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Abstract—With the ever-increasing number and complexity of applications deployed in data centers, the underlying network
infrastructure can no longer sustain such a trend and exhibits several problems, such as resource fragmentation and low bisection
bandwidth. In pursuit of a real-world applicable cloud network (CN) optimization approach that continuously maintains balanced
network performance with high cost effectiveness, we design a topology independent resource allocation and optimization approach,
NetDEO. Based on a swarm intelligence optimization model, NetDEO improves the scalability of the CN by relocating virtual machines
(VMs) and matching resource demand and availability. NetDEO is capable of (1) incrementally optimizing an existing VM placement
in a data center; (2) deriving optimal deployment plans for newly added VMs; and (3) providing hardware upgrade suggestions, and
allowing the CN to evolve as the workload changes over time. We evaluate the performance of NetDEO using realistic workload traces
and simulated large-scale CN under various topologies.
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I. INTRODUCTION

Today’s cloud networks (CNs) are continuously evolving
because of two major factors: architectural upgrade, such
as network topology expansion and new server deployment,
driven by increasing application demand, and workload dy-
namics, such traffic patterns changes and application evolu-
tions, introduced by tenant services running on top. This is
especially the case in the cloud environment with virtualized
infrastructures, where users continuously join/leave the system
and client instances (i.e., virtual machines) are dynamically
created and terminated. Driven by this trend, the quest for
a highly scalable and efficient CN has led to much recent
progresses [1–13].

Specifically, one class of research focuses on designing new
CN architectures to achieve high-bandwidth all-to-all connec-
tivity (or 1:1 over-subscription) [1, 3], appealing scalability
[4, 5, 7], ideal agility [3, 8], and desirable topology flexibility
[2, 6, 9, 10]. However, these schemes require fundamental
changes of today’s network architectures and/or modifications
of hardware equipments, and therefore may encounter nontriv-
ial deployment barrier. In contrast, another orthogonal class
of research focuses on improving techniques to better utilize
the existing network architecture, such as TVMPP [14], CPA
[15], and RAP [16]. These schemes keep the existing network
architecture and routing protocol intact, and instead, aim at
reducing network bandwidth demand by optimizing placement
of end-nodes (which can be physical or virtual machines1). In
this paper, we choose to explore the latter research direction
due to its low up-front cost and immediate applicability.

Aiming to develop a real-world applicable optimization
solution that can continuously maintain balanced CN network
performance with high cost effectiveness, we find that existing
placement optimization approaches insufficient for fulfilling
our goal. In particular, they lack in three key attributes,

1Without loss of generality, we consider, in the rest of the paper, virtualized
environments where virtual machines are the end-nodes.
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Fig. 1. An example of two equivalent solutions with different transition costs

feasibility, flexibility, and expandability, which we believe are
crucial for effective CN management.

Feasibility: Data center maintenance is not a one-time task,
but a series of incremental optimizations performed over time.
When optimizing an existing data center configuration, a large
number of equally optimal placement solutions exist due to the
homogeneous computing and network resources in the CN.
However, the transition costs to these target placements are
significantly different, and may even render certain optimal so-
lutions impossible to realize in practice. Targeting only initial
deployment optimizations, previous approaches [14, 15, 17]
disregard the preexisting configuration, and solve the problem
from scratch. And thus, they are very likely to reach a
very expensive solution in terms of transition cost. To better
understand this, consider an illustration in Figure 1, where
two applications App1 and App2 are deployed in a two-level
tree network. The existing placement of the two applications
on the left is sub-optimal, since traffic flows (B1, C1) and
(B2, D2) have to cross subnets. Two optimal solutions are
given on the right, both placing components of the same
application in the same subnets, thereby eliminating inter-
subnet traffic. However, while both solutions are equivalent
in terms of network optimality, the transition cost (i.e., the
number of VM migrations) from the original configuration to



the final configuration associated with the two solutions are
quite different. Specifically, Solution 1 involves only two VM
(i.e., D2 and C1) migrations, while Solution 2 requires five.

Flexibility: Besides placement optimality, CN operators are
also concerned with practical factors such as transition cost,
time, and other administrative constraints. In practice, it is not
uncommon for the CN operators to compromise optimality
for these practical considerations. Modeling the network opti-
mization as a rigid mathematical problem, previous approaches
could only produce a single “best” solution with no regards
for applicability. However, they have left the large space of
less-optimal-but-more-applicable solutions unexplored.

