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ABSTRACT

IP spoofing has been exploited by Distributed Denial of Ser(iDDoS)
attacks to (1) conceal flooding sources and localities irditogtraf-
fic, and (2) coax legitimate hosts into becoming reflectardirect-
ing and amplifying flooding traffic. Thus, the ability to fittepoofed
IP packets near victims is essential to their own protec®mwell as
to their avoidance of becoming involuntary DoS reflectorshéugh
an attacker can forge any field in the IP header, he or she téaino
sify the number of hops an IP packet takes to reach its déistina
This hop-count information can be inferred from the Time-tee
(TTL) value in the IP header. Using a mapping between IP addie
and their hop-counts to an Internet server, the server cimgluish
spoofed IP packets from legitimate ones. Base on this obteny
we present a novel filtering technique that is immediatelylale
able to weed out spoofed IP packets. Through analysis ugtig n
work measurement data, we show thlip-Count Filtering(HCF)
can identify close to 90% of spoofed IP packets, and theradisc
them with little collateral damage. We implement and evau$CF

in the Linux kernel, demonstrating its benefits using experital
measurements.
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serious threat to the availability of Internet services18, 27]. In-
stead of subverting services, DDoS attacks limit and blegkiimate
users’ access by exhausting victim servers’ resourcesiBgaturat-

ing stub networks’ access links to the Internet [19]. To eaflood-

ing sources and localities in flooding traffic, attackersewnfspoof

IP addresses by randomizing the 32-bit source-addressifidle

IP header [12, 13]. Moreover, some known DDoS attacks, sach a
smurf [8] and more recent DRDoS (Distributed Reflection eaf
Service) attacks [19, 33], are not possible without IP spgpfSuch
attacks masquerade the source IP address of each spoofest pac
with the victim’s IP address. It is difficult to counter IP gfimg
because of the stateless and destination-based routirige dhter-
net. The IP protocol lacks the control to prevent a senden fnal-

ing the origin of its packets. Furthermore, destinatioeduhrouting
does not maintain state information on senders, and foseadh IP
packet toward its destination without validating the pa'skeue ori-

gin. Overall, IP spoofing makes DDoS attacks much more difficu
to defend against.

To thwart DDoS attacks, researchers have taken two disgjmct
proachesrouter-basedandvictim-based The router-based approach
makes improvements to the routing infrastructure, whigeictim-
based approach enhances the resilience of Internet sexyansst
attacks. The router-based approach performs eitherrafdnalysis
of flooding traffic or on-line filtering of DDoS traffic insideuters.
Off-line IP traceback [4, 36, 37, 38, 41] attempts to esghbfpro-
cedures to track down flooding sourcater occurrences of DDoS
attacks. While it does help pinpoint locations of floodingiees,
off-line IP traceback does not help sustain service aviitiaduring
an attack. On-line filtering mechanisms rely on IP routeragiae-
ments [15, 23, 24, 25, 26, 31] to detect abnormal traffic pastand
foil DDoS attacks. However, these solutions require noy oouter
support, but also coordination among different routersratdiorks,
and wide-spread deployment.

Compared to the router-based approach, the victim-bagedagh

An Internet host can spoof IP packets by using a raw sockelt to fi 55 the advantage of being immediately deployable. Moreimp

arbitrary source IP addresses into their IP headers [28ptdf-

ing is usually associated with malicious network behavisueh as
Distributed Denial of Service (DDoS) attacks. As one of thestm
difficult problems in network security, DDoS attacks havequb a
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tantly, a potential victim has a much stronger incentive ¢épldy
defense mechanisms than network service providers. Thertur
victim-based approach protects Internet servers usingistigated
resource management schemes. These schemes provide more ac
curate resource accounting, and fine-grained servicetisoland
differentiation [3, 5, 35, 39], for example, to shield irgetive video
traffic from bulk data transfers. However, without a meckanto
detect and discard spoofed traffic, spoofed packets wilteskize
same resource principals and code paths as legitimatestsgihile

a resource manager can confine the scope of damage to theeservi
under attack, it may not be able to sustain the availabifitye ser-
vice. In stark contrast, the server’s ability to filter mastot all,
spoofed IP packets can help sustain service availabilien einder



DDoS attacks. Since filtering spoofed IP packets is orthabtm
resource management, it can be used in conjunction withnedda
resource-management schemes.

of HCF. Section 8 discusses related work. The paper cornshwith
Section 9.

Therefore, victim-based filtering, which detects and didsapoofed 2. HOP-COUNT INSPECTION

traffic without any router support, is essential to protagtvictims
against DDoS attacks. We only utilize the information cored in
the IP header for packet filtering. Although an attacker cagd any
field in the IP header, he or she cannot falsify the number p§tam
IP packet takes to reach its destination, which is solelgrdeined
by the Internet routing infrastructure. The hop-count infation is
indirectly reflected in the TTL field of the IP header, sincelemter-
mediate router decrements the TTL value by one before faliwar
a packet to the next hop. The difference between the inifidl T
(at the source) and the final TTL value (at the destinatiorthés
hop-count between the source and the destination. By exagytime
TTL field of each arriving packet, the destination can inferinitial

Central to HCF is the validation of the source IP address dfiea
packet via hop-count inspection. In this section, we firstdss the
hop-count computation, and then detail the inspectionrilgo.

2.1 TTL-based Hop-Count Computation

Since hop-count information is not directly stored in théaéRader,
one has to compute it based on the TTL field. TTL is an 8-bit field
the IP header, originally introduced to specify the maxiniifietime
of each packet in the Internet. Each intermediate routeredeents
the TTL value of an in-transit IP packet by one before fonirgdt
to the next-hop. The final TTL value when a packet reachesis d

TTL va|uel and hence the hop_count from the source. Here we agnation is therefore the initial TTL subtracted by the nwembf in-

sume that attackers cannot sabotage routers to alter Tukvalf IP
packets that traverse them.

termediate hops (or simply hop-count). The challenge in¢mmt
computation is that a destination only sees the final TTL ealli

In this paper, we propose a novel hop-count-based filter dwe Would have been simple had all operating systems (OSs) hsed t

out spoofed IP packets. The rationale behind hop-countifiigs
that most spoofed IP packets, when arriving at victims, docaay
hop-count values that are consistent with the IP addresses b

same initial TTL value, but in practice, there is no consermuthe
initial TTL value. Furthermore, since the OS for a given IRli@s$s
may change with time, we cannot assume a single staticlififia

spoofed. Hop-Count Filtering(HCF) builds an accurate IP-to-hop- Vvalue for each IP address. _
count (IP2HC) mapping table, while using a moderate amoéint o Fortunately, however, according to [14], most modern OSs us

storage, by clustering address prefixes based on hop-ctaitap-
ture hop-count changes under dynamic network conditioesalgo
devise a safe update procedure for the IP2HC mapping tedtipité-
vents pollution by HCF-aware attackers. The same pollypicof
method is used for IP2HC mapping table initialization andiagd
new IP addresses into the table.

