
SCOPE: Scalable Consistency Maintenance in
Structured P2P Systems

Xin Chen
Ask Jeeves Inc.

& Department of Computer Science
College of William and Mary

xinchen@cs.wm.edu

Shansi Ren, Haining Wang, Xiaodong Zhang
Department of Computer Science

College of William and Mary
Williamsburg, VA 23187-8795, USA
{sren, hnw, zhang}@cs.wm.edu

Abstract— While current Peer-to-Peer (P2P) systems facilitate
static file sharing, newly-developed applications demand that
P2P systems be able to manage dynamically-changing files.
Maintaining consistency between frequently-updated files and
their replicas is a fundamental reliability requirement for a P2P
system. In this paper, we present SCOPE, a structured P2P system
supporting consistency among a large number of replicas. By
building a replica-partition-tree (RPT) for each key, SCOPE
keeps track of the locations of replicas and then propagates
update notifications. Our theoretical analyses and experimental
results demonstrate that SCOPE can effectively maintain replica
consistency while preventing hot-spot and node-failure problems.
Its efficiency in maintenance and failure-recovery is particularly
attractive to the deployment of large-scale P2P systems.

Keywords: structured P2P systems, replica consistency, hierar-
chical trees.

I. INTRODUCTION

Structured P2P systems have been successfully designed
and implemented for global storage utility (such as PAST
[29], CFS [9], OceanStore [17], and Pangaea [30]), publishing
systems (such as FreeNet [7] and Scribe [4]), and Web-
related services (such as Squirrel [14], SFR [33], and Beehive
[21]). Among all these P2P-based applications, replication
and caching have been widely used to improve scalability
and performance. However, little attention has been paid to
maintaining replica consistency in structured P2P systems. On
one hand, without effective replica consistency maintenance, a
P2P system is limited to providing only static or infrequently-
updated object sharing. On the other hand, newly-developed
classes of P2P applications do need consistency support to
deliver frequently-updated contents, such as directory service,
online auction, and remote collaboration. In these applications,
files are frequently changed, and maintaining consistency
among replicas is a must for correctness. Therefore, scalable
consistency maintenance is essential to improve service quality
of existing P2P applications, and to meet the basic requirement
of newly-developed P2P applications.

Existing structured P2P systems rely on distributed hash
tables (DHTs) to assign objects to different nodes. Each node
is expected to receive roughly the same number of objects,
thanks to the load balance achieved by DHTs. However, the
system may become unbalanced when objects have different
popularities and numbers of replicas. In a scalable replica

updating mechanism, the location of a replica must be trace-
able, and no broadcasting is needed for the propagation of
an update notification. Current structured P2P systems take
a straightforward approach to track replica locations [32],
[24]—a single node stores the locations of all replicas. This
approach provides us with a simple solution of maintaining
data consistency. However, it only works well if the number of
replicas per object is relatively small in a reliable P2P system.
Otherwise, several problems may occur as follows.

• Hot-spot problem: due to the different objects’ populari-
ties, the number of replicas per object varies significantly,
making the popular nodes heavily loaded while other
nodes carry much less replicas.

• Node-failure problem: if the hashed node fails, update
notifications have to be propagated by broadcasting.

• Privacy problem: the hashed node knows all replicas’
locations, which violates the privacy of original content
holders.

To address the deficiencies in existing structured P2P
systems, we propose a structured P2P system with replica
consistency support, called Scalable COnsistency maintenance
in structured PEer-to-peer systems (SCOPE). Unlike existing
structured P2P systems, SCOPE distributes all replicas’ loca-
tion information to a large number of nodes, thus preventing
hot-spot and node-failure problems. It also avoids recording
explicitly the IP address or node ID of a node that stores a
replica, thus protecting the privacy of the node. By building
a replica-partition-tree (RPT) for each key, SCOPE keeps
track of the location of replicas and then propagates update
notifications. We introduce three new operations in SCOPE to
maintain consistency.

• Subscribe: when a node has an object and needs to keep
it up-to-date, it calls subscribe to receive a notification of
the object update.

• Unsubscribe: when a node neither needs a replica nor
keeps it up-to-date, it calls unsubscribe to stop receiving
update notifications.

• Update: when a node needs to change the content of an
object, it calls update to propagate the update notifica-
tion1 to all subscribed nodes.

1invalidation message or the key itself.

In SCOPE, we allow multiple writers to co-exist, since the
update operation on a key can be invoked by any node keeping
a replica of that key. In contrast, in some practical applications,
usually only one node is authorized to update a key. SCOPE
can be easily applied to single-writer applications.

Since SCOPE directly utilizes DHTs to manage object repli-
cas, it effectively supports consistency among a large number
of peers. As a general solution, SCOPE can be deployed
in any existing structured P2P systems, such as CAN [24],
Chord [32], Pastry [28], and Tapestry [36]. Our theoretical
analyses and simulation experiments show that SCOPE can
achieve replica consistency in a scalable and efficient manner.
In an N -node network, each peer is guaranteed to keep at
most O(log N) partition vectors for a single key, regardless
of the key’s value and its popularity. Due to the hierarchical
management, only O(1) nodes are updated when a node joins
or leaves, and only O(log2 N) messages are transmitted to
recover a node failure.

The remainder of the paper is organized as follows. Section
2 surveys related work. Section 3 presents the RPT structure
in SCOPE. Section 4 describes the operations defined in
SCOPE. Maintenance and recovery procedures are introduced
in Section 5. We evaluate the performance of SCOPE using
Pastry routing algorithm in Section 6. In Section 7, we briefly
discuss SCOPE design alternatives. Finally, we conclude the
paper in Section 8.

II. RELATED WORK

Replication is effective to improve the scalability and ob-
ject availability of a P2P system. However, most proposed
replication schemes are focused on how to create replicas.
Maintaining consistency among a number of replicas is not
fully investigated, posing a challenge for building a consistent
large-scale P2P system. Different from all proposed solutions,
our approach utilizes the nature of DHTs to organize the
replicas in a distributed way. Therefore, it has better scalability
and higher efficiency.

Some existing file-sharing P2P systems assume that the
shared data are static or read-only, so that no update mech-
anism is needed. Most unstructured P2P systems, including
centralized ones (e.g., Napster) and decentralized ones (e.g.,
Gnutella), do not guarantee consistency among replicas. Re-
searchers have designed several algorithms to support con-
sistency in a best-effort way. In [10], a hybrid push/pull
algorithm is used to propagate updates to related nodes,
where flooding is substituted by rumor spreading to reduce
communication overhead. At every step of rumor spreading,
a node pushes updates to a subset of related nodes it knows,
only providing partial consistency. Similarly, in Gnutella, Lan
et al. [18] proposed to use the flooding-based active push
for static objects and the adaptive polling-based passive pull
for dynamic objects. However, it is hard to determine the
polling frequency, thus essentially no guaranteed consistency
is provided. In [27], Roussopoulos and Baker proposed an
incentive-based algorithm called CUP to cache metadata—
lookup results—and keep them updated in a structured P2P

system. However, CUP only caches the metadata, not the
object itself, along the lookup path with limited consistency
support. So, it cannot maintain consistency among the replicas
of an object. Considering the topology mismatch problem
between overlays and their physical layers in structured P2P
systems, [25] proposed an adaptive topology adjusting method
to reduce the average routing latency of a query. In [13],
a network of streaming media servers is organized into a
structured P2P system to fully utilize local cached copies of
an object, so that the average streaming start-up time can be
reduced.

