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Abstract. Users of online social networks (OSNs) share personal infor-
mation with their peers. To manage the access to one’s personal infor-
mation, each user is enabled to configure its privacy settings. However,
even though users are able to customize the privacy of their homepages,
their private information could still be compromised by an attacker by
exploiting their own and their friends’ public profiles. In this paper, we
investigate the unintentional privacy disclosure of an OSN user even with
the protection of privacy setting. We collect more than 300,000 Facebook
users’ public information and assess their measurable privacy settings.
Given only a user’s public information, we propose strategies to uncover
the user’s private basic profile or connection information, respectively,
and then quantify the possible privacy leakage by applying the proposed
schemes to the real user data. We observe that although the majority of
users configure their basic profiles or friend lists as private, their basic
profiles can be inferred with high accuracy, and a significant portion of
their friends can also be uncovered via their public information.

1 Introduction

Online social network (OSN) websites have attracted a large number of users
in the past few years. Facebook, the most popular OSN, was launched in 2004;
by March 2013, the monthly active users exceeded 700 million [2]. Each user
account typically includes the user’s basic profile, such as gender, education,
and friend list, and other personal data, such as photos and messages. Clearly
not every user is willing to share all its information with peer users, either
friends or strangers [18]. Accordingly, many social network sites allow a user
to take control over its information visibility by configuring privacy settings.
Thus, users are able to set their information visibility to different types, and the
setting granularity varies from site to site. For instance, except for profile image
and name, a Facebook user is capable of configuring its friend list, each piece
of profile information, wall post and photo accessibility to strangers and specific
friends.

However, some of an OSN user’s private information that is protected by its
privacy setting can be easily compromised. In other words, a privacy setting is
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not effective as what it claims to be. This is due to the intrinsic vulnerabilities
inside the privacy setting policy. For instance, as shown in Figure 1, user A and
user B are mutual friends; each configures its privacy independently such that
their information visibility are as the figure shows. An attacker, who does not
set up connections with user A or user B, has no access to user A’s friend list,
but can access some of its photos or posts; thus some of user A’s friends, who
responded to A’s posts or left photo comments, are leaked. When the attacker
also visits user B, who has a public friend list, the attacker can confirm the
connection between A and B. Exploiting this kind of vulnerability, we wonder
whether A’s friends or B’s basic information could be uncovered even with the
protection of their personalized privacy settings. More generally, we attempt to
measure, from an average attacker’s perspective, with limited resources, how
much of a user’s privacy could possibly be compromised based on its plainly
leaked information.

From the stance of a stranger to a target user, this paper strives to evaluate
the user’s privacy setting breaches on a large scale and attempts to answer the
following questions:

– Can one’s privacy setting be undermined by developing more sophisticated
and practical schemes, which can infer more private profile information based
on what has been directly published from the person’s homepage?

– How accurate can users’ privacy be inferred? While users can configure their
privacy settings to different types, can the amount of inferred privacy be quan-
tified given each privacy setting type?

– Is the amount of inferrable privacy mainly determined by the user’s privacy
setting? If so, can the number of affected users with a certain setting be
estimated on a large scale?

Although previous research [16, 17] has investigated the gap between OSN
users’ privacy expectation and their actual privacy settings, the vulnerabilities in
privacy settings themselves are not studied. Yet there are rare existing research
that specifically examines whether a privacy setting can keep the privacy of user
information as it is configured. While several efforts [8, 14, 29] have demonstrated
the possibility to infer OSN users’ one attribute value from another, or to infer
the connections, they are based on (1) a large amount of training data [29] or
(2) the assumption of the availability of specific kinds of information, such as
group membership [14, 29] and music interests [8], which in reality may be set
as private by users. The effects of users’ privacy settings upon their profiles are
not taken into account, let alone to measure the privacy setting breach. A large
number of users, who share certain attribute values with the target users, are
required as the training data to conduct the information inference. Thus, those
strategies can only be taken by attackers with rich resources.

In this paper, we investigate whether certain privacy settings can effectively
protect a user’s private information as the user configured. We dwell on mea-
suring and quantifying the unintentional leakage of a target user’s basic profile
information and friend list, which are the pivot of its social profile. For each
target user with a certain privacy configuration, we propose the profile and con-
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Fig. 1: An Attacker’s View

nection inference schemes based on the user’s publicly available information. In
addition, instead of relying on a large amount of training data, our approach only
needs a small number of users in the target user’s neighborhood. The proposed
schemes can be conducted by any average users without many resources. We
crawl and collect about 300,000 Facebook users’ publicly available information
as our dataset. The status-quo of those users’ privacy settings is measured. Then,
we quantify the amount of inferrable private information by using our proposed
schemes, and observe that a remarkable amount of privacy could be uncovered,
indicating that privacy settings do not effectively guarantee users’ information
privacy.

