
Hyperprobe: Towards Virtual Machine Extrospection

Jidong Xiao
College of William and Mary

jxiao@email.wm.edu

Lei Lu
VMware Inc.

llei@vmware.com

Hai Huang
IBM T.J. Watson Research Center

haih@us.ibm.com

Haining Wang
University of Delaware

hnw@udel.edu

Abstract

In a virtualized environment, it is not difficult to retrieve
guest OS information from its hypervisor. However, it
is very challenging to retrieve information in the reverse
direction, i.e., retrieve the hypervisor information from
within a guest OS, which remains an open problem and
has not yet been comprehensively studied before. In this
paper, we take the initiative and study this reverse infor-
mation retrieval problem. In particular, we investigate
how to determine the host OS kernel version from within
a guest OS. We observe that modern commodity hypervi-
sors introduce new features and bug fixes in almost every
new release. Thus, by carefully analyzing the seven-year
evolution of Linux KVM development (including 3485
patches), we can identify 19 features and 20 bugs in the
hypervisor detectable from within a guest OS. Building
on our detection of these features and bugs, we present a
novel framework called Hyperprobe that for the first time
enables users in a guest OS to automatically detect the
underlying host OS kernel version in a few minutes. We
implement a prototype of Hyperprobe and evaluate its
effectiveness in five real world clouds, including Google
Compute Engine (a.k.a. Google Cloud), HP Helion Pub-
lic Cloud, ElasticHosts, Joyent Cloud, and CloudSigma,
as well as in a controlled testbed environment, all yield-
ing promising results.

1 Introduction
As virtualization technology becomes more prevalent, a
variety of security methodologies have been developed
at the hypervisor level, including intrusion and malware
detection [26, 30], honeypots [48, 31], kernel rootkit de-
fense [42, 40], and detection of covertly executing bi-
naries [36]. These security services depend on the key
factor that the hypervisor is isolated from its guest OSes.
As the hypervisor runs at a more privileged level than
its guest OSes, at this level, one can control physical re-
sources, monitor their access, and be isolated from tam-
pering against attackers from the guest OS. Monitoring

of fine-grained information of the guest OSes from the
underlying hypervisor is called virtual machine intro-
spection (VMI) [26]. However, at the guest OS level re-
trieving information about the underlying hypervisor be-
comes very challenging, if not impossible. In this paper,
we label the reverse information retrieval with the coined
term virtual machine extrospection (VME). While VMI
has been widely used for security purposes during the
past decade, the reverse direction VME—the procedure
that retrieves the hypervisor information from the guest
OS level—is a new topic and has not been comprehen-
sively studied before.

VME can be critically important for both malicious
attackers and regular users. On one hand, from the at-
tackers’ perspective, when an attacker is in control of a
virtual machine (VM), either as a legal resident or af-
ter a successful compromise of the victim’s VM, the un-
derlying hypervisor becomes its attacking target. This
threat has been demonstrated in [35, 21], where an at-
tacker is able to mount a privilege escalation attack from
within a VMware virtual machine and a KVM-based vir-
tual machine, respectively, and then gains some control
of the host machine. Although these works demonstrate
the possibility of such a threat, successful escape attacks
from the guest to the host are rare. The primary reason
is that most hypervisors are, by design, invisible to the
VMs. Therefore, even if an attacker gains full control of
a VM, a successful attempt to break out of the VM and
break into the hypervisor requires an in-depth knowledge
of the underlying hypervisor, e.g., type and version of the
hypervisor. However, there is no straightforward way for
attackers to obtain such knowledge.

On the other hand, benign cloud users may also need
to know the underlying hypervisor information. It is
commonly known that hardware and software systems
both have various bugs and vulnerabilities, and different
hardware/software may exhibit different vulnerabilities.
Cloud customers, when making decisions on the choice
of a cloud provider, may want to know more informa-

tion about the underlying hardware or software. This will
help customers determine whether the underlying hard-
ware/software can be trusted, and thus help them decide
whether or not to use this cloud service. However, for
security reasons, cloud providers usually do not release
such sensitive information to the public or customers.

Whereas research efforts have been made to detect the
existence of a hypervisor [25, 22, 24, 50], from a guest
OS, to the best of our knowledge, there is no literature de-
scribing how to retrieve more detailed information about
the hypervisor, e.g., the kernel version of the host OS, the
distribution of the host OS (Fedora, SuSE, or Ubuntu?),
the CPU type, the memory type, or any hardware infor-
mation. In this paper, we make an attempt to investigate
this problem. More specifically, as a first step towards
VME, we study the problem of detecting/inferring the
host OS kernel version from within a guest OS, and we
expect our work will inspire more attention on mining
the information of a hypervisor. The major research con-
tributions of our work are summarized as follows:

• We are the first to study the problem of detect-
ing/inferring the host OS kernel version from within
a VM. Exploring the evolution of Linux KVM hy-
pervisors, we analyze various features and bugs in-
troduced in the KVM hypervisor; and then we ex-
plain how these features and bugs can be used to de-
tect/infer the hypervisor kernel version.

• We design and implement a novel, practical, auto-
matic, and extensible framework, called Hyperprobe,
for conducting the reverse information retrieval. Hy-
perprobe can help users in a VM to automatically de-
tect/infer the underlying host OS kernel version in
less than five minutes with high accuracy.

• We perform our experiments in five real world
clouds, including Google Compute Engine [3], HP
Helion Public Cloud [29], ElasticHosts [20], Joyent
Cloud [8], and CloudSigma [19], and our experimen-
tal results are very promising. To further validate the
accuracy of Hyperprobe, we perform experiments in
a controlled testbed environment. For 11 of the 35
kernel versions we studied, Hyperprobe can correctly
infer the exact version number; for the rest, Hyper-
probe can narrow it down to within 2 to 5 versions.

2 Background
Hypervisor, also named as virtual machine monitor, is a
piece of software that creates and manages VMs. Tra-
ditionally, hypervisors such as VMware and Virtual PC
use the technique of binary translation to implement vir-
tualization. Recently, x86 processor vendors including
Intel and AMD released their new architecture exten-
sions to support virtualization. Those hypervisors that
use binary translation are called software-only hypervi-

sors, and recent hypervisors that take advantage of these
processor extensions are called hardware assisted hyper-
visors [12]. In this paper, we focus on a popular hard-
ware assisted commodity hypervisor, Linux KVM. We
develop our framework and perform experiments on a
physical machine with Linux OS as the host, which runs
a KVM hypervisor, and a VM is running on top of the
hypervisor. Our study covers Linux kernel versions from
2.6.20 to 3.14. While 2.6.20, released in February 2007,
is the first kernel version that includes KVM, 3.14, re-
leased in March 2014, is the latest stable kernel at the
time of this study. More specifically, we study the evo-
lution of KVM over the past seven years and make three
major observations. In this section, we briefly describe
Linux KVM and report our observations.

2.1 Linux KVM

KVM refers to kernel-based virtual machine. Since
Linux kernel version 2.6.20, KVM is merged into the
Linux mainline kernel as a couple of kernel modules: an
architecture independent module called kvm.ko, and an
architecture dependent module called either kvm-intel.ko
or kvm-amd.ko. As a hardware assisted virtualization
technology, KVM relies heavily on the support of the
underlying CPUs and requires different implementations
for different CPU vendors, such as Intel VT-x and AMD
SVM. Figure 1 illustrates the basic architecture of KVM.
KVM works inside a host kernel and turns the host kernel
into a hypervisor. On top of the hypervisor, there can be
multiple VMs. Usually KVM requires a user-level tool
called Qemu to emulate various devices, and they com-
municate using predefined ioctl commands.