For applications demanding consistency support among
replicas, different solutions have been proposed in various P2P
systems. Most proposed P2P-based publish/subscribe systems
record paths from subscribers to publishers, and use them
to propagate updates. As an anonymous P2P storage and
information retrieval system, FreeNet [7] protects the privacy
of both authors and readers. It uses a content-hash key to
distinguish different versions of a file. An update is routed
to other nodes based on key closeness. However, the update is
not guaranteed to reach every replica. Based on Pastry, Scribe
[4] provides a decentralized event notification mechanism for
publishing systems. A node can be a publisher by creating
a topic, and other nodes can become its subscribers through
registration. The paths from subscribers to the publisher are
recorded for update notifications. However, if any node on
the path fails, some subscribers are not reachable unless
broadcasting is used.

Being a major P2P application, a wide-area file system
relies on replication to improve its performance. In [8], a
decentralized replication solution is used to achieve practical
availability, without considering replica consistency. PAST
[29] is a P2P-based file system for large-scale persistent
storage service. In PAST, a user can specify the number
of replicas of a file through central management. Although
PAST utilizes caching to shorten client-perceived latency, it
does not maintain consistency of cached contents. Similarly,
CFS [9] is a P2P read-only storage system, and avoids most
cache inconsistency problems by content hashes. Each client
has to validate the freshness of a received file by itself, and
stale replicas are removed from caches by LRU replacement.
OceanStore [17] maintains two-tier replicas: a small durable
primary tier and a large, soft-state second tier. The primary
tier is organized as a Byzantine inner ring, keeping the most
up-to-date data. The replicas in the second tier are connected
through multicast trees, i.e., dissemination trees (d-tree). Pe-
riodic heartbeat messages are sent for fault resilience, which
incurs significant communication overhead. Similar solutions
have been used in P2P-based real-time multimedia stream-
ing (e.g., Bayeux [37] and SplitStream [5]). Pangaea [30]
creates replicas aggressively to improve overall performance.
By organizing all replicas of a file in a strongly-connected
graph, it propagates an update from one server to the others
through flooding, which does not scale well with a large
number of replicas. Automatic replica regeneration [35] has
been proposed to provide higher availability with a small

number of replicas, which are organized in a lease graph.
A two-phase write protocol is used to optimize reads and
linearize the read/write process.

Most newly-proposed Web services on P2P structures still
employ the time-to-live (TTL) mechanism to refresh their
replicas. For example, Squirrel [14] is such a system based on
the Pastry routing protocol. The freshness of a cached object
is determined by the Web cache expiration policy (e.g., TTL
field in response headers). In order to facilitate Web object
references, Semantic Free Reference (SFR) [33] has been
proposed to resolve the object locations. Based on DHTs, SFR
utilizes the caches of different infrastructure levels to improve
the resolving latency. Beehive, designed for domain name
systems [21], [22], provides O(1) lookup latency. Different
from widely used passive caching, it uses proactive replication
to significantly reduce the lookup latency. In [12], Gedik et
al. used a dynamic passive replication scheme to provide
reliable service for a P2P Internet monitoring system, where
the replication list is maintained by each Continual Queries
(CQ) owner.

III. THE BASE OF SCOPE PROTOCOL

The SCOPE protocol specifies: (1) how to record the
locations of all replicas; (2) how to propagate update noti-
fications to related peers; (3) how to join or leave the system
as a peer; and (4) how to recover from a node’s failure.
This section describes how to record the replica locations by
building a replica-partition-tree (RPT)—a distributed structure
for load balancing in SCOPE. The operation algorithms and
maintenance procedures will be presented in Sections 4 and
5, respectively.

A. Overview

In DHTs each key is assigned to a node according to its
identifier, and we call this original key-holder the primary
node of the key. To avoid the primary node becoming the hot
spot, SCOPE splits the whole identifier space into partitions
and selects one representative node in each partition to record
the replica locations within that partition. Each partition may
be further divided into smaller ones, in which child nodes are
selected as the representatives to take charge of the smaller
partitions. As the root of this partition-tree, the primary node
only records the key existence in the partition one level
beneath, while its child representative nodes record the key
existence in the partitions two levels below the root; and so
on and so forth. In this way, the overhead of maintaining
consistency at one node is greatly reduced and undertaken
by the representative nodes at lower levels. Since the hash
function used by DHTs distributes keys to the whole identifier
space, the load of tree maintenance is balanced among all
nodes at any partition level. Note that the location information
at any level is obtainable from representative nodes at lower
levels, the partition-tree also provides a recovery mechanism
to handle a node failure.

7

5 5 5
��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

7

3
4

(a) (c)(b)

0
1

2

3
4

5

6

0

1

2

3
4

5

6

7 5 7 1

3

0

1

2

5

6

Fig. 1. (a) A 3-bit identifier space; (b) The same identifier space with two
partitions; (c) The same identifier space with four partitions.

B. Partitioning Identifier Space

A consistent hash function (e.g. SHA-1) assigns each node
and each key an m-bit identifier, respectively. If we use
a smaller identifier space, the key identifier can be easily
calculated by keeping a certain number of least significant bits.
By adding different most significant bits, the same key can be
mapped to multiple smaller equally-sized identifier spaces with
different identifier ranges. A partition can be further divided
into smaller ones, and it records the existence of all keys in
its sub-partitions. Figure 1(a) shows an identifier space with
m = 3. Suppose there is a key 5 in the space. If the original
space is split into two partitions as shown in Figure 1(b), one
with space [0, 3] and the other with space [4, 7], the key can be
hashed to 1 in the first partition and 5 in the second partition,
respectively. If we further split each partition into two sub-
partitions as Figure 1(c) illustrated, the identifiers of the same
key can be located in the smaller spaces at 1, 3, 5, and 7,
respectively. Figure 2 shows the root of key 5 (101) in the
original 3-bit identifier space and its representative nodes in the
two-level partitions. At the top level, the root node is located at
5 (101). At the intermediate level, the two least significant bits
(01) are inherited from the root, while the different value (0 or
1) is set at the most significant bit to locate the representative
nodes R1 and R2 in the two partitions, respectively. At the
bottom level, only the least significant bit (1) is inherited from
the root but two most significant bits are set to four different
values (00/01/10/11) in order to determine the locations of
representative nodes R11, R12, R21, and R22, respectively.
Note that the partitioning is logical and the same node can
reside in multiple levels. For example, the root node (101) is
used as the representative node in all partition levels.