The remainder of the paper is organized as follows. Section 2 surveys related
work. Section 3 introduces the dataset we collected, and the privacy setting
statistics. Section 4 illustrates the privacy breach of each primary setting case
under different attack schemes. Section 5 quantifies the breach based on the
Facebook dataset. Section 6 discusses the generality of privacy breach in other
OSNs, and finally Section 7 concludes the paper.

2 Related Work

There are two major research directions on the privacy and security issues in
OSNs: (1) to reveal the privacy threats in OSNs by conducting surveys [16, 17]
and proposing attack models [26], information inference algorithms [6, 8, 9,
13, 14, 19, 28], de-anonymization algorithms [4, 21], and re-identification al-
gorithms [27]; and (2) to reinforce users’ privacy by redesigning the OSN system
structure [5, 10, 20, 23] and conducting anonymization [22, 25]. This paper in-
vestigates the privacy setting breaches, which belongs to (1). We describe the
related work as follows.

The disparity between users’ actual privacy settings and their privacy expec-
tation in Facebook has been studied by Madejski et al. [17] and Liu et al. [16].
They obtained users’ expectations by conducting surveys and retrieved their fac-
tual privacy settings; and then detected the inconsistency between the two. Both
found that there was a significant variance between users’ privacy expectations
and their privacy settings. But they assumed that the privacy setting can effec-
tively protect the data that it is configured to protect. In contrast, this paper
intends to challenge this assumption and unveils the privacy setting vulnerabil-
ity in itself. In addition, we measure the privacy setting status-quo on a much
larger scale.
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Regarding information inference, there are profile mining [6, 8, 19, 29] and
link mining [13–15, 24, 28] approaches, both of which this paper explores. Zheleva
et al. [29] presented several classification models using links and group member-
ships to infer the target users’ profiles. But in many OSNs such as Facebook,
the group membership is covert by default. Moreover, it assumes that a specific
percentage of attribute values are publicly available to perform the inference,
and a user set that consists of thousands of users as training data is needed for
classification.

Chaabane et al. [8] extracted semantic correlations among users’ music inter-
ests, and computed each user’s probability vector belonging to certain semantic
topics. The users with similar vectors shared the same attribute value. However,
this method is limited to those users who have published their music interests,
and is not applicable to more general users who have not done so. A large dataset
is also needed for classification.

Mislove et al. [19] assumed that users sharing the same attribute values were
inclined to form dense communities. The traditional community detection algo-
rithm is modified to take user’s attribute values into consideration. The algo-
rithm is applied to a school student dataset to infer their majors schools, and
etc., but when it is applied to a larger user set from a broader geographical area,
the accuracy is much lower than that using the student dataset.

Compared to these related works, this paper designs inference schemes from
the stance of an individual user instead of a global view, thus it avoids the
need of a large amount of training data and only demands the information
of the target user’s reachable neighbors. More importantly, our schemes take
the actual availability of users’ attribute values into consideration, instead of
assuming specific attribute values to be in hand.

Another important privacy threat is the compromise of a user’s connections,
i.e., the friend list. Leroy et al. [14] uncovered the social graph given the user’s
group membership information. However, it is not easy to obtain these group-
related data in most OSNs, in which group information is private. Staddon et al.
[24] inferred a user’s friend list based on the situation that most OSNs provide
the shared friend function once a connection has been set up to the target user.
However, the dilemma is if the attacker connects to the target user, likely the
target user’s friend list is already accessible to the attacker. Bonneau et al. [7]
also aimed at uncovering a target user’s friend list in Facebook by exploiting
the public listing feature, but the feature has been disabled and is not available
anymore.

3 The Facebook Dataset

Facebook was chosen as our research target because it is the world’s most pop-
ulous OSN providing many flexible features and diverse user resources. More
importantly, its privacy setting policy is similar to the policies that most exist-
ing OSNs adopt, but in finer granularity. In Facebook, one can set each of its
information item individually as “Public,” which means to be visible to every
user, or visible only to specific or all friends.
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While collecting the dataset, the collector acts as a user who neither belongs
to any specific group nor sets up connections with any of the sample users. The
retrieved data are all set as “Public,” i.e., accessible to every normal user. Hence,
the inference experiments can be reproduced by any other users. Moreover, since
we only collected public information, none of Facebook’s security policies were
broken. For privacy concern, user names and IDs are anonymized.

The dataset is organized into a database, consisting of about 300,000 Face-
book users. The crawling originated from 50 graduate students at the same
institution and was conducted in a breadth-first manner. Out of the total users,
about 120,000 users were crawled at the beginning phase, and all their main pro-
file subpages were collected. The rest about 180,000 users were crawled there-
after, and all but their photo subpages were collected as photo pages are not
used for evaluation. Out of the 300,000 users, there are 909 users all of whose
friends’ profiles are also in the dataset; for the rest of users, only some of their
friends are in the dataset.