Over the years, KVM has changed significantly. The
original version in 2.6.20 consists of less than 20,000
lines of code (LOC); but in the latest 3.14 version, KVM
modules consist of about 50,000 LOC. The reason of
such growth is that 3485 KVM related patches have been
released by Linux mainline kernel1. By carefully analyz-
ing these patches, we make a few important observations
about the evolution of the KVM development process.

First, while ideally hypervisors should be transparent
to guest OSes, this is not realistic. In particular, dur-
ing its development process, on the one hand, KVM ex-
poses more and more processor features to a guest OS;
on the other hand, KVM has been provided with many
paravirtualization features. These changes improve per-
formance but at the cost of less transparency.

Second, for the sake of better resource utilization,
KVM has also included several virtualization-specific
features, e.g., nested virtualization [16] and kernel same

1KVM has recently started supporting non-x86 platform, such as
ARM and PPC; however, in this study, we only consider patches for
x86 platforms, i.e., the number 3485 does not include the patches for
the non-x86 platforms.

2

 Linux Kernel KVM

Normal User
Process

Normal User
Process

Qemu

App

Guest
OS

Qemu

App

Guest
OS

Figure 1: KVM Overview

page merging (KSM) [15], many of which can be de-
tected from within the guest OS.

Third, similar to all other large projects, KVM have
bugs. Among the 3485 patches, about 30% of them are
bug fixes. In particular, we notice that a common type
of bugs in KVM is related to registers. This reflects the
fact that emulating a CPU is hard. Since a modern CPU
defines hundreds of registers, emulating the behaviors of
various registers correctly is challenging. Failing to do so
usually causes various unexpected results. In fact, regis-
ter related bugs have been reported on a regular basis.

During our study, we discover that these features and
bugs can help us determine the underlying hypervisor
kernel version. A more detailed description of our de-
sign approach is presented in Section 3.

2.2 Intel VT-x Extension

As a hardware assisted hypervisor, KVM relies on the
virtualization extensions of the underlying processors.
In 2006, both Intel (VT-x) and AMD (AMD-SVM) in-
troduced hardware virtualization extensions in their x86
processors. According to their respective manuals, these
two technologies are very similar to each other. Because
our current implementation of Hyperprobe is based on
the Intel processors, we will briefly describe Intel VT-x.

The key concept of Intel VT-x is that the CPU is split
into the root mode and the non-root mode. Generally,
the hypervisor runs in the root mode and its guests run
in the non-root mode. Transitions from the root mode to
the non-root mode are called VM entries, and transitions
from the non-root mode to the root mode are called VM
exits. The hypervisor can specify which instructions and
events cause VM exits. These VM exits actually allow
the hypervisor to retain control of the underlying physi-
cal resources. An example of a VM exit is, when a guest
OS attempts to access sensitive registers, such as control
registers or debug registers, it would cause a VM exit. A
handler defined by the hypervisor will then be invoked,
and the hypervisor will try to emulate the behavior of the
registers. As mentioned above, given the large number
of registers, register emulation is hard and error-prone.

The first generation of Intel VT-x processors mainly
simplifies the design of hypervisors. But since then,
more and more features have been included in their later
processor models. To name a few, Extended Page Ta-
ble (EPT), which aims to reduce the overhead of address

translation, is introduced by Intel since Nehalem proces-
sors, and VMCS shadow, which aims to accelerate nested
virtualization, is introduced since Haswell. Once these
new hardware features are released, modern hypervisors
such as KVM and Xen, provide their support for these
new features on the software side.

3 Design
Hyperprobe framework has the following goals:

• Practical: The framework should detect the under-
lying hypervisor kernel version within a reasonable
amount of time with high accuracy and precision. As
more test cases are added to provide more vantage
points of different kernel versions, its accuracy and
precision should also be improved.

• Automatic: The framework should run test cases,
collect and analyze results automatically without
manual intervention. To this end, the test cases
should not crash the guest or host OS.2

• Extensible: The framework should be easily ex-
tended to detect/infer future Linux kernel versions
and to add more vantage points to previously released
kernel versions. To this end, the whole framework
should be modular, and adding modules to the frame-
work should be easy.3

3.1 Technical Challenges

To meet these design goals, we faced several challenges:
even though the hypervisor introduces new features fre-
quently, how many of them are detectable from within
the guest OS? Similarly, how many hypervisor bugs are
detectable from within the guest OS?

After manually analyzing the aforementioned 3485
patches, we found a sufficient number of features and
bugs that meet our requirements. Tables 1 and 2 il-
lustrate the features and bugs we have selected for our
framework. To exploit each, it would require an in-depth
knowledge of the kernel and also a good understanding
of the particular feature/bug. Due to limited space, we
are not able to explain each of the features/bugs, but we
will choose some of the more interesting ones and ex-
plain them in the next section as case studies. In this
section, we elaborate on how we use these features and
bugs to infer the underlying hypervisor kernel version.

3.2 KVM Features

KVM releases new features regularly. One may infer the
underlying hypervisor kernel version using the following

2Kernel bugs that cause guest or host OS to crash are very common,
but we purposely avoided using them in our test cases. One could uti-
lize these bugs to gain more vantage points, but they should be used
with great caution.

3We plan to make Hyperprobe an open source project so that every-
one can contribute, making it more robust and accurate.

3

Table 1: Features We Use in Current Implementation of Hyperprobe

Kernel Major Version Features Description

2.6.20 KVM first merged into Linux mainline kernel
2.6.21 Support MSR KVM API MAGIC Custom MSR register support
2.6.23 SMP support Support multiple processors for guest OS
2.6.25 Expose KVM CPUID to guest KVM CPUID SIGNATURE
2.6.26 EPT/NPT support Extended/Nested Page Table
2.6.27 MTRR support Support the memory type range registers for guest OS
2.6.30 Debug register virtualization Add support for guest debug
2.6.31 POPCNT support Support POPCNT instruction in guest OS
2.6.32 KSM support Kernel Same Page Merging
2.6.34 RDTSCP support, Microsoft Enlightenment Support RDTSCP instruction and Microsoft Enlightenment
2.6.35 New kvmclock interface Support paravirtualized clock for the guest
2.6.38 Support MSR KVM ASYNC PF EN Enable asynchronous page faults delivery

3.1 Add ”steal time” guest/host interface Enable steal time
3.2 Support HV X64 MSR APIC ASSIST PAGE Support for Hyper-V lazy EOI processing
3.3 PMU v2 support Expose a version 2 of Performance Monitor Units to guest
3.6 Support MSR KVM PV EOI EN Support End of Interrupt Paravirtualization
3.10 Support preemption timer for guest Support preemption timer for guest
3.12 Nested EPT Expose Nested Extended Page Table to guest OS
3.13 Support Nested EPT 2MB pages Expose 2MB EPT page to guest
3.14 Support HV X64 MSR TIME REF COUNT Support for Hyper-V reference time counter

Table 2: Bugs We Use in Current Implementation of Hyper-
probe

Fixed Bug Description Intro’ed

2.6.22 MSR IA32 MCG STATUS not writable 2.6.20

2.6.23 MSR IA32 EBL CR POWERON 2.6.20not readable
2.6.25 MSR IA32 MCG CTL not readable 2.6.20

2.6.26 MSR IA32 PERF STATUS 2.6.20wrong return value upon read
2.6.28 MSR IA32 MC0 MISC+20 not readable 2.6.20
2.6.30 MSR VM HSAVE PA not readable 2.6.20
2.6.31 MSR K7 EVNTSEL0 not readable 2.6.20
2.6.32 DR register unchecked access 2.6.20

