the keywords ”username” and ”password” either in page
content or in source code. They also commonly contain some
keywords such as ”sign in” and ”onlineID”. This observation
provides a strong hint to identify a login page: if a page contains
certain keywords, it should be considered as a login page.

Some phishing sites place an image of legitimate URL over
the address bar so that vulnerable users cannot observe the
real URL they are visiting. Such a deceptive URL can easily
mislead users if the true domain name is not presented to
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Fig. 2: Architectural Overview of Gemini

users. However, a phishing site can never make its domain
name identical to a legitimate domain name, which ensures
the {username, domain name} mapping is a reliable way to
distinguish phishing sites from legitimate sites. Gemini will
never be deceived by the contents or domain names of phishing
sites, since it uses both the server side information (domain
name) and the client side information (username) that a phisher
cannot control.

IV. DESIGN OF GEMINI

This section describes the architecture of Gemini, the col-
lection of ground truth data in {username, domain name}
mappings and the two running states of Gemini.

A. Architecture of Gemini

As Figure 2 shows, the basic framework of Gemini consists
of four major components: the username extraction engine, the
verification engine, the reaction engine, and the local storage.

1) Username extraction engine: At the very first step, Gem-
ini needs to identify whether the current page is a login page.
If it is not a login page, Gemini will stop working on this page
to reduce overhead. If the current page is verified as a login
page, the extraction engine will extract all the potential login
forms along with their username fields. The extraction engine
will place an event listener at the potential username fields.
When a user inputs into the username fields, the extraction
engine extracts the username on the fly and passes it to the
verification engine.

The identification of a login page is relatively complicated,
which will be detailed in Section 5. By contrast, extracting the
username fields within a login page is relatively easy. As long
as (1) it is a text/email type input field and (2) its location within
a form is not after the password field, it will be identified as
the username field. It is noteworthy that if a page is identified
as a login page, multiple input fields within the page might
be identified as possible username fields. For instance, assume
there are two forms called form A and form B within a page,
only form B contains the password field. In this case, all the
text/email type input fields within form A are also considered
as potential username fields. Such a design is to capture the
username field in some specially crafted phishing pages. For
legitimate sites, this design will not mis-identify a user input
field. On a legitimate login page, the username field must be
always placed before the password field and some other inputs
such as verification code are always located after the password
field. More importantly, such an order remains intact even in
these specially crafted phishing login pages to convincingly

imitate the appearance of legitimate websites, and hence our
username extraction engine will never miss the username field
in a phishing site.

2) Verification engine: The verification engine works in the
background and listens to the messages from the username
extraction engine. Upon receiving the username from the ex-
traction engine, the verification engine will search the current
{username, domain name} pair across the mapping database.
If the username has appeared previously but the {username,
domain name} mapping does not exist, Gemini will classify
the current domain as suspicious phishing. Once the verification
engine makes the identification decision on the current page,
it will notify the reaction engine for further processing. The
verification engine also has the obligation to further check the
site after receiving a request from the reaction engine. In certain
cases, the reaction engine will request the verification engine
to further ascertain the sites with some other phishing detection
techniques. If other phishing detection techniques also identify
the current site as a phishing site, Gemini will classify the
current site as confirmed phishing.

3) Reaction engine: The reaction engine takes the responsi-
bility of providing proper feedback to a user when a phishing
site is detected or allowing the user to continue browsing
normally if the site is identified as legitimate. For a newly
appeared legitimate site, the corresponding {username, domain
name} pair will be recorded into local storage, and the website
will be included into the whitelist.

Once a site is identified as suspicious phishing by the
verification engine, the reaction engine will block the site
and alert a user. As discussed later, Gemini will be in two
different states: initialization and in-action. Depending upon the
running state of Gemini, the reaction engine will have different
interactions with the user. In the initialization state, Gemini will
block the suspicious phishing site but allow the user to click a
“continue” button to resume the login process. However, in the
in-action state, once Gemini locks a suspicious phishing site,
the user has to go through a much more complicated unlock
process to resume the login process.