C. Building Replica-Partition-Trees (RPTs)

1) Basic Structure: After partitioning the identifier space
as mentioned above, we build an RPT for each key by
recursively checking the existence of replicas in the partitions.
The primary node of a key in the original identifier space
is the root of RPT(s). The representative node of a key in
each partition, recording the locations of replicas at the lower
levels, becomes one intermediate node of RPT(s). The leaves
of RPT(s) are those representative nodes at the bottom level.
Each node of RPT(s) uses a vector to record the existence of
replicas in its sub-trees, with one bit for each child partition.

101

1 01

0 01

11 1 00 1

01 1

root

Bottom

Top

Intermediate

3−bit ID space

R1

R22

10 1 R21 R12

R11

R2
first level partition

second partition

Fig. 2. Key 5 (101) in a 3-bit identifier space and its representative nodes
at different levels of partitions.

Figure 3(a) shows an example with the identifier space of
[0, 7]. The nodes 0, 4, and 7 in the space keep a replica of key
5. The RPT for key 5 is shown in Figure 3(b). At the top level,
a 2-bit vector is used to indicate the existence of replicas in the
two sub-trees. At the bottom level, four 2-bit vectors are used
to indicate the existence of key 5 in all eight possible positions
from 0 to 7. In general, if the identifier space is 2M , the height
of RPT(s) for any key is O(M). Consider that most DHTs use
a 160-bit SHA-1 hashing function, which may result in tens
of partition levels. For example, if we split each partition into
64 (28) pieces, we will have 20 levels. Obviously, too many
levels of partitions would make the RPT construction and the
update propagation inefficient.

2) Scalable RPT: Since the number of nodes is much
smaller than the identifier space, our goal is to reduce the
heights of RPTs to the logarithm of the number of nodes. In
the partitioning algorithm presented above, each partition is
recursively divided into smaller ones until only one identifier
remains. The leaf nodes of RPTs record the existence of keys
at the corresponding identifiers. However, if a partition only
contains one node, there is no need for further partitioning
to locate the node. For example, as shown in Figure 3(a),
only node 0 exists in the partition of [0, 3]. During sub-
scribe/unsubscribe operations, node 0 only needs to inform the
primary node of key 5, which records the first level partition
[0, 3] and [4, 7]. When the key is modified, it can directly notify
node 0 by sending an invalidation message to the first identifier
in [0, 3], which is 0. By removing the redundant leaf nodes,
we can build a much shorter RPT. The RPT after the removal
of redundant leaf nodes, is shown in Figure 3(c).

The method given above can significantly reduce the par-
tition levels if nodes are distributed sparsely. However, even
if the total number of nodes is small, the number of partition
levels could still be large when most nodes are close to each
other. Figure 4(a) shows an example with the identifier space
of [0,7], where two nodes 6 and 7 subscribe key 5. The RPT is
illustrated in Figure 4(b). Both nodes are in the same partition
until the identifier space is decreased to 1—the bottom level
of the partition. The height of this RPT is 3, and it cannot be
condensed by reducing leaf nodes. In general, if the nodes’
identifiers happen to be consecutive and we only remove the

0

Space: [0, 7]
Id: 5

Space: [0, 7]
Id: 5

5
5

5
5

�
�
�

�
�
�

��
��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�

��
��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

1

1

1

1

Space: [4, 7]]
Id: 5

(a) (b) (c)

1
1

1

1 0

1

1 0 1

01 0 0 10

Space: [0, 3] Space: [4, 7]

Space: [0, 1] Space: [2, 3] Space: [4, 5] Space: [6, 7]

Id: 5Id: 1

Id: 1 Id: 3 Id: 5 Id: 7

2

3
4

5

6

7

Fig. 3. (a) In the identifier space of [0,7], nodes 0, 4, and 7 subscribe key
5; (b) The RPT of key 5; (c) The RPT after removing redundant leaf nodes.

leaf nodes as above, the height of RPT(s) will still be O(M).
We resolve this problem by removing the redundant inter-

mediate nodes. If all nodes in a partition are clustered in
one of its lower-level partitions, it is possible to reduce the
intermediate nodes. Figure 4(c) shows one optimized RPT.
The intermediate node for the partition [4, 7] is removed since
only one of its lower-level partition [6, 7] has nodes. Thus, the
height of the RPT is decreased from 3 to 2.

Space: [6, 7]

Space: [0, 7]
Id: 5

Space: [0, 7]
Id: 5

5

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

��
��
��
��

��
��
��
��

1

3

6

7

2

1

1

Id: 7
Space: [6, 7]]

1

1

1

1

Space: [4, 7]
Id: 5

Id: 7

0

0 0

1

(a) (b) (c)

0

4
5

5

5

Fig. 4. (a) Nodes 6 and 7 subscribe key 5; (b) The RPT for key 5 after
removing redundant leaf nodes; (c) The RPT after removing both redundant
leaf nodes and intermediate nodes.

Theorem 1: For an N -node network with partition size of
2m, the average height of RPTs is O(log N

m), regardless of the
size of an identifier space.

Proof: Suppose the whole identifier space is 2M . Every
partitioning generates 2m smaller equally-sized partitions,
each with size of 1/2m of the previous partition range. After
log N

m time partitioning, the identifier range of each partition
is reduced to 2M/2log N = 2M/N . The height of RPT grows
to log N

m , with maximal height log N at m = 1. Note that the
expected number of node identifiers in the range of this size
is 1. Due to identifier randomness induced by SHA-1 hash
function, the average height of all RPTs is O(log N

m).

D. Load Balancing

RPT effectively balances the load across the network, dis-
regarding the key values and their popularities. By using RPT,
we conclude that:

Theorem 2: In an N -node network with partition size of
2m, for a key with C subscribers, the average number of
partition vectors in its RPT is O(log N · C).

Proof: In the RPT of the key, only one root is located
at the top level. At the second level, at most min (2m, C)
representative nodes have one partition vector. At the xth level

of the RPT, at most min (2xm, C) representative nodes are
involved. The total number of vectors S of the RPT is:

S = 1 + min (2m, C) + min (22m, C)

+... + min (2
log N

m
m, C)

=

a−1∑

i=0

2im +

log N
m∑

i=a

C

= (logm N − a)C +
2am − 1

2m − 1
,

for 2(a−1)m < C ≤ 2am, 1 < a ≤ log N
m

Compared with the number of subscribers C, the number
of vectors is increased to (log N − a) + 2am−1

(2m−1)C . Since
2am−1

(2m−1)C < 2am

(2m−1)2(a−1)m = 2m

2m−1 , which is less than 2
(m ≥ 1), the maximal value is achieved when a = 1, and
the total number of vectors in the RPT is O(log N) times of
the number of subscribers.