To quantify the information leakage, we emphasize the unintentional revela-
tion of a user’s targetProfile, including an attribute set: {location, institution}
and the friend list. The attribute set is called the basic attribute set, and its
element is basic attribute. While targetProfile is the pivot of a user’s social
profile, other information items from wall like status, messages, to photos are
not included in it because they are improvised and hard to infer.

We define the percentage of users that have certain information public as
“public ratio.” Based on our dataset, the public ratios of users’ four main sub-
pages are: 83.8% for profile page, 62.2% for friends page, 55.1% for wall page,
and 45.6% for photo page. For a profile page, it is considered to be public when
at least one value in the basic attribute set is visible. A photo or wall page is
considered to be public if at least one album or post is visible. A friend list is
considered public when it is visible.

As many as 37.8% of users conceal their friend lists from strangers. Compared
to about 28% for the dataset in Gundecha’s work [12], more users in our dataset
are aware of connection privacy. Although about 83.8% of users publish one or
more basic attribute values, a majority of them provide incomplete basic profiles.
Based on the dataset, only 9.9% of users publish complete basic attribute values.

Those statistics demonstrate that a significant number of users customize
their targetProfiles as private or partially private. The inference of their
targetProfiles reflects the effectiveness of their privacy settings. Next, we
present the schemes to infer each of the two targetProfile items in detail.

4 Exploiting Privacy Setting Vulnerability

Targeting a user’s targetProfile, we design different inference schemes for each
possible privacy setting type on the four subpages, including profile, friends, wall,
and photo. For easy presentation, the notations we used are listed as follows:

U : user set.
PS(u) : u ∈ U , user u’s privacy setting on four subpages: profile, friends, wall,

photo in sequence; denoted as a 4-tuple, and entry value 1 means all basic
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Table 1: User Sets and ratio

User Set U1 U2 U3 U4

PS

0100 0001 0001 1001 0000 11xx
0101 0010 0010 1010 1000
0110 0011 0011 1011
0111

Ratio 54.0% 14.3% 15.4% 22.4% 8.2%

attributes are visible in the profile page, visible friend page, some visible
posts on the wall or photos, respectively, while 0 represents the opposite.

BA(u) : u ∈ U , user u’s basic attribute values.
FL(u) : u ∈ U , all users in u’s friend list, denoted as a user set.
targetProfile(u) : u ∈ U , user u’s targetProfile, that is {BA(u), FL(u)}.
G = (V, E) : the social graph formed by users in user set V , and E consists of

the undirectional connections among users in V ; ∀u, v ∈ V , if v ∈ FL(u)
and u ∈ FL(v), (u, v) ∈ E. Most frequently it is used to denote a user’s
neighborhood graph.

GC(k) : 1 ≤ k ≤ n, a set of members of a community structure detected in a
user’s neighborhood, and n communities detected in total.

The scenarios under which the targetProfile has to be inferred include when
PS = (0, 1, x, x), PS = (1, 0, x, x) and PS = (0, 0, x, x), where x can be either 1
or 0. According to the inference objective and public information, we categorize
users into four sets from U1 to U4 by their PS values. U1 and U2 consist of
users whose BA values can be inferred while U3 consists of users whose FL can
be inferred from their public information, and U4 consists of those whose BA

or FL are hard to be directly inferred from their public information.
Table 1 shows the possible PS values in each user set and the ratio of users

in it. About 8.2% of users display complete targetProfiles to strangers, thus
they are not the inference objects. The union of U1, U2 and U3 consists of
69.4% of users, those users’ targetProfiles are not complete with more or less
additional information accessible. In the following subsections, we first illustrate
BA inference followed by FL; in particular, we infer BA for users in U1 and U2,
then we infer FL for users in U3, followed by the hardest case for users in U4.

4.1 Basic Attributes from Friends

The users in U1 display incomplete or no BA but their friend lists are visible,
and their BAs should be inferred. Table 1 shows that 54% of users belong to
U1, indicating that a large group of users’ privacy are threatened if their BAs
can be properly compromised. This scenario is formulated as:

U1 = {v|v ∈ U and PS(v) = (0, 1, x, x)};
Inference objective: BA(v), v ∈ U1;
Public information: FL(v), v ∈ U1.

Intuitively, a user’s geographical location, occupation, and interests affect
the formation of its social circle. Some connections are set up with colleagues or
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classmates, while others are from interest communities. Thus, its friends could
be classified into different groups, each of which is distinguished by an attribute
value shared by the group members and the user. Some of its friends may belong
to multiple groups. For example, one author’s Facebook friends can be classified
into three main groups: one from college, one from graduate school, and one from
the current city. Some friends from the graduate school are also in the current
city, while no one from college is in the current city. The three groups are dis-
tinguished by attribute values at the city or institution level. The friends could
be classified into smaller groups by using finer granularity attributes like class
and department. The friends in the same group have a higher chance to con-
nect to each other than those from different groups. In other words, community
structure exists in the user’s friend circle: the connections inside a community
are denser than the connections among communities [11].

