
PmDroid: Permission Supervision for Android
Advertising

Xing Gao1,2, Dachuan Liu1,2, Haining Wang1, Kun Sun2
1University of Delaware

2College of William and Mary
{xgao,dachuan,hnw}@udel.edu, ksun@wm.edu

Abstract—It is well-known that Android mobile advertising
networks may abuse their host applications’ permission to collect
private information. Since the advertising library and host app
are running in the same process, the current Android permission
mechanism cannot prevent an ad network from collecting private
data that is out of an ad network’s permission range. In this
paper, we propose PmDroid to protect the data that is not under
the scope of the ad network’s permission set. PmDroid can block
the data from being sent to advertising servers at the occurrence
of permission violation in ad networks. Moreover, we utilize
PmDroid to assess how serious the permission violation problem
is in the ad networks. We first implement 53 sample apps using
a single ad network library. We grant all permissions of Android
4.3 to these apps and record the data sent to the Internet. Then,
we further analyze 430 published market apps. In total, there
are 76 ad networks identified in our experiments. We compare
the permission of data received by these ad networks with their
official documents. Our experimental results indicate that the
permission violation is a real problem in existing ad network
markets.

I. INTRODUCTION

Mobile advertising has become a multi-billion dollar indus-
try in the past few years [4]. It is now growing six times
faster than desktop advertising with an average 50% increase
every year [3]. The Android advertising market is blooming
as most Android applications are free. To earn revenue, free
app developers display advertisements in their apps. Normally,
mobile advertising networks collect advertisements from the
advertisers and publish Software Development Kit (SDK) li-
braries for mobile app developers to display the ads with APIs.
To use the advertising service, developers simply incorporate
those ad libraries into their apps. Once installed, both apps
and advertisements are running in the same process, and users
cannot kill or uninstall ads without affecting the original apps.

In Android, applications need to declare permissions to
access the corresponding sensitive information or perform spe-
cific actions. Permissions are predefined in the app’s Android-
Manifest.xml file and need to be granted by the user during the
app installation. In this paper, we call these app permissions.
To utilize the resources and the functions of a mobile phone, ad
libraries also need permissions. For example, the ad network
needs the INTERNET permission to access networks. The
permissions, which ad SDK libraries need in app development,
are identified in the documents accompanying the library
publishing. We call these permissions ad permissions. The
app developers have to add the permissions requested by ad

libraries into their AndroidManifest.xml, which means the
XML file contains both ad permissions and app permissions.
As a result, the ad libraries can also access the data and APIs
granted by the app permissions.

The application usually contains different permissions than
those requested by ad libraries. This could cause privacy prob-
lems since ad libraries can use app permissions to collect user
private information. The information collected from mobile
users can be mined to provide better advertisements and thus
potentially increase ad income. For instance, an ad network
could collect location information to provide location-based
advertisements. Phone numbers and IMEI numbers may be
collected to track users. Moreover, browser history or contact
information can help provide customized advertisements based
on a user’s interest. Although ad networks can request as
many permissions as they want to collect user information,
users may not agree to install an app if it asks for a plethora
of dangerous permissions. Since undue ad permissions could
decrease app developers’ willingness to use the SDK libraries,
many ad networks are prone to requesting a minimum set of
permissions.

However, ad networks can still misuse the app permissions.
Ad libraries can simply probe the permissions of the app
that are not mentioned in their documents [13]. If the app
does not have such a permission, Android will throw a
SecurityException. The ad networks’ SDKs can just catch
this exception without any other action. Once the ad libraries
detect the permission, they can use the permission to collect
sensitive information and send it to remote servers. It is
reported that more than half of the current ad libraries try
to probe permissions [13].

In this paper, we focus on the problem that ad networks
attempt to probe their host apps’ permissions and misuse
them to leak private information. We call this the permission
violation problem. The Android permission system will inform
users of the risk of permissions that the apps request. Once
users understand it and grant the permissions to the apps, the
ad library can use the permissions declared in their docu-
ments to collect information corresponding to the permissions.
However, the ad components should not be allowed to send
sensitive information protected by other permissions into ad
networks. In other words, our goal is to prevent sensitive
information protected by app permissions from being collected
by ad networks.

The basic idea of our work is to track the private data in
mobile phones and block it from being sent to ad networks
using app permissions. We utilize the TaintDroid [10], which
is an extension of Android, to track the flow of sensitive data
dynamically in the system. However, we want to make our
system as general and comprehensive as possible. We design
our system to work in an advertising scenario and protect any
private information from being sent to the network. Also, we
aim to shield as much data protected by Android permissions
as possible. To achieve these two goals, we need to uncover the
relationship between data and permissions of Android systems.
Though there is no official document, we use PScout [6] to
build a permission-API mapping in our work. Based on the
analysis of the mapping and Android official documents, we
reveal that more than 30 permissions relate to sensitive data.
By attaching taint to those sensitive data, we built PmDroid
to protect information from being stolen by ad networks.

We also use PmDroid to investigate how serious the per-
mission violation problem is. Two sets of experiments are
conducted to measure the data sent to advertising servers. In
the first set of experiments, both in-house apps with an ad
SDK developed by ourselves and sample apps provided by ad
networks are tested. We give all the Android 4.3 permissions to
those apps. In the second set of experiments, we test a number
of real apps from Google Play. The experimental results show
that the permission violation problem does exist among the
commercial ad libraries. Although it has not yet been widely
exploited, such a problem could become a serious risk to
mobile users’ privacy.

In this paper, we make the following major contributions:
• We propose PmDroid to protect Android apps from

the permission violation problem. PmDroid can block
the data delivery to ad servers if apps send sensitive
information beyond ad permissions.

• We perform extensive experiments using PmDroid to
show that the permission violation is a real problem in
ad networks.

• We study the impact of such a problem and provide
several insightful observations.