Two running stateslert andaction within HCF use this mapping
to inspect the IP header of each IP packet. Under normal tongi

HCF stays iralert state, watching for abnormal TTL behaviors with-

out discarding any packet. Even if a legitimate packet isirectly
identified as a spoofed one, it will not be dropped. Thereftirere

only a few selected initial TTL values, 30, 32, 60, 64, 128] aB5.
This set of initial TTL values cover most of the popular OSgtsas
Microsoft Windows, Linux, variants of BSD, and many comniairc
Unix systems. We observe that most of these initial TTL valae

far apart, except between 30 and 32, 60 and 64, and betweerd32 a
60. Since Internet traces have shown that few Internet lwstapart

by more than 30 hops [9, 10], which is also confirmed by our own
observation, one can determine the initial TTL value of &kpaby
selecting the smallest initial value in the set that is lathan its
final TTL. For example, if the final TTL value is 112, the initiarL
value is 128, the smaller of the two possible initial valukz3 and

is no collateral damage ialert state. Upon detection of an attack, 255. To resolve ambiguities in the case<{86, 32, {60, 64, and
HCF switches tactionstate, in which HCF discards those IP pack- {32, 60, we will compute a hop-count value for each of the possible

ets with mismatching hop-counts. Besides the IP2HC ingmect
several efficient mechanisms [17, 20, 30, 43] are availabtietect
DDoS attacks. Through analysis using network measurensat d

initial TTL values, and accept the packet if there is a matith ane
of the possible hop-counts.
The drawback of limiting the possible initial TTL values hsat

we show that HCF can recognize close to 90% of spoofed IP paciackets from end-systems that use “odd" initial TTL valueay be

ets. In addition, our hop-count-based clustering signifigaeduces

the percentage of false positivesThus, we can discard spoofed

IP packets with little collateral damage &ttion state To ensure
that the filtering mechanism itself withstands attacks, design is
light-weight and requires only a moderate amount of starade
implement HCF in the Linux kernel at the IP layer as the firgpst
of incoming packet processing. We evaluate the benefit of it

experimental measurements and show that HCF is indeediedfec

in countering IP spoofing by providing significant resouraeiisgs.

The remainder of the paper is organized as follows. Section

presents the TTL-based hop-count computation and the boptc
inspection algorithm, which is in the critical path of HCFecsion
3 studies the feasibility of the proposed filtering mechamibased
on a large set of previously-collectéd acer out e data, and the
resilience of our filtering scheme against HCF-aware agickSec-
tion 4 demonstrates the effectiveness of the proposedifiltigtect-
ing spoofed packets. Section 5 deals with the construcfitP2HC
mapping table, the heart of HCF. Section 6 details the twaing
states of HCF, the inter-state transitions, and the planeofeHCF.
Section 7 presents the implementation and experimentalaian

Ipercentage of the legitimate packets identified as the spoof

incorrectly identified as having spoofed source IP adds=s3is
may happen if a user switches OS from one that uses a “normal”
initial TTL value to another that uses an “odd” value. Sineg o
filter starts to discard packets only upon detection of a DBb&kK,
such end-systems would suffer only during an actual DDo& latt
The study in [14] shows that the OSs that use “odd” initial FHre
typically older OSs. We expect such OSs to constitute a vells
percentage of end-hosts in the current Internet. Thus, ¢neft

of deploying HCF should out-weight the risk of denying seevto
those end-hosts during attacks.

2.2 Inspection Algorithm

Assuming that an accurate IP2HC mapping table is preseat (se
Section 5 for details of its construction) Figure 2.1 owirthe HCF
procedure used to identify spoofed packets. The inspectigo-
rithm extracts the source IP address and the final TTL valomn fr
each IP packet. The algorithm infers the initial TTL valuel aub-
tracts the final TTL value from it to obtain the hop-count. Foerce
IP address serves as the index into the table to retrievedtieat
hop-count for this IP address. If the computed hop-counthest
the stored hop-count, the packet has been “authenticatgdgr-
wise, the packet is likely spoofed. We note that a spoofeditfPess



for each packet:
extract the final TTLT; and the IP addresS§
infer the initial TTLT;;
compute the hop-coutt; = T; — Ts;
indexSto get the stored hop-couhf;
it (Hc # Hs)
the packet is spoofed,;
else
the packet is legitimate;

Figure 1: Hop-Count inspection algorithm.

may happen to have the same hop-count as the one from a zombie

(flooding sourcé) to the victim. In this case, HCF will not be able
to identify the spoofed packet. However, we will show in Sat#
that even with a limited range of hop-count values, HCF islig
effective in identifying spoofed IP addresses.

Occasionally, legitimate packets may be identified as sgbdtie
to inaccurate IP2HC mapping or delay in hop-count updaterdh
fore, it is important to minimize collateral damage underfH®/e
note that an identified spoofed IP packet is only droppeddadthion
state, while HCF only keeps track of the number of mis-matdire
packets without discarding any packets in &éhert state. This guar-
anteesho collateral damage in thaert state, which should be much
more common than thaction state.

3. FEASIBILITY OF HOP-COUNT FILTER-
ING

The feasibility of HCF hinges on three factors: (1) stabilif
hop-counts, (2) diversity of hop-count distribution, a& {obust-
ness against possible evasions. In this section, we firshiexathe
stability of hop-counts. Then, we assess if valid hop-ceunta
server are diverse enough, so that matching the hop-couhttfe
source IP address of each packet suffices to recognize sppadé-
ets with high probability. Finally, our discussion will skdhat it is
difficult for an HCF-aware attacker to circumvent filtering.

3.1 Hop-Count Stability

The stability in hop-counts between an Internet server @rdients
is crucial for HCF to work correctly and effectively. Freaquiehanges
in the hop-count between the server and each of its clieritenip
lead to excessive mapping updates, but also greatly redtexenfy
accuracy when an out-of-date mapping is in use during atack

The hop-count stability is dictated by the end-to-end rutie-
haviors in the Internet. According to the study of end-to-esuting
stability in [32], the Internet paths were found to be dortedaby
a few prevalent routes, and about two thirds of the Interaghp
studied were observed to have routes persisting for eitags dr
weeks. To confirm these findings, we use daihacer out e mea-
surements taken at ten-minute intervals among 113 sitgd<ridit
January 1st to April 30th, 2003. We observed a total of 10$4
tinct one-way paths, a majority of which had 12,000 traceronea-
surements each over the five-month period. In these measotsm

most of the paths experienced very few hop-count change® 95
of the paths had fewer than five observable daily changesreThe

fore, itis reasonable to expect hop-counts to be stableiintiernet.
Moreover, the proposed filter contains a dynamic updategohae
to capture hop-count changes as discussed in Section 5.2.

2|n this paper, the terms zombie and flooding source are used in
changeably.

3.2 Diversity of Hop-Count Distribution

Because HCF cannot recognize forged packets whose source IP

addresses have the same hop-count value as that of a zondbie, a
verse hop-count distribution is critical to effective fiitgy. It is nec-
essary to examine hop-count distributions at various ioeatin the
Internet to ensure that hop-counts are not concentrateshar sin-
gle value. If 90% of client IP addresses are ten hops away &om
server, one would not be able to distinguish many spoofedgtac
from legitimate ones using HCF alone.

| Type || Sample Numbet
Commercial siteg 11
Educational sites 4
Non-profit sites 2
Foreign sites 18
.net sites 12

Table 1: Diversity of t r acer out e gateway locations.

To obtain actual hop-count distributions, we use thetraacer out e
data from 50 different r acer out e gateways in [11]. We use only

47 of the data sets because three of them contain too fewtglien

compared to the others. The locationstofacer out e gateways
are diverse as shown in Table 1. Most of theacer out e gate-
ways measured hop-counts to more than 40,000 clients.