Expandability: CNs evolve over time as the operators have
budget to opt for upgrading server and/or network capacity.
Moreover, in many cases (as we show in Section V), a
complicated optimization solution involving significant server
replacement and traffic re-routing may be greatly simplified by
upgrading only a few resources (e.g., server and network). This
situation leads to many questions that cannot be answered by
previous approaches, such as the sets of servers and switches
to upgrade and the new capacities to upgrade to.

Motivated by the above observations, we present in this
paper a CN optimization framework called NetDEO. NetDEO
facilitates the three key attributes by employing a swarm
intelligence [18] optimization algorithm based on modified
simulated annealing [19]. First, thanks to the metaheuristic2

nature of swarm intelligence algorithms, NetDEO is capable
of performing feasible incremental optimizations—finding ef-
ficient optimization solutions for preexisting data center con-
figurations. Second, NetDEO explicitly takes the maintenance
flexibility into account by identifying a set of optimization
solutions with different benefit-cost characteristics for each
problem instance. And finally, NetDEO acknowledges the CN
expandability and explores these new degrees of freedom
in a controlled manner, providing the CN operators with
customizable network and server system upgrade suggestions
according to their budget.

We evaluate NetDEO using production server traces of
multiple transaction systems and simulated large CN in three
different network topologies: non-homogeneous tree, FatTree,
and BCube. Our experiments show that, NetDEO significantly
improves both solution quality (in terms of transition cost)
and running time for incremental optimizations, the key tasks
for CN maintenance. And for initial deployment optimizations,
NetDEO achieves comparable or improved solution quality and
running time compared with existing approaches. In addition,
NetDEO could also provide efficient CN upgrade suggestions
that simplify the optimization process.

The remainder of this paper is structured as follows. In
Section II, we give a brief review of related work. In Section
III, we present the problem formulation and analysis. In
Section IV, we present NetDEO design and algorithm details.
In Section V, we evaluate the performance of NetDEO. In
Section VII, we conclude this paper and point out directions
for future work.

2Metaheuristic designates a computational method that optimizes a problem
by iteratively trying to improve a candidate solution with regard to a given
measure of quality [20].

II. RELATED WORK

Many solutions have been proposed to solve the network
optimization problem, falling into two major categories—
architectural revolution and placement optimization.

Architectural revolution mainly focuses on designing new
network architectures to address various issue identified for
today’s tree-like networks, such as low bisection bandwidth,
low agility, and resource fragmentation. An early theme of this
research direction is to provide high-bandwidth connectivity
for all pairs of servers [1, 3]. This objective is necessary for
certain traffic patterns that involve high-throughput all-to-all
communication, which, as recently pointed out by [2], is, in
the least, not ubiquitous in today’s data centers. Driven by this
motivation, several new architectures have been proposed to
achieve on-demand connectivity and bandwidth using optical
switching [2, 9, 12, 21], wireless networks [6], and VLAN
[22]. In addition to bandwidth provisioning, another line of
research focuses on providing high scalability [4, 5, 7] and
agility [8, 11].

Placement optimization, in contrast to architectural revolu-
tion, keeps existing network architecture and routing protocol
intact. Instead, it aims at eliminating network bottleneck via
optimizing placement of computing service nodes—to organize
the computing services so that their computing and communi-
cation demands are satisfied by the most suitable hardware re-
source available. The service placement optimization problem
belongs to the class of quadratic assignment problem (QAP),
which is one of the hardest problems in the NP-hard class, and
is even hard to approximate [23, 24]. As a result, a variety
of heuristics based optimization models and problem-solving
techniques have been employed. In particular, TVMPP [14]
and Starling [25] establish their optimization model based
on network communication cost (i.e., traffic volume, link
bandwidth, route distance, etc.). CPA [15], RAP [16] and
[17] model both network communication and other computing
resources, such as processor, storage demand, and availabil-
ities. To solve the optimization problem, CPA and TVMPP
transform the original QAP problem into a combination of
NP problems (such as Stable Marriage and minimal K-cuts),
and solve them using known approximation algorithms. In [17]
and Starling, centralized and decentralized heuristic algorithms
are employed, respectively. RAP takes the linear programming
approach. In addition, recent efforts [13, 26, 27] also take
the bandwidth constraints into account and propose heuristics
algorithms and policies to solve the placement problem in a
tree or generalized hierarchical network topologies.

