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ABSTRACT
Surveillance devices with IP addresses are accessible on the
Internet and play a crucial role in monitoring physical world-
s. Discovering surveillance devices is a prerequisite for en-
suring high availability, reliability, and security of these de-
vices. However, today’s device search depends on keywords
of packet head fields, and keyword collection is done man-
ually, which requires enormous human efforts and induces
inevitable human errors. The difficulty of keeping keyword-
s complete and updated has severely impeded an accurate
and large-scale device discovery. To address this problem, we
propose to automatically generate device fingerprints based
on webpages embedded in surveillance devices. We use nat-
ural language processing to extract the content of webpages
and machine learning to build a classification model. We
achieve real-time and non-intrusive web crawling by lever-
aging network scanning technology. We implement a proto-
type of our proposed discovery system and evaluate its effec-
tiveness through real-world experiments. The experimental
results show that those automatically generated fingerprints
yield very high accuracy of 99% precision and 96% recall.
We also deploy the prototype system on Amazon EC2 and
search surveillance devices in the whole IPv4 space (nearly 4
billion). The number of devices we found is almost 1.6 mil-
lion, about twice as many as those using commercial search
engines.
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1. INTRODUCTION
A surveillance device is one typical Internet of Things

(IoT) device, playing a vital role in bridging between the
cyberspace and the physical world. Nowadays, for the sake
of remote access and control, more surveillance devices are
visible and accessible via IP addresses. However, this would
also pose security and privacy concerns. For instance, peo-
ple can directly know those surrounding scenes by watching
the video streams while you are working or falling asleep
at home [1]. Even worse, many surveillance devices, being
exploited as parts of a “botnet,” could attack critical na-
tional infrastructures. On October 21, 2016, the “botnet”
that consists of a vast number of surveillance devices [2],
such as IP-camera, Digital or Network Video Recorder (D-
VR/NVR), and Closed-Circuit TV (CCTV), attacked the
servers of Dyn services, in which much of the Internet’s do-
main name systems (DNS) are located, causing Internet ser-
vice disruption across Europe and the United States. Such
a security incident forces us to rethink the assumptions of
how we use and maintain these surveillance devices.

From a security perspective, discovering online surveil-
lance devices in the cyberspace is a prerequisite of prevent-
ing them from being compromised and exploited. It can help
system administrators with security auditing, detecting new
kinds of vulnerabilities and intrusion, and preserving device
integrity on the Internet. Meanwhile, discovering surveil-
lance devices can also shed light on availability, reliability,
and the distribution of these devices. Device users or man-
ufacturers would plan a wiser decision based on the online
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activities of surveillance devices.
However, it is quite challenging to automatically and ac-

curately discover surveillance devices in the cyberspace. Ex-
isting search engines, Shodan [3] and Censys [4], find these
Internet-connected devices by using manually marked key-
words. They send requests of application-layer protocols to
online devices and recognize them by comparing the field
values of reply messages with pre-defined keywords. Un-
fortunately, such a manual-based device identification is an
arduous and error-prone process, and it is especially hard
to achieve completeness. This is because it’s hard to keep
the discovery updated with the addition of numerous new
devices and version upgrades.

In this paper, we aim to discover these online surveillance
devices in an automatic and accurate manner. We take the
first step in automatically generating fingerprints of surveil-
lance devices and identifying them in the cyberspace. An
intuitive insight behind our work is that every surveillance
device typically uses a web-view interface for remote con-
figuration and permission login. These webpages have two
characteristics: invariant and distinct. webpages are written
into the firmware of surveillance devices and remain intact
for a long time. Thus, the webpage’s appearance is capa-
ble of acting as a signature of a device. Moreover, there
are a variety of web appearances for different surveillance
devices. Those embedded webpages can be represented as
the distinct features to recognize surveillance devices among
Internet-connected devices.

The key feature of our approach is to automatically gener-
ate fingerprints based on webpages and use them to discover
surveillance devices on the Internet. However, in practice,
we have to address two challenges to enable this feature. (1)
There are a large number of web appearances. Many other
embedded devices also have webpages, such as routers, net-
work bridges, printers, and industrial control devices. Ad-
ditionally, most surveillance webpages have user login inter-
faces with password protection. (2) Traditional web crawler
technology is time-consuming and does not meet our require-
ment. For a commonly seen URL of a website, there are
many redundant pages within it. Commercial websites sell-
ing cameras would also affect the identification of surveil-
lance devices. Moreover, many online surveillance devices
do not have their domain names in their URLs, and they
only have IP addresses.

To overcome these challenges, we propose to use natural
language processing to extract the content of webpages. Vis-
ible and invisible information are extracted from the login
or configuration pages of surveillance devices. We propose
an iterative approach to find out common features of finger-
print generation for surveillance devices. Initially, we use
a short vector related to the web content of surveillance
devices. During each iterative process, statistical metrics
are used to select new features to expand the initial vec-
tor. Machine learning algorithms are used for training a
classification model based on those generated features. We
use the classification models as the fingerprints of surveil-
lance devices. Furthermore, we propose a real-time and
non-intrusive web crawling scheme based on network scan-
ning technology. We send a packet with stateless connection
to an IP address to determine whether its host is alive. If
the device is alive, an HTTP connection is established to ob-
tain its page according to its HTTP status codes [5]. Note
that our approach avoids crawling commercial websites with

Figure 1: The various and distinct appearances of
surveillance webpages.