2.6.34 No support for clear bit 10 of 2.6.20msr register MSR IA32 MC0 CTL

2.6.35 No support for write 2.6.200x100 to MSR K7 HWCR
2.6.37 MSR EBC FREQUENCY ID not readable 2.6.20
2.6.39 MSR IA32 BBL CR CTL3 not readable 2.6.20

3.2 MSR IA32 UCODE REV 2.6.20returns invalid value upon read
3.4 Write 0x8 to MSR K7 HWCR is buggy 2.6.20

3.5 CPUID returns incorrect value 2.6.25for KVM leaf 0x4000000
3.8 MSR IA32 TSC ADJUST not readable 2.6.20
3.9 MSR AMD64 BU CFG2 not readable 2.6.20

3.10 MSR IA32 VMX ENTRY CTLS 3.1is not set properly as per spec

3.12 MSR IA32 FEATURE CONTROL 3.1behave weirdly

3.14 MSR IA32 APICBASE 2.6.20reserve bit is writable

5.1.2014 12.30.2014
6.1.20147.1.20148.1.20149.1.201410.1.201411.1.201412.1.20142.6.30 2.6.31 2.6.32 2.6.33 2.6.34 2.6.35 2.6.36... ...

6/2/2014 - 10/2/2014

Detect feature A and bug B
11/1/2014

Bug B is fixed in 2.6.35

6/2/2014 - 10/2/2014

Interval Description

6/1/2014

Feature A is introduced in 2.6.30

Figure 2: An Inferring Example of The Hyperprobe

logic: if feature A is introduced in 2.6.30 and feature B
is introduced in 2.6.35, then if one can detect feature A
but not B, one may infer that the underlying host kernel

version is between 2.6.30 and 2.6.34. However, this may
lead to inaccuracies. Since even if feature B is introduced
into the Linux mainline kernel on a particular release,
the feature could be disabled by system administrators.
Therefore, even if feature B is not detected, it does not
mean the underlying hypervisor kernel version is older
than 2.6.35. Such customizations could impact precision.

To avoid such inaccuracies, Hyperprobe uses the fol-
lowing strategy to handle the existence or non-existence
of a kernel feature: if we detect a feature exists, we as-
sert that the underlying hypervisor kernel version is no
older than the version in which this feature was first in-
troduced. By designing test cases that detect these fea-
tures, we report a minimum version number. This num-
ber can be viewed as the lower bound of the underlying
hypervisor kernel version.

3.3 KVM Bugs and Bug Fixes

KVM has bugs and bug fixes like any other software. If
bugs can be detected from within the guest OS, then one
may infer the underlying hypervisor kernel version us-
ing the following logic: assuming bug A is fixed in ker-
nel version 2.6.30, and bug B is fixed in kernel version
2.6.35. If one detects that bug A does not exist but bug B
does, one may infer that the underlying hypervisor kernel
is between 2.6.30 and 2.6.34. Similarly, this may lead to
inaccuracies, as a bug could be manually fixed in an older
kernel without updating the entire kernel. Therefore, the
non-existence of a bug does not necessarily mean the ker-
nel is newer than a particular version.

To avoid such inaccuracies, Hyperprobe uses the fol-
lowing strategy to handle the existence or non-existence
of a kernel bug: if a bug is detected, we assert that the
underlying kernel version is older than the kernel ver-
sion where this bug is fixed. By creating test cases that
detect kernel bugs, we report a maximum version num-

4

ber. This number can be viewed as the upper bound of
the underlying hypervisor kernel version. Along with the
test cases that detect kernel features, which can report a
lower bound, we can then narrow down the hypervisor
kernel to a range of versions. Figure 2 illustrates an ex-
ample: upon the detection of feature A and bug B, we
report that the hypervisor has kernel version 2.6.30 as
the lower bound and 2.6.34 as the upper bound.

4 Implementation
Our framework implementation consists of 3530 lines of
C code (including comments). To meet the extensible
goal, we implement the framework of Hyperprobe in a
very modular fashion. More specifically, we design 19
test cases for feature detection and 20 test cases for bug
detection. Each test case is designed for detecting a spe-
cific feature or bug, and is therefore independent of any
other test cases. On average, each test case consists of 80
lines of C code. Such a design model makes Hyperprobe
fairly extensible. If we identify any other detectable fea-
tures or bugs later, they can be easily added.

We define two linked lists, named kvm feature testers
and kvm bug testers. The former includes all the feature
test cases, and the latter includes all the bug test cases.
Each feature test case corresponds to a kernel version
number, which represents the kernel in which the feature
is introduced. The feature test cases are sorted using this
number and the bug test cases are organized similarly.

Hyperprobe executes as follows. The detection algo-
rithm involves two steps. First, we call the feature test
cases in a descending order. As soon as a feature test
case returns true, which suggests the feature exists, we
stop the loop and report the corresponding number as the
lower bound. Second, we call the bug test cases in an
ascending order. As soon as a bug test case returns true,
which suggests the bug exists, we stop the loop and re-
port the corresponding number as the upper bound.

Most hypervisor kernel features and bugs that we have
chosen in this study can be easily detected within the
guest OS. In what follows, we describe some of the more
interesting ones as case studies.

4.1 Case Studies: Kernel Features

4.1.1 Kernel Samepage Merging

Kernel samepage merging (KSM) [15], introduced in
Linux kernel 2.6.32, is a mechanism to save memory,
allowing memory overcommitment. This is a crucial
feature in a virtualized environment, where there could
be a large number of similar VMs running on top of
one hypervisor. Other popular hypervisors, such as Xen
and VMware, have also implemented similar features
[49, 27]. Consequently, if we can detect KSM is enabled
we can ascertain that the underlying hypervisor kernel is
newer than or equal to version 2.6.32.

Memory Page 1
(non shared page)

Memory Page 2
(non shared page)

Memory Page 1
(shared page)

Identical? If yes, merge
Memory Page 1
(shared page)

Memory Page 1
(non shared page)

Memory Page 2
(non shared page)

copy on write

(a) (b)

Figure 3: Kernel Same Page Merging
(a) merging identical pages (b) a copy-on-write

technique is used when a shared page is modified

KSM scans memory pages and merges those that are
identical. Merged pages are set to be copy-on-write, il-
lustrated in Figure 3. This technique is widely used,
and it has been proven to be effective in saving mem-
ory. However, due to copy-on-write, a write to a shared
page incurs more time than a write to a non-shared page.
Existing research [46, 50] has shown that this timing dif-
ference is large enough to tell if KSM is enabled.

Algorithm 1 describes the procedure of testing KSM.
The basic idea of this algorithm is as follows. We first
load a random file into memory and write to each page
of this file (in memory), then we record the accumulated
write access time and call this time t1. Next, we load this
file again into two separate memory regions, and wait
for some time. If KSM is enabled, the identical pages
between these two files will be merged. We then write
into each page of this file (in memory), and record the
accumulated write access time as t2. If t2 is significantly
larger than t1, namely, the ratio t2/t1 is greater than a pre-
defined threshold, we assume KSM is enabled; other-
wise, we assume it is not enabled. In fact, in our testbed,
we observe that t2 is as much as 10 times larger than t1.
Even in five real cloud environments, we observe that t2
is still 2 to 5 times larger than t1. Thus, we choose 2 as
the threshold to detect if KSM is enabled or not.