While NetDEO belongs to the placement optimization cat-
egory, it differs from existing work in its unique approach to
resolving problem. Instead of building analytic models and
applying deterministic heuristic algorithms, NetDEO tackles
the problem by leveraging the swarm intelligence (SI) [18]
optimization. SI algorithms are inspired by the observation that
a large swarm of simple, decentralized, interacting individuals
(such as bird flocking and ant colonies) form a self-organizing
system, and their collective behavior usually shows “higher
intelligence” – that is, the system self-arranges into configu-
rations that represent good approximations to the optimum. In
particular, simulated annealing (SA) [19] has been successfully
applied to solve complex non-linear computational optimiza-
tion problems, including QAP [28, 29]. NetDEO adapts the



existing (classic) SA algorithms to solving the CN placement
optimization problem, and improves the quality of solutions
and convergence time. Compared to existing work in CN
placement optimization, NetDEO enjoys two unique advan-
tageous abilities: the ability to incrementally optimize existing
deployment solutions, and the ability to explore configuration
expansions in a controlled fashion.

III. PROBLEM DEFINITION

We study the placement optimization of a set of service
nodes {n1, n2, ..., nN} on a collection of networked server
systems {s1, s2, ..., sM}, where N and M are respectively the
total number of service nodes and servers in the system. Each
server si has a service capacity of Ci, which is a compos-
ite metric of its processing, memory, and storage resources.
Correspondingly, each service node nx has a resource require-
ment Ux, representing its consumption of the aforementioned
resources. Thus, a server can host many service nodes as
long as the sum of resource requirements of all deployed
service nodes does not exceed server capacity Ci. We remark
that, in practice, the number of VMs that can co-exist in a
given server is also affected by other factors, such as the
correlation between individual VMs’ workloads and resource
sharing characteristics [30]. In the paper, we do not consider
these factors for ease of presentation. However, the proposed
approach can be easily extended to incorporate more complex
resource models.

We denote by pij the fixed path between servers si and
sj and pij = ∅ if the two servers are unreachable to each
other. Node pair nx and ny respectively deployed on servers
si and sj communicate via route pij at traffic rate Txy. Note
that depending on the context of the placement problem,
“traffic rate” could have slightly varying interpretations. For
initial deployments, “traffic rate” could mean expected peak
traffic, or SLA guaranteed bandwidth; for dynamic on-demand
optimization problems, “traffic rate” could mean empirical
average traffic rate over a given time frame.

Each route pij consists of a set of link segments, which
may partially overlap with those of other routes. We define
the length of the route as the number of link segments, i.e.,
Dij = |pij |. Each link segment lk has a channel capacity Bk

and a reliability factor Rk, the latter defined as the complement
of the packet loss rate of the link3, which is readily available
at switches via SNMP. The reliability Rij of a route pij is then
defined as the product of the reliability factors of all links that
constitute the route: Rij =

∏

k∈pij
Rk.

We define the traffic stress between two communicating
VMs nx and ny as the product of their traffic rate, route length,
and inverse route reliability:

TStress(nx, ny) = Txy ×Dij ×R−1

ij , (1)

where nx and ny respectively reside on si and sj . The stress
value represents the traffic condition between two service
nodes – the higher the value, the worse the traffic condition.
For example, for two pairs of nodes with identical traffic rate,

3Given similar link-level channel conditions, different higher level protocol
could yield very different behaviors, from very susceptible to data loss (e.g.,
UDP) to very resilient to data loss (e.g., DCTCP [31]), However, it is
generally true that, the more reliable the link-level channel the better overall
performance, regardless of the higher level protocol.

the node pair that uses the longer or less reliable route has a
worse traffic condition, which in turn is reflected in a higher
stress value. Notably, when route distance is zero, that is, when
two communicating nodes are deployed on the same server,
their traffic stress is always zero regardless of their traffic rate.
This is consistent with the fact that communication between
VMs residing on the same server actually becomes internal
memory swapping, and no longer affects the network.

The traffic stress of a service node is defined as the quadratic
mean (also called root-mean-square) of the traffic stresses
between the node and all its communicating peers:

NodeStress(nx) =

√

√

√

√

1

Nx

Nx
∑

y=1

TStress(nx, ny)2 , (2)

where Nx is the number of service nodes communicating with
node nx. Note that we use the quadratic mean instead of
a simple average in flavor of a more balanced traffic load
distribution. Accordingly, the traffic stress of the whole system
under a given service node placement scheme π is defined as
the quadratic mean of all service nodes’ traffic stresses:

SysStress(π) =

√

√

√

√

1

N

N
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x=1

NodeStress(nx)2 (3)

=

√
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1

N

N
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x=1

N
∑

y=1

TStress(nx, ny)2 ,

where N is the total number of service nodes.