4) Local storage: Gemini needs to permanently store infor-
mation such as {username, domain name} mappings and the
whitelist into a local storage. Since these data should be avail-
able across the lifetime of Gemini, some traditional data cache
mechanisms such as session cookies are unusable because the
data will be lost when the browser reboots. Fortunately, HTML5
introduces a new way to permanently store browser data locally
in what is called local filesystem/storage [7]. Each browser
application can have at most 5MB space to store application-
related data. This browser-based local storage is isolated from
the disk-based local file system and storage used by other
browser applications. Therefore, the data are well protected
from other malicious extensions or malware.

B. Ground truth data collection

According to our survey, it is very difficult, if not impossible,
to make users recall all their usernames and corresponding
domain names when Gemini is installed. Therefore, we have
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to complete the collection of {username, domain name} map-
ping data in an accumulative manner. Such ground truth data
collection mainly involves how to handle those usernames that
appear for the first time. Here we classify “first time event”
into three categories.

The first category covers the cases where the username is
brand new but the target site is a site where the user has logged
in successfully with a different username before. In this case,
we treat the target site as a trusted site and record the new
{username, domain name} pair.

The second category often takes place when a user has
used the machine and browser for a period of time before
installing Gemini. Since the user has logged into the legitimate
sites before, the browser may cache the username. Therefore,
although the username and domain name are new to Gemini,
as long as the username is correctly cached, the user does
not need to input the username manually. The same situation
applies to those websites with auto-login functionality. Our
keyboard monitoring and cookie monitoring components can
easily identify such cases. These sites with cached usernames
will be regarded as legitimate and the {username, domain
name} pairs will be recorded.

The third category includes the cases where both the user-
name and domain name are new and the username is not
cached. In this scenario, we classify the current mapping as
“pending mapping”. In general, a user will not be deceived to
log into a phishing site before he has ever owned an account at
the corresponding legitimate site. However, in case that a user
logs into a phishing site before logging into the legitimate site,
Gemini should double check the site in the background with
other anti-phishing tools. If the site is found to be a phishing
site, the user will be alerted and the site will be blocked.
If the site is verified not to be a phishing site, the current
mapping will become a “candidate mapping”. A candidate
mapping will become a legitimate mapping only when the same
username appears on the same website for the second time.
It is noteworthy that the username in the candidate mapping
is also considered as an appeared username. Every time the
verification engine searches a username across the database,
the current username will be compared with these usernames
in both legitimate mappings and candidate mappings.

C. Running states of Gemini

According to our survey, in general users log into most of
their online accounts over a relatively short time span. However,
there are some legitimate accounts that users log into less
frequently, maybe every several months or even longer. Based
on such observations, Gemini consists of two different states.
One short-period state is set for Gemini to gather most of the
ground truth data, which is called the initialization state. Once
the initialization is done, Gemini runs into a long period of the
in-action state.

1) Initialization state: The initialization of Gemini is to
gather the majority of the ground truth data in a relatively short
period of time. According to our survey, many users use dupli-
cated usernames for different online accounts. Such username

duplication might lead to a false positive when an unpopular
legitimate site (not in the whitelist) is logged into for the first
time with a duplicated username. In general, the frequency
of account access should follow a long-tail distribution. The
most frequently used accounts should be email accounts, job-
related accounts, social networking accounts, online shopping
accounts, and online banking accounts. Many of these accounts,
such as email accounts and job accounts, are logged in daily
while the others, such as online shopping accounts, are likely be
accessed every week. These frequently accessed accounts are
the most attractive targets for phishing attacks. This observation
implies that Gemini will encounter the “first time events”
mostly within a short period after it is installed and the majority
of false positives should occur during this period as well.

