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Abstract— Object detection quality and network lifetime are
two conflicting aspects of a sensor network, but both are critical
to many sensor applications such as military surveillance. Partial
coverage, where a sensing field is partially sensed by active
sensors at any time, is an appropriate approach to balancing the
two conflicting design requirements of monitoring applications.
Under partial coverage, we develop an analytical framework
for object detection in sensor networks, and mathematically
analyze average-case object detection quality in random and
synchronized sensing scheduling protocols. Our analytical frame-
work facilitates performance evaluation of a sensing schedule,
network deployment, and sensing scheduling protocol design.
Furthermore, we propose three wave sensing scheduling protocols
to achieve bounded worst-case object detection quality. We justify
the correctness of our analyses through rigorous proof, and
validate the effectiveness of the proposed protocols through
extensive simulation experiments.

Index Terms— Sensor Networks, Object Detection Quality,
System Lifetime

I. INTRODUCTION

Detecting and tracking moving objects is a major class

of applications in sensor networks, such as vehicle detec-

tion in military surveillance [10] and wild animal habitat

monitoring [17]. These applications, by their nature, enforce

certain detection quality and lifetime requirements. The first

requirement determines how fast a sensor network should

detect the intrusion of a moving vehicle, or how often the data

about a wild animal should be sampled and collected. The

second requirement specifies the working duration a sensor

network should sustain. These two requirements, however,

are conflicting optimization goals due to the stringent energy

constraints of sensor nodes.

Full sensing coverage is mandatory for sensor monitoring

applications that require either immediate response to detected

events or information of all points in the sensing field. Full

sensing coverage, however, is too expensive to support long-

duration monitoring applications. More often those applica-

tions do not need zero response time or information at all

points of the sensing field. Full sensing coverage provides

S. Ren and X. Zhang are with the Department of Computer Science and
Engineering, The Ohio State University, Columbus, OH 43210. E-mail: {sren,
zhang}@cse.ohio-state.edu.

Q. Li and H. Wang are with the Department of Computer Science,
College of the William and Mary, Williamsburg, VA 23187. E-mail: {liqun,
hnw}@cs.wm.edu.

X. Chen is with the Ask Jeeves Inc., Piscataway, NJ 08854. E-mail:
xchen@ask.com.

over-qualified detection quality for these applications at the

cost of exhausting network energy rapidly, who may be willing

to sacrifice event detection probability or detection delay to

some extent for increasing the network lifetime. A relaxed

sensing coverage—partial coverage, where the sensing field

is partially sensed by active sensors at any time—is a more

appropriate approach to balancing object detection quality and

battery power consumption.

A partial coverage scheme allows sensor nodes to period-

ically wake up and go back to sleep. A node in sleep mode

cannot sense events; its sensing capability is resumed after

it wakes up. Therefore, the sensor network provides only a

fraction of the maximal coverage of all the sensors. Battery

power, however, is conserved for the nodes in sleep mode.

How much time and how frequently a sensor node should

stay in active mode determine detection quality and power

saving. Our study aims to characterize the interplay among

sensor scheduling, detection quality, and power saving.

Detection quality requirements are classified into average-

case detection quality requirements and worst-case detection

quality requirements. The average-case detection quality can

be characterized by the probability that a moving object is

detected in a given observation duration, and by the average

distance an object travels before detection. In contrast, the

worst-case detection quality can be characterized by the lower

limit of time duration to detect moving objects, and by the

upper limit of distances that objects travel before detection.

This paper considers both applications with stringent average-

case detection quality requirements and applications with

stringent worst-case detection quality requirements.

Our work, together with [7], is the first to propose the

concept of partial coverage to meet the required average and

worst case object detection quality while minimizing network

energy consumption. In the first part of this paper, we consider

the fundamental tradeoff between average-case object detec-

tion quality and energy consumption under different sensing

scheduling schemes, and establish an analytical framework by

examining simple random sensing schedules and synchronized

sensing schedules. The random sensing scheduling algorithm

is simple yet effective in satisfying the required detection

quality with less energy consumption than more sophisticated

schemes, such as PECAS and Mesh proposed in [7]. On the

other hand, the synchronized sensing scheduling algorithm

is useful in providing bounds for object detection quality.

Taking into consideration the fact that sensors may have
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different initial energy, based on our analysis, we design

a power-aware sensing scheduling protocol that is highly

beneficial to optimizing the network energy consumption. Our

analytical framework can not only provide accurate guidelines

for sensing scheduling protocol design and optimal sensor

network deployment, but also be used to derive the necessary

speed of an object wanting to evade sensor detection. Prior to

our work, sensing scheduling protocols with object detection

quality requirements are mainly designed using heuristics,

and are evaluated through simulation. Our work shows that

many of these protocols, such as PECAS, are variations

of the random schedule or the synchronized schedule, thus,

can be incorporated into the analytical framework by setting

parameters appropriately. We apply our analytical framework

to previously-proposed heuristic sensing scheduling protocols

in the literature, and successfully analyze their object detection

quality.

The second part of this paper complements the first part

with the design of three wave sensing scheduling protocols to

provide the bounded worst-case object detection quality with

node coordination. In these wave protocols, at any moment,

active nodes on the sensing field form connected curves. These

curves move back and forth both horizontally and vertically

across the field, so that every geographical point is scanned

at least once within a given duration. We prove the bounds

on worst-case object detection quality of these protocols,

and validate their effectiveness through extensive simulation

experiments. These protocols are simple yet energy-efficient,

and provide bounded detection time, thus, can be used by

many monitoring and surveillance applications that demand

the stringent worst-case object detection quality. Based on the

protocol design, we are able to choose appropriate sensing

scheduling parameters to provide the bounded worst-case

object detection quality, while optimizing the average-case

object detection quality and network energy consumption.

The remainder of this paper is organized as follows. Sec-

tion II sketches related work. Section III introduces object

detection quality metrics. Section IV presents the analysis of

the average-case object detection quality of the random and

synchronized sensing schedules. Section V details the design

and analysis of the three wave sensing scheduling protocols.

Finally, Section VI concludes our work.

II. RELATED WORK

Related to object detection, tracking a moving object in

sensor networks has been extensively studied from different

perspectives: system design and deployment ([11], [17]), main-

taining high tracking precision ([2], [8], [28]), utilizing node

collaborations ([3], [13], [16], [32], [33]), and reducing energy

consumption ([22], [23], [27]). Under a minimalist binary

sensor model, Aslam et al. [2] provided a particle filter-based

tracking scheme. Leader-based tracking schemes have been

proposed in [16] and [33], in which a single node is used

to track the target. Zhao et al. ([16], [33]) proposed leader-

based tracking schemes by using the information of a single

sensor node. Compared with our work, these studies address

the object tracking problem, i.e., how to reduce the differences

between the measured object location and its real location, and

how to capture the trajectory of a moving object. While our

work addresses a different problem, i.e., the detection quality

problem under different sensing scheduling protocols. We

establish an analytical framework to quantify the probability

that an object is detected in a given duration, and to determine

the expected distance a moving object travels.

Obviously, a higher degree of sensing coverage gives us

an advantage of producing a better quality of object tracking.

A large number of sensing coverage maintenance protocols,

aiming to conserve energy under various conditions, have been

proposed ([1], [6], [12], [15], [29]). Yan et al. [29] presented

an energy-efficient random reference point sensing protocol to

achieve a targeted coverage degree. Nodes decide their active

periods by exchanging reference points among neighbors.

In [12], Hsin and Liu investigated coverage intensity and

extensity of random sleep schedules and coordinated sleep

schedules. In [31], Zhang and Hou studied the system lifetime

of a k-covered sensor network, and proved that it is upper

bounded by k times node continuous working time. In [20]

and [21], Onur et al. investigated the effect of false alarm

rate and path-loss exponent on the quality of deployment

using a probabilistic approach, and proposed a method to

determine the required number of sensors being deployed

under the weakest breach path problem. In [18], Megerian et

al. proposed the optimal polynomial time worst and average

case algorithm for the coverage calculation of homogeneous

isotropic sensors, by combining computational geometry and

graph theoretic techniques. Liu and Towsley [15] studied the

coverage and detectability problem in sensor networks. In

summary, these studies all focus on the static coverage of

the points on a sensing field. In contrast, our work considers

the problem of detecting moving objects, and analyzes object

detection quality and system lifetime under an analytical

framework. In essence, coverage and object detection are two

different problems.