IV. OPERATION ALGORITHMS

A. Subscribe/Unsubscribe

The subscribe/unsubscribe procedures are initiated by sub-
scribers and proceed toward the root of an RPT. The process
can be implemented in an iterative or recursive way. With
iteration, the subscriber itself has to inform all representative
nodes one by one. With recursion, each representative node is
responsible for forwarding the subscriptions to the next higher
level until the root node is reached. In SCOPE, we implement
the subscribe/unsubscribe operations recursively for routing
efficiency.

At the beginning, each subscriber locates its immediate
upper-level partition from its predecessor’s and successor’s
identifiers. Then, the node sends subscribe/unsubscribe re-
quests to the upper-level representative node. The repre-
sentative node checks if it has a vector allocated for the
key. If so, it sets/unsets the corresponding bit, and the sub-
scribe/unsubscribe procedure terminates there. Otherwise, it
creates/deletes the vector of the key, sets/unsets the bit, and
continues forwarding subscribe/unsubscribe requests to the
representative node at the next upper-level partition. This
process proceeds until it reaches the root of the RPT. The
routing algorithms of the operations depend on the type of the
specific structured P2P systems. In this section, we use Pastry
as the base routing scheme for the purpose of analysis. Note
that similar analysis is applicable to other hypercube routing
algorithms as well.

Figure 5 illustrates a subscribe/unsubscribe process
in a 3-bit identifier space, where node 2 (010) sub-
scribes/unsubscribes key 5 (101). At first, node 2 notifies the
representative node 3 (011) at the bottom level, then node 3
informs the representative node 1 (001) at the intermediate
level. Finally, node 1 informs the root node 5, which is the
representative node of the whole space.

In order to improve routing efficency, every node maintains
level indices to indicate the node’s partitions at different

101

0 01

01 1

root

3−bit ID space

010

Fig. 5. Node 2 (010) subscribe Key 5 (101) in a 3-bit identifier space.

levels. As we have pointed out before, reducing intermediate
partitions makes the height of RPT different from the depth of
partitioning. The level index is used to record the change of
the RPT height with the increase of partitioning. Its maximal
length is equal to M for an identifier space with size of 2M .
The ith entry in a level index is the height of the RPT at ith

partition level.

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

1

2

3
4

5

7

1

6

1

(b)(a)

0
1

2

3
4

5

7

1 2

1

6

1 2

��
��
��

��
��
��

0

�
�
�

�
�
�

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

Fig. 6. Level index changes after node 3 joins in a 3-bit space.

Figure 6 shows an example of the level index in a 3-
bit identifier space. Before node 3 joins, nodes 1 and 4 are
identified after first-time partitioning. Both of them have the
same level index {1,�,�}, where � represents an empty
space. With the participation of node 3, the whole space needs
to be partitioned twice to identify nodes 0 and 3, and no
redundant intermediate partition exists. The RPT grows as
partitioning proceeds, and the level indices of nodes 0 and
3 become {1, 2,�}. Comparatively, node 4 is identified after
the first-time partitioning and its level index is {1,�,�}.

With the Pastry routing table and leaf set, a node can reach
any other node in a range of 2xm within O(log(N

2M−xm)) hops.
When a node initiates a subscribe/unsubscribe operation, it
also forwards its level index to the representative nodes at
upper levels. Each intermediate representative uses the level
index to derive the location of its higher level representative.

Lemma 1: For an N -node network with partition size of 2m

in a 2M identifier space, in any range of 2xm, on average a
node can find the successor of a key in O(log(N

2M−xm)) hops.
Proof: We use Pastry as the base routing algorithm, and

assume that a node’s routing table is organized into �log2bM�
levels with 2b − 1 entries each. Due to the usage of the
SHA-1 hash function, node and key identifiers are randomly

distributed and the number of nodes in a range of 2xm is
N

2M−xm on average. Suppose that node n wants to resolve a
query for the successor of k, k > n and 0 < k − n < 2xm.
Node n forwards its query to the close predecessor of k in its
routing table. Suppose key k is in the ith (0 < i <= xm/b)
level jth (0 < j < 2b) interval of node n. If this interval
is empty, node n has found the successor of k. Otherwise, it
fingers some node f in this interval. The distance between n
and f is at least 2xm−i·b. Since f and k are both in i’s level,
the distance between them is at most 2xm−i·b, less than half
of the distance from n to k.

After log(N
2M−xm) forwardings, the distance between

the current query node n and key k is reduced to
2xm/2log(N

2M−xm) = 2M/N . Because the expected number
of node identifiers in this range is 1, the successor of key k
can be reached in O(log(N

2M−xm)) hops on average. If n > k
and 0 < n − k < 2xm, we can obtain the same result.

Theorem 3: For an N -node network with partition size of
2m, on average the subscribe/unsubscribe operations can be
finished in O(log2 N

2m) hops.
As we have learned from the previous section, the av-

erage height of RPT(s) is O(log N
m). In order to finish a

subscribe/unsubscribe operation, O(log N
m) levels are traversed

on average. From Lemma 1, at each level, on average a query
node can reach the successor of a key in the same partition
at level l in log N/2lm hops, the average routing length of a
subscribe/unsubscribe operation (hop(sub/unsub)) is:

hop(sub/unsub) = log N + log
N

2m
+ log

N

22m

+... + log
N

2log N

= log N + (log N − m) + (log N − 2m)

+... + (log N − log N

m
m)

=
log2 N

2m
− log N

2
.

Therefore, on average a subscribe/unsubscribe operation can
be finished in O(log2 N

2m) hops.
While the upper bound of subscribe path length is longer

than that of the centralized solution, the subscribe/unsubscribe
operations in SCOPE are efficient if multiple subscribers
exist. The subscribe/unsubscribe process terminates at any
representative node that has recorded the same key at the
same level. When a node subscribes a key with C replicas,
the average length of the subscribe/unsubscribe process can
be expressed as follows:

hop(sub/unsub) = log N + log
N

2m
+ ... + log

N

2log N

−(log N + log
N

2m
+ ... + log

N

2log C
)

=

log N
m∑

i=0

log
N

2im
−

log C
m∑

i=0

log
N

2im

=

log N
m∑

i=
log C

m
+1

log(N/2im)

B. Update

The update procedure is launched by the root node after it
receives update requests from a replica, and proceeds toward
every subscriber. The root node first checks its vector of the
key. Then, it sends notifications to the representative nodes of
the partitions with corresponding bits set. Every intermediate
representative is responsible for delivering the notifications to
its lower-level representatives. When the notification reaches
a leaf node, it is forwarded to the subscribers directly.