Therefore, Gemini performs its initialization in a short time
span using simple user interaction. The Initialization state only
lasts for one week to two weeks. The user interaction in
initialization is a simple click-through alert. When a page is
identified as suspicious by the verification engine, the site is
temporarily blocked and an alert page will appear and inform
a user that the username is new to this site and the domain name
is highlighted for the user to confirm. If the user can ensure that
this site is trusted and wants to continue the login process, it
can click the “continue” button. Meanwhile, Gemini will double
check the temporarily blocked site in the background using
some other anti-phishing techniques like blacklist checking to
lower the user’s risk of falling into a phishing trap. Only if the
double check process does not identify the site as a phishing
site can the user continue browsing and complete the login task.

2) In-action state: After the initialization, Gemini will enter
the in-action state. In this state, Gemini should have already
collected sufficient ground truth data and the users should have
logged in most of their online accounts. Therefore, Gemini
now can identify a phishing site with higher confidence and
accuracy than its initialization state. Instead of using the simple
click-through user interaction in the initialization state, Gemini
recruits more rigorous user interaction when a suspicious site
is detected.

When Gemini is in action, once a site is identified as
suspicious, the site will be “locked”. A user has no direct
option to continue normal browsing on the current page. Every
time when the user inputs its username or attempts to input its
password, Gemini will pop up alerts and prevent users from
accessing the login fields. In this way, a user can view the
locked page but cannot input its credentials. To unlock the page,
the user has to input an “unlock code” provided by Gemini into
the username field of the page and submit the form. During this
process, the user will be alerted to assure the legitimacy of the
current site for several times and Gemini will leverage other
anti-phishing tools for further confirmation.

D. Exceptional user behavior handling

Although in most cases Gemini can easily extract a username
from a login page and verify the validity of the current website,
there are some exceptional user input behaviors that require
Gemini to use special handling.
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The natural user logging behavior should consist of typing
in username before password. However, in very rare cases,
a user might type in password before username. If a user
types in password first and the phishing site places a keyboard
monitor on the password field, the attacker will obtain the user’s
password before Gemini can react.

To address this special situation, Gemini will force users
to type in username before password. On a login page, the
password field will be temporarily locked by the username ex-
traction engine before the username field is filled. As mentioned
above, a legitimate site might cache the username for a user
so that the user does not have to input the username manually.
Therefore, as long as Gemini detects that the username field is
filled, it will unlock the password field.

It is also very rare but still possible that a user types in
a wrong username with a correct password and then submits
the pair of credentials without being aware of it. In such a
case, the phisher can acquire the incorrect username and correct
password. If the phishing site can verify the validity of the
credential pair in realtime and further prompt the user for login
input again, the phisher could obtain the correct username via
the keyboard monitor while the user is making the second login
attempt.

To address this exception, once a new username is detected,
the verification engine of Gemini will calculate the similarity
between the current username and the existing usernames by
employing Levenshtein distance [2]. If any distance within 2 is
detected, we will regard the current username as an incorrectly
typed username and remind the user to assure the correctness
of the typed username.

V. IMPLEMENTATION

We implement the prototypes of Gemini as a browser exten-
sion for Firefox, Chrome and IE respectively. In this section, we
first give a detailed description on how to identify a login page,
which is one of two major challenges for Gemini to address.
Then, we present the technical details to achieve the portability
of Gemini and highlight the cooperation of Gemini with other
anti-phishing defenses.

A. Identifying a login page

As the first step of Gemini, it is essential to accurately
identify a login page. For a legitimate website, it is relatively
straightforward to identify a login page, since the login page
should contain at least the password field and a form to submit.
Thus, to identify a login page, we can just search the source of
the page for the segments of “<form” and “type=‘password’”.
This method can also identify most of the login pages in the
phishing sites.

Gemini works well in all frames or iframes within a page.
Therefore, even if the login page is within a pop-up window,
Gemini can successfully capture it.

1) Special designs of phishing log in page: Although most
of the login pages in the phishing sites have the same or very
similar design as those in the legitimate sites, some phishing
sites can have special designs in an attempt to evade detection.

Fig. 3: An example of how a phishing site can mock a password field.

Gemini should cover those cases where a phishing site has a
specially crafted login page.