The closest previous work to ours include [4], [5], [7]. Gui

and Mohapatra [7] considered the trade-off between power

conservation and quality of surveillance in target detection

and tracking by using non-full coverage. Although we aim to

address similar problems, our work differs from theirs in many

aspects. We provide fundamental analytical results on the rela-

tionship between object detection quality and network lifetime

under different sensing schedules, and on how to utilize the

analytical results to direct and evaluate protocol design; while

in [7], most protocols are designed using heuristics, and their

performance evaluation is based on simulation only. In [4],

Cao et al. presented an optimized framework for rare event

detection that compromises between event detection delay and

lifetime while maintaining point coverage. In comparison, the

work in [4] is only useful for a specific class of surveillance

applications, where events are rare and sensor active ratio is

extremely low. While our work provides a more generic analyt-

ical framework that can be widely used for sensing scheduling

protocol design with detection quality requirements. In [5],

Cao et al. analyzed target detection quality by investigating

some special cases. Compared with [5], in this paper, we

give more thorough and complete analysis on both average-
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case and worst-case object detection quality. In addition, our

work comprehensively characterizes how different sensing

scheduling algorithms affect the system lifetime of a sensor

network.

III. OBJECT DETECTION ASSUMPTIONS, QUALITY

METRICS, AND APPLICATIONS

In this section, we first delineate the assumptions of our

object detection model. Then we formally define the average-

case and worst-case object detection quality metrics, and

describe related object detection applications. This section

serves as the basis for our algorithm design and analysis in

the following sections.
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Fig. 1. An object detection and tracking scenario.

Fig. 1 shows a typical scenario of the object detection in a

sensor network. There are a number of sensors deployed on

a sensing field. A small object moves across the field along a

randomly selected direction. The sensors perform their sensing

tasks under some sensing schedules. In a sensing schedule,

a node periodically wakes up and goes to sleep to conserve

energy while meeting the object detection quality requirement.

We state the assumptions of our model as follows.

• Sensors are randomly and independently distributed on

the sensing field, with a density d.

• The sensor network is homogeneous, i.e., all sensors are

identical. We denote the sensing range of a sensor as R.

• The size of an moving object can be neglected, consider-

ing that it is significantly smaller than the sensing range

of an individual sensor.

• The object speed does not change during the detection

process. We denote the object speed as v. In reality,

a moving object may change its moving speed and

direction during detection, thus, it may be difficult for

the surveillance center to obtain the precise speed of the

object as well. However, as shown in the later analysis of

Section IV, the average-case object detection quality is a

monotonous function of speed v when other parameters

are fixed. Thus, given the range of object speed v based

on past experiences, we can estimate the range of the

corresponding object detection quality. Therefore, our

model and analytical results are still useful for the cases

of changing object speed.

In order to evaluate the average-case object detection quality

of a sensor network, we define two metrics detailed as follows:

• Detection Probability (DP). The detection probability is

defined as the probability that an object is detected in a

certain observation duration.

• Average Stealth Distance (ASD). The average stealth

distance is defined as the average distance an object

travels before it is detected for the first time.

For worst-case object detection quality of the network, we

have the following two metrics:

• Sufficient Phase (SP). The sufficient phase is defined as

the smallest time duration in which an object is detected with

100% probability starting from any time for any position on

the field where the object is initially located.

• Worst-case Stealth Distance (WSD). The worst-case

stealth distance is defined as the longest possible distance that

an object travels before it is detected for the first time.

Taking energy constraints into account, we further define

other two metrics.

• Lifetime (LT). The system lifetime is the elapsed working

time from system startup to the time when the object

detection quality requirement cannot be met for the first

time when live nodes continue sensing with their current

periods.

• Maximum Working Time (MWT). The maximum working

time is the longest possible working time of the system

that satisfies the object detection quality requirement.

Contrary to the definition of the lifetime, in which

nodes have fixed sensing periods, in the definition of

the maximum working time, when some nodes deplete

their power, the remaining nodes can adjust their sensing

periods to sustain the object detection quality.

Object detection applications, such as military surveillance

[10] and habitat monitoring [17], may have different object

detection quality requirements. For given sensing scheduling

schemes, we assess their object detection quality using above

metrics with respect to different system parameters. We study

how each parameter affects the metrics, and how we can

adjust them to reach the object detection quality goal while

minimizing energy consumption.

IV. AVERAGE-CASE OBJECT DETECTION QUALITY

ANALYSIS OF RANDOM AND SYNCHRONIZED SENSING

SCHEDULES

parameter definition

d density of sensors

R sensing radius of a sensor

v object moving speed

P sensing period of sensors

f active ratio of sensors in P
H active duration H = f · P
ta observation duration

TABLE I

SYSTEM MODELING PARAMETERS IN RANDOM AND SYNCHRONIZED

SENSING SCHEDULES.
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In the random sensing schedule, a node randomly and

independently chooses the starting time of its active duration

H in a sensing period P ; while in the synchronized sensing

schedule, all nodes start their active duration H at the same

time in every sensing period P . In these two types of sched-

ules, sensors have a sensing period P and an active ratio f .

We denote the observation duration for object detection as

ta. Note that in the synchronized sensing schedule, P and f
should be appropriately set, so that the time interval P − H
is significantly smaller than ta. Under such a condition, even

a very fast object has a large chance of being detected. These

system parameters of a sensor network under the random and

the synchronized sensing schedules are summarized in Table I.

Because both random and synchronized sensing schedules are

simple and representative schedules, they can be used to ana-

lyze other more complicated sensing schedules. For example,

as shown in Section IV-F, we use both the random and the

synchronized sensing schedules to analyze the previously-

proposed heuristic sensing scheduling protocols, and achieve

satisfactory results.

In this section, we first present the theoretical analyses

on the average-case object detection quality of the random

sensing schedules and the synchronized sensing schedules.

We next design three practical sensing scheduling protocols,

and study energy consumption and system working time of

different schedules. Then, we show analytical results of these

schedules and their simulation validations. Finally, we apply

our model to two formerly proposed protocols in the literature,

and analyze their average-case object detection quality.

A. Random Sensing Schedule Analysis

The random sensing schedule is a simple but usually effi-

cient schedule due to its distributed nature. It can serve as a

baseline for analysis and comparison to other schedules. In this

subsection, under the random sensing schedule, we analyze

the DP and ASD when sensors have the same sensing period

P . Then, we study the DP for a special case of fast objects.

We introduce this special case analysis because it yields more

simplified numerical results and eases choosing appropriate

network parameters. Finally, for fast objects, we study how

nodes can sense with different periods to achieve the same

DP as those having the same period.

1) Detection Probability: We study the random sensing

schedules in which all the nodes have the same sensing period

P and the same active duration H .

Consider a moving object moves from left to right on the

x-axis. The object size is negligible, since it is significantly

smaller than sensing ranges of the sensors on the field.

Suppose it starts at the point −vta

2 , travels a distance of vta,

and arrives at the point vta

2 after the observation duration ta.

Define the active area AA of this object as the oblong area in

Fig. 2, including the rectangle area with length vta and width

of 2R, and the two half disks with radius R attached to the

rectangle. We can see that AA = vta · 2R + πR2.