The remainder of the paper is organized as follows. We
describe the background information and related work in
Section II. In Section III, we detail the architecture and
implementation of PmDroid. We present our experiments in
Section IV and study the impact in Section V. We discuss the
permission violation problems observed in the experiments in
Section VI. Finally, we conclude the paper in Section VII.

II. BACKGROUND AND RELATED WORK

A. Android and Android Permissions

Android is a privilege-isolated mobile phone operating
system based on the Linux kernel. Applications in Android
run with distinct system identity in separate processes. Thus,
they are isolated from one another and the Android system
framework. For the sake of security, each application runs in
a sandbox and can only access limited resources by default.

Android makes use of a permission mechanism to protect
sensitive data and important functions. If an application wants
to acquire sensitive information or APIs such as the location
data or camera function, it must declare the corresponding
permissions in the manifest file. All dangerous permissions
claimed in the manifest file will be displayed on the screen
during the app’s installation. Only after the permissions are
granted by a user, can the app then call protected APIs or
access the sensitive data.

Android defines more than 100 permissions and classifies
them with “normal,” “dangerous,” “signature” and “signature-
OrSystem.” If an application is signed with the same certificate
as some others, it can acquire the permissions declared by
those apps in category “signature.” The permissions belonging
to “signatureOrSystem” are similar to those of “signature.” The
difference is that they could also be used by the applications
in the Android system image. Permissions from these two
levels are not available to third-party applications; therefore,
we focus on the regular permissions tagged as “normal” and
“dangerous.” Note that “normal” is the default value and
contains low-risk permissions. Permissions in “dangerous” are
more important and allow the applications to access private
information.

The permissions needed by applications in Android are
usually different from those requested by ad libraries. Once
incorporating an ad library, the app will share the same
permissions with the advertising SDK because they run in the
same process. If the app requires no particular permission, the
app may suffer from permission bloat problems [23], since
the app must request the advertising SDK’s permissions. On
the other hand, if the application needs more permissions than
the ad network, it can cause over-privileged advertisements
[27]. Advertising SDKs could use app permissions, which are
not required by the ad network, to collect sensitive data. In
this paper, we focus on the over-privileged advertising SDKs.
Once advertising SDKs collect sensitive data by utilizing the
host’s app permissions, we regard that they compromise user
privacy.

B. Related Work

Android Security. Research has long shown that security
remains a vital issue for Android platforms [7], [12], [29].
Both static [5], [8], [20] and dynamic techniques [9], [10],
[26], [28] are used to detect malware or enhance security
mechanisms. Since malware could leverage obfuscation tech-
niques, such as Java reflection or bytecode encryption [22], to
avoid being detected by static analysis, dynamic monitoring
becomes essential and effective in the battle against malware.

TaintDroid [10] is built to track information flow in An-
droid systems. TaintDroid provides a 32-bit taint tag for
each variable by doubling the size of the stack frame. It
uses dynamic taint analysis to efficiently monitor the data
on smartphones with four granularities of taint propagation.
Sensitive information is marked with a taint tag at the taint
source and is then tracked inside the device. It will alert a
user when sensitive information is sent to networks. While

TaintDroid does not track control flow, many other works
consider implicit flows. SpanDex [9], based on TaintDroid,
tracks both explicit and implicit flows. It relies on ScreenPass
[19] to set taint tags for passwords and studies the password
revealing problem.

Android Permissions & Mobile Advertising. The permis-
sion sharing problem between apps and advertising has been
studied for years. Grace et al. [13] used static analysis methods
to analyze ad libraries. They found that many ad libraries
try to probe permissions. If the app does not include such a
permission, it will throw a SecurityException, and the ad SDK
simply catches the exception. Otherwise, the advertising SDK
can utilize this permission. Stevens et al. [24] found a similar
problem. They investigated 13 advertising SDKs by analyzing
network traffic of a tier-1 wireless carrier and found that 3 of
them would use permissions not recorded in the documents.

To solve such a problem, several research works try to
isolate mobile advertising from applications. AdSplit [23]
separates the original application and advertising into different
processes so that each process has its own set of permissions.
It uses transparency techniques to show advertisements under
the main activity. AFrame [27] achieves both process and
display separation. However, these works only provide limited
advertisement styles and need modification of the app’s source
code. It may work well on displaying simple banner ads;
however, it might not be enough for supporting other styles,
such as ads in full screen. Users can simply kill the ad
process, which is not the desired scenario for app developers
or ad networks. AdDroid [21] proposes to include an ad
library in the Android SDK, so app developers can use the
API provided by Android to display advertisements. However,
in this solution, the ad library can only be updated when
Android is updated. Moreover, all of these works require
code modification of apps, which would be annoying to app
developers and inefficient for inexperienced developers.

While TaintDroid tracks 5 types of private data in mobile
devices and alerts users when sensitive data is sent into
networks, it does not take the permissions of ad networks
into consideration. AppFence [16] uses TaintDroid to track
12 types of sensitive data from analysis of 11 dangerous
permissions. It provides two mechanisms to protect this sensi-
tive information. Users can choose to either replace sensitive
data with shadowing data or block the data transmission
that contains private data. Although it helps users protect
their private information, this work does not focus on the
permission violation problem. Users are still not aware of what
information is collected by ad networks or the relation between
data and permission.

Both Stowaway [11] and PScout [6] analyze the Android
permission systems and provide a permission-API mapping.
We use PScout in our work because PScout can be easily
reused on the version of Android 4.3. Wei et al. [25] conducted
a long-term study on the permission evolution of Android
systems, and they found that both the number of “danger-
ous” permissions and the percentage of over-privileged apps
increase over time.

App

Private Data

Content Provider

AndroidManifest.xml

Cloud

Ad Server

Anywhere
SSL Interface

Update Server

Ad network
Permissions

Plain Socket

Violation

Detect Violation

Fig. 1: Architecture of PmDroid.