4.1.2 Extended Page Table (EPT)

Traditionally, commercial hypervisors including KVM,
Xen, and VMware, all use the shadow page table tech-
nique to manage VM memory. The shadow page table
is maintained by the hypervisor and stores the mapping
between guest virtual address and machine address. This
mechanism requires a serious synchronization effort to
make the shadow page table consistent with the guest
page table. In particular, when a workload in the guest
OS requires frequent updates to the guest page tables,
this synchronization overhead can cause very poor per-
formance. To address this problem, recent architecture
evolution in x86 processors presents the extended/nested
page table technology (Intel EPT and AMD NPT). With
this new technology, hypervisors do not need to main-

5

Algorithm 1: Detecting KSM
Global Var: file

1 Procedure test ksm()
2 load file once into memory (file);

// record the clock time before we write

to each page of the file
3 time1← clock gettime();
4 foreach page of file in memory do
5 write to that page;

// record the clock time before we write

to each page of the file
6 time2← clock gettime();
7 t1← diff(time1, time2);
8 load file twice into memory (file);

// sleep and hope the two copies will be

merged
9 sleep (NUM OF SECONDS);

// record the clock time before we write

to each page of the file
10 time1← clock gettime();
11 foreach page of file in memory do
12 write to that page;

// record the clock time after we write

to each page of the file
13 time2← clock gettime();
14 t2← diff(time1, time2);
15 ratio← t2/t1;
16 if ratio > KSM THRESHOLD then
17 return 1;
18 else
19 return 0;

tain shadow page tables for the VMs, and hence avoid
the synchronization costs of the shadow page table sce-
nario. The difference between shadow page table and
extended page table is illustrated in Figure 4.

Before kernel 2.6.26, KVM uses shadow page table to
virtualize memory. Since kernel 2.6.26, KVM starts to
support Intel EPT and enable it by default. Therefore, if
we can detect the existence of EPT from within the guest
OS, we can assume the underlying hypervisor kernel is
newer than or equal to version 2.6.26. Algorithm 2 de-
scribes the EPT detection mechanism, and we derive this
algorithm from the following observations:

• On a specific VM, no matter whether the underlying
hypervisor is using shadow page table or EPT, the
average time to access one byte in memory is very
stable. We have measured this across 30 virtual ma-
chines (with different hardware and software config-
urations). Note that although the time cost may vary
across different machines, it remains nearly the same
when we switch from EPT to shadow page table, or
from shadow page table to EPT.

• When running a benchmark that requires frequent
memory mapping changes, EPT offers significant
performance improvements over shadow page ta-
ble. Particularly, we choose the classic forkwait mi-
crobenchmark, which has been widely employed [12,

Guest Page Table
(per process,

maintained by
guest OS)

pmap data
structure

(per process)

Guest Physical
Address

Shadow page tables
(per process)

Guest Page Table
(per process,

maintained by
guest OS)

Extended
Page Table

(per process,
maintained by

hardware)

Guest Physical
Address

Guest Virtual
Address

Machine
Address

 Maintained by Hypervisor

Machine
Address

Guest Virtual
Address

(a)

Guest Page Table
(per process,

maintained by
guest OS)

pmap data
structure

(per process)

Guest Physical
Address

Shadow page tables
(per process)

Guest Page Table
(per process,

maintained by
guest OS)

Extended
Page Table

(per process,
maintained by

hardware)

Guest Physical
Address

Guest Virtual
Address

Machine
Address

 Maintained by Hypervisor

Machine
Address

Guest Virtual
Address

(b)

Figure 4: Shadow Page Table and Extended Page Table
(a) shadow page table (b) extended page table

13, 17],to evaluate virtualization performance. The
main part of this benchmark repeats the operation of
process creation and destruction very aggressively.
Similar to [17], we have tested the forkwait mi-
crobenchmark across 30 VMs (with different hard-
ware and software configurations), and have consis-
tently observed that EPT offers approximately 600%
performance gains over shadow page table.

Therefore, our algorithm can be elaborated as follows.
First we allocate a memory page, compute the average
time to access one byte of the memory page, and use this
average time as a baseline. Next, we run the forkwait
microbenchmark, compute the average time to fork-wait
one process, and record the ratio between these two aver-
age times (average time to fork-wait one process divided
by average time to access one byte of memory page). On
all VMs we have tested, this ratio is larger than 100,000
when the hypervisor is using shadow page table, and it is
usually between 10,000 to 20,000 when the hypervisor is
using EPT. Therefore, we can choose a threshold, and if
the ratio is less than that threshold, we assume the under-
lying hypervisor is using EPT; otherwise, we assume it
is using shadow page table. Our current implementation
uses 30,000 as the threshold.

4.1.3 Emulating Hyper-V and Support Microsoft
Enlightenment

Microsoft Enlightenment is an optimization made by Mi-
crosoft to Windows systems when running in a virtual-
ized environment. The key idea is to let the guest OS be
aware of the virtualized environment, and therefore tune
its behavior for performance improvement. Recent Win-
dows systems, such as Windows Server 2008, and Win-
dows Vista, are fully enlightened [45, 43], which means

6

Algorithm 2: Detecting EPT
Global Var: forkwait one process avg, access one byte avg

1 Procedure forkwait one process ()
// read time stamp counter before we run

the forkwait benchmark
2 counter1← rdtsc();
3 for i← 0 to NUM OF PROCESS do
4 pid← fork();
5 if pid = 0 then // child process
6 exit (0);
7 else

// parent process, wait until

child process exits
8 wait (&status);

// read time stamp counter when the

forkwait benchmark is finished
9 counter2← rdtsc();

10 cycles← counter2− counter1;
// compute average time for fork-waiting

one process
11 f orkwait one process avg← cycles/NUM OF PROCESS;

12 Procedure access one byte (iterations)
13 o f f set← 0;
14 page← malloc(sizeof(PAGE SIZE));

// read time stamp counter before we

access memory bytes
15 counter1← rdtsc();
16 for i← 0 to iterations do
17 page[o f f set]← (page[o f f set]+1) mod 256;
18 o f f set← (o f f set +1) mod PAGE SIZE;

// read time stamp counter after we

access memory bytes
19 counter2← rdtsc();
20 cycles← counter2− counter1;

// compute average time for accessing

one byte
21 access one byte avg← cycles/iterations;

22 Procedure one time run()
23 access one byte(num o f iterations);
24 forkwait one process();
25 ratio← f orkwait one process avg/access one byte avg;
26 if ratio < EPT THRESHOLD then
27 return 1;
28 else
29 return 0;

30 Procedure test ept()
31 for i← 0 to LOOP NUMBER do
32 if one time run() = 1 then
33 return 1 ;

34 return 0;

they take full advantage of the possible enlightenments.
Microsoft Enlightenment was originally designed for

Hyper-V, but Microsoft provides APIs for other hy-
pervisors to utilize this optimization. Since kernel
2.6.34, KVM has started utilizing these APIs and sup-
porting Microsoft Enlightenment. According to the
Hyper-V specification [6, 7], several synthetic regis-
ters are defined, including HV X64 GUEST OS ID,
HV X64 HYPERCALL, HV X64 VP INDEX, as well
as the EOI/TPR/ICR APIC registers. Details of these
registers are shown in Table 3. Before kernel 2.6.34,

accessing these registers would generate a general pro-
tection fault, but since kernel 2.6.34, they should be ac-
cessible whether accessing from a Windows or Linux
guest OS. Thus, we attempt to access these registers.
If they are accessible, we assume the kernel version is
newer than or equal to version 2.6.34; otherwise, the fea-
ture may not be present, but we do not make any asser-
tion regarding the underlying kernel version. In addi-
tion, in some later kernel versions, more Hyper-V de-
fined synthetic registers are emulated by KVM. For ex-
ample, HV X64 MSR TIME REF COUNT is emulated
in kernel 3.14. Thus, successful access to the register
suggests that the underlying hypervisor kernel should be
as new as 3.14.