Theorem 4: For an N -node network with partition size of
2m, on average, update operations can be finished in O(log2 N

2m)
hops.

Although the update path to a single subscriber in SCOPE is
longer than that in the centralized solution, the average number
of update routing hops in SCOPE is smaller. This is because
in SCOPE all replicas can be notified in O(log2 N) hops,
but the centralized solution needs O(C) hops to finish. For
a sufficiently large C, the latter incurs much longer delay.

Similar to subscribe/unsubscribe operations, the update op-
eration in SCOPE is efficient if multiple subscribers exist. The
total number of hops (hop(update)) for an update of a key
with C replicas is:

hop(update) = C log N − (C − 2m) log N + C log
N

2m

−2m(
C

2m
− 2m) log

N

2m
+ ... + C log

N

2
log C

m
m

−2
log C

m
m(C/2

log C
m

m − 2m) log
N

2
log C

m
m

+C log
N

2(
log C

m
+1)m

+ ... + C log
N

2
log N

m
m

= C

log N
m∑

i=
log C

m
+1

log
N

2im
+

log C
m∑

i=0

2(i+1)m log
N

2im

Comparatively, the centralized solution needs O(C log N)
hops to conduct an update operation. Our analysis above is
based on the base SCOPE protocol, in which we do not record
the IP addresses of descendant nodes explicitly. To further
reduce the latency of update operations, a parent node may
directly record the IP addresses of its RPT children. If so,
SCOPE can reduce the average update hops to O(log N),
which is much smaller than that of the centralized solution
for a sufficiently large C.

V. MAINTENANCE AND RECOVERY

A. Node Joining/Leaving

This section describes how to maintain the RPT when a single
node joins. A similar method can be applied to the situation
where a node leaves.

Besides maintaining the predecessor/successor and routing
tables, a newly-joining node in SCOPE needs to take two
actions to maintain the RPT : transferring partition vectors
and updating level indices. With a node joining, part of RPT
vectors under the charge of the node’s successor should be
transferred to the newly-joined node, similar to transferring

��
��
��
��

�
�
�
�

�
�
�

�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�

�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

1

3

0

4

5

6

7

5

5

2

1

3

0

4

5

6

7

5

5

2

root

3−bit ID space

root

3−bit ID space

5 7

2

00

7

(b) (c)(a)

first level partitionfirst level partition

Fig. 7. (a) Node 2 (010) joins in a 3-bit identifier space; (b) The RPT of key 5 before node 2 joins; (c) The RPT of key 5 after node 2 joins.

keys. The operation is straightforward: the newly-joined node
n informs its successor n′, then node n′ moves the related
vectors at every level to node n.

A node joining may cause further partitioning to distinguish
itself from other existing nodes. If node n changes the structure
of any RPTs, it also needs to inform the affected nodes to
update their level indices accordingly. Figure 7 illustrates the
level index maintenance when node 2 joins a 3-bit identifier
space. Figure 7(a) shows the node distribution. Originally,
only node 0 is in the partition [0, 3], and its level index is
{1,�,�}. Figure 7(b) shows the RPT of key 5, where node
7, the primary node of key 5, can read the first bit of its
vector and know the existence of key 5’s replica at node 0.
After node 2 joins, node 0 is no longer the only node in the
partition [0, 3], thus further partitioning within [0, 3] becomes
necessary to differentiate node 0 from node 2. Subsequently,
node 0 updates its level index to {1, 2,�} and subscribes key
5 via node 2—the representative of the new partition. The
modified RPT of key 5 is illustrated in Figure 7(c). Note that
a newly-joined node triggers at most one partitioning. The
newly-generated partition consists of the newly-joined node
and at least one existing node.

Lemma 2: In an N -node network, when a node joins, on
average only O(1) nodes need to update their level indices.

Proof: According to the design of RPTs, we do not
need to partition at a level if only one of its lower partitions
has nodes. If the newly-joined node makes the partitioning
a necessity, only the existing nodes in that lower partition
need to update their level indices. Considering that nodes are
randomly distributed among partitions, the average number of
nodes in that partition is O(1).

Theorem 5: In an N -node network with partition size of
2m, on average, any node joining or leaving requires O(1)
messages to update the corresponding RPTs and level indices.

When a node joins/leaves, both RPTs and level indices
can be updated with O(1) messages. The total number of
maintenance messages is still O(1).

B. Node Failure

One advantage of multi-level partitioning is fault tolerance.
The records at any level partition can be restored from its
lower-level partitions. SCOPE has a recovery process invoked

periodically after the stabilization process. When one peer
fails, the recovery process is executed by the new node that
takes over the failed one. The new node sends queries to its
lower-level partitions, then restores every key’s vectors based
on their responses.

Suppose a node fails in an N -node network with partition
size of 2m. In order to recover the RPTs, another node
taking over the failed node needs to collect all subscription
information from all 2m lower-level partitions at all log N

m
levels. On average, the total number of messages (Message)
is:

Message = 2m(log N + log
N

2m
+ log

N

22m

+... + log
N

2log N
)

= 2m log2 N

2m
− 2m log N

2

Thus, when a node fails, the recovery process only needs
O(2m log2 N

2m) messages.
Comparatively, a centralized approach can recover the

replica locations by broadcasting the re-subscription requests
to all nodes or by requiring all subscribed nodes to periodically
communicate with the hashed nodes. Obviously, neither of
these methods is as effective as the method that SCOPE uses.

VI. PERFORMANCE EVALUATION

In this section, we validate the efficacy of SCOPE through
simulations. In our experiments, all nodes and keys are
randomly-selected integers. They are hashed to a 160-bit
identifier space via SHA-1. The number of partitions at each
level is 16. Specified as the Pastry default parameters, the
routing table of each node has 40 levels and each level consists
of 15 entries; the leaf set of each node has 32 entries.

A. Structure Scalability

A scalable P2P system should distribute the whole storage
load to a large number of nodes to avoid the hot-spot problem.
We consider a network consisting of 104 nodes, and vary the
total number of replicas of a key at 1, 10, 102, 103 and 104.
In order to record a key and its locations, a record [key id,
partition level, partition vector] is kept at each representative
node. We measure the number of nodes involved and the

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 1 2 3 4 5

N
um

be
r

of
 N

od
es

Number of Records

1 replica
10 replica

100 replica
1000 replica

10000 replica

 0

 2

 4

 6

 8

 1 10 100 1000 10000 100000 1e+06 1e+07

A
ve

ra
ge

 N
od

e
H

ei
gh

t

Number of Nodes

1st and 99th percentiles

(a) (b)

Fig. 8. (a) The storage distribution of different nodes; (b) The average RPT height with the change of number of nodes.

number of records stored on each node to evaluate scalability.
The experiments are repeated 20 times and the mean values are
plotted in Figure 8(a). With the increase of total replicas, the
number of records on a node is slowly increased. For example,
when there are 104 replicas, it is rare for a node to have more
than three records.