There are other works considering the privacy issue of
mobile advertising. Leontiadis et al. [17] proposed a market-
aware privacy protection framework that decouples the ap-
plication from the advertising component so it can send
private information separately to developers and ad networks.
Another framework for which users can decide how much
private information to share is proposed in [15]. Han et al.
[14] compared the privileges used by the same version of
advertising SDKs in Android and iOS, while Liu et al. [18]
focused on characterizing ad frauds in mobile apps.

III. PMDROID

In this section, we introduce the architecture and implemen-
tation of PmDroid. We extend TaintDroid and AppFence to
track sensitive data. However, it is impossible to distribute tags
to every specific important type of data due to the limited taint
bit provided by TaintDroid. Instead of calling attention to the
data itself, we focus on the permissions required for accessing
the data. For instance, both the phone number and the IMEI
number require the same permission, READ PHONE STATE,
thus we mark them with the same taint tag.

Figure 1 briefly illustrates the architecture of PmDroid.
PmDroid taints sensitive private data based on their required
permissions when apps try to access that data via APIs or
Content Providers. The sensitive data is tracked in the mobile
phone. When apps try to leak important data into networks
through either plain socket or SSL interface, the taint tag of the
data will be compared with the permission list maintained in a
mobile phone. The list contains the information of ad networks
and can be updated by a web server. If permission violation
happens, PmDroid can block the data sent to ad servers.

A. Permission Taint Placement

To monitor the data flow in a smart phone, we first need
to find the taint source to assign the taint tag. Android SDK
provides app developers with many APIs to perform specific
functions and get sensitive data. Some important data could
be obtained via those APIs only if the apps contain specific
permissions. Thus, we can taint the data during the API call.
Also, a lot of sensitive data is stored in Content Provider.
Third-party apps can use APIs to retrieve data from Content

Provider with a specific content URI1 like a database. Some
URIs are also protected by permissions. We can set the taint
of those data when they are read from Content Provider based
on their URIs.

Since we focus on the permissions, a permission-API map-
ping of Android is necessary for us to track all the sensitive
private data starting from the API call. Unfortunately, Android
does not provide a complete mapping between APIs and
permissions. In the Android official document, it mentions
part of their published APIs and the permissions they require.
However, other APIs that also need permissions are not
mentioned due to the documents being incomplete. Moreover,
there are a lot of undocumented APIs existing in Android.
Although Android does not recommend developers to use
undocumented APIs because they might be deprecated in the
future and cause apps crash, some still use them.

To generate a permission-API mapping, we run PScout
on Android 4.3. Although PScout cannot ensure a totally
comprehensive and correct mapping (which is also difficult to
justify), it does provide a useful way to understand the connec-
tions between APIs and permissions. The PScout scan result
shows that more than 30,000 APIs, including more than 1,000
published APIs, require permissions. It also demonstrates that
more than 40 content URIs need permissions. Combining the
result with Android official documents, we can find out which
data is protected by permissions. Then, we instrument the API
or taint the data source based on their permissions. Specially,
we focus on the permissions that could be used to read data.
We use methods below to taint data.

• For the permissions related to location, microphone,
and camera information, which have been tainted by
TaintDroid and AppFence, we keep them unchanged but
modify the taint tag. Also, for the data stored in Content
Provider, we add taint tags to the data files so that data
will be tainted once it is read from Content Provider.

• For the permissions that have published APIs, we focus
on the non-void published APIs. We either instrument
those published APIs or hook the unpublished APIs. We
regard that the system data read from APIs is clean, which
means it only contains the permission’s taint tag.

• For permissions that only have void published APIs or
permissions that do not have published APIs, we hook
several non-void undocumented APIs with permission
tags.

We find that some content URIs or APIs are mentioned in
official documents but do not appear in the result of PScout.
Also, some APIs do not need the permissions found by PScout.
For data that has been tainted by content URIs, we dismiss
other APIs. These differences are taken into account when we
implement the prototype of PmDroid. We tested the functions
of all instrumented APIs to ensure that data contains only the
configured taint bit.

1“A content URI is a URI that identifies data in a provider” [2].

B. Taint Tag

As we mentioned before, among more than 100 permissions
in Android, only those permissions belonging to “normal” and
“dangerous” could be used by third-party applications. Also,
not all permissions, such as VIBRATE, are related to reading
private data, which means apps cannot use the permissions
to obtain some private information. Moreover, there are many
permission pairs in Android, such as WRITE CALENDAR
and READ CALENDAR. Normally, the app can read data if
it possesses the write permission. Because of this, we treat
them as one in PmDroid.

To set the taint tag, we first need to make sure that
all permissions acquired by advertising SDKs are included.
We collect the permission set of 112 ad networks from
the lists of AppBrain [1] and other websites. In total, we
obtain 35 permissions (including both WRITE and READ)
that are mentioned at least once in their official documents.
Figure 2 shows the number of permissions acquired by all
112 ad networks. As shown, there are required permissions
and optional permissions in ad networks’ documents. The
required permissions indicate that app developers must add
these permissions into the app’s AndroidManifest.xml file
in order to access the advertisements of ad networks. On
the other hand, the ad component can still work in the app
without the optional permissions. The optional permissions are
mainly used to provide better services, such as location-based
advertisements.

After combining the WRITE and READ permissions, there
are 28 permissions. We observe that all ad networks re-
quest the INTERNET permission to access the Internet.
Also, almost all ad networks require or strongly recommend
ACCESS NETWORK STATE permission, which checks the
network connection status. Since these two permissions are
requested by most ad networks, we left them alone. Other
frequently requested permissions include those about location,
accounts, Wi-Fi states and phone states. Some ad networks
will also ask for SMS, audio or radio, calendar and browser
history information.

Since our main goal is to prohibit ad libraries from leaking
private information through permission probes, we also need
to take other permissions into consideration. After combining
the WRITE and READ permissions, we have 33 permissions
in total that are related to reading important data. Table I
shows all 33 permissions. Among 28 permissions required by
ad networks, 17 of them need to be tainted, through which
we believe private data could be retrieved. The TaintDroid
provides a 32 bits tag, which is long enough if we set all
permissions not being used by ad networks as OTHER. In
our experiments, in order to provide better understanding of
what information is sent by ad networks, we combine some
permissions related to settings and make use of all 32 bits to
taint the 32 types of permissions.