Proposition 1: Let Pr(xs, ys) denote the detection proba-

bility of a sensor located at (xs, ys) in the active area within

ta, and P̃ r denote the probability that one single sensor can

detect this object within ta, then

P̃ r =
1

AA

∫ R

−R

dys

∫
vta
2 +R

− vta
2 −R

Pr(xs, ys)dxs. (1)

Proof: For a specific sensor located at position (xs, ys)
to detect this object, two conditions must be satisfied: (i)

the sensor must be in the active area, (ii) the sensor must

be active when the object crosses its sensing range. The

detection probability of this sensor depends on the length of

the segment that the object moving path intersects its sensing

range. Since this probability closely relies on the intersecting

length l(xs, ys), which is defined as the length of the object

trajectory that lies both in the sensing range of the sensor at

(xs, ys) and the active area, we first look at how to compute

it. As shown in Fig. 2, the intersecting length l(xs, ys) can be

described as

l(xs, ys) = min(
vta
2

, xb) − max(
−vta

2
, xa),

where xa = xs −
√

R2 − ys
2 and xb = xs +

√

R2 − ys
2 are

the x coordinates of two intersecting points.

According to Fig. 3, the detection probability of this sensor

is the probability that the intersecting interval (l(xs, ys))
intersects the sensing span, i.e., the object must pass the

sensor’s sensing range when the sensor is awake. By a little

calculation, we get

Pr(xs, ys) =

{

f + t
P if l(xs, ys) < (1 − f)vP.

1 if l(xs, ys) ≥ (1 − f)vP.

where t = l(xs,ys)
v . Notice that l(xs, ys) = 0 and Pr(xs, ys) =

0 when (xs, ys) is outside the active area. Then, P̃ r can be

obtained by computing the expectation of Pr(xs, ys) over the

active area as in (1). �

For the case of multiple sensors, since the nodes are

randomly deployed, the number of sensors in the active area

follows a Poisson distribution with an expected value of λ =
d · AA (for justification, please see [9] page 39).

Theorem 1: The detection probability under the random

sensing schedule is

DP = 1 − e−λP̃r. (2)

Proof: We briefly describe the steps of the proof here. To

derive the detection probability DP that at least one sensor

can detect the moving object within duration ta, given the

probability P̃ r that one sensor can detect this object, we can

easily obtain the probability that one sensor cannot detect the

object. Then, we obtain the probability that multiple sensors

cannot detect the object, and derive the probability that no

sensor can detect the object, which leads to the result of DP.

The probability that there are k sensors in the active area is

Pr(k) = e−λ·λk

k! , k = 0, 1, . . . ,∞, while the probability that a

sensor cannot detect the object is 1− P̃ r. The probability that

there exist k sensors in the active area and at least one of them

can detect this object is Pr(dt∧ k) = e−λλk

k! (1− (1− P̃ r)k).
Particularly, when k = 0, we have Pr(dt∧ k = 0) = Pr(k =

0) = e−λ·λ0

0! = e−λ. Because
∑∞

k=0
e−λ·λk

k! = 1, we have
∑∞

k=1
e−λ·λk

k! = 1−e−λ. Also Pr(dt∧k = 0) = Pr(k = 0) =
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Fig. 2. Three sensors are located in the active area of a moving object.
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Fig. 3. The distance an object crosses in one sensing period.

e−λλ0(1−P̃ r)0

0! = e−λ, and
∑∞

k=0
e−λλk·(1−P̃ r)k

k! = e−λP̃r.

The detection probability DP is the probability that at least

one sensor detects the object, which is

DP =
∞
∑

k=1

Pr(dt ∧ k) =
∞
∑

k=1

e−λ · λk

k!
(1 − (1 − P̃ r)k)

=

∞
∑

k=1

e−λ · λk

k!
−

∞
∑

k=1

e−λ · λk

k!
(1 − P̃ r)k

= (1 − e−λ) − (e−λP̃ r − e−λ) = 1 − e−λP̃r.

�

2) Average Stealth Distance: The average stealth distance

is an important metric to characterize the object detection

quality. Here we derive the average stealth distance for the

random sensing schedule.

Theorem 2: The average stealth distance under the random

sensing scheme is

ASD =

∫ ∞

0

ve−λP̃ rdta. (3)

Proof: First we summarize main ideas behind the proof.

Because DP is a cumulative distribution function of the prob-

ability to detect the object with a variable ta, from DP we can

obtain the probability density function cdf . By definition, the

average detection time is the expected value of the time it takes

to detect the object, which can be computed as the integral of

the product of ta and the probability density function of ta.

Then, we obtain the average stealth distance by computing the

product of object speed v and the average detection time.

Denote cdf(x) and pdf(x) as the cumulative distribution

function and the probability density function of a numerical

random variable x. We know cdf ′(x) = pdf(x). Also define

(1 − cdf)(x) = 1 − cdf(x).

The DP in (2) basically denotes the probability that any

sensor detects the object before time point ta; it is a cdf
function that can be written in the form Pr(t ≤ ta), where t
is the time that the object is detected for the first time, and ta
can be viewed as a variable. We will next use DP to derive the

expected detection time and then the expected stealth distance.

Based on (2),

(1 − cdf)(ta) = Pr(t > ta) = e−λP̃r.

Because limta→∞cdf(ta) = 1, and limta→∞(1− cdf)(ta) =
0, and they approach their limits exponentially when ta
approaches ∞ linearly, we do some integral transformation

and get the expected detecting time

E(ta) =

∫ ∞

0

pdf(ta) · tadta = −
∫ ∞

0

tad(1 − cdf)(ta).

Through integration by parts, we get

E(ta) = ta · (1 − cdf)(ta)|∞0 +

∫ ∞

0

(1 − cdf)(ta)dta

=

∫ ∞

0

(1 − cdf)(ta)dta.

Therefore, E(ta) =
∫ ∞

0
e−λP̃rdta. The stealth distance bears

linear relationship to the expected detection time, we get

ASD = vE(ta) =

∫ ∞

0

ve−λP̃ rdta.

�

3) Detection Probability For Fast Objects: For fast objects,

we can obtain more simplified close-form results for the

detection probability, as described in the following corollary.

These close-form results can ease computation of nodes in

practice when they need to set P and f to meet the quality

requirement.

/2avt/2−vta o

R

x

y

−R

AA1
2

Fig. 4. The active area for detection probability calculation.

Corollary 1: We consider a special case, in which an object

moves with a high speed v such that vta > 2R and (1 −
f)vP > 2R. Then, the probability of a single sensor detecting

this fast object is

P̃ r = f +
πR2ta

(vta · 2R + πR2)P
. (4)

Proof: The main idea in the proof is to divide the active area

of a single sensor into several parts, and derive the probability

on each part, and sum up the results. On the other hand, we

solve l(xs, ys) by considering different conditions in which

the detecting sensor s is located at different places.

Recall that Pr(xs, ys) in the proof of Theorem 1, the

probability that a sensor at location (xs, ys) detects the object

is described in two forms according to the intersecting length.
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For a fast object with a speed v such that vta > 2R and

(1 − f)vP > 2R, Pr(xs, ys) takes the form f + t/P where

t = l(xs,ys)
v . Then P̃ r in (1) can be simplified as

P̃ r = f +
1

AvP

∫
vta
2 +R

− vta
2 −R

dxs

∫ R

−R

l(xs, ys)dys.

In the following we try to compute this probability by

considering all the possible sensor locations, which is basically

pure algebraic manipulation. Consider a sensor s located

at (xs, ys). Denote ξ1 =
∫∫

A1
l(xs, ys)dxsdys, and ξ2 =

∫∫

A2
l(xs, ys)dxsdys, where A1 is the circle on the left and

A2 is the unfilled area in the middle as shown in Fig. 4. Due

to the symmetry of the integrating area, we have

∫
vta
2 +R

− vta
2 −R

dxs

∫ R

−R

l(xs, ys)dys = 2ξ1 + ξ2.

Let xa and xb (xb > xa) be the x coordinates of the two

intersecting points between the object path and the sensing

circle of node s. Notice that l(xs, ys) = max(xb,− vta

2 ) −
max(xa,− vta

2 ) when (xs, ys) ∈ A1. Now we compute

l(xs, ys) under following conditions:

• xb > xa > − vta

2 . We have xs >
√

R2 − ys
2 − vta

2 and

l(xs, ys) = xb − xa = 2
√

R2 − ys
2.