We examined the hop-count distributions at tatlacer out e
gateways to find that the Gaussian distribution (bell-stiapeve)
is a good first-order approximation. Figures 2—3 show the- hop
count distributions of two selected sites: a well-connécemmer-
cial servemet . yahoo. comand a web server for Stanford Linear
Accelerator Center. We are interested in the girth of a ithistion,
which can give a qualitative indication of how well HCF worke.,
the wider the girth, the more effective HCF will be. For Gaass
distributions, the girth is the standard deviatian, The Gaussian
distributior? can be written in the following form:

(h-w?

f(hy=Ce 22

whereC is the normalization constant, so the area under the Gaus-

sian distribution sums to the number of IP addresses mehstihe
mean value of a Gaussian distribution specifies the centaedfell-
shaped curve, and the standard deviation specifies thedfittie
bell. We are only interested in using the Gaussian disiobuto
study if hop-count is a suitable measure for HCF. We are néimga
any definitive claim of whether hop-count distributions &aussian
or not. For each given hop-count distribution, we usertbent i t
function in Matlab to fit the distribution of hop-counts foaeh data
set. We plot the means and standard deviations, along vathd5%
confidence intervals, in Figures 4 and 5, respectively. Weenke

that most of the mean values fall between 14 and 19 hops, @&nd th

standard deviations between 3 and 5 hops. The largest pegecof
IP addresses that have a common hop-count value is only 108b. S
distributions allow HCF to work effectively as we will show the
guantitative evaluation of HCF in Section 4.

3.3 Robustness against Evasion

Once attackers learn of HCF, they will try to generate spabofe
packets that can dodge hop-count inspections, hence gveiGi.
However, such an attempt will either require a large amotime-o
source or time, and very elaborate planning, i.e., castadkars are
unlikely to be able to evade HCF. In what follows, we assess th
various ways attackers may evade HCF.

3By “distribution,” we mean it in a generic sense that is eglént
to histogram.
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The key for an attacker to evade HCF is his ability to set am@pp (1) force the victim into thection state to actively filter packets by
priate initial TTL value for each spoofed packet, becauseitimber  launching a DDoS attack; (2) probe the quiescent host amdathe
of hops traversed by an IP packet is determined solely byaiggng ~ latest value of its IP identification field of the header [4&]; send a
infrastructure. Assuming the same initial TTL valuéor all Inter-  spoofed packet containing a legitimate request with thespant IP
net hosts, a packet from a flooding source, whichzifiops away address as the source IP address to the victim with a temiattial
from the victim, has a final TTL value df—h,. In order for the TTL; (4) re-probe the quiescent host and check if its IP ID imas
attacker to generate spoofed packets from this floodingcsowith-  creased by more than one. If it has, this indicates that tttewhas
out being detected, the attacker must change the initial ¥lue  accepted the spoofed packet and the initial TTL is the désire?

of each packet o =1— (hs — hz), wherehs is the hop-count from  Otherwise, the attacker will change the initial TTL valuelaapeat
the spoofed IP address to the victim. Each spoofed packeldwouthe above probing procedure. Although it is possible to iobitae
have the correct final TTL valué— (hs—h;) —h; =1 —hs, whenit  appropriate initial TTL for a single IP address, probing tieole
reaches the victim. random address space requires an excessive amount of tihed-an

An attacker can easily learn the hop-count,from a zombie site  fort. First, an attacker has to launch a DDoS attack that ragsiong
to the victim by running r acer out e. However, randomly select- enough to accommodate a large number of probes, or launcaraum
ing the source address for each spoofed IP packet [12, 13sriak ous short-lived DDoS attacks to accommodate all probinigities.
extremely difficult, if not impossible, for the attacker galnhs. To  Even if the attacker probes only one host per stub networtk thie
obtain the correchs values for all spoofed packets sent to the vic- Internet containing tens of millions of stub networks, itlificult to
tim, the attacker has to build priori an IP2HC mapping table that hide during this process of TTL probing. Second, the attaokest
covers the entire random IP address space. This is much rifere densure an IP address remains quiescent during the probimze tBe
ficult than building an IP2HC mapping table at the victimcgrthe  attacker cannot prevent the probed IP address from becautivg,
attacker cannot observe the final TTL values of normal traffitie  he or she can easily misinterpret an increase of the IP ID eu@b
victim. For an attacker to build such an IP2HC mapping tafeegr  the forged initial TTL being correct.
she may have to compromise at least one end-host behindsuéry Without compromising end-hosts, an attacker may compupe ho
network whose IP addresses are in the random IP address apdce counts of to-be-spoofed IP addresses based on an accuudte ro
performt r acer out e to geths for the corresponding IP2HC map- level topology of the Internet, and the underlying routitgpaithms
ping entry. Without correchs values, an attacker cannot fabricate and policies. The recent Internet mapping efforts such tesriat
the appropriate initial TTL values to conceal forgery.

Without compromising end-hosts, it may be possible for an at“lf the victim accepts the spoofed packet, a response woulgbe

tacker to probe thbs value for a given IP address if it is not sending 5 ihe quiescent host, causing it to generate a response|jiketga
any packets to the network. The probing procedure workslas¥&l  RST, and increase the IP ID number by one.




Map [9], Mercator [21], Rocketfuel [40], and Skitter [10]qjects,
may make the approach plausible. However, the current aggol
mappings put together snapshots of various networks nehsur
different times. Thus-produced topology maps are genetilie-
averaged approximations of actual network connectivitprd/im-
portantly, inter-domain routing in the Internet is polibgsed, and
the routing policies are not disclosed to the public. Thépahd
therefore the hop-count, between a source and a destiriatiter
termined by routing policies and algorithms that are ofteknown.
Even if an attacker has accurate information of the Intetopol-
ogy, he or she cannot obtain the correct hop-counts baseetaork
connectivity alone. We believe that the quality of networips will
improve with better mapping technology, but we do not aptité
any near-term advances that can lead to accurate hop-doasesl
on just Internet maps.

Instead of spoofing randomly-selected IP addresses, ackaitta
may choose to spoof IP addresses from a set of already-comgeo
machines that are much smaller in number thf €o that he or she
can measure alis’s and fabricate appropriate initial TTLs. How-
ever, this weakens the attacker’s ability in several wayst FEhe list
of would-be spoofed source IP addresses is greatly redwdgdh

4.1.1 A Single Source

Given a single flooding source whose hop-count to the victim i
h, let ay, denote the fraction of IP addresses that have the same hop-
count to the victim as the flooding source. Figure 6 depictshibp-
count distributions seen at a hypothetical server for beth client
IP addresses, and spoofed IP addresses generated by dlsiogie
ing source. Since spoofed IP addresses come from a singleesou
they all have an identical hop-count. Hence, the hop-coisttilou-
tion of spoofed packets is a vertical bar of width one. On ttheio
hand, real client IP addresses have a diverse hop-counibdigin
that is observed to be close to a Gaussian distribution. Thdesl
area represents those IP addresses — the fragfjorfitotal valid IP
addresses — that have the same distance to the server asotite flo
ing source. Thus, the fraction of spoofed IP addresses ématat be
detected isty,. The remaining fraction + ay, will be identified and
discarded by HCF.