Therefore, for v ∈ U1, this feature can be exploited to infer BA(v), i.e., to
study the connections among v’s neighbors and detect communities. We first
obtain the social graph in v’s neighborhood, G = (V,E) and V = FL(v), by
traversing v’s friends and retrieving their profile pages and friend lists, although
some of them are private. Then, we conduct the community detection in the
graph. After that, we identify the most widely shared basic attribute value within
each community as the community feature, and assemble those features together
to form BA(v). During the neighborhood traversal, neither users who have pri-
vate profiles nor those who have private friend lists are eliminated during the
process. This is because their information could be leaked from their shared
friends with v, who have looser privacy configurations. The steps to infer BA(v)
are detailed below as Scheme 1:

1. Traverse each user u for u ∈ FL(v) and retrieve BA(u) and FL(u); then
form v’s neighborhood graph G = (V,E), V = FL(v), based on FL(u) for
each u ∈ FL(v).

2. Detect the communities in v’s neighborhood graph, G = (V,E), V = FL(v),
using Girvan-Newman algorithm [11]; and the resulting communities are
denoted as GC(1), GC(2), · · · , GC(n).

3. For each community GC(k), 1 ≤ k ≤ n, find the community feature A(k)
and its frequency such that A(k) ∈ BA(u) for u ∈ GC(k) and A(k) is the
most widely shared basic attribute value among the community members.

4. Merge A(k)s of the same value and sum up their frequencies for 1 ≤ k ≤ n;
then sort the merged A(k)s by institution and location separately in de-
creasing frequency order. The top-ranked values from the two sorted lists
are taken as BA(v).

The Girvan-Newman algorithm is chosen as our community detection al-
gorithm because it does not hold bias against small-sized graphs. Since the
detection algorithm is conducted on the v’s neighborhood graph, which is on
comparatively small scale, the algorithms that hold bias to sparsely connected
or small graphs are excluded from our consideration. On the other hand, the
Girvan-Newman algorithm proceeds by removing the edges with the highest
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edge-betweenness [11] value iteratively, and the procedure is suitable to conduct
on small-sized graphs.

As for the number of top values to take in step 4, it can be decided by
the target user’s number of friends and the frequency of sorted values. More
friends indicate more experience, and more values should be taken. Meanwhile,
the values whose frequency is comparable with that of the top one value could
also be taken. Intuitively, the higher the frequency, the higher the probability
the value is accurate.

4.2 Basic Attributes from Wall and Photos

The users in U2 display incomplete or no BA and conceal their friend lists from
strangers, but some of their wall posts or photos are visible. We need to infer
their BAs. Out of the dataset, 14.3% of the users belong to U2. It is formulated
as:

U2 = {v |v ∈ U and PS(v) = (0, 0, x1, x2), x1, x2 = 0, 1 and x1 + x2 > 0};
Inference objective : BA(v), v ∈ U2;
Public information : v’s public wall posts or photos.

Although the target user v’s friend list is private, a direct leakage of v’s
connections is in v’s photos or wall posts where its friends leave comments or get
tagged. Different numbers of connections are leaked for different users, depending
on their activities and privacy settings on the wall and photo subpages. We
randomly choose 330 users in the dataset seeds’ neighborhood that belong to U2,
and crawl their public photos and part of wall posts. The cumulative number of
users having less than or equal to a certain number of leaked friends is depicted
in Figure 2. While about 90 users have no friends leaked, over half of the users
have more than five friends leaked and the maximum number of leaked friends is
295. If all the public wall posts are crawled, the number of leaked friends would
increase.

Whereas v has some leaked friends, they may compose a small portion of
v’s total friends. Namely, the leaked friends can be too spare to form detectable
communities in v’s neighborhood. Therefore, Scheme 1 is not applicable to users
in U2. We seek to uncover BA(v) in v’s leaked friends’ neighborhood, instead of
v’s neighborhood. First we traverse the directly leaked friends to retrieve their
public friend lists and verify their connections to v. For those verified friends,
their own friends can be traversed to obtain their neighborhood graphs and then
detect communities in their neighborhoods. As illustrated before, the commu-

nity feature is supposed to be the most widely shared by community members.
Here v is classified to a certain community in each of the verified friends’ neigh-
borhood, and it should have a high probability to share the community feature.
Accordingly, the steps to reveal BA(v) are detailed below as Scheme 2:

1. Look through v’s wall and photos to retrieve leaked friends.
2. Traverse each leaked friend to retrieve its friend lists if public and verify its

connection with v.
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3. For each verified friend u, traverse its friends and detect communities in
u’s neighborhood using the Girvan-Newman algorithm, resulting in GC(1),
GC(2), · · ·, GC(n); if v ∈ GC(k), find the corresponding community feature

A(k) and its frequency.
4. Merge and sort A(k)s, found in v’s leaked friends’ neighborhoods, in decreas-

ing frequency order and identify BA(v) in the top values.