• xb > − vta

2 and xa < − vta

2 . We have − vta

2 −
√

R2 − ys
2 < xs < − vta

2 +
√

R2 − ys
2 and l(xs, ys) =

xb + vta

2 = xs + vta

2 +
√

R2 − ys
2.

• xb < − vta

2 and xa < − vta

2 . We have l(xs, ys) = 0.

• xb < − vta

2 and xa > − vta

2 . Because xb > xa, this case

is impossible.

We can get

ξ1 =

∫ R

−R

dys

∫

√
R2−ys

2− vta
2

−
√

R2−ys
2− vta

2

(xs +
vta
2

+
√

R2 − ys
2)dxs

=
8R3

3
,

and

ξ2 =

∫ R

−R

dys

∫ −
√

R2−ys
2+ vta

2

√
R2−ys

2− vta
2

2
√

R2 − ys
2dxs

= πR2vta − 16R3

3
.

Therefore,

2ξ1 + ξ2 = πR2vta.

We can get

P̃ r = f +
1

AvP
(πR2vta),

which leads to (4). �

4) Sequential Schedule and k-Set Schedule: As an exten-

sion of our previous results, here we show two equivalent

scheduling schemes that can achieve the same detection quality

as the random schedule with a constant sensing period P .

We assume 2R < (1 − f)vP , which implies that l(xs, ys) is

always less than (1 − f)vP , and H is constant. Under these

assumptions, according to (2), we know P̃ r can be written in

the form of a
P , where a is a variable that is independent of P

and λ. In the following analysis, we only vary P and λ while

leaving all other system parameters unchanged.

Lemma 1: Let A be a schedule with sensing period kP ,

where k is a non-negative value. Let the expected node density

be λ. We randomly divide the nodes into k equal-sized sets,

and nodes in each set are randomly distributed in the field.

Consider a sequential schedule B, where nodes in ith set are

active only in the duration of [(i − 1)P + nkP, iP + nkP )
for 1 ≤ i ≤ k, then the schedule A and the schedule B have

identical detection probability, i.e., DPA = DPB .

Proof: In schedule B, all sets have identical detection

probabilities. Consider the ith set Si, the detection probability

is

DPB(Si) = 1 − e−
λ
k

P̃ r = 1 − e
λa
kP ,

which is the same as that of schedule A. �

Lemma 2: We randomly divide the nodes into k sets

S1, S2, · · · , Sk. For any set Si with density xiλ, we associate

a sensing period giP with it. Let DP (Si) denote the DP for

the nodes in set Si. If x1

g1
+ x2

g2
+ · · · + xk

gk
= 1, the detection

probability DP of this k-set schedule is equal to that of the

schedule with all nodes having the same period P .

Proof: We know that DP (Si) = 1 − e
−xiλ·

a
giP . Let

DP (Si) be the probability that no node in Si detects this

object, so

DP (Si) = 1 − DP (Si) = e
−xiλ·

a
giP .

Thus, we have

DP = 1 − DP (S1) · DP (S2) · · ·DP (Sk)

= 1 − e
−λa

P
(

x1
g1

+
x2
g2

+···+
xk
gk

)
= 1 − e

−λa
P .

�

B. Synchronized Sensing Schedule Analysis

The synchronized sensing schedule represents a typical class

of sensing scheduling protocols, in which sensors synchro-

nize their sensing duties. Compared to the random sensing

schedule, its average-case object detection quality, measured

by detection probability and average stealth distance, might be

worse. However, the synchronized sensing schedule has the

benefit that the object non-detecting traveling distance, i.e.,

the distance an object travels before detection, is bounded.

If the field is fully covered by all active sensors, the object

non-detecting traveling distance is bounded by the maximum

distance this object travels in one sensing period. As men-

tioned earlier, both the random and the synchronized schedules

can be used to analyze other more complex heuristic sensing

scheduling protocols.

Under the synchronized sensing schedule, we first analyze

the DP under the given system parameters. Based on the DP

analysis, we then derive the ASD. Note that all nodes have

the same sensing periods here.
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Fig. 5. The active area in the synchronized schedule when R is large.

1) Detection Probability: Similar to the random sensing

analysis, we study the active area under a synchronized sensing

schedule to derive the detection probability.

Consider the traveling distance of a moving object in one

sensing period P , we divide it into two parts: the first part is

the distance the object travels in the duration (1 − f)P when

all sensors are asleep; the second part is the distance the object

travels when all sensors are active. In the first part, the object

cannot be detected by any sensor; however, in the second part,

the object can be detected when there are active sensors within

a distance of R to it. Define the active area AA of a moving

object as the set of points that are within a distance of R to

the second part traveling segments of this object.

As shown in Fig. 5, AA is the set of periodically repeated

areas, except the last one when ta is not a multiple of P .

Each repeated area is either a rectangle plus two overlapped

half circles for a large R (shown in Fig. 5), or a rectangle plus

two disjoint half circles for a small R. Denote X0 = (1−f)vP
as shown in Fig. 5. We assume that ta > P .

Let IA(P ) be the total covering area of two half disks

in one intermediate sensing period P . We consider whether

there is overlapping in IA(P ). When R ≥ X0

2 , intersect-

ing points of two half disks are (X0

2 ,−
√

R2 − X0
2

4 ) and

(X0

2 ,
√

R2 − X0
2

4 ). Then IA(P ) = 4
∫

X0
2

0

√
R2 − x2dx =

X0

√

R2 − X0
2

4 + 2R2 arcsin X0

2R . When R < X0

2 , IA(P ) =

πR2. To summarize the results, we have

IA(P ) =

{

X0

√

R2 − X0
2

4 + 2R2 arcsin X0

2R if R ≥ X0

2 .

πR2 if R < X0

2 .

Therefore, the active area in one intermediate sensing period

P is AA(P ) = IA(P ) + 2RvfP .

To calculate the detection probability, we have the following

theorem.

Theorem 3: During the observation duration ta, the active

area is AA(ta) = πR2 − IA(P ) + taIA(P )
P + 2Rvfta. Let λs

be the expected number of sensors in the active area, λs =
d · AA(ta). Then

DP = 1 − e−λs (5)

Proof: The probability that no sensor in the active area is

e−λs . So, the detection probability that at least one sensor can

detect this object under the synchronized sensing schedule is

DP = 1 − e−λs . �

2) Average Stealth Distance: Based on the above DP result,

we can immediately derive the average stealth distance for

the synchronized sensing schedule. We have the following

theorem.

Theorem 4: The average stealth distance ASD under the

synchronized sensing schedule is

ASD =
vP

d · (IA(P ) + 2RvfP )
e−d(πR2−IA(P )). (6)

Proof: Here we briefly summarize the proof. We obtain the

detection probability density function based the result of DP

for synchronized sensing schedules, and derive the average

detection time. The average stealth distance is the product

of the object speed v and the average detection time. The

derivation here basically follows the same vein as in the

random sensing schedule case.

DP in (5) is actually a cdf function that can be written in

the form Pr(t ≤ ta), where t is the time that the object is

detected for the first time, and ta can be seen as a variable.

Then we know

(1−cdf)(ta) = 1−DP = e−d(πR2+IA(P ))·e−d(
IA(P )

P
+2Rvf)ta .

Let F ′(ta) = (1 − cdf)(ta), then

F (ta) =
−Pe−d(πR2−IA(P ))

d(IA(P ) + 2RvfP )
e−d( IA(P )

P
+2Rvf)ta + C,

where C is constant.

Let E(ta) be expected detecting time, then we have

E(ta) =

∫ ∞

0

(1 − cdf)(ta)dta,

then

E(ta) = F (ta)|∞0 =
Pe−d(πR2−IA(P ))

d(IA(P ) + 2RvfP )
.

So

ASD = vE(ta) =
vP

d · (IA(P ) + 2RvfP )
· e−d(πR2−IA(P )).