The attacker may happen to choose a zombie that is 16 or 17 —
the most popular hop-count values — hops away from the viam
the flooding source. However, the standard deviations ofittesl
Gaussian distributions are still reasonably large such ttre per-
centage of IP addresses with any single hop-count value &l sm

makes the detection and removal of flooding traffic much easierejative to the overall IP address space. As shown in Se&idn

Second, source addresses of spoofed IP packets reveat#teis

even if the attacker floods spoofed IP packets from such a isomb

of compromised end-hosts, which makes IP traceback mudéreas HcE can still identify nearly 90% of spoofed IP addressesntrst

Third, the attacker must somehow probe the victim servebtain
the correct hop-counts. However, network administratorsatays
are extremely alert to unusual access patterns or probtampts;
so, it would require a great deal of effort to coordinate thabpng
attempts so as not to raise red flags. Fourth, the attackemnuuaify
the available attacking tools since the most popular thsteid at-
tacking tools, including mstream, Shaft, StacheldrahtyTH-N2k,
Trinoo and Trinity, generate randomized IP addresses irsplaee

of 232 for spoofing [12, 13]. The wide-spread use of randomness i

spoofing IP address has been verified by the “backscattetly 2],
which quantified DoS activities in the Internet.

4. EFFECTIVENESS OF HCF

We now assess the effectiveness of HCF from a statisticadlsta

point. More specifically, we address the question “whattfoacof

spoofed IP packets can be detected by the proposed HCF?” We
sume that potential DDoS victims know the complete mappigg b

tween their client IP addresses and hop-counts (to thengdiem-
selves). In the next section, we will discuss the constonotif such
mappings. We assume that, to spoof packets, the attackdwmdy
selects source IP addresses from the entire IP address, spate
chooses hop-counts according to some distribution. Witluss of
generality, we further assume that the attacker evenlydessithe
flooding traffic among the flooding sources. This analysis loan
easily extended for cases where the flooding traffic is urgwia-
tributed. To make the analysis tractable, we consider dalycshop-
counts. We will later discuss an update procedure that aptare
legitimate hop-count changes.

4.1 Simple Attacks

First, we examine the effectiveness of HCF against simpéelat
ers that spoof source IP addresses while still using theitiefétial
TTL values at the flooding sources. Most of the available DRbS
tacking tools [12, 13] do not alter the initial TTL values afgikets.

Thus, the final TTL value of a spoofed packet will bear the hop-

distributions, the mode accounts for 10% of the total IP esisies,
with the maximum and minimum of the 47 modes being 15% and
8%, respectively. Overall, HCF is very effective againgsih sim-
ple attacks, reducing the attack traffic by one order of ntagei

4.1.2 Multiple Sources

DoS attacks usually involve more than a single host, andéienc
we need to examine the case of multiple active flooding ssurks-

Bume that there ane sources that flood a total & packets, each

flooding source generat&s/n spoofed packets. Figure 7 shows the
hop-count distribution of spoofed packets sent from twoding
sources. Each flooding source is seen to generate trafficavaih-
gle unique hop-count value. Lé&t be the hop-count between the
victim and flooding sourcg then the spoofed packets from souice
that HCF can identify i%(lf aj). The fraction,Z, of identifiable

Z'}i)oofed packets generatedmffooding sources is:

El-ap)++E(1-ap)
F

l n

T i; o

This expression says that the overall effectiveness ofigawiul-
tiple flooding sources is somewhere between that of the nfest e
fective source with the largesio, and that of the least effective
sourcej with the smallestr, . Adding more flooding sources does
not weaken the HCF's ability to identify spoofed IP packe@n
the contrary, since the hop-count distribution follows €san, ex-
istence of less effective flooding sources (with snogfs) enables
the filter to identify and discard more spoofed IP packets thahe
case of a single flooding source.

4.2 Sophisticated Attackers

Most attackers will eventually recognize that it is not egloto

count value between the flooding source and the victim. Tesass merely spoof source IP addresses. Instead of using theldifau
the performance of HCF against such simple attacks, we @ensi tial TTL value, the attacker can easily randomize it for esphofed

two scenarios: single flooding source and multiple floodimgyses.

IP packet. Although the hop-count from a single flooding seun
the victim is fixed, randomizing the initial TTL values wilfeate
an illusion of packets having many different hop-count ealat the
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Figure 6: Hop-Count distribution of IP addresses with
a single flooding source.

victim server. The range of randomized initial TTL valuessid be
a subset ofli;, Ig+ hz], whereh; is the hop-count from the flood-
ing source to the victim anly is the default initial TTL value. The
starting point in this range should not be less than Otherwise,
spoofed IP packets bearing TTLs smaller ttamwill be discarded
before they reach the victim. The simplest method of geimeyati-
tial TTLs at a single source is to use a uniform distributidhe final
TTL values,Ty's, seen at the victim are — h;, wherel; represents
randomly-generated initial TTLs. Sinteis constant ant} follows

a uniform distribution]T's are also uniformly-distributed. Since the
victim derives the hop-count of a received IP packet baseitsoRy
value, the perceived hop-count distribution of the sposfauatce IP
address is uniformly-distributed.

Figure 8illustrates the effect of randomized TTLs, where- 10.
We use a Gaussian curve wjik= 15 ando = 3 to represent a typical
hop-count distribution (see Section 3.2) from real IP assles to the
victim, and the box graph to represent the perceived hoptodis-
tribution of spoofed IP addresses at the victim. The largelap be-
tween the two graphs may appear to indicate that our filteriagh-
anism is not effective. On the contrary, uniformly-distribd ran-

dom TTLs actually conceal fewer spoofed IP addresses frorh. HC

For uniformly-distributed TTLs, each spoofed source |IPreds has
the probability ¥H of having the matching TTL value, whek¢ is
the number of possible hop-counts. Consequently, for easkilple
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Figure 7: Hop-Count distribution of IP addresses with
two flooding sources.
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Figure 8: Hop-Count distribution of IP addresses with a sinde
flooding source, randomized TTL values.

hop-counth, only an/H fraction of IP addresses have correct TTL The term inside the summation simply states that qmjyfraction

values. Overall, assuming that the range of possible hoptsds
[hi, hj] wherei < j andH = j —i+ 1, the fraction of spoofed source
IP addresses that have correct TTL values, is given as:

i

Z Oh,-

=

= Op Op,
Z=—"" 4. .+
R

Note that we us& in place of 1- Z to simplify notation. In Figure 8,
the range of generated hop-counts is between 10 and 28, 0
11. The summation will have a maximum value of 1&ean be

of IP addresses with hop-couhf can be spoofed with matching
TTL values. For instance, if an attacker is able to generaiteli
TTLs based on the hop-count distribution at the victjpg, becomes
Op,. Inthis caseZ becomesZ = 57 aﬁk. Based on the hop-
count distribution in Figure 8, we can again calculdtéor m= 0
andn = 30 to be 9.4%, making this attack slightly more effective
than randomly-generating TTLs. Surprisingly, none of éhéstel-
ligent” attacks are much more effective than the simplecigan
Section 4.1.1.

5. CONSTRUCTION OF HCF TABLE

at most ¥YH = 8.5%, which is represented by the area under the We have shown that HCF can remove nearly 90% of spoofed traf-

shorter Gaussian distribution in Figure 8. In this cases tban 10%
of spoofed packets go undetected by HCF.
In general, an attacker could generate initial TTLs withimtange

fic with an accurate mapping between IP addresses and hayiscou
Thus, building an accurate HCF table (i.e., IP2HC mappitdeda
is critical to detecting the maximum number of spoofed IPkpac

[hm, hn], based on some known distribution, where the probability ofets. In this section, we detail our approach to construcimgiCF

IP addresses with hop-couhg is py,. If in the actual hop-count
distribution at the victim server, the fraction of the IP ezkbes that
have a hop-count dfi is ap,, then the fraction of the spoofed IP
packets that will not be caught by HCF is:

table. Our objectives in building an HCF table are: (1) aatar
IP2HC mapping, (2) up-to-date IP2HC mapping, and (3) mddera
storage requirement. By clustering address prefixes basémp
counts, we can build accurate IP2HC mapping tables and nisxim



HCF'’s effectiveness without storing the hop-count for eletad-
dress. Moreover, we design a pollution-proof update procethat
captures legitimate hop-count changes while foiling &#es at-
tempt to pollute HCF tables.