A phishing site does not necessarily contain a password field.
Some phishing sites use the javascript to mock a password field.
Figure 3 shows such an example. The phishing site sets up a
text field and attaches a keyboard listener to it. No matter what
character a user types in, the character will appear as an asterisk
or dot mark in the page. In this way, the user will consider this
text field as a password field. Similarly, a phishing site can
place isolated input fields that are not wrapped by any form.
The event listener attached to the input fields or an enclosing
tag can send the input information directly to a phisher without
the user submitting any form.

To detect such a special phishing login page, we need to
ascertain whether an input field is deployed with an event
listener. If any of the input fields or tag enclosing input fields
is deployed with an event listener, the page is classified as a
login page.

A phishing site could forge username or password fields in a
way that <input> tags will not appear in the source, resulting
in the feint that there is no input field on the page. For instance,
<div contenteditable=true></div> can function as input fields.
To handle this case, Gemini will identify such pages with “fake
input fields” as login pages as well.

A phishing site can also isolate a username input page from
a password input page. The phishing site can first ask a user
to input its username, and then direct the user to the next page
to input its password. In such a scenario, we need to use a
more aggressive identification algorithm. We will search for
the keywords such as “log in”, “sign in”, “username”, and
“passcode” on the page. If a page contains any form and certain
combination of these keywords, the page is also classified as
a login page. Note that a few legitimate sites such as Bank
of America also isolate the username input from the password
input in order for users to verify the site before entering a
password.

B. Portability

To make Gemini portable to multiple user-owned machines,
the implementation of Gemini enables the collected ground
truth data to be imported or exported from one machine to
another machine. For user privacy, the exchange of user data is
encrypted. During the installation of Gemini, a welcome page
will remind a user to initialize a “key”. Then the key will be
used to encrypt and decrypt the user data. Only after the user
confirms the key, will Gemini start running on the browser.

Since Gemini works purely at the client side, to export a
file, Gemini creates a file on the fly using a DataURL scheme
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IE Firefox Chrome
Login 329 1611 1481
Input 62 254 312

TABLE II: Statistical data of real world user study

IE Firefox Chrome Overall
Login fp 2(0.68%) 2(0.68%) 2(0.68%) 0.68%
Phish fp 2(3.23%) 1(0.39%) 1(0.32%) 0.64%

TABLE III: The false positive rate of Gemini.

and stores the file in local memory. At the same time, Gemini
provides the link to the data URL so that the user can download
the file to local disk. However, IE does not support DataURL
through version 7 while IE 8 and 9 can only use DataURL for
images [23]. Therefore, Gemini has a different implementation
for IE. In the IE environment, ActiveXObject is used to create
the file. By contrast, importing a file is relatively easy; simply
reading the file contents and storing into the extension database
will complete the task. The export and import functions are
added into the context menu (Firefox and Chrome) or side bar
(IE) for users to easily use.

C. Cooperation with other defenses

As an emergency defense line, Gemini is complementary to
existing defenses and can work seamlessly with existing anti-
phishing tools, such as blacklist and whitelist. We recruit the
blacklist during the double checking process so that Gemini
can prevent users from unexpectedly continuing to browse on
a confirmed phishing site. Meanwhile, the use of whitelist
significantly helps Gemini in validating the legitimacy of a
new site. Currently, Gemini is deployed with the Phish Tank
blacklist [8] and the whitelist from Alexa [1]. The other more
advanced defense techniques can also be used to enhance the
effectiveness of Gemini.

VI. EVALUATION

To validate the efficacy of Gemini, we conduct two sets of
experiments on both legitimate and phishing web sites. In the
first set of experiments, we evaluate the effectiveness of Gemini
against phishing attacks in terms of false positive rate and false
negative rate in real-world environments. In the second set of
experiments, we investigate the performance impact induced by
Gemini upon a running browser and its user.

A. Effectiveness against phishing attacks

Here we first describe our experimental methodology, and
then present the experimental results in detecting phishing sites.

1) Methodology: The experiments to evaluate Gemini’s ef-
fectiveness can be further divided into two groups: one for basic
functionality evaluation and the other for real world user study.