Table 1: Services in surveillance devices.
Services Function

RTSP [8] Control & Transfer live streams

Onvif [9] / PSIA [10] Interoperability Standards

HTTP [5] User configuration

information about selling surveillance devices.
We implement a prototype of our proposed system using

python and go [6] as a self-contained piece of software based
on open-source libraries. We run our system in real-world
experiments to evaluate its performance. The experiments
show that our approach can achieve 99% precision and 96%
recall in device classification. We also deploy the prototype
system in Amazon EC2 [7] and perform device discovery
four times from September 2015 to January 2016. Two of the
four search attempts are the Internet-scale searches, in which
we search the whole IPv4 space (nearly 4 billion) within
24 hours and identify 1.6 million surveillance devices. The
number of surveillance devices we found is nearly twice as
many as those using existing device search engines.

The major contributions of our work are summarized as
follows.

• We have proposed an automatic fingerprint generation
approach for surveillance devices. It is the first work
to use web appearance to identify online devices in the
cyberspace.

• We have implemented a prototype system and have
verified it in real-world experiments. The experimen-
tal results show that our approach achieves very high
accuracy in device identification.

• We have deployed the prototype system in Amazon
EC2 and have performed surveillance device discovery
four times over a five-month period. The number of
devices we found is nearly 1.6 million, much more than
those using commercial search engines.
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Figure 2: The diversity of webpages in the cyber-
space.

The remainder of the paper is structured as follows. Sec-
tion 2 highlights system design considerations. Section 3
presents the automatic fingerprint generation based on web-
pages. Section 4 describes our real-time web crawling. Sec-
tions 5 and 6 detail our system implementation and real-
world experiments. Section 7 discusses future improvements.
Section 8 surveys related work, and finally, Section 9 con-
cludes the paper.

2. SYSTEM DESIGN CONSIDERATIONS
In this section, we first describe surveillance devices and

their webpages, especially our design rationale behind the
webpage-based fingerprint generation. We then introduce
our design considerations of performing Internet-wide mea-
surements for data collection and device discovery.

2.1 Surveillance Devices
A surveillance device is a type of digital video device typi-

cally deployed for monitoring the surrounding environment,
which can send and receive data via a local computer net-
work or the Internet. Typically, commercial surveillance de-
vices run over four different application services, including
PSIA [10] ONVIF [9], RTSP [8] and HTTP [5], as listed
in Table 1. PSIA and ONVIF are standardized profiles for
IP-based physical products, supporting interoperability of
various devices and systems. However, due to compatibil-
ity issues, many surveillance devices do not support those
two standards. RTSP is used to establish and control an
application media session between a client and a server. It
requires two phases: user authentication and data transmis-
sion. HTTP is used to set the configuration of surveillance
devices.

Today, device manufacturers usually provide a user-friendly
web interface to configure, access and manage a surveillance
device conveniently. Users can change the configuration set-
ting and access the streaming video from those webpages.
As shown in Figure 1, there are five different web appear-
ances from five different types of surveillance devices. The
top webpages are used for login; the middle webpage is used
for configuration, and the bottom webpages are used for de-
vice description. We observe that different devices typically
have unique webpage properties (layout, structure, and con-

tent), which could serve as signatures of surveillance devices
to discover them in the cyberspace.

In order to generate the fingerprint of a surveillance de-
vice, two fundamental properties must be held for those
webpages. First, those webpages should be relatively stable
over time; in other words, their appearances should rarely
change. Second, there should be a significant variability in
different webpages, so that it is reasonable to use a webpage
as the signature of a surveillance device.

We first explore the stability of these devices’ webpages.
Manufacturers produce surveillance devices by re-using ex-
isting techniques, such as an embedded system on a chip
(SOC) designs based on ARM or MIPS CPUs and network
connectivity via Ethernet or WiFi. Most of them are con-
trolled by vendor-specific and chipset-specific firmware [11].
The webpages of surveillance devices are also fixed in the
firmware, and many manufacturers set those files to “read-
only” [12]. The only way to change webpages is to update
the firmware to a new version. Many devices often cannot
be remotely updated and require the user’s physical access
to do updates. Even though a surveillance device needs to
update its firmware, its webpages are likely to remain intact
because firmware updates often just patch existing vulnera-
bilities.

Then, we investigate the diversity of webpages on the In-
ternet. We have randomly crawled down 72,656 webpages
from the whole IPv4 space. We extract their contents and
use a hash algorithm to calculate their MD5 checksums for
every webpage. There are 10,000 different hash values from
those webpages. Figure 2 shows the diversity of those web-
pages in the cyberspace. We can see that nearly 8,686 pages
have a distinct MD5 checksum value and no hash collision
occurs among them. For those pages that have hash col-
lisions, we further confirm that their hosts are indeed the
same type of devices from the same manufacturer. There
is a long-tail effect for the hash collisions of the webpages
on the Internet, implying that there are a few very popular
surveillance devices being widely deployed. The diversity of
webpages is significant enough to distinguish devices from
one another. Thus, we will use the characteristics of web-
pages as the signature for surveillance device discovery in
the cyberspace.

As far as we know, this is the first work to automatically
generate device fingerprints based on their web appearances.
We will use natural language processing to extract features
from the web and use machine learning techniques to gen-
erate their fingerprints.

2.2 Internet-wide Measurement
Our work will use the generated fingerprints to discover

online surveillance devices on the Internet-wide scale. We
have carefully designed our measurements to collect web-
pages across the Internet and reduce the side effects of our
measurements upon the remote networks.

At first, we clarify the purpose of our measurement by
adding reverse DNS entries for our measurement server [13]
and running a simple webpage on port 80 that describes
the goals of this research. The webpage describes what da-
ta we are collecting, and how to contact us to be excluded
from our research by being added to our blacklist. Sec-
ond, we do not apply traditional web scraping to collect
webpages on the Internet. Instead, we use network scan-
ning technology to collect webpages, which can reduce our
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Figure 3: Automatically generating fingerprints of surveillance devices based on webpages.

measurement latency. Note that our web crawling approach
performs standards-compliant handshakes without any mal-
formed payloads involved. If a host runs an HTTP service,
we will attempt to obtain its webpages; otherwise, we will
just skip it. Third, our web scraping approach will not col-
lect the information of selling surveillance devices from the
commercial websites. This will improve the performance of
our generated fingerprints.