�

Now we study a special case of f = 100%, which means

nodes are awake the whole time and never sleep. We have

(1 − cdf)(ta) = e−dπR2−2dRvta , therefore

ASD =

∫ ∞

0

ve−(dπR2+2dRvta)dta =
e−dπR2

2dR
. (7)

C. Practical Power Efficient Sensing Protocols

Applying our analytical framework to practice, in this sec-

tion, we propose three practical sensing protocols that ensure:

(1) the object detection quality requirement is satisfied, (2) low

sensing duty cycles are utilized to save sensing energy, and (3)

only moderate communication and computation overhead are

incurred. In these protocols, H is fixed, and there are n sensors

in the network. Particularly, the superior part of the third

protocol PAAS is that all sensors with different energy deplete

their energy simultaneously to extend the system lifetime,

which is highly useful in practice. The protocols are detailed

as follows.

(1) Global Random Schedule (GRS): In this protocol, the

global node density d is known to all sensors. According to
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Theorem 1, each node calculates the maximum sensing period

Pmax that satisfies the DP requirement, and senses the field

with Pmax.

(2) Localized Asynchronous Schedule (LAS): This protocol

is based on the fact that sensors in a dense region can have

a larger P than those in a scarce region to reach the same

object detection quality. After a node boots up, it broadcasts

beaconing messages and infers the relative distance to its

neighbors based on their signal strength. Then, it computes

its local node density dl by dividing the number of nodes in

its communication range over the area of that range. According

to Theorem 1, each node uses its local density dl to compute

the maximum period Pmax that meets the object detection

quality requirement as its sensing period. Thus, this algorithm

achieves an object detection quality close to the targeted one.

(3) Power-Aware Asynchronous Schedule (PAAS): This pro-

tocol takes the diversity of power capacity among sensor nodes

into consideration. The whole set of nodes are divided into

k sets S1, S2, · · · , Sk, such that all nodes in set Si have

approximately the same power capacity Ei, where 1 ≤ i ≤ n.

Based on Lemma 2, we can set gi =
∑ k

i=1 xiEi

Ei
to achieve the

same object detection quality as GRS does with a constant

sensing period P for each node. If each set has one and

only one node, given the sum of the power capacities E =
∑n

i=1 Ei, we can schedule a node that has a power capacity

Ei with a sensing period E
nEi

P to achieve the same object

detection quality as the GRS protocol has.

D. Energy Consumption and Working Time Analysis

System lifetime is a critical factor that indicates the quality

of sensor networks, since energy is extremely scarce resource

in each node. In this subsection, we study the system lifetime

under different sensing schedules. We make two assumptions

in the analysis of system lifetime. First, we neglect the sensor

wake-sleep transition energy cost in these schedules. As shown

above, in our model, it is possible to vary either P or f to

achieve the required object detection quality. Although there

is wake-sleep transition energy cost when a sensor wakes up

in practice, by choosing relatively large sensing period P ,

this wake-sleep transition energy cost is much smaller than

the energy saved by the sensor nodes being inactive in the

period. In our paper, we assume that in all schedules, the

active duration H is long enough to ignore the wake-sleep

transition energy cost. The second assumption is that, sensor

nodes can monitor their remaining energy, and transmit their

energy data to other nodes in the network, and thus, sensors

are energy-aware. Monitoring remaining energy can be done

easily in hardware, and energy information can be collected

and disseminated through periodic communication.

Let T be the continuous working time of a single node,

and all nodes have the same T . Under the random sensing

schedule and the synchronized sensing schedule, if all nodes

have the same P and f , one node spends H energy in a period

P . This node will last for T
H periods, thus, its working time

is T
H · P = T

f . Therefore, the system lifetime is LT = T
f .

Particularly, when H is constant, LT = T
f = TP

H , which

means that a small f or a large P can yield a long system

lifetime.

Define the first failure time and the last failure time as the

time when the first live node and the last live node in the

system deplete their power. For a sensor network with n nodes,

we denote Ti as the time when the ith node runs out of its

power for i = 1, 2, . . . , n , and define Tf and Tl as the first

failure time and the last failure time of the network. Note that

H is fixed here.

In GRS, all nodes have the same sensing period P and the

same active ratio f . Therefore, Ti = Ei

f for i = 1, 2, . . . , n. So,

Tf(GRS) = min(T1, T2, . . . , Tn) = min(E1

f , E2

f , . . . , En

f ).
In PAAS, because nodes have different sensing period, they

have different active ratio as well. Let P and f be the fixed

sensing period and the fixed active ratio in the GRS protocol,

respectively. Denote fi as the active ratio of the ith node,

where i = 1, 2, . . . , n, then we have fi = H
giP

. On the

other hand, because giP = E
nEi

P , we can get fi = nfEi

E .

Note that in PAAS, all nodes have the same elapsed working

time, i.e., Tf = Tl = T1 = T2 = . . . = Tn. Therefore,

Tf(PAAS) = E
nf . Because E

n ≥ min(E1, E2, . . . , En), we

know Tf(GRS) ≤ Tf(PAAS). In other words, PAAS has a

larger first failure time than GRS.

The maximum working time is always longer than the life-

time in the previous definition, thus, it can better characterize

the energy consumption property of the network. Here we

consider a simple random sensing schedule, in which all nodes

have identical sensing periods at any moment, and only wake

up once in one sensing period. We have the following theorem.

Theorem 5: With the same DP requirement, the simple

random sensing schedule and the PAAS have the same energy

consumption rate, thus, have the same maximum working

time.

Proof: We know DP = 1 − e−λc/P , where c is constant

if H and other detection parameters are fixed. The energy

consumption rate that meets the required detection quality is

fixed and is proportional to λ/P . This is because the number

of participating sensors is proportional to λ, and the energy

consumption of each sensor is proportional to 1/P . Therefore,

for any simple random sensing schedule with a given detection

probability requirement, the energy consumption rate is nf ,

where n is the total number of nodes and f is the active ratio

of each sensor node.

For the PAAS, even though each node sets its P according to

its remaining power, the total power consumption of all nodes

is still constant. Consider the ith node in all n nodes, where

1 ≤ i ≤ n. Its energy consumption rate is eri = H
Pi

. Because

Pi = E
nEi

and H is constant, then eri = H
Pi

= H
E

nEi
P

=

nHEi

EP . The total energy consumption rate is
∑n

i=1 eri =
∑n

i=1
nHEi

EP = nfEP
EP = nf . Therefore, the PAAS has the

same maximum working time as the simple random schedule,

in which all nodes have fixed sensing periods. �

E. Analysis Validation and Protocol Evaluation

In our simulation experiments, we generate a 500×500 grid

field, and randomly place d × 250, 000 sensors on it. Sensors
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use either the random sensing schedule or the synchronized

sensing schedule. A small object moves along a straight line

towards a randomly selected direction with a constant speed

v. We run each simulation scenario for hundreds of times.

Then, we use the ratio of detection times over the number of

experiments to estimate DP, and use the average non-detecting

distance to estimate ASD.

metric d ↑ R ↑ v ↑ ta ↑ P ↑ f ↑

DP ↑ ↑ ↑ ↑ ↑ ↓

ASD ↓ ↓ ↑ ↓ ↑

TABLE II

DP AND ASD CHANGE WHEN SYSTEM PARAMETERS INCREASE.

1) Evaluation of Random and Synchronized Schedules:

We plot both analytical curves and simulation results under

different combinations of six parameters as shown in Fig. 6,

7, and 8, respectively. Our observations are summarized as

follows.

• The simulation results match the analytical curves well,

which validates the correctness of our derivations.

• DP and ASD monotonically increase or decrease with the

increase of the parameters, as shown in Table II.

• The random schedule outperforms the synchronized

schedule on both DP and ASD, which is shown in Fig. 8.

This is because the synchronized schedule causes more

overlapping sensing areas than the random schedule.

• The non-detecting distance distributions have long tails:

most non-detecting distances are short, while a few have

large values. The worst case of non-detecting distance in

the random schedule is longer than that of the synchro-

nized schedule.

2) Evaluation of GRS, LAS, and PAAS Protocols: We

use the DP to evaluate the effectiveness of the GRS, LAS,

and PAAS protocols, and use the first failure time, the last

failure time, and the system lifetime to compare their power

consumption properties.