4.2 Case Studies: Kernel Bugs

4.2.1 Debug Register Unchecked Access

Debug registers are protected registers. They should only
be accessed by ring 0 code, namely kernel code. How-
ever, before kernel 2.6.32, KVM does not check the priv-
ilege of the guest code that accesses the debug registers.
Therefore, any process, regardless of its current privilege
level (CPL), is able to read from and write to debug reg-
isters. This leads to a security issue in the guest OS, as
attackers might be able to implement the infamous DR
rootkit [14, 28] without installing a kernel module, thus
making the rootkit more difficult to detect even from the
hypervisor level.

On kernel 2.6.32, KVM maintainer, Avi Kivity, sub-
mitted a patch that fixed this bug. The patch would check
the CPL before accessing debug registers, and would
generate a fault if the CPL is greater than zero. We built
a simple test case based on this bug. The basic idea is
to use the fork system call to create a child process, and
let the child process try to access a debug register. If the
bug is fixed, the child process should be terminated by a
segmentation fault signal. But if the bug has not yet been
fixed, the child process will continue to run and eventu-
ally exit normally. Therefore, we let the parent process
wait until the child process exits, and check the exit sta-
tus of the child process. If it exits normally, we report the
bug still exists; otherwise, we report the bug is fixed.

4.2.2 Model Specific Register (MSR) Bugs

CPU vendors such as Intel and AMD define hundreds
of model specific registers on their processors. Some of
these registers are common across different types of pro-
cessors, while others might only exist in a specific pro-
cessor. Due to the large variety of such registers, over
the years, emulating the behavior of these registers has
always been a painful task in modern hypervisors. Be-
cause of this, Andi Kleen, a key maintainer of Linux ker-
nels, who used to be in charge of the x86 64 and i386
architectures, believes that it is impossible to emulate a

7

Table 3: Hyper-V Defined Synthetic Registers

Register Name Address Description Supported in Linux Kernel Since

HV X64 MSR GUEST OS ID 0x40000000 Used to identify guest OS 2.6.34
HV X64 MSR HYPERCALL 0x40000001 Used to enable/disable Hypercall 2.6.34

HV X64 MSR VP INDEX 0x40000002 Used to identify virtual processor 2.6.34
HV X64 MSR EOI 0x40000070 Fast access to APIC EOI register 2.6.34
HV X64 MSR ICR 0x40000071 Fast access to APIC ICR register 2.6.34
HV X64 MSR TPR 0x40000072 Fast access to APIC TPR register 2.6.34

HV X64 MSR APIC ASSIST PAGE 0x40000073 Used to enable/disable lazy EOI processing 3.2
HV X64 MSR TIME REF COUNT 0x40000020 Time reference counter 3.14

particular CPU 100% correctly [33].

However, incorrect emulation of these registers could
cause problems in the guest OS. For example, to fix their
hardware defects, Intel defines a capability in its Pen-
tium 4, Intel Xeon, and P6 family processors called mi-
crocode update facility. This allows microcode to be up-
dated if needed to fix critical defects. After microcode
is updated, its revision number is also updated. BIOS or
OS can extract this revision number via reading the MSR
register IA32 UCODE REV, whose address is 0x8BH.
Previously, in Linux kernel, when the guest tries to read
this register, KVM would return an invalid value, which
is 0, and this would cause Microsoft Windows 2008 SP2
server to exhibit the blue screen of death (BSOD). To fix
this problem, since kernel 3.2, KVM reports a non-zero
value when reading from IA32 UCODE REV. Details of
this bug fix can be found in [47].

Our detection is also straightforward: Linux kernel
provides a kernel module called msr that exports an in-
terface through file /dev/cpu/cpuN/msr, where N refers
to the CPU number. This interface allows a user level
program to access MSR registers. Therefore, we can
detect the bug by accessing this file with the address of
IA32 UCDOE REV, which is 0x0000008b according to
Intel’s manual. If a read to this register returns 0, we can
assert that the bug exists.

5 Evaluation

To demonstrate how Hyperprobe performs in the wild,
we ran its test suite on VMs provisioned from different
public cloud providers to detect their hypervisor kernel
versions. In most cases, we were able to narrow the sus-
pected hypervisor kernel versions down to a few; in one
case, we even had an exact match. However, as pub-
lic cloud providers do not disclose detailed information
about the hypervisors they are using (for obvious security
reasons), we had to find other means to confirm these re-
sults, such as user forums and white papers. Our results
do coincide with what are being reported via these side
channels. To more rigorously verify the accuracy of Hy-
perprobe, we also evaluated it in a controlled testbed en-
vironment across 35 different kernel versions with very
encouraging results.

5.1 Results in Real World Clouds

The public cloud providers we selected in this study in-
clude Google Compute Engine, HP Helion Public Cloud,
ElasticHosts, Joyent Cloud, and CloudSigma. (all KVM-
based) In our experiments, we intentionally created VMs
with different configurations to test the detection robust-
ness and accuracy of our framework. The results are
shown in Tables 4, 5, 6, 7, and 8. Running the test suite
and analyzing the collected results take less than 5 min-
utes to complete, which is fairly reasonable from a prac-
tical point of view. In fact, we observe that the running
time is mainly dominated by those test cases that require
sleeping or running some microbenchmarks. In what fol-
lows, we detail our findings for each cloud provider.

5.1.1 Google Compute Engine

Google Compute Engine is hosted in data centers located
in Asia, Europe, and America. One can choose the num-
ber of VCPUs per VM ranging from 1 to 16. Hyper-
probe shows that Google is using a kernel version be-
tween 3.2 and 3.3 in its hypervisors. According to a re-
cent work [37] and some online communications written
by Google engineers [32, 1], Debian 7 is most likely used
in its hypervisors as this Linux distribution is widely used
in its production environments. The default kernel of De-
bian 7 is 3.2.0-4, agreeing with our findings.

5.1.2 HP Helion Public Cloud

HP Helion Public Cloud is hosted in data centers in U.S.
East and West regions. One can choose the number of
VCPUs per VM ranging from 1 to 4. Hyperprobe de-
tected that the HP cloud is using a kernel version between
3.2 and 3.7 in its hypervisors. According to some unoffi-
cial online documents and web pages [4, 5], HP is most
likely using Ubuntu 12.04 LTS server as its host OS. The
default kernel of Ubuntu 12.04 LTS is 3.2, falling within
the range reported by our framework.

5.1.3 ElasticHosts

ElasticHosts is the first public cloud service provider to
use Linux-KVM as its hypervisors [2]. Its data centers
are located in Los Angeles, CA and San Antonio, TX.
For free trial users, a VM with only 1 VCPU and 1GB
of memory is given. Hyperprobe reported that the un-
derlying hypervisor kernel version should be 3.6 to 3.8.