Many devices are deployed in a local or enterprise system
network, which cannot be accessed directly. In this work, we
only focus on those public devices, rather than those inac-
cessible devices behind VPNs or firewalls, which are better
protected.

3. FINGERPRINT GENERATION
In this section, we present the details of fingerprint gen-

eration and describe the key techniques applied in our iden-
tification approach.

3.1 Overall Architecture.
Figure 3 shows the overall architecture of the fingerprint

generation based on webpages for surveillance devices. It
consists of three components to generate fingerprints of surveil-
lance devices: the pre-processing module, the device-related
analysis module, and the classifier module. In the pre-
processing module, we extract the content of webpages through
an HTML (XML) documents parser and process them through
natural language processing (NLP). The detailed steps in-
clude pulling data from web files, word splitting, stemming,
and redundant content removal. In the device-related analy-
sis module, it is an iterative process to find common features
from webpages of surveillance devices. We first select a s-
mall set of original features associated with the surveillance
devices. Then, the feature selection algorithm would iterate
the related features automatically from the data set of the
webpages. The extensive features serve as the feature space
for every webpage of surveillance devices during the classi-
fication phase. In the classifier module, we use a supervised
machine learning approach to train a classifier based on a
set of training data. Each webpage is transformed into a
feature vector in the pre-processing module, and the train-
ing set is represented as a training matrix, where columns
are feature spaces and rows are the number of training data.
Given any webpage, our approach can identify whether it is
a surveillance device.

We propose to generate fingerprints of surveillance devices
based on web appearance. In particular, our approach has
two advantages. First, fingerprints generated by our method

are not limited to user login webpages of devices in the cy-
berspace. Because many webpages have access control, we
can only reach their user login pages. From a user’s point
view, the login interface has little information, as it merely
displays the login information. However, much information
is invisible and hidden behind the appearance of webpages,
including comments, quotes, CSS, and scripts. Even for the
login web interface, the hidden information is capable of
identifying a surveillance device. We will use natural lan-
guage processing to extract visible and invisible information
for generating fingerprints of surveillance devices. Second,
our approach can handle webpages of other embedded de-
vices, such as routers, net-printers, and so on. The number
of those devices is much larger than the number of surveil-
lance devices. It is impossible and impractical for us to
use the training webpages to cover all of the embedded de-
vices. Thus, we propose an iterative approach that selects
common features for the webpages of surveillance devices
(Section 3.3).

Although our approach is used to generate fingerprints of
surveillance devices, it could be easily expanded to identify
other physical devices with minor changes.

3.2 Pre-Processing
Webpages are typically created by markup languages (HTM-

L) along with embedded objects (scripts, images, videos, and
so on). Browsers coordinate those various resource elements
to render a webpage as the graphical user interface. On a
lower level, we can use HTTP to make such requests for ob-
taining those webpages. Note that both visible and invisible
information can be obtained via the HTTP protocol. Here
we put them together and parse them in the following two
forms:

• Text. There are various text contents in webpages,
such as headings, paragraphs, lists, hyperlinks, quotes,
and comments. They are delineated by tags, written
using angle brackets, like <p> . . . </p>, to provide
document text.

• Non-Text. Non-textual information consists of im-
ages, audios, and videos, which are element attributes
and used to present the webpage.

We use the HTML parser [14] to extract raw data from a
webpage. For textual information, markup language sym-
bols are directly removed because they have no meaningful
information for classification. We extract all textual con-
tents from the webpage. For non-text information, although
computer version technologies can cope with them, it is very
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Figure 4: An example of what the pre-processing
module extracts from the content list of a webpage.

difficult to meet our requirements in real-time and accuracy.
Thus, we transfer non-text content into text. For instance,
we parse tags <img directory/name> and record them as
the composite text “image name”. We extract them as the
form of textual information from every webpage.

After parsing, we use a natural language processing pack-
age [15] to handle these textual contents. There are usual-
ly conjunctive words, delimiter-separated words, and letter-
case separated words. For instance, words are divided by
the symbol ‘/’ in the hyperlinks. Regression expressions are
used to split them into individual words. Considering that
various languages and surveillance devices are deployed al-
l over the world, we use a translation language package to
convert into standard English.

We use stemming to transfer words to their original or
root forms. For example, “Services” is replaced by the word
“Service.” Those words have a similar usage to differentiate
cameras from other devices, and the stemming process re-
duces the amount of textual information. After stemming,
we remove the redundant text content. Webpages written
by markup languages have many words through which to
organize the structure of webpages. Additionally, we also
remove numbers, punctuations, and stopwords. Stopword-
s are some of the most common words, like “the” and “is.”
These words carry little meaningful information about the
representative of the webpages. If we were to feed them di-
rectly to a classifier, it would shadow real interesting terms.
Hence, we exclude them.

Figure 4 shows a case that the pre-processing module ex-
tracts the content list from a webpage. The left part of the
figure is the raw data of the webpage with many HTML se-
mantics and irregular words coded by developers. The right
part is the content list after processing by the pre-processing
module. After the HTML parser and natural language pro-
cessing, each webpage becomes a concise item as a feature
vector to process in the next stage.