In our experiments to evaluate these three protocols, each

sensor node’s energy follows a uniform distribution between

[0, Emax]. We set system parameters as follows: d = 0.2, R =
0.5, v = 5, ta = 2, P = 1.1, H = 0.55, r = 3, and Emax =
30. Here r is the range to compute the local density in LAS.

Given the requirement of DP ≥ 60%, Fig. 9 illustrates the

degradation of DP as nodes run out of power. Note that every

data point in this figure is obtained by averaging hundreds of

experiment results.

Based on the simulation results, we have the following

observations.

• GRS, LAS, and PAAS can achieve the same DP at the

beginning when no sensor depletes its energy.

• The first failure time and the last failure time of PAAS

are the same; by contrast, GRS and LAS have smaller

first failure time and larger last failure time.

• PAAS has a longer system lifetime than those of GRS

and LAS.

• The DPs of GRS and LAS in Fig. 9 degrade exponen-

tially, instead of linearly. This is because for a sensor

whose energy is uniformly distributed in [0, Emax], the

DP at time t is DP (t) = 1 − e−λ(t)P̃ r, where λ(t) =
λ0 − qt, q is the death rate, and λ0 is the initial sensor

density. Thus, DP (t) = 1 − eλ0P̃ r · eqtP̃ r.

F. Applying the Model to the PECAS Protocol and the Mesh

Protocol

Our analytical framework provides guidelines for choosing

appropriate parameters in these protocols to achieve the re-

quired object detection quality, facilitates their performance

evaluation more rigorously, and gives insights on the inherent

performance tradeoff in them and many other general sensing

scheduling protocols under partial coverage. In this subsection,

we further apply our analytical framework to two sensing

schedules in the literature, namely the Probing Environment

Coordinated Adaptive Sleeping (PECAS) protocol and the

Mesh protocol. In particular, we present the analytical QoSv
results on the heuristic PECAS protocol, which is evaluated

only by simulation in [7]. In comparison, in the random and

synchronized schedules we previously proposed, each node

periodically wakes up and goes to sleep in one sensing period.

The active ratio is initially set, and no communication between

neighboring nodes is needed afterwards. By contrast, in the

PECAS and Mesh protocols, nodes need to communicate with

others and conduct computations frequently. On this aspect,

the random and synchronized sensing schedules are simpler

than the PECAS and Mesh protocols. Our analysis shows that

many heuristic sensing scheduling protocols, such as PECAS,

are variations of the random schedule or the synchronized

schedule, and can be incorporated into our analytical frame-

work by setting parameters appropriately.

1) Analysis of the PECAS Protocol: The PECAS protocol

[7] is an enhanced variance of the Probing Environment

and Adaptive Sleeping (PEAS) protocol [30]. In PECAS,

every node remains in the working mode only for a du-

ration indicated by parameter Work T ime Dur instead of

being active all the time as in the PEAS protocol [30].

When a node starts working, it sets the Next Sleep T ime
as the current time plus Work T ime Dur to indicate the

time-stamp this working node will stop working and go to

sleep. When a working node responds to a PROBE mes-

sage, the value of Next Sleep T ime timer is piggybacked

to the REPLY message. Since the node keeps a record of

the earliest Next Sleep T ime value among the collected

REPLY messages, the next sleep duration is set as the earliest

Next Sleep T ime value minus the current time. In this way,

it is assured that when a working node begins sleeping, other

sleeping nodes in the neighborhood will wake up and probe.

Here we extract the network parameters out of the PECAS

experiments in [7]. Let the node density of the field be d, and

the probing range of a node be r. In a circle area of πr2, the

expected number of nodes is d · πr2. Because d · f = 1
πr2 ,

on average the active ratio of a node is f = 1
dπr2 . The

system parameters in [7] are as follows: d = 800
400m×400m =

0.005/m2, R = 20m, v = 10m/s, and r varies from 20m
to 56m. Since f = 1

dπr2 , we know f changes from 0.159

(when r = 20m) to 0.0203 (when r = 56m). The working
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time duration in the three curves in [7] is 1.0sec, 4.0sec,

and 10.0sec, respectively. This duration is H in the random

schedule and the synchronized schedule. On the other hand,

the QoSv is the reciprocal of the ASD, i.e., QoSv = 1/ASD.

With these parameter settings, we plot the correspond-

ing QoSv under the random and the synchronized sensing

schedules as well as the PECAS curves in [7]. A larger

probing range r or a larger working time duration results in

a smaller QoSv. We find that the random sensing schedule

has a better QoSv than PECAS for the reason that a small

node density d incurs a small chance of nodes being close

to each other. On the other hand, the synchronized sensing

schedule has close QoSv results to those of the PECAS

protocol, as shown in Fig. 10. For example, when the working

time duration is 1 second, the QoSv difference between the

synchronized sensing schedule and the PECAS schedule is

less than 0.1/meter, which is relatively small. This is because,

in PECAS, once a node goes into sleep, several nodes around

it wake up, which is similar to the scenario where nodes all

wake up simultaneously in the synchronized schedule.

2) Analysis of the Mesh Protocol: In the Mesh protocol

[7], a planned distribution method is used to achieve the soft

deployment where the object detection quality can be satisfied

with deterministic guarantee. Every sensor node is assumed to

know its geometric location. Only nodes at planned locations

remain active so that all active nodes forms a planned pattern

of 2-D mesh where the active nodes on the field form a set

of horizontal and vertical solid lines. The distance between

2r+2δ

(xp,yp)

ϑ1

ϑ2

l

Ul

G

Fig. 12. Uncovered square of one grid in the Mesh protocol.

each adjacent horizontal or vertical lines is LG. For the i-
th horizontal line, sensors whose x-coordinates in the range

[i · LG − δ, i · LG + δ] remain active. Same is true for nodes

around the j-th vertical line. Let the sensing range of each

sensor be r, then each this horizontal or vertical line forms

a stripe of a covered area of width 2r + 2δ. Each uncovered

area in this sensor deployment is a square with side length of

lu, lu = lG − 2r − 2δ, as shown in Fig. 12.

If the node density is high, for a randomly chosen point,

its probability of not being covered by any active sensor is

Pruc =
(⌊ L

LG
⌋)2(LG−2r−2δ)2

L2 . As shown in Fig. 12, for the

point with coordinate (xp, yp) in the uncovered square, we

draw a disk centered at it with a radius of vta. Denote ξ = Lu

2 .

Suppose there are 2m intersecting points between this disk

and the four border lines, then the circle is divided into arcs
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by the intersecting points, interleavingly inside and outside

the uncovered square. Let the angles of these arcs inside be

θ1(xp, yp), . . . , θm(xp, yp). By definition, the average DP at

the point (xp, yp) is
∑ m

i=1 θi

2π . We integrate the average DP of

a point over the whole uncovered square to obtain the DP in

ta:

DPmesh =
(⌊ L

LG
⌋)2

∫ ξ

−ξ dxp

∫ ξ

−ξ(
∑ m

i=1 θi(xp,yp)

2π )dyp

L2
.

We use the same parameter settings as that in [7], which are

listed as follows: l = 400m, R = 20m, v = 10m/s, lG varies

from 60m to 100m, lU = lG − 10m, and 2δ = 10m. The DP

here is a cdf function of the variable ta. We integrate the (1−
cdf) function over the time span of [0,∞) to obtain the ASD,

then QoSvmesh = 1
∫

∞

0
DPmeshdta

. The comparison between

our results and the results in [7] is illustrated in Fig. 11. The

close match of the two curves validates the correctness of both

analyses.

V. WORST-CASE OBJECT DETECTION QUALITY ANALYSIS

OF WAVE SENSING PROTOCOLS

In practice, many applications demand stringent require-

ments on worst-case object detection quality. For example,

an object must be detected in 10 seconds with certainty.