5.1 IP Address Aggregation

It is highly unlikely that an Internet server will receivegiémate
requests from all live IP addresses in the Internet. Alspetftire IP
address space is not fully utilized in the current InteriBt.aggre-

gating IP address, we can reduce the space requirement ldCIP2

mapping significantly. More importantly, IP address aggtiem
covers those unseen IP addresses that are co-located ot IR
addresses that are already in an HCF table.

Grouping hosts according to the first 24 bits of IP addresses i

common aggregation method. However, hosts whose netwerk pr

fixes are longer than 24 bits, may reside in different physied
works in spite of having the same first 24 hits. Thus, theséstae
not necessarily co-located and have identical hop-codr@btain
an accurate IP2HC mapping, we must refine the 24-bit aggoegat
Instead of simply aggregating into 24-bit address prefixesurther
divide IP addresses within each 24-bit prefix into smallesters

based on hop-counts. To understand whether this refineteclus

ing improves HCF over the simple 24-bit aggregation, we carap
the filtering accuracies of HCF tables under both aggregstie-
the simple 24-bit aggregation (without hop-count clustgyiand the
24-hit aggregation with hop-count clustering.

For this accuracy experiment, we treat each traceroutavgste
(Section 3.2) as a “web server,” and its measured IP addresse
clients to this web server.

the attacker knows the client IP addresses of each web sander
generates packets by randomly selecting source IP addrassmg
legitimate client IP addresses. We further assume thattthekar
knows the general hop-count distribution and uses it to igéa¢he
hop-count for each spoofed packet. This is the DDoS attaatkitie
most knowledgeable attacker can launch without learniegettact
IP2HC mapping, i.e., the best scenario for the attacker.

We define the filtering accuracy of an HCF table to be the per

centages of false positives and false negatives. Falstvessare
those legitimate client IP addresses that are incorredétified as
spoofed. False negatives are spoofed packets that go aotetetsy

HCF. Both should be minimized in order to achieve maximum fi

tering accuracy. We compute the percentage of false pesitis the
number of client IP addresses identified as spoofed divigethé
total number of client IP addresses. We compute the pemernth
false negatives according to the calculation in Section 4.2

5.1.1 Aggregation into 24-bit Address Prefixes

We build an HCF table based on th
set of client IP addresses at each web server and evaluafé-the
tering accuracy under each aggregation method. We assuwahe t
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Figure 9: Accuracies of various filters. (Note that the poins of
24-hit clustering filtering overlap with those of 32-bit filtering.)

addresses into 24-bit network addresses does not chandmphe
count distribution significantly. Thus, the 24-bit stridtdring yields
a similar percentage of false negatives for each web serteetcase
of storing individual IP addresses (32-bit Strict Filteyim the fig-
ure). On the other hand, percentage of false positives iisfisigntly
higher in the case of aggregation as expected. Figure Orpsete
gombined false positive and false negative results fortthestfilter-

Ing schemes. The-axis is the percentage of false negatives, and the
I;(-axis is the percentage of false positives. Each point irfithee

represents the pair of percentages for a single web sereerex-
ample, under “24-bit Strict Filtering,” most web server§auabout
10% of false positives, while only 5% of false negatives. Asrelax
the filtering criterion, false positives are halved whilksénegatives
approximately doubled. Clearly, tolerating packets witisnmatch-
ing hop-counts requires to make a trade-off between peagentf
false positives and that of false negatives. Overall, +fiefilg of-
fers a reasonable compromise between false negativeslaagtes-
itives. Considering the impact of DDoS attacks without HEStnall
percentage of false positives may be an acceptable pricayto p
In practice, 24-bit aggregation is straightforward to iempent and

|-can offer fast lookup with an efficient implementation. Assog

a one-byte entry per network prefix for hop-count, the stersg
quirement is 24 bytes or 16 MB. The memory requirement is mod-
est compared to contemporary servers which are typicalljpped
with multi-gigabytes of memory. Under this setup, the lgpkyper-
ation consists of computing a 24-bit address prefix from thee
IP address in each packet and indexing it into the HCF tabliedo

For each web server, we build an HCF table by grouping its #P adt"€ right hop-count value. For systems with limited memarg, ag-

dresses according to the first 24 bits. We use the minimunchbapt
of all IP addresses inside a 24-bit network address as theonut
of the network. After the table is constructed, each IP akli®econ-
verted into a 24-bit address prefix, and the actual hop-cofitiie
IP address is compared to the one stored in the aggregatedth@r t
Since 24-bit aggregation does not preserve the correctthopts
for all IP addresses, we examine the performance of threestgp
filters: “Strict Filtering,” “+1 Filtering,” and “+2 Filteing.” “Strict
Filtering” drops packets whose hop-counts do not matchetbtmred
in the table. “+1 Filtering” drops packets whose hop-coudiffer
by greater than 1 compared to those in the table, and “+2ririite
drops packets whose hop-counts differ by greater than two.

gregation table can be implemented as a much smaller hakh-ta
While 24-bit aggregation may not be the most accurate, aepitat
is a good and deployable solution.

5.1.2 Aggregation with Hop-Count Clustering
Under 24-bit aggregation, the percentage of false negaisvetill

high (~15%) if false positives are to be kept reasonably small. Base

on hop-count, one can further divide IP addresses withih 2debit
prefix into smaller clusters. By building a binary aggregatiree it-
eratively from individual IP addresses, we cluster IP asisies with
same hop-count together. The leaves of the tree represe5th
(254 to be precise) possible IP addresses inside a 24-bitssigre-

We have shown in Section 4.2 that percentage of false negativfix. In each iteration, we examine two sibling nodes and deitez

is determined by the distribution of hop-counts. Aggrematf IP

whether we can aggregate IP addresses behind these twa Wéeles
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Figure 11: Sizes of various HCF tables.

Figure 10: An example of hop-count clustering. i .
count, or distance from a client to a server can change asu#t res

] of relocation of networks, routing instability, or temporanetwork
will aggregate the two nodes as long as they share a common hojjyres. Some of these events are transient, but changepinount
count, or one of them is empty. If aggregate is possible, #1em e 1o permanent events need to be captured.
node will have the same hop-count as the children. We carfitiils  \yhile adding new IP2HC entries or capturing legitimate lcopint
the largest possible aggregation for a given set of IP addges™ig-  changes, we must foil attackers’ attempt to slowly pollu@FHa-
ure 10 shows an example of clustering a set of IP addressés (Wipjes by dropping spoofed packets. One way to ensure thatlenly
the last octets shown) by their hop-counts using the aggcegiee  gitimate packets are used during initialization and dyrmaugidate
(showing the first four levels). For example, the IP addrese, s through TCP connection establishment, an HCF table ehioel
128 to 245, is aggregated into a 128/25 prefix with a hop-colint pqated only by those TCP connections ineisé abl i shed state
20, and the three IP addresses, 79, 105, and 111 are aggr#a®  [44]. The three-way TCP handshake for connection setupinesju
64/26 prefix with a hop-count of 20. However, we cannot aglig  the active-open party to send an ACK (the last packet in theeth
these two blocks further up the tree due to holes in the addfce.  \yay handshake) to acknowledge the passive party’s inigiglisnce
We are able to aggregate 11 of 17 IP addresses into four netwopymber. The host that sends the SYN packet with a spoofed-IP ad
prefixes. The remaining IP addresses must be stored asdod P ress will not receive the server's SYN/ACK packet and trarsnot
addresses. _ complete the three-way handshake. Using packets fromlissteth