Intuitively, the more friends leaked, the more community features can be found
to increase the inference accuracy. Figure 2 demonstrates the possibilities of
conducting the scheme. However, some users may display their photo and wall
subpages but no comments are there; hence no friends are leaked. These cases
are treated the same as these users in U4.

Besides, Scheme 2 could also be improved by assigning weights to the leaked
friends, under the observation that those friends who comment or leave messages
to user v might be closer to v than other friends. Higher priority could be given
to the community feature found in those closer friends.
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Fig. 2: Leaked Friends

Input: R(v) = leaked friends
Output: FL(v), C(v)

while |R(v)| > 0 do

R = R(v);
R(v) = {};
for u ∈ R do

Retrieve FL(u);
T (v) = T (v) + {u};
if FL(u) is private then

C(v) = C(v) + {u};
else

if v ∈ FL(u) then

FL(v) = FL(v) + {u};
for w ∈ FL(u) do

if w ∈ T (v) then
pass;

else
R(v) = R(v) + {w};

Algorithm 1: Traversal

4.3 Friends from Wall and Photos

Those users who conceal friend lists but display some wall posts or photos are
categorized into U3. We need to infer their FLs. As Table 1 shows, 15.4% of
users belong to U3. The scenario is formulated as:

U3 = {v |v ∈ U and PS(v) = (x, 0, x1, x2), x, x1, x2 = 0, 1 and x1 + x2 > 0};
Inference objective : FL(v), v ∈ U3;
Public information : v’s public wall posts or photos.

We aim to uncover v’s full friend list while there are some directly leaked friends
from v’s wall or photo subpages. Therefore, the inference task can be interpreted
as traversing near v’s neighborhood graph starting from the leaked friends and
ascertaining whether those reachable users are v’s friends. A few important is-
sues must be considered to make the traversal practical. First, considering that
the number of reachable users increases exponentially with the traversal depth,
we should limit the depth so that the traversal is doable. Second, the v’s neigh-
borhood graph may be disconnected; thus, if there are components with no start-
ing friends inside, it is arduous to measure the distance between disconnected
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components in hops by traversing beyond v’s neighborhood. We use the word
component to refer to a connected subgraph within v’s neighborhood. Third, for
traversed users having private friend lists, it is difficult to distinguish whether
they are v’s friends.

Taking these practical issues into account, we refrain the traversal from going
beyond v’s neighborhood graph. The traversal can be conducted in a breadth-
first manner, starting from the leaked friends as roots. It proceeds only on those
users whose friend lists include v, and stops on users whose friend lists exclude
v. Those traversed users with private friend lists could be gathered together for
further verification. Overall, the inference scheme consists of two steps and are
detailed below as Scheme 3:

1. Traverse the v’s neighborhood graph starting from the leaked friends as
Algorithm 1 specified.

2. Determine the connectivity between v and traversed users who have private
friend lists.

Algorithm 1 uses the following notations:

R(v) : the set of users that are yet to be traversed in the coming iteration;
R : the set of users that are to be traversed in the current iteration;
T (v) : the set of users that have been traversed;
C(v) : the set of users that have been traversed but have their friend lists private.

Initially, R(v) consists of the leaked friends from photos and walls, while T (v),
C(v), and FL(v) are empty. Each iteration represents the traversal of users a
certain depth away from roots. The algorithm terminates when no users traversed
in the previous round are friends of v, that is R(v) is empty. Furthermore, the
algorithm could be adjusted to terminate in advance by confining the traversal
depth. The depth can be recorded by counting the number of iterations, and the
traversal terminates when the depth limit has been reached.

When the traversal algorithm terminates normally, all of v’s friends who have
public friend lists and are in the same components with the leaked friends should
be included in the derived set FL(v). On the other hand, users who are in dif-
ferent components from the leaked friends cannot be reached. This limitation is
due to the feasibility concerns of Scheme 3. However, as the evaluation result
in Section 5.2 indicates, on average the largest component in a user’s neighbor-
hood consists of over 75% of its friends. In other words, a leaked friend is likely
to be included in the largest component; and thus the majority of v’s friends
are reachable from the leaked friends. Besides, as the component size and edge
density vary in v’s neighborhood, the traversal complexity differs.