Among the 32 bits of taint tag in PmDroid, there are
some permissions possessing more than one bit. For exam-
ple, in Android, the ACCESS COARSE LOCATION only

Fig. 2: Permissions used by ad network.

Ad network Non ad network
ACCESS COARSE LOCATION USE SIP

ACCESS FINE LOCATION BATTERY STATS
WRITE EXTERNAL STORAGE READ

READ PHONE STATE READ SYNC STATS
RECORD AUDIO READ SYNC SETTINGS

GET TASKS GLOBAL SEARCH
GET ACCOUNTS ACCESS ALL DOWNLOADS

READ HISTORY BOOKMARKS READ PROFILE
INSTALL SHORTCUT GET PACKAGE SIZE

READ SETTINGS READ SOCIAL STREAM
CAMERA GALLERY PROVIDER

READ CALENDAR ADD VOICEMAIL
READ SMS READ USER DICTIONARY

ACCESS WIFI STATE READ CELL BROADCASTS
USE CREDENTIALS READ ATTACHMENT
READ CONTACTS ACCESS PROVIDER

ACCESS WIFI STATE

TABLE I: Permissions tracked in PmDroid.

contains the permission to receive the location update from
the NETWORK PROVIDER, which could be less accurate
than the location update from the GPS PROVIDER. However,
if the user grants the ACCESS FINE LOCATION permis-
sion to an app, the app can access location information
from both NETWORK PROVIDER and GPS PROVIDER.
We need two bits to represent the GPS PROVIDER and NET-
WORK PROVIDER separately, so that the two permissions
can be tracked.

C. Violation Control

To stop advertising SDKs from sending private information
to networks when permission violation happens, we leverage
the AppFence to block data transmission. Both plain socket
and SSL interface are modified so that the taint tag of data
will be compared before sending. If the app tries to send data,
which does not belong to advertising SDKs, to ad networks,
it will stop sending data. We regard the destination as an
ad network if the domain name contains the name of an ad
network or some specific keywords. Those destinations will
be further explored in the following section.

To detect the permission violation problem based on the
taint tag of data, PmDroid needs to be aware of the permissions
required by each ad network. Previous work separates the per-
missions when parsing the manifest file. AFrame modifies the
XML parser to separate permissions of apps and ad networks
in the AndroidManifest.xml file. It might be intricate when
the app uses more than one ad network. Also, inexperienced
app developers may fail to set the correct permissions of ad
networks, thus making the system useless.

Aiming to have less modification on current apps, we use
a different method to handle such a situation. We maintain
an ad network list in the mobile phone. The list contains
the name of the destination and the permission set required
by ad networks. We build a server so that the list can be
updated at the server. The server could be maintained by
either Android itself as a similar but much simpler approach
as [21] or Service Providers or any credible proxy who is
willing to provide a safer environment for mobile users. Only
limited sets of permissions, say INTERNET, would be given to
unknown ad networks, forcing them to share their permission
sets. This mechanism does not require any modification on
current apps, which is ideal for developers. Furthermore,
it enables PmDroid to conveniently expand the number of
ad networks, the permission sets of ad networks, and the
destination addresses. Note that PmDroid can also work for
third-party companies other than ad networks. For example,
Grantoo publishes its SDK to provide online multi player and
social features for mobile games. PmDroid can simply include
the company information on the list through the remote server,
thus protecting a user’s private information from theft.

While it is a challenging task to cover all ad networks on the
Internet in this list, as long as we are able to include the major
ad networks in the list at the beginning and accumulatively
update the list in a periodical fashion, PmDroid will reach
the goal of protecting users’ private data from malicious ad
networks. Finally, our mechanism is also compatible with
previous methods and can work jointly with them to defend
Android users against the permission violation problem.

D. Limitation

Since PmDroid is a system based on TaintDroid and
AppFence, most known limitations of TaintDroid and
AppFence are still applicable to PmDroid. For instance, Taint-
Droid only tracks data flows. PmDroid also cannot work when
malicious apps leak personal sensitive information through
control flows. Also, TaintDroid could experience taint ex-
ploration, which would cause false positives because some
clean data is treated as tainted. While these have been heavily
studied, several techniques such as those used in SpanDex
could be leveraged to address the limitation. AppFence stops
data delivery to ad servers based on the name of the des-
tinations. It would not work if the advertising SDKs sent
private information to cloud servers. More advanced methods
are needed, and we will explore this direction in our future
works.

Another limitation is the absence of an official mapping
between permission and data. Although the results of PScout
cover most permissions and APIs, it cannot guarantee absolute
correctness. Also, we do not hook all but instead choose those
important and non-void APIs based on the results of PScout.
Some paths to obtain data could be ignored in PmDroid.

IV. EXPERIMENTS

Since TaintDroid has proven its low overhead (14% CPU
overhead and 4.4% memory overhead [10]) and compatibility
with current apps in the market, we do not repeat similar
experiments. Instead, we conduct two sets of experiments
using PmDroid to study the permission violation problems
in current ad network markets. In the first experiment, we
use example apps developed by ourselves and official sample
apps provided by ad networks. In the second experiment,
we download real apps from Google Play to perform the
measurement.

A. Sample Apps

Free Android apps normally contain more than one ad net-
work, which may require different permissions and send data
to different destinations [17], [23]. To reduce the complexity of
involving multiple ad networks, we first conduct experiments
focusing on a single ad network. Most ad networks provide
SDK downloads without the requirement of registration; how-
ever, they will not provide ad service until a user registers
them with a published app. Therefore, we build a simple app
and upload it to Google Play. Then, for all 112 ad networks
in our list, we either try to register online or send them emails
to request their Android SDK. Not all ad networks accepted
our registration. There are also some foreign ad networks
that require personal identification or a bank account in their
countries for registration. We finally obtained 53 advertising
SDKs from different ad networks.