With hop-count-based clustering, we never aggregate IRadés  Tcp connections ensures that an attacker cannot slowlytpain
that do not share the same hop-count. Hence, we can elini@isée  HcF taple by spoofing source IP addresses. While the HCF mecha
positives when all clients of a server are known as in Figuid®F  ism works for all types of IP traffic, the update proceduresusnly
will be free of false positives as long as the table is updatiéithe  Tcp traffic.
correct hop-counts when client hop-counts change. Furtbwe, un- While our dynamic update provides safety, it may be too expen
der hop-count clustering, we observe no noticeable inergefalse  gjye to inspect and update an HCF table with each newly-stiad
negatives compared to the approach of 32-bit Strict FilteriThus,  tcp connection, since our update function is on the criticah of
one cannot see the difference in Figure 9 due to their havintigs  TCp processing. We provide a user-configurable paramesetjtist
numbers of false positives and negatives. Compared to tHBt24 the frequency of update. The simplest solution would be tmtaim
aggregation, the clustering approach is more accuratednstees 5 counterp that records the number of established TCP connections
more memory. Figure 11 shows the number of table entrieslifor agjnce the last reset gf. We will update the HCF table using packets
web servers used in our experiments. Kkeis is the ID of the web  pe|onging to everk-th TCP connection and respto zero after the
server ranked by the number of client IP addresses, angtdlies is  pgate.p can also be a function of system load and hence, updates
the number of table entries. In the case of 32-bit StriceFiilig, the  3re made more frequently when the system is lightly-loaded.
number of table entries for each server is the same as theenwhb We note that mapping updates may require re-clusteringtwhic
client IP addresses. We observe that the hop-count-basstthg  may preak up a node or merge two adjacent nodes on a 24-hit tree
increases the size of HCF table, by no more than 20% in allheit 0 Re clustering is a local activity, which confines itself teiagle 24-
case (36%). bit tree. Moreover, since hop-count changes are not a fregqvent

. e . in the network as reported in [32] and confirmed by our own Bbse

5.2 Pollution-Proof Initialization and Update vations, the overhead incurred by re-clustering is nelgjlégi

To populate the HCF table initially, an Internet server st@ol-
lect traces of its clients that contain both IP addressestandorre-
sponding TTL values. The initial collection period shouk dbm- 6. RUNNING STATES OF HCF
mensurate with the amount of traffic the server is receivifgt a Since HCF causes delay in the critical path of packet praugsis
very busy site, a collection period of a few days could be ceffit,  should not be active at all time. We therefore introduce twming
while for a lightly-loaded site, a few weeks might be morerappi-  states inside HCF: thalert state to detect the presence of spoofed
ate. packets and thaction state to discard spoofed packets. By default,

Keeping the IP2HC mapping up-to-date is necessary for der fil HCF stays in alert state and monitors the trend of hop-cdusmges
to work in the Internet where hop-counts may change. The hopwithout discarding packets. Upon detection of a flux of spdof



In alert state:
for eachsampledpacketp:
spoof=IP2HC.Inspectf);
t = Averagegépoof);

if (spoof)
if(t>T1)
Switch Action();
Accept();

for thek-th TCP control blockch:
UpdateTablefchby);

In actionstate:
for each packep:
spoof=IP2HC Inspectf);
t = Average$poof);
if (spoof)
Drop(p);
elseAccept(p);

if(t<T2)
Switch Alert();

Figure 12: Operations in two HCF states.

packets, HCF switches to action state to examine each paokiet
discards spoofed IP packets. In this section, we discusiettads of
each state and show that having two states can better pseteetrs
against different forms of DDoS attacks.

6.1 Tasks in Two States

tions. If the server is lightly-loaded, HCF calls for IP2H&pection
and dynamic update more frequently by reducing user-cordige
parametersk andx. In contrast, for a heavily-loaded server, both
k andx are increased. The two threshol@sandT,, used for de-
tecting spoofed packets, should also be adjusted basecddnThe
general guideline for setting execution rates and threlsheith the
dynamics of server’s workload is given as follows:

Load / = Rates\, = Threshold\,

Currently, however, we only recommend these parameteesiiedr-
configurable. Their specific values depend on the requiremin
individual networks in balancing security and performance

6.2 Staying “Alert” to DRDoS Attacks

Introduction of the alert state not only lowers the overhe&d
HCF, but also makes it possible to stop other forms of Do kdta
In DRDoOS attacks, an attacker forges IP packets that cotegitz
imate requests, such as DNS queries, by setting the sourad-IP
dresses of these spoofed packets to the actual victim’s direasl
The attacker then sends these spoofed packets to a largeenofnb
reflectors. Each reflector only receives a moderate flux obfggb
IP packets so that it may easily sustain the availability®ohbrmal
service, thus not causing any alert. The usual intrusioratien
methods based on the ongoing traffic volume or access paittean
not be sensitive enough to detect the presence of such spwafe
fic. In contrast, HCF specifically looks for IP spoofing, so itlw
be able to detect attempts to fool servers into acting asctefke
Although HCF is not perfect and some spoofed packets may stil
slip through the filter, HCF can detect and intercept enougihe
spoofed packets to thwart DRDoS attacks. We would like tatpoi
out that an attacker may evade detection if he knows the baptc
mapping from reflectors to a victim as discussed in Secti8n 3.

6.3 Blocking Bandwidth Attacks

To protect server resources such as CPU and memory, HCF can be

Figure 6.1 lists the tasks performed by each state. In the aleinstalled at a server itself or at any network device neass#rgers,

state, HCF performs the following tasks: sample incomingkpa
ets for hop-count inspection, calculate the spoofed packenter,
and update the IP2HC mapping table in case of legitimatedooit
changes. Packets are sampled at exponentially-distdbotervals

i.e., inside the ‘last-mile’ region, such as the firewall of @rgani-
zation. However, this scheme will not be effective againBbB at-
tacks that target the bandwidth of a network to/from theeerVhe
task of protecting the access link of an entire stub netwsnkare

with meanm in either time or the number of packets. The exponen-complicated and difficult because the filtering has to beiagpt

tial distribution can be precomputed and made into a loolalgbet
for fast on-line access. For each sampled packet, IPRtd@ect()

returns a binary numbexpoof, depending on whether the packet is

judged as spoofed or not. This is then used by Average() tgaten
an average spoof counteper unit time. Whert is greater than a

the upstream router of the access link, which must involeestiab
network’s ISP.

The difficulty in protecting against bandwidth flooding istipacket
filtering must be separated from detection of spoofed packethe
filtering has to be done at the ISP’s edge router. One or more ma

thresholdT;, HCF enters the action state. HCF in alert state willchines inside the stub network must run HCF and actively kvatc

also update the HCF table using the TCP control block of ekehy
established TCP connection.