The basic functionality evaluation is to verify whether Gem-
ini can correctly identify a login page. We select 50 legitimate
websites with a login page, 50 phishing sites with a login page,
and 300 non-login regular web pages. The 50 legitimate login
pages are selected from top visited sites [1], while 50 phishing
login pages are selected from Phishtank [8]. The 300 regular

IE Firefox Chrome Overall
Login fn 0(0%) 1(1%) 0(0%) 0.33%
Phish fn 0(0%) 0(0%) 0(0%) 0%

TABLE IV: The false negative rate of Gemini.

Toshiba Laptop
CPU 2*AMD V120, 2.20 GHz
Memory 2*1GB DDR2
Operating System Windows 7 Premium

TABLE V: The configuration of testbed

web pages are also selected from top website list [1]. We visit
these web pages with IE, Firefox, and Chrome installed with
Gemini and test whether Gemini can identify these login pages
and regular pages correctly.

To thoroughly evaluate the effectiveness of Gemini in real
world, we invite 20 active web users to conduct real world user
studies. Among the 20 volunteers, we have 2 users using IE
under Windows, 3 users using Firefox under Windows, 3 users
using Chrome under Windows, 3 users using Firefox under
Linux, 3 users using Chrome under Linux, 3 users using Firefox
under Mac OS, and 3 users using Chrome under Mac OS. All
these users are asked to install Gemini in their most frequently
used browsers. The users are notified about the functionality of
Gemini, but we do not teach the users how to use Gemini in
detail. Instead we provide documentation and user guidelines
along with Gemini for the users to read when necessary. This
is to ensure that the users are acting exactly as if Gemini is
an extension they download from the webstore and use it from
scratch as normal.

The real world user study consists of three phases: the
training phase, the safeguard phase, and the anti-phishing test
phase. The training phase corresponds to the initialization state
of Gemini. The initialization state of Gemini is set to 10 days
during our user study. The safeguard phase, in which Gemini is
in action, lasts for 30 days in our user study. During the training
and safeguard phases, we keep track of the false positives of
Gemini. When Gemini wrongly identifies a legitimate site as
a phishing site, a false positive is reported. The users are not
aware of the training and safeguard phases since all they have to
do is to browse websites and log into their accounts normally.
Nevertheless, Gemini did work in full action to protect users
from phishing attacks. As reported by one user, the user was
deceived to a real phishing site during the evaluation. Thanks
to Gemini, that phishing site was detected and blocked in time.

The anti-phishing test phase is different from the former two
phases. In this phase, every user is provided with 20 phishing
sites corresponding to the legitimate sites on which the users
have online accounts. The users are directed to make an attempt
to log in these phishing sites with their usernames but our
provided fake passwords. Note that the users have the right
to decide when the anti-phishing test is conducted as long as
Gemini is in the in-action state. We record the results of their
attempts to log into phishing sites. If Gemini fails to block or
lock a phishing site before a user types in password, then a false
negative is reported. To protect users’ privacy, we only record
statistical data and we do not retrieve any account information
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Fig. 4: The page load time of 10 websites on IE
before and after Gemini is installed.
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Fig. 5: The page load time of 10 websites on
Firefox before and after Gemini is installed.

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Website

P
a

g
e

 L
o

a
d

 T
im

e
 (

s
)

 

 
Page load time with Gemini

Page load time without Gemini

Fig. 6: The page load time of 10 websites on
Chrome before and after Gemini is installed.

or browsing footprint of the users.
Table II lists some statistical information of the user study,

including how many times users log into their accounts (login)
and how many times users manually input their usernames and
passwords to log in their accounts (input).

2) False positives: There are two types of false positives:
(1) incorrectly identifying a non-login page as a login page
and (2) incorrectly identifying a legitimate site as phishing site.
Table III shows the false positive rates of Gemini in different
browsing environments, IE, Firefox, and Chrome, respectively.