We then use our sample app to apply for an app ID or
something similar. The app ID is used to build an example
app for each ad network by following their documents. For
those ad networks’ SDKs that contain example projects, we
simply replace the app ID and use the projects provided by
ad networks. We grant all permissions in Android 4.3 to each
project so that they can collect all the data they want.

Again, some ad networks refuse to provide a new ID to our
application. Some ad networks only provide fake ads or test
ads. There are several ad networks that do not provide ads
even after we successfully obtained a new ID. In total, 31 out
of 53 ad networks provide us with real ads.

For each ad network’s sample app, we first run it 3 to 20
times to guarantee at least 5 advertisements in the experiment.
For those ad networks that do not provide advertisements, we
run them 5 times. Then we run all apps for 3 minutes to make
sure the ad networks have enough time to collect information.
We record not only the taint tag they send into network, but
also the destination’s URL name and IP address.

B. Market Apps

In the first experiment, we only implement basic functions
of ad networks. Most ad networks provide multiple ad styles
or advanced solutions. These methods probably collect more
private personal information to provide better advertisements.
The real apps published in markets might implement those
methods for the purpose of earning more money. Also, there
are many ad networks that only deliver fake ads or no ads
if they do not collect any sensitive information. Therefore,
to make a comprehensive study of the permission violation
problem, we use the real apps which have been published in
the Android market in our second experiment.

We downloaded 430 apps from Google Play based on the
list from AppBrain [1]. We utilized the URL name and IP
address obtained from the first experiment to distinguish the ad
network. We conducted similar experiments on those market
apps as sample apps.

V. RESULTS

A. Destination

In the first experiment, we treat all outgoing traffic as the
data sent to the ad network since all apps have no other func-
tions but acquiring advertisements. Only a few destinations of
ad networks contain the name of their companies, and many ad
networks send data to cloud servers like Amazon CloudFront.
Some ad networks use IP addresses as their URL names.

In experiment two, we found that a large number of apps
(201 out of 430) send data to cloud servers. For example,
Amazon receives data from 152 apps. Since the addresses of
cloud servers provide us with little knowledge about specific
ad networks, except for a few ad networks we collected in
the first experiment, we ignore all traffic sent to cloud servers
when trying to distinguish the ad networks. We also found
that many applications send data to destinations that are not
related to ad networks. In our experiment, we considered the
following destinations as anywhere: (1) the destination only
has an IP address that is not in our list; (2) the company that
develops or publishes the app; and (3) some other third-party
companies that we believe do not belong to the ad network.
In the end, 60 ad networks are found among 430 apps in the
second experiment, 55 of which are covered in our list. We
failed to obtain the permission information for 5 ad networks.
From both experiments, we obtained 76 known ad networks
in total.

Table II shows the data collected by the apps and the
destinations to which the information is forwarded. NULL
represents untainted data. We can see that ad networks possess
a large part of the outgoing data of Android apps. Although
the major proportion of the data is untainted, ad networks
still receive a lot of personal information from mobile phone
users, especially location and information about the device.
Cloud servers are the destinations of many apps because many
app companies of ad networks utilize their services. However,
much less private data protected by permissions is collected
by the cloud servers. We also found a number of destinations

Permission Ad server Cloud Anywhere
NULL 188 166 111

READ PHONE STATE 89 29 68
ACCESS WIFI STATE 62 9 41

ACCESS COARSE LOCATION 15 3 19
ACCESS FINE LOCATION 15 2 13

WRITE EXTERNAL STORAGE 7 1 2
GET ACCOUNTS 4 1 15

READ SMS 1 1 5
READ CONTACTS 0 1 4

READ PROFILE 0 0 2
GET TASKS 0 0 2

READ CALL LOG 0 0 1

TABLE II: Destination of Permissions.

that were unclear as to whether they were ad networks. Some
destinations marked as “anywhere” may contain certain ad
networks. Moreover, we found that the data sent to anywhere
covers more permissions than ad networks in our experiment.
Most of these types of data are sent to the server of the app’s
company.

B. Information Collected

In the first experiment, we focus on each single ad network.
Only 4 types of data belonging to 4 permissions are collected
by 53 ad networks. We illustrate the results in Figure 3. Figure
3a shows the permission data collected by all ad networks
identified in experiment one. We also present the result of
31 ad networks that provide us with real ads in Figure 3b.
While most ad networks send untainted data to their servers,
we see that vast amounts of data protected by the permissions
READ PHONE STATE and ACCESS WIFI STATE are col-
lected. Most ad networks declare the READ PHONE STATE
permission in their documents since this permission is used to
get information about the mobile device, such as the phone
number and IMEI number. The ACCESS WIFI STATE per-
mission allows applications to access information about Wi-Fi
networks. The most important and interesting data protected
by this permission is the MAC address, which, similar to the
phone state, is another piece of identity information of the
mobile phone.

Location information can be used for providing location-
based advertisement. Among 53 ad networks, 14 of them
collect location information – 11 of them collect fine location
while the others only collect coarse location. No other data is
collected, even though some ad networks require permissions
for the account, calendar, camera and so on. There are two
major possible reasons. First, we only implement the basic
function of the advertising SDK. Second, some ad networks
only provide us with fake or test ads or even no ads.