HCF in action state performs per-packet hop-count inspeetnd
discards spoofed packets, if any. HCF in action state padoa
similar set of tasks as in alert state. The main differencestaat
HCF must examine every packet (instead of sampling only aetub
of packets) and discards spoofed packets. HCF stays imasttite
as long as spoofed IP packets are detected. When the ongiofj s
ing ceases, HCF switches back to alert state. This is acisimepl
by checking the spoof countermgainst another threshold, which
should be smaller thamy; for better stability. HCF should not al-
ternate between alert and action states wihftuctuates aroundy.
Making the second threshold < T, avoids this instability.

for traces of IP spoofing by always staying in the alert stdter
complete protection, the access router should also run HECBEsSe
attacking traffic terminates at the access router. This eascbom-
plished by substituting a regular end-host configured asigeroln
addition, at least one machine inside the stub network needsin-
tain an updated HCF table since only end-hosts can seeishtbl
TCP connections. Under an attack, this machine shouldyntbte
network administrator who then coordinates with the ISmigtéll a
packet filter based on the HCF table on the ISP’s edge router.
Our two running-state design makes it natural to separaseth
two functions — detection and filtering of spoofed packetgufFe
13 shows a hypothetical stub network that hosts a web semagr t
runs HCF. The stub network is connected to its upstream I&P vi

To minimize the overhead of hop-count inspection and dynamian access router and the ISP’s edge router. Under normabretw

update in alert state, their execution frequencies aret@egpcho-
sen to be inversely proportional to the server’'s workloac Méa-
sure a server's workload by the number of established TCRemn

condition, the web server monitors its traffic and builds @&F ta-
ble. When attack traffic arrives at the stub network, HCF atvtieb
server will notice this sudden rise of spoofed traffic anainf the
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Figure 13: Packet filtering at a router to protect bandwidth.

network administrator via an authenticated channel. Theiridtra-
tor can have the ISP install a packet filter in the ISP’s edggerp
based on the HCF table. Note that one cannot directly use @fe H
table since the hop-counts from client IP addresses to thesesver
are different from those to the router. Thus, all hop-counged to
be decremented by a proper offset equal to the hop-counteketw
the router and the web server. Once the HCF table is enabled
the ISP’s edge router, most spoofed packets will be intéeck@nd
only a very small percentage of the spoofed packets thatrsiipigh
HCF, will consume bandwidth. In this case, having two separa
states is crucial since routers usually cannot observbledtad TCP
connections and use the safe update procedure.

7. RESOURCE SAVINGS

This section details the implementation of a proof-of-aptdHCF
inside the Linux kernel and presents its evaluation on atessibed.
The two concerns we addressed are the per-packet overhebziof

with HCF [ without HCF

scenarios avg [ min avg min
TCPSYN 388 | 240 || 7507 | 3664
TCPopen+cl ose || 456 | 264 || 18002 | 3700
pi ng 64B 396 | 240 || 20194 | 3604

pi ng 1500B 298 | 124 || 35925| 2436

pi ng flood 358 | 256 || 20139 | 3616
TCP bulk 4437 168 ] 6538 | 3700
UDP bulk 490 | 184 || 6524 | 3628

Table 2: CPU overhead of HCF and normal IP processing.

To implement the HCF-table update, we insert the functidh ca
into the kernel TCP code past the point where the three-wag-ha
shake of TCP connection is completed. For eveth established
TCP connection, the update function takes the argumeneafdhrce
IP address and the final TTL value of the ACK packet that coteple
the handshake. Then, the function searches the HCF talde fen-
try that corresponds to this source IP address, and wileeiker-
write the existing entry or create a new entry for a first-tirrgtor.

7.2 Experimental Evaluation

tFor HCF to be useful, the per-packet overhead must be much
%wer than the normal processing of an IP packet. We exarhi@e t
per-packet overhead of HCF by instrumenting the Linux ketoe
time the filtering function as well as the critical path in pessing IP
packets. We use the built-in Linux maardt scl to record the ex-
ecution time in CPU cycles. While we cannot generalize opeex
imental results to predict the performance of HCF under P&2bS
attacks, we can confirm whether HCF provides significantueso
savings.

We set up a simple testbed of two machines connected to a 100
Mbps Ethernet hub. A Dell Precision workstation with 1.9 GPn-
tium 4 processor and 1 GB of memory, simulates the victimeserv

and the amount of resource savings when HCF is active. Ouwr mewhere HCF is installed. A second machine generates varjpest
surements show that HCF only consumes a small amount of CPtf IP traffic to emulate incoming attack traffics to the victi@rver.

time, and indeed makes significant resource savings.

7.1 Building the Hop-Count Filter

To minimize the effect of caches, we randomize each hashdey t
simulate randomized IP addresses to hit all buckets in thie tadole.
For each hop-count look-up, we assume the worst case séaeh t

To validate the efficacy of HCF in a real system, we implementThe search of a 24-bit address prefix traverses the entireathhst

a test module inside the Linux kernel. The test module reside
the IP packet receive functionp_r cv. To minimize the CPU cy-
cles consumed by spoofed IP packets, we insert the filteuimction
before the code segment that performs the expensive chrackesu
ification. Our test module has the basic data structureswamadibns
to support search and update operations to the hop-courgingap

of 11 entries, and the hop-count lookup within the 24-bifigrea-
verses the entire depth of the tree.

We generate two types of traffic, TCP and ICMP, to emulate flood
ing traffics in DDoS attacks. In the case of flooding TCP traffie
use a modified version dfcpt r acer out e [1] to generate TCP
SYN packets to simulate a SYN flooding attack. In addition, we

The hop-count mapping is organized as a 4096-bucket hakh talalso repeatedly open a TCP connection on the victim machide a

with chaining to resolve collisions. Each entry in the hafid rep-
resents a 24-bit address prefix. A binary tree is used toerlhsists
within each 24-bit address prefix. Searching for the hopatotian
IP address consists of locating the entry for its 24-bit agsliprefix
in the hash table, and then finding the proper cluster thalRtsel-
dress belongs to on the tree. Given an IP address, HCF cosipate
hash key by XORing the upper and lower 12-bits of the first 2¢ bi
of the source IP address. Since 4096 is relatively small emetpto
the set of possible 24-bit address prefixes, collisionsiketylto oc-
cur. To estimate the average size of a chained list, we hastligmt
IP addresses from [11] into the 4096-bucket hash table totfiat)
on average, there are 11 entries on a chain, with the maxineimg b
25. We build the clustering tree by choosing a minimum chiste
unit of four IP addresses so the tree has a depth of $ix=(84).
This tree can then be implemented as a linear array of 127eglsm
Each element in the array stores the hop-count value of &plart
clustering. We set the array element to be the hop-countigteting
is possible, and zero otherwise.

close it right away, which includes sending both SYN and Fagkp
ets. Linux delays most of the processing and the establishofi¢he
connection control block until receiving the final ACK froimethost
that does the activepen. Since the processing to establish a con-
nection is included in ouopen + cl ose experiment, the mea-
sured critical path may be longer than thatin a SYN floodingckt
To emulate ICMP attacks, we run three experiments of siatgleam
pi ngs. The first uses default 64-byte packets, and the second uses
1500-byte packets. In both experiments, packets are s¢@tas in-
tervals. The third experiment uspsng flood (pi ng - f) with the
default packet size of 64 bytes and sends packets as fast agsth
tem can transmit. To understand HCF's impact on normal ifidra
we also consider bulk data transfers under both TCP and URP. W
compare the per-packet overhead without HCF with the pekgia
overhead of the filtering function in Table 2.