3.3 Device-related Analysis
We need to extract common features used for identifying

surveillance devices. There are many webpage appearances
on the Internet. Surveillance devices from different manu-
facturers have different appearances. For instance, “Hikvi-
sion” device webpages are different from “Sony” webcam ap-
pearances. Additionally, other embedded devices also have
webpages, such as routers, network bridges, printers, and
industrial control devices. In this module, we aim to seek
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Figure 5: The iterative process for finding out com-
mon features for webpages of surveillance devices.

common features of surveillance devices that are different
from other devices.

We propose an iterative approach to extract common fea-
tures for generating fingerprints of surveillance devices. First,
we manually choose a small set of features as the initial
features and use them to find derivative features from the
dataset. During each iterative process, we employ statistical
measurement methods to calculate the correlation degree of
each feature. We remove redundant and irrelevant features
from the dataset during each iterative process, because they
do not contribute to the accuracy of a predictive model. We
use several statistical metrics for calculating the importance
of each feature, such as the Chi-Square (Chi2) test, infor-
mation gain, and correlation coefficient scores. According
to the scores calculated by statistical algorithms, we choose
the top K features as common features. Those K features
will be the initial features for the next iterative process.

Here we take the Chi2 test [16] as the statistical metric to
illustrate our iterative process. A chi-squared test is a statis-
tical test that investigates whether the distributions of cat-
egorical variables differ from one another. In particular, we
use the set of surveillance webpages as the expected distribu-
tions and the other webpages as another category. The Chi2

test can identify those features that are the most related to
the surveillance devices. Figure 5 shows our proposed selec-
tion based on the Chi2 test. First, a device-related textual
list is given to describe a surveillance device. It is imprac-
tical to emulate all possible contents related to surveillance
devices by human efforts. We use a limited-length textual
list, in which these texts are commonly seen in the webpage
of surveillance devices. In this paper, our list is only six
words (see Section 6), such as “camera” and “surveillance.”
We use a training data mixed with various webpages. Note
that the training data is randomly chosen from the Internet.
Then we divide the training data into positive and negative
categories. The rule is simple:

• If the textual list appears within a webpage, the sample
is labeled as positive; otherwise, it is negative.

Based on the training data, the Chi2 test can distinguish
the deviations between the positive and the negative. We
manage to obtain the textual content that causes differences
from what is expected. If there is no significant difference
between categories, the Chi2 test will stop and rank the
device-related words in descending order. Based on the Chi2

test, we can get a much larger list than the initial device-
related textual list. We use the list as the feature space to
represent the webpage to process in the next stage. Note



that, except for manual labor over the initial textual list
(its length is very short), the feature selection process is
completely automatic.

Finally, generated common features are used as the fea-
ture space for webpages of surveillance devices. The feature
space refers to the n-dimensions, which is crucial in pattern
recognition and machine learning.

3.4 Classifier
Based on the training data and feature space, we build a

classification model for determining whether a webpage is
a surveillance device. Each webpage is transferred into a
textual list in the pre-processing module and is represent-
ed as a feature vector in the device-related analysis module.
The training data is a set of mixed webpages and is rep-
resented as a matrix. Each row is a feature vector as per
page instance, and each column is a value of the fields in the
feature space. We have investigated various machine learn-
ing algorithms [17] for building the model, including logistic
regression, linear discriminant analysis, support vector ma-
chine (SVM), decision trees, boosting, and neural networks.
We utilize the standard support vector machine as our clas-
sifier. SVM is widely used for classification and regression
analysis. Given a set of training examples with two different
categories, the algorithm tries to find a hyperplane separat-
ing the examples. As a result, it determines the side of
the hyperplane to which new test examples belong. In par-
ticular, for an unknown webpage from online devices, the
classifier can determine whether it is a surveillance device.

4. REAL-TIME WEB CRAWLING
Web crawling is a technique of extracting information

from websites and has been widely used by most search
engines. To identify a surveillance device, we need to ob-
tain webpages on the Internet and determine whether they
belong to surveillance devices based on the generated fin-
gerprints as proposed above. Directly using traditional web
crawler is infeasible for discovering surveillance devices, due
to the following three reasons. First, there are many re-
dundant webpages on the Internet, and they are useless in
discovering surveillance devices. Furthermore, commercial
websites with information selling surveillance devices would
affect the fingerprint generation of surveillance devices’ web-
pages. Second, many online devices have not yet registered
domain names and only have their IP addresses for forming
their URLs.

To meet these issues, we propose to obtain webpages through
the network scanning technology. Network scanning is a pro-
cedure for identifying active hosts on a network. Scanning
procedures return the information about which IP addresses
map to live hosts on the Internet and what services they of-
fer. Then we use the Hypertext Transfer Protocol (HTTP)
to send a“GET / ”request to live host IP addresses. The re-
sponses include the root webpages of remote host. Figure 6
shows the online web crawling based on scanning technology.

Horizontal Scanner. There are 4 billion IPv4 address-
es in the cyberspace, and we send one packet to every IP
address to determine whether there is a live host. Recen-
t research ZMap [18] suggests that one-packet probing can
cover nearly 96% of the detection space and can speed up
the measurement. We adopt this approach by sending out
only one packet to an IP address each time to discover live
hosts. For each IP address, unlike TCP, we do not maintain

Cyber Space

Horizontal 
Scanner

Web page filter

Candidate 
Set

List of HTTP 
status codes

1XX, 2XX
3XX, 4XX,

5XX Webpages

HTTP 
processing

Figure 6: Real-time webpage crawling.

Figure 7: A redirect case in web crawling.

a state connection. Instead, we use stateless connection-
s to send probing packets without waiting to synchronize
the connection times, which can significantly speed up the
measurement. Furthermore, our detection range order is
randomized. If we probed every address in numerical or-
der (e.g., 10.0.0.1, 10.0.0.2, 10.0.0.3.), it would cause a burst
of consecutive packets, thus disturbing the remote network.
They are used in many previous works [19]. To avoid this
problem, we use an alternative approach to IP-sequential, a
random permutation of the address space [20]. We target
uniformly and randomly from the full range and intermingle
probes to many subnets, which reduces the instantaneous
load on individual networks and produces an unbiased ran-
dom sampling.