Complexity of Algorithm 1. The complexity of algorithm 1 is analyzed
in terms of the number of users whose information have to be retrieved. As-
sume that all users’ numbers of friends are at the same magnitude, denoted
as f . Algorithm 1 constrains the traversal to be within two hops away from
the target user v; and thus all v’s friends and its friends’ friends are traversed
in the worst case. We first take the v’s f friends into count; and then we
count its friends’ friends as follows. In the algorithm, each user can only be
traversed once. Thus, counting v’s friends’ friends should exclude v’s friends.
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Let G = (V,E), V = FL(v) denote v’s neighborhood graph; and then for
each u ∈ V , f − degree(u) of its friends would be counted, which excludes
v’s friends. Thus,

∑
u∈V f − degree(u) more users should be counted, that is,

f2−
∑

u∈V degree(u), in which
∑

u∈V degree(u) = 2|E| according to graph the-
ory. In total, the algorithm is in O(f + f2 − 2|E|).

Therefore, the more densely v’s friends connect to each other, the fewer users
have to be traversed. The complexity varies between Θ(f2) and Θ(f). The best

case is when v’s friends compose a complete graph, i.e. |E| = f(f−1)
2 , then the

complexity is O(f). When the algorithm terminates by limiting the traversal
depth, the complexity would be lower.

As for the second step of Scheme 3, i.e., distinguishing the connectivity be-
tween v and traversed users who have private friend lists, the traditional link
prediction algorithms such as common friends or Katz [15] can be employed.

4.4 No Leaked Friends

The users holding the strictest privacy settings are categorized into U4. These
users set friends, wall and photo subpages as private and display some or no
profile information. The users in this category constitute about 22.4% of the
dataset. We need to infer both their FLs and BAs. While the inference schemes
presented before start from some friend connections, the users in U4 display
none of their friends.

Other means have to be sought to identify possible friends. One source to
seek is the special friends or family member sections. Otherwise, the search
people function could be exploited by using a user’s location or institution, if
provided, as keywords. Then, the search results can be traversed one by one to
check whether the target user is included in their friend lists. As long as one of
the target user’s friends with public friend lists can be found, previous schemes
can also be conducted to reveal its targetProfile. Otherwise, their privacy can
not be inferred by our schemes.

In the next section, we apply these schemes to the dataset presented in Sec-
tion 3 to quantify the privacy that can be compromised in each case.

5 Evaluation

The BA inference schemes are conducted on users who display their BA values,
and the FL inference schemes are conducted on users who display their FL

values; otherwise, the ground truth is not available for verification.
For the targetProfile inference, evaluation bias may be induced in the results

when a user’s public profile is incomplete or fallacious. Considering the real
name policy of Facebook [1], the problem of profile authenticity will not be as
significant as incompleteness, which results in false positives. Especially for the
location attribute values, only hometown and current city are available in the
ground truth, while schemes 1 and 2 can also infer other cities where a user has
ever stayed, such as those associated with the institutions where the user has
ever been. Hence, the actual location inference accuracy should be higher than
what the results illustrate.
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Fig. 3: Inferred Attribute Number
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Fig. 4: Inference Accuracy

5.1 Inferring Basic Attribute Values

Scheme 1 is evaluated first, which can be applied to the users with public friend
lists. Out of the dataset,there are 909 users all of whose friends are in the dataset;
thus, scheme 1 is applied to those users, referred to as evaluated users. Those
who display nothing in their profiles are excluded due to the lack of ground truth
for verification. Besides, users with more than 1,000 friends are excluded from
the evaluation results. They consist of 5.17% of the total evaluated users, but
less than three, if not zero, users fall into each user sample bin in this range;
sparsity of user sample isn’t likely to result in representative evaluation result.

We use the “igraph” [3] library to detect communities in each evaluated user’s
neighborhood with the Girvan-Newman algorithm [11]. In each community, the
most frequently shared basic attribute value, the community feature, can be
either a location or an institution value. We identify both the most-shared insti-
tution and location values when the community size is above average, and the
one with lower frequency is called the additional feature of the community. Then
we merge and sort those community features and additional features separately
in decreasing frequency order by location and institution, respectively. The top
ranked values are taken as the user’s inferred basic attribute values.

We evaluate the basic attribute inference schemes from the following three
aspects. (1) How many basic attribute values could be inferred? The number of
public attribute values in evaluated users’ homepages which are taken as ground
truth, varies from user to user; thus, the number of basic attribute values that
can be inferred for each user should be measured. (2) How accurate are inferred
values? The number of top values from sorted community features, taken as in-
ferred basic attribute values, can be adjusted; hence the accuracy of each value
in the top rank should be be measured. (3) Whether the number of correctly
inferred basic attribute values and the inference accuracy are affected by the
number of the evaluated user’s friends. Since the basic attribute values are in-
ferred from the target user’s friends’ information, we want to know whether the
number of friends affects the inference accuracy or number. Figures 3 to 6 give
answers to those questions one by one. In all these figures except for Figure 6,
the x-axis value is the number of users’ friends and the y-axis value is the average
value of users whose number of friends fall into the 20 user sample bin.