The optimization objective is to find service node place-
ment schemes that minimize the traffic stress values between
all communicating service nodes over the whole system, as
expressed below:

argmin
π∈Π

SysStress(π) , (4)

where Π represents all possible service node placement
schemes, subject to the server capacity and link capacity
constraints:



















Ci ≥
∑

x∈αi

Ux (for each server si)

Bk ≥
∑

y∈βk

Ty (for each link lk)

, (5)

where αi is the set of service nodes deployed on server si,
and βk is the set of flows that pass through link lk. In other
words, the sum of resource requirement of all nodes deployed
on any server must not exceed the capacity of that server; and
the sum of traffic rates of all flows on any link segment must
not exceed the channel capacity Bk of that link.

Note that as a variation of the QAP, our definition of
system traffic stress has two major differences from the typical
definition of a QAP cost function:

Cost(π) =
n
∑

x=0

n
∑

y=0

W (x, y)D(Lx, Ly) , (6)

where W (x, y) is the “weight” between two facilities x and y,
and D(Lx, Ly) is the “distance” between the locations of the



two facilities Lx and Ly . First, quadratic mean is employed for
a more balanced system-wide network load. Second, in addi-
tion to “weight” and “distance,” which respectively correspond
to Txy and Dij in (1), we also add the reliability factor Rij ,
a microscopic variable that reflects the quality of a placement
from the physical hardware point-of-view. By introducing this
realistic parameter, our definition more accurately reflects the
performance situation of a network.

IV. NETDEO DESIGN

In this section, we start with a discussion on the design
intuition of the NetDEO algorithm, then we introduce the
pseudo-physical optimization model and then present details
of the optimization algorithm.

A. Optimization Algorithm Selection

To efficiently derive solutions that are cost effective, flexible,
and expandable, our search algorithm should possess two
important properties—incremental and exploratory.

The incremental property stems from the requirement of
generating feasible (i.e., cost effective) solutions. Due to the
massive infrastructure in a data center, the cost of conducting
significant global changes, such as deploying all service nodes
from scratch, are prohibitively high. As a result, any feasible
optimization solution must make only incremental changes.
And consequently, our optimization algorithm must accept
preexisting configurations as the basis for improved solutions.
Meanwhile, the exploratory property is necessitated by the
flexible and expandable network maintenance. In order to
discover worthwhile candidate solutions, our algorithm must
explore into the solution space. Because computing and net-
work resources in cloud networks are largely homogenous
(i.e., each CN is composed of large amounts of identically
configured servers), the solution space is often too large
to completely enumerate. And therefore, the most efficient
solution is to non-deterministically sample alternative solutions
in an unbiased manner.

Guided by these design insights, we determine that swarm-
intelligence (SI) optimization algorithms are a good fit to
solve the CN optimization problem. First, SI algorithms are
metaheuristic, i.e., optimizations are performed iteratively by
gradually improving a candidate solution. And as a conse-
quence, the incremental property is implicit. Second, most SI
algorithms are stochastic, i.e., the search space is explored in a
randomized fashion. This characteristic meets our requirement
of efficient alternative solution exploration, and thus satisfies
the exploratory property.

B. Pseudo-physical SI model

Inspired by the principle of minimum total potential energy,
a fundamental physics concept, we devise a pseudo-physical
SI model for the service node placement optimization problem.

Search space and agents: The networked servers are modeled
as the search space, in which each service node represents a
search agent. According to the problem definition, a service
node can be placed only on a server but not in-between servers,
and thus the search space is discrete.

Objective function: The objective function in our model is
the system potential energy, the most important component

in our model. The system potential energy plays two key
roles: to evaluate the solution quality, which corresponds
to the system traffic stress in equation (3), and to enforce
the optimization constraints given in equation (5). However,
instead of expressing the constraints in a rigid binary form, we
use a set of barrier functions, which incorporate flexibility into
their expressions to better support the exploratory property.

First, following the definition of service node traffic stress
in equation (2), we define the traffic potential of a search agent
(ie. service node) nx in a similar fashion:

NodePotential(nx) =

√

√

√

√

1

Nx

Nx
∑

y=1

TPotential(nx, ny)2 ,

where TPotential(nx, ny) is the traffic potential between a
pair of communicating service nodes nx and ny:

TPotential(nx, ny) = Txy ×Dij × U−1

ij . (7)

Compared with equation (1), the sole difference of equation
(7) is that the route reliability factor is replaced by the route
usability factor, which is defined as the product of the usability
factors of all links that constitute the route, Uij =

∏

k∈pij

Uk.