Web Crawling. After horizontal scanning in the cy-
berspace, we can obtain the candidate set. Compared with
the initial 4 billion IPv4 addresses, the number of live hosts
is just tens of millions. Then we build standards-compliant
TCP handshakes with each live host. An application-layer
HTTP GET / request is sent to each live host. Their re-
sponses include the data of root webpages. However, there
are several cases in which we cannot directly use the response
packets to identify surveillance devices.

We use the process to handle HTTP status codes accord-
ing to the list [5], as shown in Figure 6. If we are successful
in obtaining the response data, we can directly store them
as files. Otherwise, we would further process them based on
the following three rules:

• If the request is failed, we remove it from the live can-
didate. The “4xx ” class of status code indicates that
we do not receive the correct data. For instance, “400”
means a bad request; “401” means an unauthorized re-
quest, “403” means that the server refuses to answer,
and so on. For ethical considerations, we never at-
tempt to guess login credentials for any online web-
page. We only obtain their login interface webpages if
they are protected by password authorization.

• If the server fails to fulfill an apparently valid request,
we would try to re-send the request after a period. The
“5xx” indicates that the server is encountering an error
or is otherwise incapable of performing the request.
We will divide the response code to determine if the



live host is in a temporary or permanent condition.
For instance, “500 ” means Internal Server Error, and
“503” means Service Unavailable.

• If the redirect appears, we would try to re-send the
“GET” request to the new address. Redirection is
commonly seen when we obtain webpages via network
scanning technology. When the status code is “302
redirect,” we should make the HTTP connection a-
gain and get the redirect webpage. Furthermore, even
the status code is “200 Ok,” we also finish the redi-
rection in several cases. The redirect process works as
follows: the regular expression extracts the hyperlink
position and combines the IP address and category of
the webpages, and then we send a new request with
the IP/new-index. For instance, the status code is
“200 Ok” in Figure 7, and we send the HTTP “GET”
request with the “IP/webclient.html” to the live host.

Exploiting network scanning, we can collect webpages on
the Internet in a real-time and non intrusive manner. Our
web crawling approach has three advantages. First, we can
avoid data collection from the commercial websites related
to camera information. In fact, many commercial websites
with information selling devices, use the hierarchical direc-
tory structure to represent their URL addresses. For in-
stance, the manufacturer “SONY” sells its devices on a URL
(“https://pro.sony.com/bbsc/ssr/cat-securitycameras/”), in
which the digital camera information is hidden in its sub-
folder (“bbsc/ssr/catsecuritycameras/”). Our web crawling
approach does not access those webpages. Second, the hori-
zontal scanner filters out a large number of unqualified host-
s, and our Internet-wide measurement latency is reduced.
Third, we attempt to limit the side effects of our measure-
ment upon remote networks as much as possible. For every
candidate, there are only three TCP handshakes and one
HTTP request on average.

5. IMPLEMENTATION
We have implemented a prototype of our proposed ap-

proach as a self-contained piece of software based on open-
source libraries. The key components of our approach, we-
b crawling, and device classification are mainly written in
Python and Go language [6].

Figure 8 shows the component diagram of our prototype.
We send a single TCP packet that has “SYN” filed in its
header and a “NULL” data payload to determine whether
a host is alive. By reusing IP address randomization algo-
rithms [21], we send this probing packet to every IP address
with a certain communication port, such as “80” and “8080,”
where web services are offered. For each IP address, no state
is maintained like the network scanner tool, ZMap [18]. Our
probing TCP packets are stateless, and we utilize network
bandwidth as much as possible to accelerate the horizontal
scanning speed. The response packets are stored in buffer
queues. If a host responds with “SYN-ACK” in the TCP
header or responds to the pre-generated packet, we put this
host into the candidate set; otherwise, we discard it. The
candidates are stored as a JSON file to process in the next
phase.

The HTTP probe sends the request encapsulated “GET”
to the candidate date set in buffer queues or the JSON file.
For each candidate, we establish TCP connections in parallel
and then communicate at the application layer to obtain the

Table 2: The collected dataset of webpages on the
Internet.

Webpage description The amount

Login webpages 35,558

Configuration interface webpages 6,761

Commercial website 0

Table 3: The initial seed list for feature selection.
the initial list

camera dvr surveillance webcam
web-

service zoom

webpages. Based on response status codes, we process the
candidate webpages. In the redirect case, the sender would
re-send the request with a new address. In the re-connect
case, the sender leaves it in the last position of the request
list. We store the HTTP response data on the disk.

We use the open-source Python library“BeautifulSoup”[14]
to remove the markup languages syntaxes. It is a toolkit to
retrieve data out of HTML and XML files, dissect a docu-
ment, and extract what we need. We use the Natural Lan-
guage Toolkit (NLTK) [15] to obtain the content list from
every webpage. Each webpage is transformed into a feature
vector for classification. We use the open-source skit-learn
with SVM classifier [22] to train a classification model (see
Section 6.2). The classifier determines whether the webpage
belongs to a surveillance device. If an online surveillance
device is identified, we store it in the database.

6. REAL-WORLD EXPERIMENTS
In this section, we conduct real-world experiments to e-

valuate the performance of our prototype system. Also, we
deploy the prototype system on Amazon EC2 to discover
online surveillance devices across the entire IPv4 space.