Figure 3 depicts the number of correctly inferred basic attribute values com-
pared to the number of basic attribute values in ground truth. The figure shows
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that more attribute values could be inferred for users with more than 100 friends
compared to those with less friends. It verifies the previous claim that the more
friends a users has, the more attribute values could be derived; but the differences
among users who have more than 120 friends are not significant. On average,
more than two attribute values could be correctly inferred. Attribute values that
are not reflected in a user’s community features cannot be inferred; one possible
reason is that the user is not active in certain OSN communities, or its residence
in a certain institution or city is too short to form a community.

The accuracy of the top values taken as inferred basic attribute values are
shown in Figures 4 and 5. The accurate ratio is defined as the ratio between the
number of verified inferred attribute values and the number of inferred values.
In Figure 4 top 1 institution and location are taken as inferred values while in
Figure 5 top 2 and top 3 institutions are taken as inferred values.

Figure 4 shows that the inference accurate ratio for institution is about 90%
on average, and overall, the more friends the target user has, the higher the
average accurate ratio is. Meanwhile the accurate ratio of location is not as good
due to the false positives incurred by the incomplete ground truth of location
values. As we mentioned at the beginning of this section, only hometown and
current city are included in the ground truth for location while we infer all the
places that the user has ever been. In addition, the accurate ratio of the top 1
location value for users with more than 500 friends fluctuates more strongly. One
reason is that usually the larger the number of friends, the more experience a
user has or the more locations a user has ever been, and in turn the less chance
for the hometown or current city to be derived as the top 1 inferred location
value. Another reason is that users with more than 500 friends are sparse at
some point compared to users with fewer friends; thus the accurate ratio cannot
be averaged and tends to go extremes due to the sparse user sample. This also
explains the higher variance for those users in Figures 3 and 5.

Though the missing of ground truth for location leads to false positives,
each institution is usually associated with a location; as long as institutions
are correctly inferred, corresponding locations could also be derived. Hence, we
further evaluate the accurate ratio of inferred institution information in Figure 5.
Figure 5 depicts the accurate ratio of top 2 and top 3 ranked institution values.
It shows the accuracy of top 2 institution values is over 80%, which on average
is higher than that of top 3 institution values. It verifies our claim that higher-
ranked community features hold higher probability to be shared by the target
user. Besides, the accurate ratio is not largely affected by the number of users’
friends.

For users belonging to U2, we first measure the community feature sharing
ratio to evaluate their basic attribute values inference accuracy, since their ba-
sic attributes are derived from the community feature in their leaked friends’
neighborhood. Figure 6 depicts the community feature sharing ratio, and x-axis
value is the community size. More than 8,500 communities are detected in the
evaluated users’ neighborhood. On average, the sharing ratio is higher when the
community feature is an institution value compared to when it is a location
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Fig. 5: Top Institutions Accuracy
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Fig. 6: Community Feature Sharing

value. This difference can also be explained by the ground truth incompleteness
of location information. Though the community features are not 100% shared
by all members, they will not be directly taken as the inferred basic attribute
values and the wrong community features will be eliminated in the later steps
of Scheme 2.

We further evaluate the inference accuracy of Scheme 2 on some of the
dataset’s seed users which belong to U2. Because seed users are from the same
institution and location, the ground truth scraped from users’ homepages are
complemented by that fact. We detect those seed users’ community memberships
in their friends’ neighborhood, and take the top ranked community features as
their inferred attribute values. As a result, the inference accuracy of top 1 ranked
feature is 100%.

In summary, for users who conceal their basic attribute values but have their
friend list public or some friends leaked from other profile sections, those value
could be uncovered with high accuracy by exploiting their friends’ information.

5.2 Inferring Friend List

For a user v in U3, v’s retrievable friends, according to Scheme 3, are confined to
those who are in the same component with one of the leaked friends. As defined
in Section 4.3, a component is a connected subgraph within v’s neighborhood.
We first measure the components in users’ neighborhoods. Based on the evalu-
ated users, most of their neighborhood graphs are disconnected, on average 20
components exist and the number of components increases with the number of
a user’s friends. While there are a noticeable number of components, most of
them are small. Figure 7 illustrates the ratio of a user’s friends that are in their
largest neighborhood component, over 85% of friends on average are included in
the largest component. The more friends a user has, the larger portion of friends
are in the largest component. Thus, as the leaked friends are likely to be in the
largest component, a majority of friends could be reached from them.

In Figure 8, the ratio of traversed friends in the evaluated users’ neighbor-
hoods is illustrated, and the traversal starts from different number of roots in
one hop away. Each curve represents a different number of roots, which are ran-
domly chosen from target user’s friends. For users with fewer than 100 friends,
a majority of friends could be traversed in one hop from five roots, while for
users with more friends, about 10%, 25%, and 35% of friends could be traversed
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Fig. 7: Friends in the Largest Component
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Fig. 8: Traversed Friends Ratio in 1 Hop

in one hop away from two, five, and ten roots, respectively. Over all, the more
friends a user has, the more of its friends can be reached via traversal given the
same number of roots and hops.