In the identification of a login page, to detect those specially
crafted phishing sites, our login page identification algorithm is
designed to be aggressive. Therefore, it introduces a few false
positives. For instance, the Wikipedia page about “password” is
taken as a login page since the Wikipedia page provides a form
for users to type in search words and the page contains sensitive
keywords of “password”, “username”, and “log in”. However,
from the results we can see that the false positive rate is still
very low (below 1%). Moreover, such a false positive in the
login page identification does not interfere with users’ normal
browsing activities and only induces negligible performance
overhead as shown in Section 6.2.

In the identification of a phishing site, only few legitimate
sites are wrongly classified as phishing sites. The overall false
positive rate is below 1%. The cause of these false positives
is due to the facts that (1) several users logged into some
small websites that were not included in our whitelist; and
(2) it happened that the usernames they used were the same
as the usernames they used on the other legitimate sites. The
overwhelming majority of the false positives occur in the
training phase. As reported by the users who experienced a false
positive, Gemini did draw their attention and they carefully
checked the site before they continued to log in. All these users
successfully continued to browse and log in.

3) False negatives: There are also two false negatives: (1)
failing to identify a login page and (2) failing to identify a
phishing site. Table IV shows the false negative rates of Gemini
when identifying login pages and phishing sites, respectively,
under different browsing environments.

From the table, we can see that Gemini is able to achieve
very low false negative rate in the identification of a login
page. The only false negative appearing on Firefox is due
to a networking problem. The login-related contents of the
page were not correctly downloaded so that Gemini failed to

recognize it. Frankly, this false negative is not caused by any
technical problem of Gemini. If the user further refreshes the
page in order to conduct a normal login procedure, Gemini can
still successfully detect the login page after it is downloaded
correctly. Meanwhile, our experimental results clearly show that
Gemini is able to identify all the phishing sites with zero false
negative, indicating its effectiveness against phishing attacks.

B. Performance impact

As a client side approach, the performance overhead of
Gemini should be as low as possible to avoid degrading user
experience. We conduct a series of experiments to measure the
overhead of Gemini at the client side. Due to the wide use of
laptops running Windows as personal computing platforms, all
these experiments are conducted on a laptop with Windows OS.
The experimental configuration is listed in Table V.

1) Page load time: Gemini works in a per-page granularity,
and its overhead will increase page load time. To evaluate
the additional latency induced by Gemini in loading a page,
we select 10 popular sites, each with a login page, and make
Gemini work in full action on them. We measure the page load
time of these websites on IE, Firefox, and Chrome before and
after Gemini is installed, respectively. Since the overhead of
Gemini is on parsing and displaying pages, the measured load
time is the time for a browser to fully load a cached web page.
In this way, we can eliminate the network effects on our results.
For each site, we test its load time for 10 times and take the
average.

Figures 4 to 6 illustrate the experimental results. It is evident
that in all the three browsers, Gemini only induces minor
to moderate overhead. The average additional latency caused
by Gemini is less than 10%. In very few sites, the page
load time increased by Gemini is beyond average. This is
because the login pages in these sites are very complicated
with many user input fields. Thus, Gemini has to do more
work including attaching event listeners to many input fields,
resulting in relatively high overhead. However, as demonstrated
by our results, overall the page load time increased by Gemini
is imperceptible to users, and hence does not degrade the user
experience.

2) Overhead of phishing verification: When a user inputs
its username into a website, Gemini will check the {username,
domain name} mapping in the background. It is critical to
ensure that the delay caused by the background verification
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Fig. 7: The time taken to verify a visited site based on {username, domain name}
mapping when Gemini is in initialization and in-action state.
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Fig. 8: The time taken for Gemini to verify a site when a new username and a
new domain name is detected. The first 5 websites are legitimate sites while the
rest 5 are phishing sites. The data size is set to be 50 {username, domain name}
mappings.

is insignificant so that Gemini can block or lock the login page
before the user enters in its password. We evaluate the overhead
of the background verification in two different scenarios: (1) a
used username paired with a new domain name and (2) a new
username paired with a new domain name. Note that if the
domain name is not new, it is most likely a legitimate site and
Gemini can make a quick decision simply using the previous
classification on that domain.