6.1 Data Collection
To collect datasets of the ground truth, we randomly selec-

t IP addresses with the permutation algorithm [21] from the
whole IPv4 space. We use the horizontal scanner and HTTP
“GET /” requests to individual IP addresses. In total, we
have found 42,319 webpages, as shown in Table 2. There are
35,558 webpages with login interfaces, 6,761 webpages with
configuration interfaces, and zero commercial websites. This
is because our web crawling method is based on network s-
canning technology, rather than a traditional web crawler.
Many redundant webpages are excluded. Additionally, we
exclude the webpages from non-embedded devices, includ-
ing those of popular HTTP servers, such as Apache and IIS,
as well as common Telnet authentication prompts. Then we
search the messages of the webpages in Google. If search re-
sults are related to surveillance devices, we mark them with a
“Surveillance” tag, otherwise a “Non-surveillance” tag. This
manual effort of creating the ground-truth dataset costs us
nearly one month, and we find 8,202 webpages of surveillance
devices in total. Approximately 95% of these webpages of
surveillance devices are user login interfaces with password
protection, and less than 5% of the webpages contain de-
tailed information, like the configuration interface of Web-
cams. We divide the ground-truth dataset into two parts: a
20,000 size part for training (3,847 surveillance device web-
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Figure 8: The component diagram of our prototype system.

pages) and a 22,319 size part for testing (4,355 surveillance
device webpages).

6.2 Classification Performance
As mentioned before, we choose a small set of features

as the initial list to find device-related features for surveil-
lance devices. Table 3 presents the initial seed list. They
are commonly seen in the webpage content of surveillance
devices, such as“camera,”“surveillance,”and“DVR”(digital
video recorder). We use precision and recall to present the
classification performance.

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
,

where TP is the true positive number, FP is the false posi-
tive number, and FN is the false negative number. Figure 9
shows the classification performance along with the param-
eters of the feature selection process. The X-axis is the pre-
cision of identifying a surveillance device, and the Y-axis is
the recall. In our experiments, the number of iterative pro-
cesses would be empirically set to 3. The common features
remain stable with the increasing number of iterations when
τ = 3. For each iterative process, there are two parameters:
the feature selection algorithm and top N number. In our
experiments, we choose four statistical feature selection al-
gorithms (Chi2 test, information gain, correlation coefficient
scores, and TF-IDF [23]). We choose the parameter N in
the range of [10,200]. As shown in Figure 9, the black cir-
cles contain those points that have high recall and precision
under one parameter setting in the feature selection process,
indicating that when the feature selection algorithm is the
Chi2 test and the top number N is set to 100, the classi-
fication model achieves the most promising results. Thus,
we adopt this particular parameter setting in the following
stages.

Second, we evaluate the impact of the training size up-
on the classification performance. We use the F1 score to
represent the classifier performance. The F1 score can be
interpreted as a weighted average of precision and recall:

F1 score = 2 · precision · recall
precision+ recall

.

It reaches its best value at 1 and its worst score at 0. Fig-
ure 10 shows the classification performance along with the
number of the training set. When the training data size
is small (fewer than 500 webpages), the F1 score is only
80%. This is because the bias of the training samples caus-
es the performance degradation. However, as the training
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Figure 9: Precision-recall graph of different param-
eter settings.

set size increases, the classification performance significantly
improves. When the training size is more than 5,000 web-
pages, the F1 score is close to 96.5%, and our classification
can achieve a promising result.

Table 4: The overall accuracy for four classification
models.

Classifier TPs FPs GT PR RC F1

SVM 4,147 42 4,355 99.00 95.22 96.98

KNN 4,209 40 4,355 99.06 96.65 97.84
Naive
Bayes 3,865 374 4,355 91.18 88.75 89.95

Decision
Tree 3,830 44 4,355 98.86 87.94 93.09

Furthermore, we evaluate the impact of the classification
choice upon the performance. We choose four standard clas-
sification approaches: Support Vector Machine (SVM), K-
Nearest Neighbors (KNN), Multinomial Naive Bayes, and
Decision Tree. They are typical, supervised learning algo-
rithms in pattern recognition [17]. We also use the Chi2 as
the feature selection and select the top 100 as features. The
training data size is 20,000, and the test data size is 22,319;
they do not have any overlap. Table 4 shows their perfor-
mance among these four classification algorithms. The col-
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umn“TPs” is the number of true positives; “FPs” is the num-
ber of false positives; “GT” is the number of ground truths;
“PR” is precision and “RC” is recall. The results show that
SVM and KNN have the best performance, and Multinomial
Naive Bayes performs the worst. Note that there are no sub-
stantial differences among four classification performances.
Here, we choose SVM because it is capable of generating a
maximum margin classifier with robustness. We use SVM
in our prototype system and run it to determine whether a
webpage belongs to a surveillance device on the Internet.

6.3 Web Crawling Performance
Here we present the performance of crawling webpages

on the Internet by exploiting network scanning technology.
First, we evaluate the impact of the network bandwidth up-
on our proposed real-time webpage crawling method. As
we mentioned in Section 4, we use stateless TCP to dis-
cover live hosts from a range of IP addresses. The high-
er the network bandwidth, the less time we spend on de-
tection. However, overwhelming detection probing packet-
s would cause network congestions and packet losses. We
conduct the experiments under the different hit rates and
detection rates. As Figure 11 shows, there is a tradeoff be-
tween the hit rate and detection rate. The hit rate is equal
to Ncandidate/Ntotal, where Ntotal is the total number of IP
addresses and Ncandidate is the number of responding host-
s. The detection rate is the speed of discovering physical
devices. When the detection rate is 50,000 packets per sec-
ond, we can achieve a stable hit rate for crawling webpages.
A practical issue is that network congestion reduces the hit
rate. We suggest adopting the most stable detection rate
while keeping the hit rate high.