The height of an RPT determines the latency of operations
in SCOPE. By varying the number of nodes, we measure the
level of partitions for each node, which is equal to the height
of RPTs of all replicas on one node. Figure 8(b) plots the
mean, the 1st, and 99th percentiles of the height of RPTs with
the increase of number of nodes. The RPT heights of all keys
residing in different nodes exhibit small variations, and they
grow logarithmically with the increase of the number of nodes.

Assume subscribers follow a Zipf’s distribution, and there
are 104 and 105 keys in a 104-node network. The number
of subscribers of ith most popular key is equal to 1/i of
total number of nodes. Figures 9(a) and (b) plot the storage
load on each node when the number of total keys is 104 and
105, respectively. The storage load is measured by the number
of records kept on one node. Compared with the centralized
solution, SCOPE can effectively distribute the storage load
to all nodes, thus avoiding the hot-spot problem. In these
two experiments, the maximal records on a single node are
reduced from 10004 and 10078 in the centralized solution to
105 (1/95) and 387 (1/26) in SCOPE, respectively.

Next we consider a query distribution obtained from Web
proxy logs [1]. We randomly selected 104 and 105 hostnames,
and the distribution of the number of subscribers is equal to
that of requests collected during one week period (Nov. 02
- Nov. 08, 2003). Figures 9(c) and (d) plot the storage load
on each node when the number of total keys is 104 and 105,
respectively. Again, the maximal number of records on a single
node are reduced to 418 and 1937 in SCOPE, which are 24
and 10 times less than 10098 and 19548 in the centralized
solution, respectively.

B. Operation Effectiveness

In this section, we evaluate the effectiveness of new op-
erations in SCOPE. We focus on subscribe operations only,
since the other two kinds of operations (unsubscribe/update)
are similar to subscribe operations. Figure 10(a) plots the
dynamics of the subscribe path length with the increase of total
number of nodes. SCOPE has longer paths to finish a subscribe
operation than the centralized solution, because multiple repre-
sentative nodes should be contacted before the primary nodes
are reached. In practice, when numerous subscribers exist, the
subscribe operation may terminate at a representative node,
leading to a reduced path. Figure 10(b) illustrates the effects
of multiple subscribers on the path length. If the number of
subscribers is larger than 200 in a 104-node network, the path
length is shorter than the centralized solution.

Assume subscribers follow a Zipf’s distribution. Fig-
ures 11(a) and (b) plot the distribution of the messages
sent/received by each node in a 104-node network with 104

and 105 keys, respectively. Although the maximal path length
in SCOPE is longer than that of the centralized solution, the
messages from the subscribe operations are much more evenly
distributed among all nodes, instead of clogging at a few
nodes. As the simulation results shown, when the number of
keys is 104, the maximal number of messages on a single
node is 412 in SCOPE, only about 1/25 of 10445 in the
centralized solution. When the number of keys is 105, the
maximal number of messages on a single node increases to
1410 in SCOPE, but still only about one seventh of 10406 in
the centralized solution.

When the subscriber distribution is obtained from proxy
logs [1], Figures 11(c) and (d) illustrate the distribution of the
messages sent/received by each node in a 104-node network
with 104 and 105 keys, respectively. The maximal number of
messages on a single node in SCOPE is only one sixth (1906
vs. 11218) and one fourth (7925 vs. 33068) of the centralized
solution in these two cases, respectively.

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000

N
um

be
r

of
 N

od
es

Number of Records

Zipf’s - 104 Keys, 104 Nodes

max=105 max=10004

SCOPE
Central

 1

 10

 100

 1000

 1 10 100 1000 10000 100000

N
um

be
r

of
 N

od
es

Number of Records

Zipf’s - 105 Keys, 104 Nodes

max=387 max=10078

SCOPE
Central

(a) (b)

 1

 10

 100

 1000

 1 10 100 1000 10000 100000

N
um

be
r

of
 N

od
es

Number of Records

Proxy - 104 Keys, 104 Nodes

max=418 max=10098

SCOPE
Central

 1

 10

 100

 1000

 1 10 100 1000 10000 100000

N
um

be
r

of
 N

od
es

Number of Records

Proxy - 105 Keys, 104 Nodes

max=1937 max=19548

SCOPE
Central

(c) (d)

Fig. 9. With the Zipf’s distribution, the number of records kept by each node in: (a) 104-key, 104-node network; (b) 105-key, 104-node network; with the
distribution obtained from proxy logs, the number of records kept by each node in: (c) 104-key, 104-node network; (d) 105-key, 104-node network.

 0

 2

 4

 6

 8

 10

 1 10 100 1000 10000 100000 1e+06

S
ub

sc
rib

e/
U

ns
ub

sc
rib

e/
U

pd
at

e
P

at
h

Le
ng

th

Number of Nodes

SCOPE
Central

 0

 2

 4

 6

 8

 1 10 100 1000 10000

A
ve

ra
ge

 S
ub

sc
rip

tio
n

Le
ng

th

Number of Subscribers

SCOPE
Central

(a) (b)

Fig. 10. (a) The subscribe operation path length in SCOPE compared with the centralized solution; (b) The changes of subscribe operation path length with
the variance of number of subscribers.

C. Maintenance Cost

The maintenance cost includes node joining and leaving,
and node failure recovery. Besides the maintenance routines
in Pastry, node joining/leaving needs additional operations
to maintain an RPT. We focus on the additional overhead

induced by SCOPE. The first part of maintenance, transferring
RPT, can be completed through a regular operation in Pastry.
The second part of maintenance, further partitioning, needs
additional operations. Figure 12(a) illustrates the number of
affected nodes when a new node joins. On average, a newly-
joined node only invokes 0.5 node to update its level index,

 1

 10

 100

 1000

 1 10 100 1000 10000 100000

N
um

be
r

of
 N

od
es

Number of Messages

Zipf’s - 104 Keys, 104 Nodes

max=412 max=10445

SCOPE
Central

 1

 10

 100

 1000

 1 10 100 1000 10000 100000

N
um

be
r

of
 N

od
es

Number of Messages

Zipf’s - 105 Keys, 104 Nodes

max=1410 max=10406

SCOPE
Central

(a) (b)

 1

 10

 100

 10 100 1000 10000 100000

N
um

be
r

of
 N

od
es

Number of Messages

Proxy - 104 Keys, 104 Nodes

max=1906 max=11218

SCOPE
Central

 1

 10

 100

 100 1000 10000 100000

N
um

be
r

of
 N

od
es

Number of Messages

Proxy - 105 Keys, 104 Nodes

max=7925 max=33068

SCOPE
Central

(c) (d)

Fig. 11. With the Zipf’s distribution, the distribution of messages sent/received by each node in: (a) 104-key, 104-node network; (b) 105-key, 104-node
network; with the distribution obtained from proxy logs, the distribution of messages sent/received by each node in: (c) 104-key, 104-node network; (d)
105-key, 104-node network.