The usability factor Uk is a metric we introduced to both
evaluate the optimization objective, and reflect the traffic load
constraint on a link segment. Similar to reliability, usability is
inversely correlated to the traffic load. But unlike reliability,
usability decreases faster when the load approaches a per-
determined “maximum” value and becomes zero when the load
exceeds the “maximum” threshold, signifying that the link is
carrying infeasible traffic loads. This characteristic allows us
to flexibly yet precisely control the exploration of the problem
search space. We use the following split function to calculate
the inverse usability value of link lk:

InvU(lk) =











1 (θk ≤ θT )

1 + tan(π
2

θk−θT
θMax−θT

) (θT < θk < θMax)

∞ (θk ≥ θMax)

.

where θk is the load factor (ie. load over capacity) of link lk,
θT is a threshold (θT ≤ 1), and θMax is the maximum load
factor. See Figure 2 for an illustration of this step function.
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Fig. 2. The Inverse Usability Function

Analogous to the load constraint on each link, each server
also has constraint on the number of deployed nodes. To
express this constraint, we define repulsive potential between
a server and all nodes deployed on it. The strength of the
repulsive potential depends on the load of the server: under low
load, the repulsion is zero or very small; as the load approaches



the constraint, the repulsion increases rapidly; and when the
constraint is violated, the repulsion becomes infinitely large.
The computation of the repulsive potential is similarly defined
as the inverse usability value:

RPotential(si) =











0 (γi ≤ γT )

tan(π
2

γi−γT

γMax−γT
) (γT < γi < γMax)

∞ (γi ≥ γMax)

,

where γi is the load factor of the server, i.e., sum of all resource
requirements over the service capacity, γT is a load factor
threshold (γT ≤ 1), and γMax is the maximum load factor.

The potential energy of a service node nx on server si is
thus defined as the summation of the service node’s traffic
potential and the server’s repulsive potential,

NodeEP (nx) = TPotential(nx) +RPotential(si) . (8)

The service node potential energy indicates the quality of
the node’s placement – the higher the potential energy, the
worse the placement. In particular, on servers with resource
utilization ratios below θT , the goodness of nodes’ placement
is solely determined by the optimization objective function. On
the other hand, when a node placement causes the server re-
source utilization to approach or exceed load factor θMax, the
repulsive potential becomes the dominant factor. A potential
energy of infinity signifies an infeasible placement.

Finally, the potential energy of the entire system under
placement π is defined as the quadratic mean of all service
nodes’ potential energy:

SystemEP (π) =

√

√

√

√

1

N

N
∑

x=1

NodeEP (nx)2 . (9)

C. Optimization Algorithm

We choose simulated annealing (SA) as the design basis
of our optimization algorithm. SA is an SI optimization
algorithm that models the annealing process of metallurgy. It
is designed to perform stochastic search on discrete search
space and therefore is particularly suitable for solving QAP.
We customize the SA by introducing an adaptive greediness
control scheme with our novel cooling scheduling algorithm,
which accelerates the annealing process and achieves much
faster convergence and better optimization than those of the
classic SA algorithms.

The iterative optimization algorithm of NetDEO is shown
as pseudo-code in Algorithm 1. It accepts an existing service
node placement scheme as input. In case there are un-deployed
nodes (such as having new service nodes to be deployed), they
can be “virtually” deployed by a simple pre-processing. We do
not specify the pre-processing procedure because there is no
particular requirement for it4.

Each optimization iteration consists of four steps:

Step 1: A service node MoveNode is chosen to move to
another server, by the GetMoveNode function, shown in
Algorithm 2.