Second, we evaluate the performance of webpage crawl-
ing via HTTP “GET” requests. We use the dataset that we
have collected all webpages (Section 6.5 describes our mea-
surement) from ports 80 and 8080, which are most popular
ports offering web services. Figure 12 shows the percent-
ages of HTTP response status codes in the webpage crawl-
ing stage. There are 51 million (51,516,332) hosts giving
their HTTP response code. There are 186 different kind-
s of status code. We only list the top 10 HTTP response
status codes, but they occupy nearly 99.46% of all respons-
es. There is a typical long-tail distribution of the HTTP
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Figure 11: The hit rate and detection rate for web-
page crawling.

200 400 302 403 401 404 301 307 503 500
Status Code

0

5

10

15

20

25

30

35

40

Pe
rc
e
n
t 
(%

)

Figure 12: The percentage of HTTP response status
codes in the webpage crawling stage.

response code throughout the world. The status code “200”
ranks the highest, whose pages occupy 39.45% of the total
pages, followed by the status codes “400” and “302.” There
is a further process handling redirect status code “302.” For
the other status codes like “4xx” and “5xx,” they contribute
little to our classification, and we just exclude those web-
pages.

Furthermore, we measure the time latency of different
stages. The detection time of our approach is determined
by three parts: (1) horizontal scanner, (2) HTTP “GET” re-
quest, and (3) classification, denoted as T = T1 + T2 + T3.
We randomly choose 65,536 IP addresses to test their time
latency. The experimental environment is that we send
packets at the speed of 0.5 MB/s (about 500 packets per
second). As shown in Figure 13, the horizontal scanner (T1)
stage costs 135 seconds, and the HTTP “GET” request (T2)
stage costs 10.18 seconds, and the last stage costs 7.88 sec-
onds. The most time-consuming part is the horizontal scan-
ner. The reason is that the target number of the horizontal
scanner is 65,536 IP addresses, which is much more than
the other two stages. The classification stage costs the least
amount of time. Note that the time cost of the classifica-
tion stage is mainly due to the pre-processing. Overall, the
detection latency of our approach is acceptable.
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Figure 13: Time latency of online surveillance device
discovery.

Table 5: CPU, memory, and bandwidth usage of
prototype software.

CPU usage Memory Bandwidth

Training process 10% 232.4MB -

Online discovery 53% 208.9MB 50Mbps

6.4 System Overhead
We have measured the CPU, memory, and bandwidth us-

age of the prototype system. Table 5 presents the CPU,
memory, and network bandwidth overheads of the training
stage and the online discovery stage, respectively. The train-
ing process is running on a commercial laptop (Windows 10,
4vCPU, 8GB of memory). It costs only 10% of the CPU
usage and 232MB of the memory usage. The online discov-
ery process is running on a server inside Amazon EC2 [7],
running Ubuntu 14.04.2 LTS (GNU/Linux 3.13.0-48-generic
x86 64) with 2 vCPU, 8GB of memory and 450Mbps of
bandwidth. The discovery stage consists of online webpage
crawling, pre-processing, and classification. The average
CPU usage is 53%, the average memory usage is 208Mbps,
and the network bandwidth usage (out) is 50Mbps, about
10% of Amazon server network bandwidth. It is affordable
in practice, and we can use the prototype system to detect
surveillance devices on the Internet.

6.5 Surveillance Measurement Campaigns
We have deployed the prototype system to identify surveil-

lance devices on a cloud server inside Amazon EC2 [7]. Ta-
ble 6 presents the surveillance device discovery at the In-
ternet scale. We have exhaustively searched the entire IPv4
address space (close to 3.7 billion addresses). Every time,
we have excluded both reserved/unallocated IP space from
IANA [24] and IP addresses that send emails to complain
about our discovery activity. Altogether, we have added
about 610 million IP addresses to our blacklist to exclude
them from the Internet-wide search. For each data collec-
tion, we send 50,000 packets per second, and each experi-
ment lasts for about 20 hours.

In the (3.7 billion IP addresses) experiment, we retrieve
some raw data, including 51,516,332 webpages. Because
surveillance devices are embedded with limited processing
capabilities, they cannot run the “Apache” or “Microsoft I-

Table 6: Surveillance device discovery at the Inter-
net scale.

Begin Time IP Space Protocols Ports

2015-09-25 3.7 billion HTTP 80, 8080

2015-12-22 0.36 billion HTTP 80, 8080

2016-01-07 0.36 billion HTTP 80, 8080

2016-01-05 3.7 billion HTTP 80, 8080

Table 7: Comparison with Shodan and Censys.

The number of surveillance devices

Shodan [3] 155,999

Censys [4] 780,953

Our system 1,602,142

IS” web servers. Therefore, we exclude these webpages and
some with bad status codes. After these filtering processes,
we retrieve the webpages that likely belong to surveillance
devices, and the number is more than 8 million (8,785,185).
Our system extracts the content of webpages and determines
whether a webpage belongs to a surveillance device or not.
Table 7 shows the comparison between our approach and
Shodan [3]/Censys [4]. We use our initial words to search
surveillance devices in these two search engines and then
retrieve the results. Note that the numbers of surveillance
devices found in Shodan and Censys have a strong bias, be-
cause they include all of the pages that have matched key-
words but are not surveillance into their search results. It is
evident that our approach can discover more than 1.6 mil-
lion (1,602,142) surveillance devices, nearly twice as many
as existing search results.

7. DISCUSSION AND FUTURE WORK
Our focus is on the discovery of visible surveillance devices

across the Internet. Two aspects can be improved in our
future work.