We present the recorded processing times in CPU cycles in Ta-
ble 2. The column under 'with HCF' lists the execution timéste
filtering function. The column under ‘without HCF' lists tm@rmal
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Figure 14: Resource savings by HCF.

packet processing times without HCF. Each row in the talpeere
sents a single experiment, and each experiment is run wihnge |

8. RELATED WORK

Researchers have used the distribution of TTL values sesamagdrs
to detect abnormal load spikes due to DDoS traffic [34]. ThedRa
team at Bindview built Despoof [2], which is a command-lingia
spoofing utility. Despoof compares the TTL of a received pack
that is considered “suspicious,” with the actual TTL of a feecket
sent to the source IP address, for verification. HoweverpbBefsre-
quires the administrator to determine which packets shioeileikam-
ined, and to manually perform this verification. Thus, the pecket
processing overhead is prohibitively high for weeding quaafed
traffic in real time.

In parallel with, and independent of our work, the posdipibf
using TTL for detecting spoofed packet was discussed in [AR¢ir
results have shown that the final TTL values from an IP addwess
predictable and generally clustered around a single vaih&h is
consistent with our observation of hop-counts being maostéple.
However, the authors did not provide a detailed solutionirega

number ¢ 40,000) of packets to compute the average number of cyspoofed DDoS attacks. Neither did they provide any anatyisise
cles. We present both the minimum and the average numbeese Th effectiveness of using TTL values, nor the constructiomjaie, and

exists a difference between average cycles and minimunesyot

deployment of an accurate TTL mapping table. In this paper, w

two reasons. First, some packets take longer to processothan - examine both questions and develop a deployable solution.
ers, e.g., a SYN/ACK packet takes more time than a FIN packet. There are a number of recent router-based filtering techsido

Second, the average cycles may include lower-level inpénouo-
cessing, such as input processing by the Linux Etherne¢drive
observe that, in general, the filtering function uses sigaifily fewer
cycles than the emulated attacking traffic, generally apooéimag-
nitude less. Consequently, HCF should provide significasburce
savings by detecting and discarding spoofed traffic. In chsrilk
data transfers, the differences are also significant. Hewéve pro-
cessing of packets in bulk data transfers takes fewer cyicéesthe
emulated attack traffic. We attribute this to TCP header iptied
and UDP’s much simpler protocol processing. It is fair to Hat
the filtering function adds only a small overhead to the pseg of
legitimate IP traffic. However, this is by far more than comgsgted
by not processing spoofed traffic.

To illustrate the potential savings in CPU cycles, we coraphé
actual resource savings we can achieve, when an attackehlesia
spoofed DDoS attack against a server. Given attack andneqé

lessen the effects of DDoS packets or to curb their propagstin
the Internet. As a proactive solution to DDoS attacks, tliéteging
schemes [15, 25, 31, 45], which must execute on IP routesdyoon
routers’ markings, have been proposed to prevent spoofpddieets
from reaching intended victims. The most straightforwanitesne is
ingress filtering[15], which blocks spoofed packets at edge routers,
where address ownership is relatively unambiguous, affitti@ad
is low. However, the success of ingress filtering hinges smwitle-
deployment in IP routers. Most ISPs are reluctant to implerttas
service due to administrative overhead and lack of immediane-
fits to their customers.

Given the reachability constraints imposed by routing agtavork
topology, route-based distributed packet filtering (DPFH)] [utilizes
routing information to determine whether an incoming packea
router is valid with respect to the packet’s inscribed sewand des-
tination IP addresses. The experimental results repantgi] show

traffic, a andb, in terms of the fraction of total traffic per unit time, thata significant fraction of spoofed packets may be filtenggland
the average number of CPU cycles consumed per packet withotiose spoofed packets that DPF fails to capture, can bédeddhto
HCF isa-tp +b-t., wheretp andt_ are the per-packet process- five candidate sites which are easy to trace back.

ing times of attack and legitimate traffic, respectively.eTdverage
number of CPU cycles consumed per packet with HCF is:

(1—a)-a-tpp +a-a-tp+b- (t. +t )

To validate that an IP packet carries the true source address
SAVE [25], a source address validity enforcement protdooilds a
table of incoming source IP addresses at each router thatiatss
each of its incoming interfaces with a set of valid incomimgwork
addresses. SAVE runs on each IP router and checks whether eac

with tpr andt g being the filtering overhead for attack and le- IP packet arrives at the expected interface. By matchingniicg
gitimate traffic, respectively, and the percentage of attack traffic IP addresses with their expected receiving interfacess¢hef 1P

that we cannot filter out. Let's also assume that the attackes

source addresses that any attacker can spoof are greattyeced

64-bytepi ng traffic to attack the server that implements HCF. The Based on IP traceback marking, Path Identifier (Pi) [45] etsbe

results for various, b, anda parameters are plotted in Figure 14. a path fingerprint in each packet so that a victim can iderslfy
Thex-axis is the percentage of total traffic contributed by theodSD packets traversing the same path across the Internet, exémoke
attack, namela. They-axis is the number of CPU cycles saved aswith spoofed IP addresses. Instead of probabilistic matki's
the percentage of total CPU cycles consumed without HCFfihe marking is deterministic. By checking the marking on eactkpg

ure contains a number of curves, each corresponding to\atue.
Since the per-packet overhead of the DDoS traffic (20,19#juish
higher than TCP bulk transfer (6,538), the percentage oDibeS

traffic that HCF can filter(1— a), essentially becomes the sole de-

termining factor in resource savings.

As the composition of total traffic varies, the percentageesburce
savings remains essentially the samélas a).

the victim can filter out all attacking packets that match pia¢h
signatures of already-known attacking packets. Piis tffeeven if
only half of the routers in the Internet participate in paakarking.

There already exist commercial solutions [22, 29] that blte
propagation of DDoS traffic with router support. Howevee thain
difference between our scheme and the existing approastésti
HCF is an end-system mechanism that does not requiy@etwork
support. This difference implies that our solution is imnagely
deployable in the Internet.



9. CONCLUSION AND FUTURE WORK [17]
In this paper, we present a hop-count based filtering scheate t (18]

detects and discards spoofed IP packets to conserve syegenrces. [19]

Our scheme inspects the hop-count of each incoming packetito

date the legitimacy of the packet. Using moderate amouribcdige,  [20]

HCF constructs an accurate IP2HC mapping table via IP asldiggs
gregation and hop-count clustering. A pollution-proof imatism
initializes and updates entries in the mapping table. BulefHCF
stays inalert state, monitoring abnormal IP2HC mapping behaviorg22]
without discarding any packet. Once spoofed DDoS traffices d 23]
tected, HCF switches tactionstate and discards most of the spoofed
packets.

By analyzing actual network measurements, we show that HCR4]
can remove 90% of spoofed traffic. Moreover, even if an agack
aware of HCF, he or she cannot easily circumvent HCF. Our ex[-zs]
perimental evaluation has shown that HCF can be efficiemtly i
plemented inside the Linux kernel. Our analysis and expemtal
results have indicated that HCF is a simple and effectivatisni
in protecting network services against spoofed IP packetsther-
more, HCF can be readily deployed in end-systems since & doe
require any network support.

[21]

[26]

[27]

There are several issues that warrant further researdt, thie ex- (28]
istence of NAT (Network Address Translator) boxes, each luittv
may connect multiple stub networks, could make a single e  [29]
appear to have multiple valid hop-counts at the same timewilVe 0]

need experimental studies to understand the effectiveid¢$SF in
the presence of NAT. Second, to install the HCF system attavic
site for practical use, we need a systematic procedure fingé¢he
parameters of HCF, such as the frequency of dynamic updBtes.
nally, we would like to build and deploy HCF in various neti®to
see how effective it is against real spoofed DDoS traffics.
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