4In practice, we find both a greedy best fit and a randomized placement
work equally well for pre-processing

Algorithm 1 The Optimization Algorithm

/* Input: π – current node placement scheme
/* Input: ET0 – initial system thermal energy
/* Input: Budget – number of iterations to run */
EP := SystemEP (π); ET := ET0; EFree:= 0; Cnt:= 0;
repeat

/* Step 1: Select the node to move */
MoveNode:= GetMoveNode();

/* Step 2: Evaluate trial moves */
CurServer:= CurrentServer(MoveNode);
for each Serveri 6= CurServer do

/* Step 2.1: Try 1-displacement neighborhood */
π′:= π + Place MoveNode onto Serveri;
∆EP := EP - SystemEP (π′);
if AcceptMove(∆EP , ET ) then break

/* Step 2.2: Try 2-displacement neighborhoods */
for each Nodej on Serveri do

π′′:= π′ + Place Nodej onto CurServer;
∆EP := EP - SystemEP (π′′);
if AcceptMove(∆EP , ET ) then break(2)

end for
end for

/* Step 3: Handle accepted move */
if Accepted move then

π:= π′′;
ET := ET - ActFun 1(ET ); // Energy dissipation

end if

/* Step 4: Energy Conversion */
EFree:= EFree +∆EP ; // Potential energy pooling
∆ET := ActFun 2(EFree)−1; // Thermal energy injection
EFree:= EFree −∆ET ; ET := ET +∆ET ;
Increment Cnt;

until Cnt ≥ Budget;

Step 2: Neighborhood configurations are sequential probed
by moving MoveNode onto each candidate server. Each
probing is further divided into two sub-steps:

Step 2.1: The 1-displacement neighborhood is explored,
and the improvement in objective function value (i.e., the
reduction of system potential) is calculated.

Based on the objective function improvement, the
AcceptMove function (shown in Algorithm 3) makes
a decision of whether to accept the move. If the move is
not accepted, continue step 2.2.

Step 2.2: The 2-displacement neighborhoods are explored
by exchanging another node on the candidate server to
the original server of MoveNode.

If a move is accepted during step 2, continue step 3,
otherwise go to step 4.

Step 3: Some amount of thermal energy is dissipated. The
amount of dissipated energy is calculated using an activation
function, ActFun_1(), which “compresses” input values
in domain [−∞,∞) to positively correlated output values
in range (0,∞)5.

5The range of this function is selected to ensure that the total energy
(thermal + potential) of the system keeps reducing, i.e., the system would
eventually converge



Algorithm 2 Selecting a Service Node to Move

function GETMOVENODE

PMax:= 0;
for each Nodei do

ProbScore:= NodeEp(Nodei);
Increment PMax by ProbScore;
MoveScorei:= PMax;

end for

PRand:= Random(0, PMax);
for each Nodei do

if MoveScorei ≥ PRand then return Nodei
end for

end function

Algorithm 3 Decide Whether to Accept a Move

function ACCEPTMOVE(∆EP , ET )
/* Input: ∆EP – Reduction of potential energy
/* Input: ET – System thermal energy */

/* Obtain the greediness control value */
G:= ActFun 3(ET );
/* Convert ∆EP to acceptance probability */
AccptProb:= ActFun 4(∆EP , G);

return AcceptProb ≥ Random(0, 1);
end function

Step 4 The change of system potential energy is comple-
mented with an inverse change of the “free energy pool”,
which serves as a reservoir of potential energy released from
the system. Meanwhile, some amount of energy from the
free energy pool is injected back into the system as thermal
energy. The amount of converted energy is calculated using
another activation function, ActFun_2(), which is similar
to ActFun_1() but with a different Slope parameter.

At a very abstract level, the NetDEO optimization algorithm
seems similar to the classic SA algorithms, in terms of neigh-
borhood configuration explorations, probabilistic configuration
acceptance, and thermal energy dissipation. However, the sim-
ilarity between the classic SA algorithms and NetDEO stops
as we dive deeper into the detailed design.

First, classic SA algorithms usually perform neighborhood
exploration either in a fixed order, or uniform randomly [32].
Instead, NetDEO uses the GetMoveNode function to perform
controlled stochastic selection on the neighborhoods. The
potential energy of each node corresponds to a probability
score, which represents the fair share of probability a node
is chosen to move over all other nodes. The rational behind
this design is to encourage migration of nodes in relatively
worse configurations, and thus yielding faster convergence.

Second, classic SA algorithms unconditionally accept all im-
proved configurations while probabilistically accept degraded
ones [19]. However, due to the highly homogenous solution
space in the CN placement optimization problem, this strategy
can unnecessarily prolong the convergence, and often lead
to solutions with more node displacement than necessary.
NetDEO uses the AcceptMove function to perform full-
range probabilistic acceptance. Specifically, the probabilis-
tic move acceptance covers both improved and degraded
configurations—improved configurations are always preferred
to degraded ones, and the more improvement, the higher the

TABLE I. LIST OF ACTIVATION FUNCTIONS

Name Description Slope

ActFun 1
ActFun 2
ActFun 3

{

exp(x · Slope+ 1) + 1 (x ≤ 0)

log(x · Slope) (x > 0)

0.1
0.01
0.2

ActFun 4 (1 + exp(−x · Slope))−1 G
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Fig. 3. The Greediness Control Mechanism

preference. This design helps the algorithm to better differen-
tiate the quality of sampled solutions, while still preserving
the degree of randomness in the stochastic search.