 0

 1

 2

 3

 1 10 100 1000 10000 100000 1e+06 1e+07

N
u

m
b

e
r

o
f

N
o

d
e

s
A

ff
e

ct
e

d

Total Number of Nodes

1st and 99th percentiles

1*10^{3}

1*10^{4}

1*10^{5}

1*10^{6}

1*10^{7}

 0.001 0.01 0.1

N
u

m
b

e
r

o
f

R
e

co
ve

ry
 M

e
ss

a
g

e
s

(P
e

r
S

e
co

n
d

)

Percentage of Failed Nodes (Per Second)

SCOPE
Central

(a) (b)

Fig. 12. (a) The number of nodes to update their level indices at a node joining; (b) The number of maintenance messages in a network with certain node
failure rate.

disregarding the size of a P2P system.
One important feature in SCOPE is its efficient recovery

mechanism when a node failure is detected. As in Pastry, in
order to detect node failures, the neighboring nodes periodi-
cally exchange keep-alive messages. In our experiments, we

only count the additional messages in the network to recover
from node failures. In SCOPE, the new representative nodes
communicate with the lower-level representatives to recover
RPTs in case of a node failure. On the contrary, the centralized
solution has to broadcast the recovery information to all nodes.

 10

 100

 1000

 10000

 0 0.02 0.04 0.06 0.08 0.1

N
um

be
r

of
 M

es
sa

ge
s

Failed Nodes (Fraction of Total)

10 replica
100 replica

1000 replica

1*10^{4}

1*10^{5}

1*10^{6}

1*10^{7}

 0 0.02 0.04 0.06 0.08 0.1

N
um

be
r

of
 M

es
sa

ge
s

Failed Nodes (Fraction of Total)

Proxy-SCOPE
Zipf’s-SCOPE
Proxy-Central
Zipf’s-Central

(a) (b)

Fig. 13. (a) The number of messages for an update in a 104-node network; (b) The total messages for updates in a 104-key, 104-node network for both
Zipf’s and proxy log-based distributions.

Figure 12(b) shows the message rate in a 104-node network
with given node failure rates. Compared with the centralized
solution, SCOPE only consumes about one fifth of messages
to recover under different failure rates.

D. Fault Tolerance

When a node fails, in order to propagate the update, a cen-
tralized scheme relies on broadcasting to reach the destination
nodes. In contrast, SCOPE only needs to send the update
notifications to representative nodes at the lower levels. We
simulate a network with 104 nodes and 104 keys. Figure 13(a)
plots the total number of messages of an update operation with
the increase of failed nodes. Note that the update is made on
an object with 10, 100, or 1000 replicas, respectively. In all
cases, the number of messages for the update is proportionally
increased with the fraction of failed nodes. Assume subscribers
follow either Zipf’s or proxy log-based distribution, Figure
13(b) plots the total number of messages if all keys are updated
once. The number of messages in SCOPE is about 5%-10%
of the message overhead in the centralized scheme for both
Zipf’s and proxy log-based distributions.

VII. DESIGN ALTERNATIVES

Selected Representative Nodes
Frequent node joins and leaves, which is not uncommon in
practice [2], could significantly degrade the performance of
SCOPE. However, we can mitigate this performance degra-
dation by pre-selecting representative nodes in RPTs. Not all
nodes are eligible for being representative nodes; only those
trusted and stable ones are selected as representatives for each
partition. Since transient nodes join at the bottom level, the
higher-level partitions are relatively stable and the cost of
maintaining RPTs is minimized.

Direct Notification
In the base SCOPE protocol, the update process needs to
traverse multiple partitions even if only one replica remains
in the P2P system. If privacy is not a concern, SCOPE can be

easily extended to record subscribers’ IP addresses to shorten
the latency of update notifications. If a node/partition is the
first one to subscribe a key in the upper-level partition, this par-
tition records its IP address in addition to the partition vector.
When the upper level receives an update notification, it directly
forwards the message to the node with the corresponding IP
address without traversing the partition tree.

Dynamic Partitioning
The partition number at each level is predefined and
fixed in the base SCOPE. A large number of partitions
may reduce the total number of levels, thus lower sub-
scribe/unsubscribe/update latency, but at the expense of high
space overhead caused by a large number of partition vectors.
On the other hand, a small number of partitions may increase
the number of levels with low space overhead. Considering
the tradeoff between routing latency and storage overhead, our
partitioning scheme could be dynamic, in which the number of
partitions is adaptively changed with respect to the popularity
of a key. In this scheme, the root of the RPT for a key
decides the appropriate number of partitions for that key. Since
subscribers of the key do not know the number of partitions,
subscribe/unsubscribe operations always start from the root
RPT vectors.

VIII. CONCLUSION

The challenges to building a consistent P2P system are
twofold: large scale and high failure rates. In this paper, we
proposed a scalable, consistent structured P2P system, called
SCOPE. Based on structured DHTs, SCOPE builds a replica-
partition-tree for each key to distribute its replica location
information among peers. In an N -node network, each peer
is guaranteed to keep at most O(log N) partition vectors for
a single key, regardless of the key’s value and its popular-
ity. Three new primitives, subscribe/unsubscribe/update, are
introduced specifically to maintain the replica consistency.
Due to hierarchical management, these operations can be
committed efficiently with minimal maintenance cost. Only

O(1) nodes are updated when a node joins or leaves, and
only O(log2 N) messages are transmitted to recover a node
failure. Our theoretical analyses and simulation experiments
have shown that SCOPE scales well with the number of
nodes, maintains consistency effectively, and recovers from
node failures efficiently.

Acknowledgments
We thank the anonymous referees for their constructive

comments. We appreciate Bill Bynum for reading the paper
and his comments. This work is supported in part by the Na-
tional Science Foundation under grants CNS-0098055, CCF-
0129883, and CNS-0405909, and by Ask Jeeves.

REFERENCES

[1] http://www.ircache.net.
[2] R. Bhagwan, S. Savage, and G. Voelke. Understanding availability. In

Proceedings of IPTPS’03, Berkeley, CA, USA, Feb. 2003.
[3] M. Castro, M. Costa, and A. Rowstron. Performance and dependability

of structured peer-to-peer overlays. In Proceedings of DSN’04, 2004.
[4] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron. Scribe: A

large-scale and decentralized application-level multicast infrastructure.
In IEEE Journal on Selected Areas in Communications, volume 20,
Oct. 2002.

[5] M. Castro, P. Druschel, A-M. Kermarrec, A. Nandi, A. Rowstron,
and A. Singh. Splitstream: High-bandwidth multicast in a cooperative
environment. In Proceedings of the 19th ACM SOSP’03, Lake Bolton,
NY, USA, Oct. 2003.