8

Table 4: Inferring Host Kernel Version in Google Compute Engine

VM Name Zone Machine Type Image VCPU VCPU Frequency RAM Disk Min Max
gg-test1 asia-east1-a n1-standard-1 SUSE SLES 11 SP3 1 2.50GHZ 3.8GB 10G 3.2 3.3
gg-test2 asia-east1-b n1-highcpu-16 SUSE SLES 11 SP3 16 2.50GHZ 14.4GB 10G 3.2 3.3
gg-test3 us-central1-a n1-highmem-16 Debian 7 wheezy 16 2.60GHZ 8GB 104G 3.2 3.3
gg-test4 us-central1-b f1-micro backports Debian 7 wheezy 1 2.60GHZ 4GB 0.6G 3.2 3.3
gg-test5 europe-west1-a n1-highmem-4 backports Debian 7 wheezy 4 2.60GHZ 26GB 10G 3.2 3.3
gg-test6 europe-west1-b n1-standard-4 Debian 7 wheezy 4 2.60GHZ 15GB 10G 3.2 3.3

Table 5: Inferring Host Kernel Version in HP Helion Cloud (3 Month Free Trial)

VM Name Region Zone Size Image VCPU VCPU Frequency RAM Disk Min Max
hp-test1 US East az2 standard xsmall SUSE SLES 11 SP3 1 2.4GHZ 1GB 20G 3.2 3.7
hp-test2 US East az2 standard xlarge SUSE SLES 11 SP3 4 2.4GHZ 15GB 300G 3.2 3.7
hp-test3 US East az3 standard large SUSE SLES 11 SP3 4 2.4GHZ 8GB 160G 3.2 3.7
hp-test4 US East az1 standard medium SUSE SLES 11 SP3 2 2.4GHZ 4GB 80G 3.2 3.7
hp-test5 US West az1 standard medium Ubuntu 10.04 2 2.4GHZ 4GB 80G 3.2 3.7
hp-test6 US West az3 standard xlarge Debian Wheezy 7 4 2.4GHZ 15GB 300G 3.2 3.7

Table 6: Inferring Host Kernel Version in ElasticHosts Cloud (5 Day Free Trial)

VM Name Location Image VCPU (Only 1 allowed for free trial) RAM Disk Min Max
eh-test1 Los Angeles Ubuntu 13.10 2.8GHz 1GB 10GB 3.6 3.8
eh-test2 Los Angeles Cent OS Linux 6.5 2.8GHz 512MB 5GB SSD 3.6 3.8
eh-test3 Los Angeles Debian Linux 7.4 2.8GHz 512MB 5GB 3.6 3.8
eh-test4 Los Angeles Ubuntu 14.04 LTS 2.8GHz 1GB 10GB 3.6 3.8
eh-test5 San Antonio Ubuntu 12.04.1 LTS 2.5GHz 1GB 5GB 3.6 3.8
eh-test6 San Antonio CentOS Linux 6.5 2.5GHz 512MB 10GB 3.6 3.8

For this provider, we were not able to find information to
confirm if our finding is correct.

5.1.4 Joyent Cloud

Joyent Cloud is yet another IaaS cloud service provider
that uses KVM as its hypervisors [11]. Its data centers
are located in U.S. East, West, and Southwest regions, as
well as in Amsterdam, Netherlands. It provides a one-
year free trial with very limited resources (i.e., 0.125
VCPU and 256MB of memory). Hyperprobe reported
that the hypervisors hosting the free trial machines are
using a rather old 2.6.34 kernel (an exact match).

Further investigation showed that Joyent runs a custom
kernel called SmartOS in its hypervisors. It was created
based on Open Solaris and Linux KVM, and we con-
firmed that Linux 2.6.34 is the version that Joyent engi-
neers have ported into SmartOS [18].

5.1.5 CloudSigma

CloudSigma is an IaaS cloud service provider based in
Zurich, Switzerland. However, its data centers are lo-
cated in Washington, D.C. and Las Vegas, NV. For free
trial users, only one VCPU with 2GB of memory can be
obtained. Hyperprobe reported that the underlying hy-
pervisor kernel version should be between 3.6 and 3.13.

The main reason that CloudSigma’s result spans a
wider range than others is its usage of AMD processors
in its data centers. Our current implementation of Hy-
perprobe is optimized only for Intel processors. KVM
includes an architecture dependent module, namely kvm-
intel.ko and kvm-amd.ko, for Intel and AMD, respec-
tively. Although some features and bugs are common
in both architectures, others may not be. And these

architecture-specific features and bugs can further im-
prove the accuracy of Hyperprobe’s reported results. The
result for CloudSigma was mainly based on the common
features and bugs, and thus, Hyperprobe was not able to
narrow down the kernel versions as much as it could for
the Intel-based cloud providers.

5.1.6 Summarizing Findings in Public Clouds

We found several interesting facts about these clouds:

• Even if a cloud provider has multiple data centers
spread across various geographic locations, it is very
likely that they are using the same kernel version and
distribution. This confirms the conventional wisdom
that standardization and automation are critical to
the maintainability of an IT environment as it grows
more complex. Modern cloud providers’ data centers
are as complicated as they can get.

• Cloud providers usually do not use the latest kernel.
At the time of our study, the latest stable Linux kernel
is version 3.14, which was released in March 2014,
and our experiments were performed in June 2014.
However, we can see cloud providers like HP and
ElasticHosts are still using kernels older than version
3.8, which was released in February 2013. Google
and Joyent Cloud are using even older kernels. This
is understandable as newer kernels might not have
been extensively tested, and therefore, it could be
risky to use them for production workloads.

5.2 Results in a Controlled Testbed

To better observe if what Hyperprobe detects is really
what is deployed, we ran the same test suite in a con-

9

Table 7: Inferring Host Kernel Version in Joyent Cloud (1 Year Free Trial)

VM Name Location Image VCPU (Only 1 allowed for free trial) RAM Disk Min Max
jy-test1 US-East CentOS 6.5 3.07GHz 250MB 16GB 2.6.34 2.6.34
jy-test2 US-SouthWest Ubuntu Certified 14.04 2.40GHz 250MB 16GB 2.6.34 2.6.34
jy-test3 US-West CentOS 6.5 2.40GHz 250MB 16GB 2.6.34 2.6.34
jy-test4 EU-Amsterdam Ubuntu Certified 14.04 2.40GHz 250MB 16GB 2.6.34 2.6.34

Table 8: Inferring Host Kernel Version in CloudSigma (7 Day Free Trial)

VM Name Location Image VCPU (Only 1 allowed for free trial) RAM Disk Min Max
cs-test1 Washington DC CentOS 6.5 Server 2.5GHz 2GB 10GB SSD 3.6 3.13
cs-test2 Washington DC Fedora 20 Desktop 2.5GHz 1GB 10GB SSD 3.6 3.13
cs-test3 Washington DC Debian 7.3 Server 2.5GHz 512MB 10GB SSD 3.6 3.13
cs-test4 Washington DC SUSE SLES 11 SP3 2.5GHz 2GB 10GB SSD 3.6 3.13

trolled testbed environment across all the 35 major Linux
kernel releases (2.6.20 to 3.14) since KVM was first in-
troduced. The testbed is a Dell Desktop (with Intel Xeon
2.93GHz Quad-Core CPU and 2GB memory) running
OpenSuSE 11.4. We used OpenSuSE 11.4 as the guest
OS running a 3.14 Linux kernel. We manually compiled
each of the 35 kernels and deployed it as the kernel used
in our hypervisor. After each set of experiments, we shut
down the guest OS and rebooted the host OS.

The results are listed in Table 9. To sum up, from Ta-
ble 9, it can be seen that, among the 35 host OS kernel
versions, we can find an exact match for 11 of them; for
15 of them, we can narrow down to 2 versions; for 4 of
them, we can narrow down to 3 versions; for 4 of them,
we can narrow down to 4 versions; and for 1 of them, we
can narrow down to 5 versions.

6 Discussion
In this section, we discuss some potential enhancements.

6.1 Other Hypervisors

Our current framework is developed for KVM, but the
approach we propose should certainly work for other
popular hypervisors such as Xen. In fact, we notice that
KVM and Xen share many of the same features and bugs.
For instance, They both support the Microsoft enlighten-
ment feature, and we also notice that some MSR register
bugs exist in both KVM and Xen. Therefore, we plan
to include the support for Xen hypervisors in our frame-
work.