Figure 4 shows the data collected by 60 ad networks we
found in the 430 market apps. There are 5 ad networks marked
as “unknown” since we cannot identify them. We find that the
information about phone state, Wi-Fi state and location are
also collected most frequently. Besides the four permissions
we found in experiment one, several ad networks collect
account information. WRITE EXTERNAL STORAGE per-
mission is usually used to store advertisements. Some data is

READ_PHONE_STATE ACCESS_FINE_LOCATION ACCESS_COARSE_LOCATION ACCESS_WIFI_STATE
0

2

4

6

8

10

12

14

Permissions

#
 o

f
a

d
 n

e
tw

o
rk

s
w

ith
 r

e
a

l a
d

s

Required

Optional

Not Mentioned

(a) All ad networks

READ_PHONE_STATE ACCESS_FINE_LOCATION ACCESS_COARSE_LOCATION ACCESS_WIFI_STATE
0

2

4

6

8

10

12

14

Permissions

#
 o

f
a

d
 n

e
tw

o
rk

s
w

ith
 r

e
a

l a
d

s

Required

Optional

Not Mentioned

(b) Ad networks with real ads

Fig. 3: Permissions collected by ad networks in Exp 1.

READ_PHONE_STATE COARSE_LOCATION FINE_LOCATION WIFI_STATE EXTERNAL_STORAGE GET_ACCOUNTS
0

5

10

15

20

25

Permissions

#
 o

f
a

d
 n

e
tw

o
rk

s

Required

Optional

Not Mentioned

Unknown

Fig. 4: Permissions collected by ad networks in Exp 2.

tainted with this permission. There is one ad network receiving
tainted data with READ SMS tag, and the permission is not
mentioned in its document.

C. Permission Violation

We find that the permission violation problem does exist in
current ad networks. Table III exhibits all ad networks that
have this problem in our experiment. In experiment one, 4
ad networks use the permissions out of their documents to
collect private information. One is Mobclix, which has been
reported by [24]. Mobclix collects location information if the
apps contains any location permissions. AppFlood collects
both location, phone state and Wi-Fi state without mentioning
any permissions. We find that both Mopub and Domob acquire
coarse location permission in their documents. However, they
will also collect fine location.

In our experiment, Mobclix only sends data into Amazon’s
cloud server. After running the demo several times, we figured

Ad networks IN
TE

R
N

ET

A
C

C
ES

S
N

ET
W

O
R

K
ST

AT
E

A
C

C
ES

S
C

O
A

R
SE

LO
C

AT
IO

N

A
C

C
ES

S
FI

N
E

LO
C

AT
IO

N

A
C

C
ES

S
W

IF
I

ST
AT

E

W
R

IT
E

EX
TE

R
N

A
L

ST
O

R
A

G
E

R
EA

D
PH

O
N

E
ST

AT
E

G
ET

A
C

C
O

U
N

TS

V
IB

R
AT

E

W
R

IT
E

C
A

LE
N

D
A

R

R
EA

D
C

A
LE

N
D

A
R

C
A

LL
PH

O
N

E

U
SE

C
R

ED
EN

TI
A

LS

W
R

IT
E

C
O

N
TA

C
TS

R
EA

D
C

O
N

TA
C

TS

SE
N

D
SM

S

R
EC

EI
V

E
SM

S

W
R

IE
TE

SM
S

R
EA

D
SM

S

R
EC

O
R

D
A

U
D

IO

AppFlood X - - X -
Mobclix X X - * X
Mopub X X X - O +
Domob X X X * X X X X
Admob X O +
Flurry X X + +

StartApp X X + X
Vserv X O + O O O O O O O O O O
Papaya X X O O + X + O O O

Millennial X X O O X + O
Admarvel X X O O + X + O O

TABLE III: Permission violation problems found in our experiments. (X) represents the required permissions of ad networks.
(O) stands for the optional permissions. (*) shows the permissions collected in experiment one but are not mentioned in their
documents. (+) denotes the unmentioned permissions in experiment two. We use (-) to show the unmentioned permissions
appearing in both experiments.

Fig. 5: Destinations of Mopub.

out that the destinations are always the same two addresses. In
the next step, we considered that one app contains the SDK
provided by Mobclix if it sends data to the two addresses
identified in experiment one.

Mopub sends the collected private data to several destina-
tions with different IP addresses. The URL name is just the
IP address. When we enter the IP address, all the webpages
are similar, as illustrated by Figure 5. If the app sends data
to the exact same addresses, we believe they send the data to
the Mopub ad network. A similar situation happens on several
other ad networks, including Flurry and Millennial.

We also find the permission violation problem existing in
Mobclix, Mopub and AppFlood in the second experiment.
Besides, among the 55 ad networks covered by 430 apps of
experiment two, the problem is found in another 7 ad networks
among 7 apps. Table IV lists the applications, ad networks,
and permissions that protect collected data. Flurry, which
only acquires INTERNET and ACCESS INTERNET STATE
permissions, receives fine location from two apps. The Wi-Fi

state is also sent to Flurry in one app. Millennial receives data
tainted with an SMS tag in one app. The location protected by
ACCESS FINE LOCATION is collected by Vserv. We also
find that both Admob and Papaya collect account information
in different apps.

Through our experiments, we also notice that the permission
violation problem in ad networks is still in its early stages
and has not yet been widely exploited. More than 100 apps
send untainted data to Admob in our experiment, but we only
found the problem in one app. Similarly, two apps indicate that
Flurry suffers the permission violation problem while another
60 apps do not. In fact, all 9 ad networks with this problem
appear more than once in our second experiment.