Figure 9 indicates the ratio of friends traversed in two hops away. About 70%
of friends could be traversed from 5 roots, and 80% of friends could be traversed
from 10 roots. The curve for two roots fluctuates more violently because the
choice of roots affects the traversal path and a high-degree node results in more
retrieved friends. When starting from 5 or 10 roots, the high-degree nodes stand
a higher chance to be traversed as roots or within two hops. Still, on average
about half of a user’s friends could be retrieved from two randomly chosen roots
in two hops. Interestingly, the ratio is not clearly affected by users’ number of
friends. It means that no matter how many friends a user has, most of its friends
are closely connected while some are estranged from others.

To sum up, for users who conceal their friend lists but display other pro-
file sections from which some of their friends could be leaked out, over half of
their friends could be revealed using our traversal algorithm starting from the
leaked friends in two hops. The complexity of the traversal algorithm ensures
the traversal can be conducted in limited resource.

After that, we measure the second step of scheme 3, i.e., to distinguish the
connections between user v and the traversed users who have private friend lists.
Those users are those who connected to v’s friends and have private friend lists.
The number of common friends is taken as the metric to infer the connections.
Those private-friend-listed users are sorted by their numbers of friends shared
with v, which is leaked from v’s public-friend-listed friends. The top quarter of
users are taken as v’s hidden friends. Figure 10 illustrates the inference accuracy,
and it also illustrates the total revealable friends ratio, which consists of both
the public-listed friends and those hidden friends. Compared to the results of
[15] which also used common neighbors as the metric to infer co-authorship, our
accuracy is slightly higher. In total, for users belonging to U3, more than 70%
of their friends could be correctly revealed on average by Scheme 3.

Users in U4 hide all connections, which is hardest to infer their targetProfile.
However, if some of their friends are known beforehand or can be found by using
the search people function mentioned in Section 4.4, their targetProfile can be
inferred and evaluated similar as stated above.
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Fig. 9: Traversed Friends Ratio in 2 Hops
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Fig. 10: Private-Friends Inference Ratio

6 Discussion

While our approach explores a user’s information visibility from the perspective
of a stranger, it cannot know the privacy customization to the user’s friends.
However, the privacy setting for strangers can only be stricter than that for
friends. In other words, friends must be able to access more information than
strangers. Thus, if some private information could be correctly inferred by a
stranger, the inference can also be reproduced by friends.

If a user does not post certain profile item on Facebook such as education,
we cannot know whether the invisibility is due to privacy setting or vacancy.
However, if the inferred information could be verified based on the ground truth
retrieved from other sources, we still view such a case as privacy leakage.

Due to the lack of ground truth, the experiments are only conducted on
users who display their targetProfiles to strangers. However, we speculate that
those users with stricter privacy are also inclined to be more prudent in setting
up connections. Thus, their online friend circles are created in a more moderate
manner, which does not increase the difficulty of community feature detection or
neighborhood graph traversal. Therefore, our evaluation results reflect a possible
privacy breach of average users.

The profile inference schemes proposed in this paper are not limited to Face-
book. They could also be applied to other OSNs that enable privacy configuration
and allow users to post a variety of data other than profile and connection. Those
OSNs include MySpace, Google+, and Renren, in which users could also upload
photos, leave messages or comments, and customize the visibility of different
types of information. When the accessibility of a user’s profile or connections
is constrained, the information revelation could be initiated from public con-
nections in the friend list or posts from friends by using our schemes 1, 2 or 3.

7 Conclusion

In this paper, we investigated the unintentional privacy disclosure of OSN users
even with the protection of privacy settings. We first examined users’ privacy
settings on different information sections of a large dataset collected from Face-
book. Then, for each possible privacy configuration, we proposed correspond-
ing schemes to reveal basic profile and connection information starting from
leaked public connections on the target user’s OSN homepage. Finally, using our



Unveiling OSN Privacy Setting Breaches 17

dataset, we quantified the achievable privacy exposure in each case, and mea-
sured the accuracy of our privacy inference schemes given a different amount of
public information. The evaluation results indicate that a user’s private basic
profile could be inferred with high accuracy, while a user’s covert connections
could be uncovered in a significant portion based on even a small number of
directly leaked connections.

Our privacy inference schemes can be conducted by attackers without much
resources; and those schemes are applicable to users adopting specific privacy
settings. The dataset statistics show that a majority of users are among that
group. Therefore, the privacy of those users could be undermined facilely and
the actual information privacy level of them may fail to meet what their privacy
configuration specifies. We discussed that our privacy inference schemes could
be applied to other OSNs that provide similar features as Facebook. We plan to
analyze the privacy breach on those OSNs in the future.
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