Invisible surveillance devices. For security concern-
s, all devices should have been access-controlled by net-
work/application firewalls or network address translators
(NATs). There are more than 245 million video surveil-
lance cameras installed around the world since 2014 [25].
Although less than 1% of devices are exposed to the In-
ternet, the total number is still very large, with nearly 1.6
million devices with IP addresses available for remote access.
In this work, we only focus on those public devices, rather
than the devices behind a VPN or firewall. We believe that
invisible devices are in better security circumstances than
visible ones.

As mentioned before, our approach cannot find invisible
devices. They are located behind firewalls or NATs, which
block our detection packets. Even if some devices are not be-
hind firewalls or NATs, system administers might manually
block our probing packets. In order to obtain an approx-
imate “bird’s-eye view” of surveillance devices (visible and
invisible) in the cyberspace, we will continue the follow-up
work in the future. First, we will deploy a monitoring sen-
sor on multiple campus networks and use passive probing to
listen to the outgoing/incoming data traffic at the network
entrance. Then, we apply statistical methods to estimate
the number of invisible devices.



General framework. Our work is a binary classification
about whether a webpage is related to a surveillance device
or not. Besides, different manufacturers would like to use
different webpages to manage their devices. Intuitively, the
webpage of a surveillance device can identify the manufac-
turer brand and the product version. In our future work, we
will calculate the degree of similarity between the webpages
of surveillance devices and use network graphs to distinguish
the different types of surveillance devices.

Many other embedded devices also have webpages, such as
routers, network bridges, printers, and industrial control de-
vices. Our approach can be extended to discover other types
of online devices, with minor modifications. In our future
work, we will propose a general framework for automati-
cally generating device fingerprints based on the webpages
embedded in those devices.

8. RELATED WORK
Fingerprint generation. Fingerprinting is a technique

for identifying operating systems (OS), applications, or net-
work services. More than two decades ago, Comer et.al. [26]
proposed to use differences between TCP implementations
to generate operating system fingerprints. Since then, sev-
eral well-known OS fingerprinting tools have been built, in-
cluding Nmap [27], Xprobe2 [28], p0f [29], and RING [30].
These tools send TCP packets to remote IP addresses and
then use the fingerprints stored in the database to identify
whether a live host runs on Windows or Linux. These tool-
s are open source, and many developers have contributed
to their development as well as manually labeled OS fin-
gerprints. Different from these works, our approach auto-
matically generates the fingerprints of surveillance devices.
Other fingerprinting research proposed to use timestamps to
identify physical devices. Kohno et.al. [31] suggested using
clock skew deviations to fingerprint devices. Its design prin-
ciple is that different device implementations have a slight-
ly different deviation according to Network Time Protocol.
However, it faces network topology changes, time variances,
and network noise in practice.

Network scanning. There have been many research s-
tudies on Internet-wide scanning over the past few years.
The network scanning research [18, 32–35] mainly focuses
on increasing the scanning speed over the Internet, from 4
months down to 30 days, one day, and more recently, 45
minutes. Xie et al. [32] proposed the UDmap algorithm to
identify and analyze hosts across the entire IP address s-
pace. Heidemann et al. [33] explored the visible Internet to
characterize the edge hosts and evaluate their usages via an
active scanner within 30 days. Hong et al. [35] searched the
entire Internet and then classified IP addresses as popular
or unpopular. Leonard et al. [34] implemented IRLscanner
as an Internet-wide detection mechanism within 24 hours,
which focuses on typical application layer protocols, such
as HTTP and SMTP. Durumeric et al. [18] proposed ZMap
for Internet-wide host detection within 45 minutes. This
method is a theoretical upper bound and cannot be easily
achieved in practice due to network congestion. These net-
work scanning works demonstrate the feasibility of discov-
ering live hosts through Internet-wide scanning, called hor-
izontal scanning, which is fundamental for finding surveil-
lance devices in our work. Compared to these previous s-
tudies, our goal is to identify surveillance devices on the
Internet. We extend the network scanning techniques to

crawling webpages and use them as the signature of surveil-
lance devices.

Internet-connected device searching. In the new era
of the development of Internet of Things, massive physi-
cal devices are becoming pervasive and “invade” our daily
life. Searching online physical devices has garnered great
interest in the industry and academia. Shodan [3] is the
world’s first search engine for discovering Internet-connected
devices. Censys [4] is an open-source search engine that i-
dentifies the devices and networks that compose the Inter-
net. However, they both use manually marked keyword-
s to discover physical devices. They send requests in the
application-layer protocols to devices and recognize them by
comparing the field values of replies with pre-defined key-
words. Xuan et al. [36] detected ICS (Industrial Control
System) devices on the Internet by analyzing 17 industrial
control protocols. However, their device identification still
depends on manual analysis. As a manual process, such an
approach is arduous and incomplete, making it difficult to
keep updated with the addition of numerous new devices and
versions. By contrast, our work is the first to use webpages
as device signatures. We propose an automatic fingerprint
generation method, which can accurately discover surveil-
lance devices on the Internet.

9. CONCLUSION
Online surveillance devices play a crucial role in moni-

toring the physical world. In this paper, we proposed a
novel approach for automatic and accurate surveillance de-
vice searches. The core of our approach is to use a webpage
embedded in a surveillance device as its fingerprint. We
used natural language processing to extract the content of
a webpage and generate a device fingerprint automatically.
Based on device fingerprints, we utilized machine learning
for device classification. Moreover, we proposed a new web
crawling scheme to obtain webpages of surveillance devices
in a real-time and nonintrusive manner. We implemented
a prototype of our approach and evaluated its performance
through real-world experiments. The experimental result-
s show that our automatically generated fingerprints can
achieve 96% recall and 99% precision in surveillance device
classification. We further deployed our prototype on a cloud
server in Amazon EC2 and conducted a device search over
the entire IPv4 address space. The number of identified
surveillance devices by our search is twice as many as those
using existing device search engines.
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