Notably, the implementation of the AcceptMove function
deserves some explanation. The probability of accepting a
configuration is derived from two factors: the improvement
of objective function (∆EP ) and the system thermal energy
(ET ). First, ET is “compressed” by an activation function
ActFun_3() into a positively correlated greediness control
value G with range (0,∞). And then, ∆EP and G are passed
as parameters to another activation function ActFun_4(),
which transforms ∆EP into the acceptance probability. The
greediness control value G is used as a “slope” value to control
the behavior of ActFun_4(). To help comprehension, we
have visualized the two activation functions and the effect of G
on ActFun_4() in Figure 3—a high thermal energy yields
to a large G value, which in turn results in a flatter curve
of ActFun_4(), causing the the acceptance probability to
be less sensitive (greedy) to ∆EP ; On the other hand, a low
thermal energy yields to a small G value, a steeper curve of
ActFun_4(), and thus a more sensitive (greedy) acceptance
probability to ∆EP .

The last, but not the least difference between NetDEO and
the classic SA algorithms lies in the cooling schedule. Con-
ceptually similar to temperature in SA algorithms, the system
thermal energy is inversely correlated with the greediness of
the algorithm, and it gradually decreases as the iteration pro-
gresses, allowing the system to converge to a low energy state.
Classic SA algorithms utilize deterministic cooling schedule to
control the temperature (either monotonic [28] or oscillating
[29]). Inspired by the laws of physics, NetDEO employs a non-
deterministic (but converging) cooling schedule. We associate
the system thermal energy with the system potential energy
(defined by equation (9)), and introduce a novel “conversion-
and-dissipation” mechanism for an adaptive system cooling.

Described in steps 3 and 4 of Algorithm 1, we set up an
energy conversion rule, storing the potential energy released
during optimization in an energy pool, and then gradually
converts it into thermal energy. In addition, we model our
pseudo-physical system as a “black body”, which continu-
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Fig. 4. Enterprise Applications Templates

ously releases a portion of thermal energy proportional to its
current “temperature” (i.e., total thermal energy). The energy
conversion and dissipation provide a proportional feedback
mechanism from the optimization procedure (i.e., the reduction
of potential energy) to the system greediness control (i.e., the
system thermal energy), and allow the system to self-regulate
the cooling process and to promote faster convergence.

The four activation functions used in Algorithms 1 and 3
and their parameters are listed in Table I. The slope parameters
of activation functions 1–3 are responsible of controlling the
convergence behavior of the algorithm. Their values are ob-
tained from a quick human-supervise training, and we believe
they are good for solving general problems. However, they
are by no means “the optimal” values. In fact, we believe that
there may not be a single set of “good-for-all” parameters –
different problem setup and optimization objective may have
their unique optimal parameter set. We provide guidelines and
experimental results for determining the range and relationship
of these parameters in Section VI-A.

V. EVALUATION

In this section, we present a comprehensive evaluation of the
NetDEO using a realistic setup and four experiments covering
different usage scenarios.

A. Experimental Setup

Data Center Network: We simulate data centers of over 1,000
servers with heterogeneous resource capacities, and in three
different topologies. We first randomly generate 1, 080 servers
with three levels of resource capacities—50% “main-stream”
servers have a “standard” capacity, capable of hosting 3 to
6 VMs, 30% “upgraded” servers have a capacity doubles the
“main-stream” servers, and the final 20% “advanced” servers
have a capacity doubles the “advanced” servers. Then we
arrange the servers in three topologies—heterogeneous tree
(Tree), FatTree [1, 3, 8], and BCube [4]. The Tree topology
mimics the layout of today’s data center with 3-tier network,
while the FatTree topology represents a variety of bandwidth-
enhancing tree-like layouts, and the BCube topology represents
an alternative (hypercube variant) network layout.

Service Applications: We synthesize 143 service applications
with 1, 067 service nodes, based on real traffic traces captured
from our local testbed hosting multiple multi-tier applications.
The original traffic traces consist of three applications and
21 traffic nodes, and their composition are show in Figure 4.
Using them as template, we generate synthetic applications by

randomly select template applications and scaling the traffic
and resource requirement up or down, as well as scaling
out the components (i.e., double the number of nodes in
each component, and then split the corresponding traffic and
resource requirements of each node).