Meanwhile, we are also trying to enhance our frame-
work for closed-source hypervisors, such as VMware
and Hyper-V. Even though their source codes are not
available, the vendors provide a release note for each ma-
jor release, which clearly states their new features. And
the bugs of these hypervisors are also publicly available.

6.2 Open Source

We have implemented Hyperprobe as a framework,
which includes different test cases, but each test case is
totally separated from all the other test cases. In other
words, each test case can be developed separately. Such

Table 9: Inferring Results in a Controlled Testbed

Kernel Reported Min Reported Max Accuracy

2.6.20 2.6.20 2.6.21 2 versions
2.6.21 2.6.21 2.6.21 exact match
2.6.22 2.6.21 2.6.22 2 versions
2.6.23 2.6.23 2.6.24 2 versions
2.6.24 2.6.23 2.6.24 2 versions
2.6.25 2.6.25 2.6.25 exact match
2.6.26 2.6.25 2.6.27 3 versions
2.6.27 2.6.27 2.6.27 exact match
2.6.28 2.6.27 2.6.29 3 versions
2.6.29 2.6.27 2.6.29 3 versions
2.6.30 2.6.30 2.6.30 exact match
2.6.31 2.6.31 2.6.31 exact match
2.6.32 2.6.32 2.6.33 2 versions
2.6.33 2.6.32 2.6.33 2 versions
2.6.34 2.6.34 2.6.34 exact match
2.6.35 2.6.35 2.6.36 2 versions
2.6.36 2.6.35 2.6.36 2 versions
2.6.37 2.6.35 2.6.38 4 versions
2.6.38 2.6.38 2.6.38 exact match
2.6.39 2.6.38 3.1 4 versions

3.0 2.6.38 3.1 4 versions
3.1 3.1 3.1 exact match
3.2 3.2 3.3 2 versions
3.3 3.3 3.3 exact match
3.4 3.3 3.4 2 versions
3.5 3.3 3.7 5 versions
3.6 3.6 3.7 2 versions
3.7 3.6 3.7 2 versions
3.8 3.6 3.8 3 versions
3.9 3.6 3.9 4 versions

3.10 3.10 3.11 2 versions
3.11 3.10 3.11 2 versions
3.12 3.12 3.13 2 versions
3.13 3.13 3.13 exact match
3.14 3.14 3.14 exact match

a key property allows it to meet one of our design goals:
extensible. In fact, we plan to make it open source, so
that we can rely on a community of users to use it and
contribute additional test cases. The more vantage points
(i.e., test cases) we have, the better precision our detec-
tion result can achieve. And this will certainly accelerate
our development process and our support for the other
hypervisors.

7 Related Work

We survey related work in two categories: detection of a
specific hypervisor and attacks against hypervisors.

10

7.1 Detection of Hypervisors

Since virtualization has been widely used for deploying
defensive solutions, it is critical for attackers to be able
to detect virtualization, i.e., detect the existence of a hy-
pervisor. To this end, several approaches have been pro-
posed for detecting the underlying hypervisors and are
briefly described as follows.

RedPill [44] and Scooby Doo [34] are two techniques
proposed to detect VMware, and they both work be-
cause VMware relocates some sensitive data structures
such as Interrupt Descriptor Table (IDT), Global De-
scriptor Table (GDT), and Local Descriptor Table (LDT).
Therefore, one can examine the value of the IDT base,
if it exceeds a certain value or equals a specific hard-
coded value, then one assumes that VMware is being
used. However, these two techniques are both limited
to VMware detection and are not reliable on machines
with multi-cores [41]. By contrast, the detection tech-
nique proposed in [41] is more reliable but only works on
Windows guest OSes. Their key observation is that be-
cause LDT is not used by Windows, the LDT base would
be zero in a conventional Windows system but non-zero
in a virtual machine environment. Therefore, one can
simply check for a non-zero LDT base on Windows and
determine if it is running in VMware environment.

A variety of detection techniques based on timing
analysis have also been proposed in [25, 23].The basic
idea is that some instructions (e.g., RDMSR) are inter-
cepted by hypervisors and hence their execution time is
longer than that on a real machine. One can detect the
existence of a hypervisor by measuring the time taken
to execute these instructions. Note that all these previ-
ous works can only detect the presence of a hypervisor
and/or its type, but none are able to retrieve more de-
tailed information about the underlying hypervisor, such
as its kernel version.

7.2 Attacks against Hypervisors

Modern hypervisors often have a large code base, and
thus, are also prone to bugs and vulnerabilities. Con-
sidering a hypervisor’s critical role in virtualized en-
vironments, it has been a particularly attractive tar-
get for attackers. Vulnerabilities in hypervisors have
been exploited by attackers, as demonstrated in prior
work [35, 21]. Perez-Botero et al. [39] characterized var-
ious hypervisor vulnerabilities by analyzing vulnerabil-
ity databases, including SecurityFocus [10] and NIST’s
Vulnerability Database [9]. Their observation is that al-
most every part of a hypervisor could have vulnerabili-
ties. Ormandy [38] classified the security threats against
hypervisors into three categories: total compromise, par-
tial compromise, and abnormal termination. A total com-
promise means a privilege escalation attack from a guest
OS to the hypervisor/host. A partial compromise refers

to information leakage. An abnormal termination de-
notes the shut down of a hypervisor caused by attackers.
According to the definition above, gaining hypervisor in-
formation by Hyperprobe belongs to a partial compro-
mise.

8 Conclusion
In this paper, we investigated the reverse information
retrieval problem in a virtualized environment. More
specifically, we coined the term virtual machine extro-
spection (VME) to describe the procedure of retrieving
the hypervisor information from within a guest OS. As
a first step towards VME, we presented the design and
development of the Hyperprobe framework. After an-
alyzing the seven-year evolution of Linux KVM devel-
opment, including 35 kernel versions and approximately
3485 KVM related patches, we implemented test cases
based on 19 hypervisor features and 20 bugs. Hyper-
probe is able to detect the underlying hypervisor kernel
version in less than five minutes with a high accuracy. To
the best of our knowledge, we are the first to study the
problem of detecting host OS kernel version from within
a VM. Our framework generates promising results in five
real clouds, as well as in our own testbed.

References
[1] Bringing debian to google compute engine. http:

//googleappengine.blogspot.com/2013/05/
bringing-debian-to-google-compute-engine_
9.html.

[2] Elastichosts wiki page. http://en.wikipedia.org/
wiki/ElasticHosts.

[3] Google compute engine. https://cloud.google.com/
products/compute-engine/.

[4] Hp cloud os faqs. http://docs.hpcloud.com/
cloudos/prepare/faqs/.

[5] Hp cloud os support matrix for hardware and software.
http://docs.hpcloud.com/cloudos/prepare/
supportmatrix/.

[6] Hypervisor top-level functional specification 2.0a: Windows
server 2008 r2. http://www.microsoft.com/en-us/
download/details.aspx?id=18673.

[7] Hypervisor top-level functional specification 3.0a: Windows
server 2012. http://www.microsoft.com/en-us/
download/details.aspx?id=39289.

[8] Joyent. http://www.joyent.com/.

[9] National vulnerability database. http://nvd.nist.gov/.

[10] Security focus. http://www.securityfocus.com/.

[11] Virtualization performance: Zones, kvm, xen. http:
//dtrace.org/blogs/brendan/2013/01/11/
virtualization-performance-zones-kvm-xen/.