[6] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker.
Making gnutella-like p2p systems scalable. In Proceedings of ACM
SIGCOMM’03, Karlsruhe, Germany, Aug. 2003.

[7] I. Clarke, O. Sandberg, B. Wiley, and T.W. Hong. Freenet: A distributed
anonymous information storage and retrieval system. In Designing
Privacy Enhancing Technologies: International Workshop on Design
Issues in Anonymity and Unobservability, 2001.

[8] F. M. Cuenca-Acuna, R. P. Martin, and T.D. Nguyen. Autonomous repli-
cation for high availability in unstructured p2p systems. In Proceedings
of IEEE SRDS’03, Florence, Italy, Oct. 2003.

[9] F. Dabek, M.F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-area
cooperative storage with cfs. In Proceedings of the 18th ACM SOSP’01,
Banff, Alberta, Canada, Oct. 2001.

[10] A. Datta, M. Hauswirth, and K. Aberer. Updates in highly unreliable,
replicated peer-to-peer systems. In Proceedings of IEEE ICDCS’03,
Providence, RI, USA, May 2003.

[11] S. El-Ansary, L.O. Alima, P. Brand, and S. Haridi. Efficient broadcast
in structured p2p networks. In Proceedings of IPTPS’03, 2003.

[12] B. Gedik and L. Liu. Reliable peer-to-peer information monitoring
through replication. In Proceedings of IEEE SRDS’03, Florence, Italy,
Oct. 2003.

[13] L. Guo, S. Chen, S. Ren, X. Chen, and S. Jiang. Prop: a scalable and
reliable p2p assisted proxy streaming system. In Proceedings of IEEE
ICDCS’04, Tokyo, Japan, March 2004.

[14] S. Iyer, A. Rowstron, and P. Druschel. Squirrel: A decentralized peer-
to-peer web cache. In Proceedings of ACM PODC’02, Monterey,
California, USA, July 2002.

[15] D. Karger, E. Lehman, F. Leighton, M. Levine, D. Lewin, and R. Pan-
igrahy. Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the world wide web. In Proceedings
of ACM STOC’97, El Paso, TX, USA, May 1997.

[16] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat. Bullet: High
bandwidth data dissemination using an overlay mesh. In Proceedings
of ACM SOSP’03, 2003.

[17] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, and
D. Geels. Oceanstore: An architecture for global-scale persistent storage.
In Proceedings of ACM ASPLOS-IX, Cambridge, MA, USA, Nov. 2000.

[18] J. Lan, X. Liu, P. Shenoy, and K. Ramamritham. Consistency main-
tenance in peer-to-peer file sharing networks. In Proceedings of IEEE
WIAPP’03, San Jose, CA, USA, June 2003.

[19] P. Maniatis, M. Roussopoulos, T.J. Giuli, D.S.H. Rosenthal, M. Baker,
and Y. Muliadi. Preserving peer replicas by rate-limited sampled voting.
In Proceedings of ACM SOSP’03, 2003.

[20] A. Mohan and V. Kalogeraki. Speculative routing and update propa-
gation: A kundali centric approach. In Proceedings of IEEE ICC’03,
2003.

[21] V. Ramasubramanian and E.G. Sirer. Beehive: Exploiting power law
query distributions for o(1) lookup performance in peer to peer overlays.
In Proceedings of USENIX NSDI’04, San Francisco, CA, USA, Mar.
2004.

[22] V. Ramasubramanian and E.G. Sirer. The design and implementation of
a next generation name service for the internet. In Proceedings of ACM
SIGCOMM’04, Portland, OR, USA, Aug. 2004.

[23] A. Rao, K. Kakshminarayanan, S. Surana, R. Karp, and I. Stoica. ‘load
balancing in structured p2p systems. In Proceedings of IPTPS’03, 2003.

[24] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A
scalable content-addressable network. In Proceedings of ACM SIG-
COMM’01, San Diego, CA, USA, Aug. 2001.

[25] S. Ren, L. Guo, S. Jiang, and X. Zhang. Sat-match: A self-adaptive
topology matching method to achieve low lookup latency in structured
p2p overlay networks. In Proceedings of IEEE IPDPS’04, Santa Fe,
NM, USA, April 2004.

[26] M. Rodrig and A. LaMarca. Decentralized weighted voting for p2p data
management. In Proceedings of ACM MobiDE’03, 2003.

[27] M. Roussopoulos and M. Baker. Cup: Controlled update propagation
in peer-to-peer networks. In Proceedings of 2003 USENIX Annual
Technical Conference, San Antonio, Texas, USA, June 2003.

[28] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems. In Proceedings
of IFIP/ACM Middleware’01, Heidelberg, Germany, Nov. 2001.

[29] A. Rowstron and P. Druschel. Storage management and caching in past,
a large-scale persistent peer-to-peer storage utility. In Proceedings of
ACM SOSP’01, Banff, Alberta, Canada, Oct. 2001.

[30] Y. Saito, C. Karamanolis, M. Karlsson, and M. Mahalingam. Taming
aggressive replication in the pangaea wide-area file system. In Proceed-
ings of USENIX OSDI’02, Boston, Massachusetts, USA, Dec. 2002.

[31] C.A. Stein, M.J. Tucher, and M.I. Seltzer. Building a reliable mutable
file system on peer-to-peer storage. In Proceedings of SRDS’02, 2002.

[32] I. Stoica, R. Morris, D. Liben-Nowell, D.R. Karger, M.F. Kaashoek,
F. Dabek, and H. Balakrishnan. Chord: A scalable peer-to-peer
lookup protocol for internet applications. In Proceedings of ACM
SIGCOMM’01, San Diego, CA, USA, Aug. 2001.

[33] M. Walfish, H. Balakrishnan, and S. Shenker. Untangling the web from
dns. In Proceedings of USENIX NSDI’04, San Francisco, CA, USA,
Mar. 2004.

[34] H. Yu and A. Vahdat. Design and evaluation of a conit-based continuous
consistency model for replicated services. In ACM Transactions on
Computer Systems, Aug. 2002.

[35] H. Yu and A. Vahdat. Consistent and automatic service regeneration. In
Proceedings of USENIX NSDI’04, San Francisco, CA, USA, Mar. 2004.

[36] B.Y. Zhao, L. Huang, J. Stribling, S.C. Rhea, A.D. Joseph, and J. Kubia-
towicz. Tapestry: A resilient global-scale overlay for service deployment.
In IEEE Journal on Selected Areas in Communications, volume 22, Jan.
2004.

[37] S.Q. Zhuang, B.Y. Zhao, A.D. Joseph, R.H. Katz, and J. Kubiatowicz.
Bayeux: An architecture for scalable and fault-tolerant wide-area data
dissemination. In Proceedings of ACM NOSSDAV’01, Port Jefferson,
NY, USA, June 2001.