In the first scenario, the username has appeared before and
the verification engine of Gemini verifies whether the current
domain name is within the corresponding mapping list. This
could happen while Gemini is in either initialization state or
in-action state. We measure the time cost of the verification
process when Gemini is in initialization state and in-action
state, respectively, with different sizes of user data. The size
of user data is set to be 10 {username, domain name} pairs,
50 pairs, 100 pairs, and 500 pairs, respectively.

As shown in Figure 7, even with the eccentrically large size
of user data of 500 {username, domain name} pairs (i.e., a
user has 500 online accounts), Gemini takes only around 0.5
second to complete the verification. The results demonstrate
that Gemini can always block or lock a suspicious phishing site
before a user enters into the password field. The experimental
results here also concur with the results of our real world user
study. In all cases, when a user tried to log in a phishing site,
Gemini successfully blocked or locked the page before the user
could type a single character into the password field.

The second scenario is that both the username and the
domain name have not appeared before. In such a scenario,
Gemini has to (1) search the username through the database
to find that it is new, (2) calculate the Levenshtein distance
between the current username and the existing usernames, (3)
check in the background whether the site is a phishing site by
using the blacklist technique, and (4) either record the current
mapping as a candidate mapping or block/lock the current
site. Given this scenario, we measure the overhead of Gemini
on 5 legitimate sites and 5 phishing sites, respectively. We
intentionally input a new username into these websites and
record the time for Gemini to complete the verification process.
Figure 8 illustrates the time consumed by the verification
process, indicating that the verification is time-efficient, so that

Gemini can react in time before a user types in a password.

VII. DISCUSSION

Given the efficacy of Gemini against phishing attacks, Gem-
ini still has two major limitations as described below.

Gemini aims at protecting the most crucial and confiden-
tial user credential—password—from falling into a phisher’s
hand. However, Gemini can only detect a phishing site after
a user inputs its username. Thus, Gemini does not provide
much protection on a user’s username. But only knowing a
user’s username, the phisher has gained little to figure out
the corresponding password. Moreover, Gemini can block the
phishing sites before a user submits the credential, implying that
the only way for a phisher to steal a username is to monitor
the username input field. Nevertheless, as username is in plain
text, a phishing site does not need to monitor a username input
field. For all the phishing sites we have studied, none of them
attach a keyboard monitor to a username input field.

There are some non-standard login pages that might evade
the detection of Gemini. For instance, if a phishing site con-
structs a login page with Flash, Gemini will not be able to
identify it. However, such a non-standard login form is not
popular both for legitimate sites and phishing sites. For legiti-
mate sites, a non-standard login form may cause accessibility
and usability problems. For phishing sites, a Flash-made login
page will make the host phishing sites themselves different
from the imitated legitimate sites, leading to easy detection
and prevention. For all the popular websites and phishing sits
we studied, none of them are using the Flash login page.

VIII. CONCLUSION

In this paper, we have presented a browser extension based
anti-phishing tool called Gemini to construct an emergency
defense line against phishing attacks. Our approach leverages
a new source, username, to identify a phishing site with high
accuracy and minor overhead. By conducting a survey on user
login behavior and characterizing the features of login pages,
we have elaborated the design of Gemini to accurately identify
login pages including those specially crafted phishing sites and
to collect ground truth data. We have implemented prototypes
of Gemini as a browser extension for IE, Firefox, and Chrome,
respectively. To validate Gemini as an effective and efficient
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defense against phishing attacks, we have conducted a series
of live experiments including a real-world user study lasting
for more than one month. Our experimental results show
that Gemini can successfully identify all phishing sites while
achieving less than 1% false positive rate. The performance
overhead induced by Gemini is insignificant and can hardly be
perceived by users, indicating that Gemini will not cause any
degradation on user browsing experience. For the future work,
we plan to integrate more advanced anti-phishing techniques
into Gemini to make the overall defense more effective. After
more complete quality test, we will place Gemini into a Web
app store and we plan to introduce Gemini to APWG or
computer security enterprises as well.
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