However, worst-case object detection quality metrics, such

as sufficient phase and worst-case stealth distance, are not

bounded in the random and synchronized schedules shown

in Section IV. Given an observation duration, an object can

escape detection; it can also travel an infinite distance even

though its average stealth distance is small. Therefore, we

need to design sensing scheduling protocols that achieve a

bounded sufficient phase and worst-case stealth distance while

minimizing energy consumption of the system. In this section,

we present and analyze three wave sensing schedules including

the line wave, the stripe wave, and the distributed wave sensing

scheduling protocols, and evaluate the performance of the

wave sensing protocols via extensive simulations.

In the design and analysis of the wave sensing scheduling

protocols, we assume that the sensing field is completely

covered when all sensors on the field are active. The main

idea behind these protocols is as follows. When the distance

between any two nodes is less than their sensing diameter 2R,

their sensing ranges intersect and form a connected region. If

currently-active nodes make up a connected stripe with two

ends on opposite borders of the field, the stripe divides the field

into two regions. Under such a circumstance, in a sufficiently

long time duration, an object can be detected when it crosses

this stripe. For any specified continuous curve with two ends

on opposite borders of the field, it is always possible to find a

set of nodes whose sensing ranges completely cover this curve

under the assumption that the field is completely covered when

all the nodes wake up. To further reduce the detection time, we

allow the curve to move so that every geographical point on the

field can be scanned at least once in one wave scanning period,

without leaving any sensing hole in this scanning period. Here

a sensing hole is a continuous area that is not covered by any

sensors in one wave scanning period. We define the curve

(line) to be covered as the active curve (line), and define the

union of the sensing ranges of all active sensors that cover the

active curve (line) as the hot region.

Our design goals are: (1) the hot region should contain no

sensing hole in one wave scanning period, (2) the hot region

should be as thin as possible in order to reduce network

energy consumption; and (3) the active curve should move

repeatedly, so that the object can be detected rapidly and

energy consumption variance among nodes is small.

A. Line Wave Protocol Design

In this protocol, we make two assumptions. First, we assume

that every node on the field has a timer that is well synchro-

nized with others. The global timer synchronization techniques

of [14] can be used in this protocol. Second, we assume that

every node is aware of its own geographical location on the

field through some localization techniques. Many previously

proposed localization algorithms (e.g., [19], [26]) are practical,

effective, and extremely cheap, and have been deployed in

multiple real sensor network projects.

1) Line Wave Protocol Description: In the line wave pro-

tocol, the active curve is a straight line, as shown in Fig. 13.

This protocol is specified as follows.

1. At system startup time, all nodes synchronize their timers,

and obtain their geographical coordinates. There are two

active lines on the two opposite borders of the field

moving towards the center. All nodes are informed of

the initial positions, the settling time, and the advancing

distance (ad) of the active lines. Note that ad < 2R.

2. Every node computes current positions of the active lines

based on its timer and the information of the active lines it

obtained. Then, it calculates if its sensing range intersects

the active lines. If there is an intersection, this node wakes

up.

3. After the active lines have stayed at their current positions

for their settling time, they move forward with a distance

ad towards the field center. When they reach the center,

they go back to the field borders. Step 2 repeats.

Note that a sleeping node periodically wakes up to receive

new messages addressed to it. Sensing tasks are distributed to

all nodes, thus, energy consumption variance among nodes is

kept small.

2) Bounded Sufficient Phase and Worst-Case x-Axis Stealth

Distance: We define the x-axis stealth distance as the distance

a moving object travels on the x-axis before it is detected. A

handoff is defined as the process when active lines advance to

their new positions, all nodes covering the new lines wake up,

and those nodes covering old lines only go to sleep.

Theorem 6: In the line wave protocol, the sufficient phase

of any moving object is bounded by 2P , where P is the wave

scanning period. In other words, the moving object can always

be detected in 2P .

Proof: Consider the handoff process of an active line in the

line wave protocol. Suppose this line moves from left to right.

We denote the old active line as ol, and denote the new active

line as nl. Suppose there is a sensing hole H in the sensing

range union. Consider a point p ∈ H . When all the nodes on
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Fig. 13. Line wave protocol illustration.

old stripe new stripe

Fig. 14. The sensing stripe handoff in the stripe wave protocol.

the field wake up, the field can be completely covered. Thus,

there must exist a sensor s that can cover p when it wakes up.

Denote the circle of s’s sensing range as C. We know that C
either intersects ol or nl, or both, because the diameter of C
is 2R, while the distance between ol and nl is less than 2R.

Therefore, there is no sensing hole in the hot regions of ol
and nl.

We next prove an object can be detected in 2P . Starting

from any time point, it takes at most P time for the active

lines to return to the boundaries of the field. After another

P , the hot regions scan the sensing field without leaving any

sensing hole, thus, the object is detected. �

Lemma 3: The worst-case x-axis stealth distance is less

than 2vP . If the object moves along a straight line with an

even speed v, the worst-case x-axis stealth distance is less than

L.

Proof: According to Theorem 6, the object is detected in 2P
time. The distance that the object travels in 2P is 2vP .

Suppose that the object travels along a straight line, and it

takes 2P to detect this object. In the first P , when the object

is behind one of the active lines and is chasing that line, it

can travel at most L
2 on the x-axis without being detected.

In the second P , the object is between the two active lines,

the maximum x-axis distance it can travel is L
2 . Therefore,

the object can travel at most L on the x-axis before being

detected. �

B. Stripe Wave Protocol Design

One restriction of the line wave protocol is the precision

requirement on node coordinates. To relax this constraint, we

design a stripe wave protocol. In this protocol, stripes, instead

of lines, are covered by active sensors, as shown in Fig. 14.

When the stripe width is larger than the required coordinate

precision, object detection quality can be achieved.

In the stripe wave protocol, nodes wake up if their sensing

ranges intersect active stripes. The width of active stripes is

twice of their advancing distance. In this way, there is an

overlap between the old stripe and the new stripe. All the

other procedures remain the same as those of the line wave

protocol.

1) Sufficient Phase and Worst-Case x-Axis Stealth Distance

of Stripe Wave Protocols: If one active stripe stays in a place

for the same amount of time, and advances the same distance

in the same direction as the active lines of the line wave

protocol. Then for any point p on the field, if p is covered

in the line protocol, it is also covered in the stripe protocol.

From Theorem 6 and Lemma 3, we can have the following

two corollaries.

Corollary 2: In the stripe wave protocol, the sufficient

phase of a moving object is at most 2P , where P is the wave

scanning period. In other words, the moving object can always

be detected in a duration of 2P .

Corollary 3: The worst-case x-axis stealth distance is less

than 2vP . If the object moves along a straight line with an

even speed, then the worst-case x-axis stealth distance is less

than L.

C. Distributed Wave Protocol

We further design a distributed wave protocol. Compared

with the line wave and stripe wave protocols, the distributed

wave protocol has the following advantages: (1) it is com-

pletely distributed, and only involves local communications

on each node, and (2) it does not need global timer synchro-

nization among nodes.

1) Hot Regions and Wave Fronts: In this distributed wave

protocol, there are two continuous active curves with two ends

on two opposite borders of the field. These two curves scan the

sensing field periodically, so that every point can be covered at

least once during one wave scanning period. A set of sensors

wake up to cover these curves. We define the hot region of an

active curve as the union of sensing ranges of active sensors

covering this curve, and define the wave front of the curve

as the boundary of its hot region in its moving direction.

Fig. 15 illustrates the wave front of a hot region moving to

the right. Since the active curve is continuous, the wave front

is continuous as well. For an active curve scanning the field

from left to right, its wave front also moves from left to right.

2) Active Curves Move Forward: Here we describe how an

active curve moves forward in our distributed wave protocol.

Consider an active sensor s that has part of its sensing circle

on the wave front of the active curve. As shown in Fig. 16, we

define the wave front curve of s as the part of its sensing circle

on the wave front. Before s goes to sleep, it finds all nodes

whose sensing ranges intersect its wave front curve to wake

up. After those sensors become active, part of their sensing

circles become part of the new wave front. For example, in

Fig. 16, before s goes to sleep, it finds node t and node o to

wake up because the sensing ranges of t and o intersect the
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Fig. 16. An active sensor activates a set of nodes to cover its wave front
curve.

wave front curve of s. In this way, the wave front of an active

curve always moves forward, eventually it reaches the center

vertical line of the field. The same process repeats afterwards.