We notice that false positives might happen in TaintDroid
since all data in a parcel share the same taint tag. It is
possible that the tainted data received by the ad networks is
not collected by the ad networks themselves. As illustrated by
Table IV, in most cases, whenever the permission violation
happens, this type of data is either collected by another ad
network that requires or optionally requests the permission
or is sent to another place that is not an ad server. Take
the app “1Weather: Widget Forecast Radar” as an example;
we find that Flurry receives location information. However,
fine location data is also collected by Admarvel with optional
permissions. Moreover, the app will send data protected by
ACCESS WIFI STATE to both Admarvel and Flurry. While
these two ad networks do not acquire the permission, the app
will send Wi-Fi state information to other places. In this app,
all the data that violates the permission of the ad network
is sent legally to other ad networks or other destinations.
Since PmDroid is extended on TaintDroid, it may not prove
that advertising SDKs contain codes for stealing user’s private

App Destination Permission
Treasure
Looter

Admob GET ACCOUNTS (-)
Other NULL

Lucktastic
Flurry ACCESS FINE LOCATION (-)
Kiip ACCESS FINE LOCATION (O)

1Weather:
Widget
Forecast
Radar

Flurry
ACCESS FINE LOCATION (-)

ACCESS WIFI STATE (-)

Admarvel
ACCESS FINE LOCATION (O)

ACCESS WIFI STATE (-)
Other ACCESS WIFI STATE

chomp SMS Millennial READ SMS (-)
Other READ SMS

The Hunter
batman

Papaya
GET ACCOUNTS (-)

ACCESS WIFI STATE (-)
GET PHONE STATE (X)

AppFlood
GET PHONE STATE (-)

ACCESS WIFI STATE (-)
Tapjoy GET PHONE STATE (X)

KiKORiKi
Free

Vserv
GET PHONE STATE (O)

ACCESS WIFI STATE (O)
ACCESS FINE LOCATION (-)

Other
GET PHONE STATE

ACCESS WIFI STATE
ACCESS FINE LOCATION

theCHIVE
Mopub

ACCESS FINE LOCATION (-)
GET PHONE STATE (-)

Inmobi ACCESS FINE LOCATION (O)

TweetCaster
for Twitter

Admarvel
ACCESS WIFI STATE (-)
GET PHONE STATE (-)

Other
ACCESS WIFI STATE
GET PHONE STATE

Mp3 Music
Download

Startapp
ACCESS WIFI STATE (-)

WRITE EXTERNAL STORAGE (-)

Other
ACCESS WIFI STATE

WRITE EXTERNAL STORAGE
ACCESS COARSE LOCATION

Tiny Tower

Mobclix
GET PHONE STATE (X)

ACCESS COARSE LOCATION (-)

Other
GET PHONE STATE

GET ACCOUNTS
ACCESS COARSE LOCATION

TABLE IV: Apps that suffered from the permission violation
problem. (X) means the ad network requiring that permission.
Permission with (O) is the optional permission. (-) represents
ad networks that do not mention the permission in document.

information. However, from the perspective of protecting user
privacy, it will not cause any damage for PmDroid to block
all traffic to ad networks that suffers the permission violation
problem.

D. Optional Permission

Another interesting finding is that many ad networks collect
private information with the optional permission. As previ-
ously mentioned, Android mobile users might refuse to install
some apps that acquire excessive permissions. As a result, app
developers will refuse to use some ad networks that require
a plethora of Android permissions. To avoid such situations,
many ad networks choose to provide optional permissions that
will not affect the function of the advertising SDK. As we can
see in Figure 2, a number of ad networks provide optional
permissions for the app developers. Optional permissions are
used to provide better advertisements so that it can increase the

likelihood that users will click on it. Since ad networks do not
have the knowledge about the permissions that apps declare,
they must probe the permission first to avoid any crashes. Once
the advertising SDKs are aware of the permissions, they can
use them to collect data.

Figures 3 and 4 show the data collected by optional per-
missions of ad networks. We see that the optional permissions
act as a vital role for the Android ad network to collect
information. In our experiment, almost one-third of the phone
state information is collected via optional permissions, and
more than half of the location information is collected by op-
tional permissions. Moreover, some ad networks use optional
permissions to collect Wi-Fi state. Compared with permission
violation, the amount of data collected by optional permissions
is much larger than the permissions not mentioned in ad
networks’ documents. Since the advertising SDK also needs
to probe the permissions before using them, we infer that the
large amount of permission probing reported in [13] is due in
large part to the optional permissions.

VI. DISCUSSION

Based on the results described in Table III, we find that the
most serious problem is about location information leakage.
Since location-based advertising becomes more and more
prevalent, it is not surprising that ad networks attempt to
collect location information. An interesting finding is that
some ad networks will collect fine location information while
only asking app developers to add the permission for coarse
location. We believe that this poses a serious threat to user
privacy and violates the permissions. One possible reason
is that the advertising SDKs obtain a incorrect location
provider. For instance, function getBestProvider() will return
the provider that best meets a given criteria. Besides location,
the permissions about a unique device identifier such as the
phone number or MAC address are also stealthily collected by
several ad networks. Account information is also of interest
to certain ad networks since accounts can safely associate the
user with ad networks, especially when users change devices.

Plenty of ad networks prefer to collect sensitive private
data with optional permissions. Optional permissions are more
flexible since they do not play a “must-grant” role on the
running of advertising SDKs. It is interesting to compare the
optional permissions with the permissions not mentioned in
the documents. No matter what permissions an ad network
declares, advertising SDKs can collect private information
only if the app contains these permissions. However, the
possibility that an app contains an unmentioned permission
is lower than an optional permission since app developers
request permissions based on the needs of the applications. On
the other hand, app developers may prefer ad networks with
fewer permissions in case users refuse to install their apps due
to over-claimed permissions. App developers can make their
own decisions regarding the tradeoff between having better
advertisements and minimizing the number of permissions
needed for their apps.

VII. CONCLUSION

The Android permission mechanism provides advertising
networks with a chance to probe and misuse their host
application’s permissions to steal sensitive private information.
We propose PmDroid to detect and prohibit ad networks from
using undocumented permissions in their official documents
to obtain private information. PmDroid does not require any
modification on either the apps or the advertising SDKs, and
can effectively protect various types of data belonging to
33 permissions from being secretly assessed by third-party
ad network companies. We conduct two sets of experiments
to measure the permission violation problem using PmDroid
on both ad networks’ published SDKs and real Android
market apps. Our experiment covers 76 different ad network
companies, and the results show that the permission violation
problem indeed exists in the ad network market. App develop-
ers should be careful when choosing the ad network’s SDK.

VIII. ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their
detailed and insightful comments. This work was partially
supported by ARO grant W911NF-15-1-0287 and ONR grant
N00014-15-1-2012. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the
funding agencies.