[12] ADAMS, K., AND AGESEN, O. A comparison of software and
hardware techniques for x86 virtualization. Proceedings of the
11th international conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS) 41, 11
(2006), 2–13.

11

[13] AHN, J., JIN, S., AND HUH, J. Revisiting hardware-assisted
page walks for virtualized systems. In Proceedings of the 39th In-
ternational Symposium on Computer Architecture (ISCA) (2012),
IEEE Computer Society, pp. 476–487.

[14] ALBERTS, B. Dr linux 2.6 rootkit released. http://lwn.
net/Articles/296952/.

[15] ARCANGELI, A., EIDUS, I., AND WRIGHT, C. Increasing mem-
ory density by using ksm. In Proceedings of the Linux Symposium
(2009), pp. 19–28.

[16] BEN-YEHUDA, M., DAY, M. D., DUBITZKY, Z., FACTOR, M.,
HAR’EL, N., GORDON, A., LIGUORI, A., WASSERMAN, O.,
AND YASSOUR, B.-A. The turtles project: Design and imple-
mentation of nested virtualization. In Proceedings of the 9th
USENIX conference on Operating Systems Design and Imple-
mentation (OSDI) (2010), vol. 10, pp. 423–436.

[17] BHATIA, N. Performance evaluation of intel ept hardware assist.
VMware, Inc (2009).

[18] CANTRILL, B. Experiences porting kvm to smartos. KVM Forum
2011.

[19] Cloudsigma. https://www.cloudsigma.com/.

[20] Elastichosts. http://www.elastichosts.com/.

[21] ELHAGE, N. Virtunoid: Breaking out of kvm. Black Hat USA
(2011).

[22] FERRIE, P. Attacks on more virtual machine emulators. Syman-
tec Technology Exchange (2007).

[23] FRANKLIN, J., LUK, M., JONATHAN, M., SESHADRI, A., PER-
RIG, A., AND VAN DOORN, L. Towards sound detection of vir-
tual machines. Advances in Information Security, Botnet Detec-
tion: Countering the Largest Security Threat, 89–116.

[24] FRANKLIN, J., LUK, M., MCCUNE, J. M., SESHADRI, A.,
PERRIG, A., AND VAN DOORN, L. Remote detection of vir-
tual machine monitors with fuzzy benchmarking. ACM SIGOPS
Operating Systems Review 42, 3 (2008), 83–92.

[25] GARFINKEL, T., ADAMS, K., WARFIELD, A., AND FRANKLIN,
J. Compatibility is not transparency: Vmm detection myths and
realities. In Proceedings of the 9th USENIX workshop on Hot
topics in operating systems (HotOS) (2007).

[26] GARFINKEL, T., AND ROSENBLUM, M. A virtual machine in-
trospection based architecture for intrusion detection. In Proceed-
ings of the 10th Annual Symposium on Network and Distributed
Systems Security (NDSS) (2003), pp. 191–206.

[27] GUPTA, D., LEE, S., VRABLE, M., SAVAGE, S., SNOEREN,
A., VARGHESE, G., VOELKER, G., AND VAHDAT, A. Dif-
ference engine: Harnessing memory redundancy in virtual ma-
chines. Proceedings of the 8th symposium on Operating Systems
Design and Implementation (OSDI) (2008).

[28] HALFDEAD. Mistifying the debugger, ultimate stealthness.
http://phrack.org/issues/65/8.html.

[29] Hp helion public cloud. http://www.hpcloud.com/.

[30] JIANG, X., WANG, X., AND XU, D. Stealthy malware de-
tection through vmm-based out-of-the-box semantic view recon-
struction. In Proceedings of the 14th ACM conference on Com-
puter and Communications Security (CCS) (2007), pp. 128–138.

[31] JIANG, X., AND XU, D. Collapsar: A vm-based architecture for
network attack detention center. In USENIX Security Symposium
(2004), pp. 15–28.

[32] KAPLOWITZ, J. Debian google compute engine kernel improve-
ments, now and future. https://lists.debian.org/
debian-cloud/2013/11/msg00007.html.

[33] KLEEN, A. Kvm mailing list discussion. https:
//www.mail-archive.com/linux-kernel@vger.
kernel.org/msg611255.html.

[34] KLEIN, T. Scooby doo-vmware fingerprint suite. http:
//www.trapkit.de/research/vmm/scoopydoo/
index.html, 2003.

[35] KORTCHINSKY, K. Cloudburst: A vmware guest to host escape
story. Black Hat USA (2009).

[36] LITTY, L., LAGAR-CAVILLA, H. A., AND LIE, D. Hypervisor
support for identifying covertly executing binaries. In USENIX
Security Symposium (2008), pp. 243–258.

[37] MERLIN, M. Live upgrading thousands of servers from an an-
cient red hat distribution to 10 year newer debian based one. In
Proceedings of the 27th conference on Large Installation System
Administration (LISA) (2013), pp. 105–114.

[38] ORMANDY, T. An empirical study into the security exposure to
hosts of hostile virtualized environments. http://taviso.
decsystem.org/virtsec.pdf, 2007.

[39] PEREZ-BOTERO, D., SZEFER, J., AND LEE, R. B. Character-
izing hypervisor vulnerabilities in cloud computing servers. In
Proceedings of the 2013 international workshop on Security in
cloud computing (2013), ACM, pp. 3–10.

[40] PETRONI JR, N. L., AND HICKS, M. Automated detection
of persistent kernel control-flow attacks. In Proceedings of the
14th ACM conference on Computer and Communications Secu-
rity (CCS) (2007), pp. 103–115.

[41] QUIST, D., AND SMITH, V. Detecting the pres-
ence of virtual machines using the local data table.
http://www.offensivecomputing.net/files/
active/0/vm.pdf, 2006.

[42] RILEY, R., JIANG, X., AND XU, D. Guest-transparent preven-
tion of kernel rootkits with vmm-based memory shadowing. In
Recent Advances in Intrusion Detection (RAID) (2008), Springer,
pp. 1–20.

[43] RUSSINOVICH, M. Inside windows server 2008 kernel changes.
Microsoft TechNet Magazine (2008).

[44] RUTKOWSKA, J. Red pill... or how to detect vmm using (al-
most) one cpu instruction. http://invisiblethings.
org/papers/redpill.html, 2004.

[45] SMYTH, N. Hyper-V 2008 R2 Essentials. eBookFrenzy, 2010.

[46] SUZAKI, K., IIJIMA, K., YAGI, T., AND ARTHO, C. Software
side channel attack on memory deduplication. Proceedings of the
23rd ACM Symposium on Operating Systems Principles (SOSP
11’ POSTER) (2011).

[47] TOSATTI, M. Kvm: x86: report valid microcode update
id. https://github.com/torvalds/linux/commit/
742bc67042e34a9fe1fed0b46e4cb1431a72c4bf.

[48] VRABLE, M., MA, J., CHEN, J., MOORE, D., VANDEKIEFT,
E., SNOEREN, A. C., VOELKER, G. M., AND SAVAGE, S. Scal-
ability, fidelity, and containment in the potemkin virtual honey-
farm. ACM SIGOPS Operating Systems Review 39, 5 (2005),
148–162.

[49] WALDSPURGER, C. Memory resource management in vmware
esx server. Proceedings of the 5th symposium on Operating Sys-
tems Design and Implementation (OSDI) 36, SI (2002), 181–194.

[50] XIAO, J., XU, Z., HUANG, H., AND WANG, H. Security impli-
cations of memory deduplication in a virtualized environment. In
Proceedings of the 43rd Annual IEEE/IFIP International Confer-
ence on Dependable Systems and Networks (DSN) (2013).

12