Note that a sensing hole is a set of continuous points on the

field that have not been covered in one scanning period. We

have the following theorem.

Theorem 7: In the distributed wave protocol, the wave front

of an active curve can scan the whole sensing field in an finite

time without leaving any sensing hole.

Proof: Consider an active sensor s that has part of its

sensing circle on the wave front. We claim that s can always

find a set of sensors that have not waked up in current scanning

period to cover s’s wave front curve.

Let P (t) be the set of points on the field that have been

sensed between time 0 and t in current scanning period. Then

we have P (t) ⊂ P (t+∆t), where ∆t is a time increment. In

other words, the wave front always moves forward and does

not go back. For any point p on the field, p ∈ P (t) ⇒ p ∈
P (t + ∆t). This implies that if a point p ∈ P (t), then p is

behind the wave front at time t + ∆t. Therefore, the sensors

that had already waked up and gone back to sleep in the past

cannot cover points on the current wave front. Since any point

on the field is within the sensing range of some sensor, there

must exist a set of sensors that can cover s’s wave front. Thus,

we can find sensors that had not waked up to cover s’s front

wave curve at time t + ∆t. On the other hand, according to

the design of this distributed wave protocol, the wave front is

continuous with two ends on the opposite borders of the field.

Therefore, no sensing hole will be created in this distributed

protocol. �

Lemma 4: In one scanning period, every node on the field

wakes up exactly once, and consumes the same amount of

energy given that they stay awake for the same amount of

time.

Proof: We assume that no two sensor nodes are located at

the same geographical coordinates. We only consider one of

the active curves, since the proof can be applied to the other

curve due to the symmetry. When a node goes to sleep, it

always activates those nodes ahead of the wave front to cover

its wave front curve. We use induction to prove that the nodes

behind the wave have already waked up once.

• Base. At system startup time, the active curve is on a

side border of the square. Only a set of nodes wake up

to cover this curve, and all other nodes have not waked

up yet.

• Induction step. Suppose at time t, all nodes behind the

wave front have waked up once and only once. Consider

the next earliest moment that one active node on the wave

front goes to sleep. It activates all nodes that can partly

cover its wave front curve. Because these newly-activated

sensors are ahead of the wave front, they were in sleeping

mode before time t, and have just waked up at t.

On the other hand, if a node has not waked up yet, its

sensing range must intersect the wave front curve of some

node m at some moment t′, where t′ is less than the scanning

period. Therefore, it will be activated by node m at some

moment. �

We directly obtain the following conclusion from Lemma

4.

Corollary 4: The scanning period of this distributed wave

protocol is less than wt · n, where wt is the active duration

of nodes in one scanning period and n is the total number of

nodes on the sensing field.

D. Evaluation of Wave Protocols

We conduct extensive simulation experiments to verify

our analyses and to evaluate the performance of the wave

protocols. We assess the average-case object detection quality

based on the simulation results of DP and ASD.

d ↑ R ↑ v ↑ ta ↑ wt ↑
DP → → ↑ ↑ ↓

ASD → → ↑ → ↑

TABLE III

DP AND ASD CHANGE WHEN PARAMETERS INCREASE IN THE MODEL.

In our experiments, we generate a 200×200 grid field, and

randomly place d × 40, 000 sensors on it. One constraint on

these sensors is that when all of them are active, their sensing

ranges should be able to cover the whole sensing field. A small

object moves along a straight line towards a randomly selected

direction with a constant speed v. We generate two active

sensing lines or stripes at the two borders of the field moving

towards the center periodically. We run each simulation for

hundreds of times. We use the ratio of times of detection over

the number of experiments to estimate DP, and use the average
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non-detecting distance to estimate ASD. Since we have given

upper bounds on the SP and the WSD in the protocol design

part, we do not evaluate them in our experiments. Effects of

system parameters on DP and ASD of the line wave and stripe

wave protocols are listed in Table III.
1) Comparison of the Three Wave Protocols: Different

from the line wave and stripe wave protocols, the wave

scanning period of the distributed wave protocol depends on

the geographical locations of the nodes. We compare the wave

scanning period of these three protocols under the following

parameter setting: d = 0.3, R = 1.5, wt = 0.5, and vw = 5.4.

We find that Pline = 74.8, Pstripe = 75.3, and Pdist = 71.5.

This means the distributed wave protocol scans the field faster

than the other two protocols at the cost of extra energy

consumption.

To compare the DP, ASD, and energy consumption of

different wave protocols, we use the same set of parameters

except P for one simulation scenario. In the line wave and

stripe wave protocols, ad is slightly less than 2R. Note that

L = 200, and P = 2L
vw

.

• DP and ASD Results

In all our experiments on DP, we restrict that ta < P to

make sure that DP varies between 0 and 100%. Fig. 17

and 18 demonstrate that all three protocols have close DP

and ASD results. However, the distributed wave protocol

performs slightly different from the other two protocols,

it has a higher DP and a lower ASD. When either v or ta
increases, DP increases too, which is shown in Fig. 17(a).

Fig. 17(b) shows that a larger wt incurs a smaller DP. On

the other hand, a larger v incurs a larger ASD, as shown

in Fig. 18(a). Interestingly, the ASD increases linearly

when node settling time wt increases, as we can observe

from Fig. 18(b). This is because for a larger wt, it takes

longer for an active line or stripe to scan the field than a

smaller wt, thus, the object can travel a longer distance.

• Node Energy Distribution Result

In our experiments, all nodes have the same amount of

energy E at the beginning, and node energy consumption

rate is er = C · R3 · 2R
vw

/ L
2vw

= 4CR4

L , where C
is constant being dependent on hardware design of the

sensor nodes. We set C = 0.00625. We draw the node

energy cumulative distribution in Fig. 18(c) to further

show energy variance among nodes. For any curve point

in this figure, its x value represents the node remaining

energy, and its y value represents the number of nodes

with energy less than the value specified by the x-axis.

We observe that the remaining energy of most nodes is

around the average node energy of the network. On the

other hand, the node energy distribution of the distributed

wave protocol has a narrower range than those of the

other two wave protocols. For example, 90% nodes in

the line wave protocol have node remaining energy in

the range [408-413], and 70% nodes in the stripe wave

protocol have node remaining energy in the range [404-

409]. On the contrary, in the random sensing schedule,

70% nodes have node remaining energy in the range

[411.5-412.5]

• Comparison of Line Wave, Random, and Synchronized

Schedules

In Section IV, we have formally studied the random

sensing schedule and the synchronized sensing schedule.

In Fig. 19 and 20, we compare the DP and ASD results

of the line wave schedule, the random schedule, and

the synchronized schedule, respectively, when varying v
and fixing all other parameters. We observe that, with a

small v, the line wave schedule and the random schedule

have a larger DP than the synchronized sensing sched-

ule; however, as v increases, the synchronized schedule

begins to catch up the line wave schedule, and eventually

outperforms it. Similarly, the line wave schedule has a

smaller ASD for small v. When v increases, the ASD

of the line wave schedule exceeds that of the random

sensing schedule, and the synchronized schedule has a

larger ASD than the other two schedules.

VI. CONCLUSION

Balancing object detection quality and network lifetime is

a challenging task in sensor networks. Under partial coverage,

we develop an analytical model for object detection applica-

tions, and mathematically study average-case object detection

quality of the random and synchronized sensing scheduling

protocols with respect to various network conditions. Aiming

to achieve bounded worst-case object detection quality, we

propose and analyze three wave sensing scheduling protocols,

and formally prove the bounds on worst-case object detection

quality of these protocols. Our proposed protocols and their

analyses characterize the interactions among network parame-

ters, average-case and worst-case object detection quality, and

energy consumption of the protocols. Our analyses can help

to plan a sensor network with average-case and worst-case

object detection quality requirements and stringent node power

budget, and can direct new sensing scheduling protocol design

as well.
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