REFERENCES

[1] Ad networks. http://www.appbrain.com/stats/libraries/ad.
[2] Content provider basics.

http://developer.android.com/guide/topics/providers/content-provider-
basics.html#ContentURIs.

[3] Global advertising expenditures to grow by 5.5% in 2014.
http://www.portada-online.com/2014/04/08/global-advertising-spend-to-
grow-by-5-5-in-2014/.

[4] Mobile advertising history - from 2.5 pound “brick” to multi-billion dol-
lar industry. http://partners.gamehouse.com/mobile-advertising-history-
2-5-pound-brick-multi-billion-dollar-industry/.

[5] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel. Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for Android
apps. In Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2014.

[6] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie. PScout: Analyzing
the Android permission specification. In Proceedings of the 19th ACM
Conference on Computer and Communications security, 2012.

[7] M. Becher, F. C. Freiling, J. Hoffmann, T. Holz, S. Uellenbeck, and
C. Wolf. Mobile security catching up? revealing the nuts and bolts
of the security of mobile devices. In Proceedings of the 32nd IEEE
Symposium on Security and Privacy, 2011.

[8] K. Z. Chen, N. M. Johnson, V. D’Silva, S. Dai, K. MacNamara, T. R.
Magrino, E. X. Wu, M. Rinard, and D. X. Song. Contextual policy
enforcement in Android applications with permission event graphs.
In Proceedings of the 20th Network and Distributed System Security
Symposium, 2013.

[9] L. P. Cox, P. Gilbert, G. Lawler, V. Pistol, A. Razeen, B. Wu, and
S. Cheemalapati. SpanDex: Secure password tracking for Android. In
Proceedings of the 23rd USENIX Security Symposium, 2014.

[10] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and
A. Sheth. TaintDroid: An information-flow tracking system for realtime
privacy monitoring on smartphones. In Proceedings of the 9th USENIX
Symposium on Operating Systems Design and Implementation, 2010.

[11] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android
permissions demystified. In Proceedings of the 18th ACM Conference
on Computer and Communications Security, 2011.

[12] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner. A survey of
mobile malware in the wild. In Proceedings of the 1st ACM Workshop
on Security and Privacy in Smartphones and Mobile Devices, 2011.

[13] M. C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi. Unsafe exposure
analysis of mobile in-app advertisements. In Proceedings of the 5th ACM
Conference on Security and Privacy in Wireless and Mobile Networks.
ACM, 2012.

[14] J. Han, Q. Yan, D. Gao, J. Zhou, and R. H. Deng. Comparing Mobile
Privacy Protection through Cross-Platform Applications. In Proceedings
of the 20th Network and Distributed System Security Symposium, 2013.

[15] M. Hardt and S. Nath. Privacy-aware personalization for mobile
advertising. In Proceedings of the 19th ACM Conference on Computer
and Communications Security, 2012.

[16] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall. These
aren’t the droids you’re looking for: Retrofitting Android to protect
data from imperious applications. In Proceedings of the 18th ACM
Conference on Computer and Communications Security, 2011.

[17] I. Leontiadis, C. Efstratiou, M. Picone, and C. Mascolo. Don’t kill my
ads!: Balancing privacy in an ad-supported mobile application market.
In Proceedings of the 12th Workshop on Mobile Computing Systems &
Applications, 2012.

[18] B. Liu, S. Nath, R. Govindan, and J. Liu. Decaf: Detecting and
characterizing ad fraud in mobile apps. In Proceedings of the 11th
USENIX Symposium on Networked Systems Design and Implementation,
2014.

[19] D. Liu, E. Cuervo, V. Pistol, R. Scudellari, and L. P. Cox. Screenpass:
Secure password entry on touchscreen devices. In Proceedings of the
11th ACM International Conference on Mobile Systems, Applications,
and Services, 2013.

[20] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang. Chex: Statically vetting
Android apps for component hijacking vulnerabilities. In Proceedings of
the 19th ACM Conference on Computer and Communications Security,
2012.

[21] P. Pearce, A. P. Felt, G. Nunez, and D. Wagner. Addroid: Privilege
separation for applications and advertisers in Android. In Proceedings
of the 7th ACM Symposium on Information, Computer and Communi-
cations Security, 2012.

[22] V. Rastogi, Y. Chen, and X. Jiang. Droidchameleon: Evaluating Android
anti-malware against transformation attacks. In Proceedings of the
8th ACM Symposium on Information, Computer and Communications
Security, 2013.

[23] S. Shekhar, M. Dietz, and D. S. Wallach. AdSplit: Separating smart-
phone advertising from applications. In Proceedings of the 21st USENIX
Security Symposium, 2012.

[24] R. Stevens, C. Gibler, J. Crussell, J. Erickson, and H. Chen. Investigating
user privacy in Android ad libraries. In Workshop on Mobile Security
Technologies, 2012.

[25] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos. Permission evolution
in the Android ecosystem. In Proceedings of the 28th Annual Computer
Security Applications Conference, 2012.

[26] L.-K. Yan and H. Yin. DroidScope: Seamlessly reconstructing the OS
and dalvik semantic views for dynamic Android malware analysis. In
Proceedings of the 21st USENIX Security Symposium, 2012.

[27] X. Zhang, A. Ahlawat, and W. Du. AFrame: Isolating advertisements
from mobile applications in Android. In Proceedings of the 29th Annual
Computer Security Applications Conference, 2013.

[28] Y. Zhang, M. Yang, B. Xu, Z. Yang, G. Gu, P. Ning, X. S. Wang, and
B. Zang. Vetting undesirable behaviors in Android apps with permission
use analysis. In Proceedings of the 20th ACM Conference on Computer
and Communications Security, 2013.

[29] Y. Zhou and X. Jiang. Dissecting Android malware: Characterization
and evolution. In Proceedings of the 33rd IEEE Symposium on Security
and Privacy, 2012.