B. Evaluation Summary and Methodology

We conduct four experiments to thoroughly evaluate Net-
DEO’s characteristics.

• Experiments 1 and 2 compare NetDEO and TVMPP on
solving the initial deployment and incremental optimiza-
tion problems, respectively. In experiment 1, NetDEO and
TVMPP are used to deploy all services nodes to the CNs
with no previous deployed service nodes. Both algorithms
produce comparable optimization results given a fixed
running time. In experiment 2, with previously optimized
deployments, we simulate traffic rate changes on a small
portion of service nodes. NetDEO and TVMPP are used to
find modified placement solutions that are no worse than
the deployment before the traffic rate changes. NetDEO
outperforms TVMPP by more than an order of magnitude,
in terms of both running time and deployment feasibility.

• Experiment 3 examines NetDEO’s unique ability to help
data center operators to efficiently upgrade the network and
servers. For the network upgrade experiments, we scale
up the traffic of service nodes significantly, so that no de-
ployment is possible without upgrading some network seg-
ments. NetDEO and TVMPP are used to derive deployment
solutions with link upgrade suggestions. NetDEO derives
solutions that require over 75% less link upgrades than
those of the TVMPP. For the server upgrade experiments,
NetDEO is able to provide suggestions to upgrade a small
amount of servers with reasonable upgrade cost, and is able
to provide an benefit estimation of the upgrade plans.

• Experiment 4 evaluates NetDEO’s scalability and time
complexity, as well as its performance improvement over
the classic SA algorithm. Our results show that NetDEO
has an empirical time complexity of O(n4), and NetDEO
performs significantly faster than the classic SA algorithm.

The results of NetDEO and classic SA algorithms are obtained
by taking the average of 100 runs with different random seeds;
the results of TVMPP are obtained with a single execution,
because it is a deterministic algorithm.

Simple metrics such as running time, number of node
displacements, number of server / network link upgrades, are
evaluated using their numeric values. The qualities of service
node placement solutions are evaluated using the system stress
score defined by equation (3).

Experiments involving comparison with TVMPP use “sim-
plified” CN setups, which are derived from the ones described
in the previous section. In the modified setups, all servers have
a uniform resource capacity of one, and all service nodes have
a uniform resource requirement of one. The modification is
necessary because TVMPP is not designed to handle hetero-
geneous server resource capacities and service node resource
requirements.

C. Experiment 1: Initial Deployment

In this experiment, we compare the optimization for initial
deployment of NetDEO and TVMPP. Since there is no pre-
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Fig. 5. Experiment 1: (a) NetDEO vs. TVMPP on Initial Deployment;
(b) TVMPP Run-time vs. Optimization.
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Fig. 6. Experiment 2: NetDEO vs. TVMPP on Incremental
Optimization

existing assignments, service nodes can be freely deployed to
any suitable servers. The two major performance metrics in
this experiment are the degree of optimization and the running
time, and for both metrics the smaller value the better.

Figure 5(a) shows the best optimization stress of both
algorithms achieved with the same amount of running time.
For Tree and FatTree topologies TVMPP is slightly better
than NetDEO, by 3.25% and 2.53% respectively. However,
for BCube topology, NetDEO outperform TVMPP by 21.4%.

NetDEO’s slightly worse optimization results for Tree and
FatTree can be attributed to the unusual server setup that
each server can only host a single service node (i.e., the
“simplified” CN setup used in order to compare with TVMPP).
– this setup heavily restricts the search space so that only
two-displacement neighborhood exploration is possible, which
limits the effectiveness of stochastic search algorithms such
as NetDEO. However, interestingly, although NetDEO suffer
from the similar effects for BCube, it performs significant bet-
ter than TVMPP. We believe this is due to TVMPP’s weakness
on this topology—BCube, as well as other hypercube variant
topologies, organize servers in high dimensional space, which
cause the K-means clustering algorithm, a critical component
of TVMPP, to perform poorly.

Note that, instead of comparing the running time between
NetDEO and TVMPP, we let both algorithms run for about
the same amount of time. This is because like NetDEO,
TVMPP also has a running time–optimization trade off, which
makes comparing both metric at the same time meaningless.
TVMPP requires the number of clusters (i.e., K in the K-
means clustering algorithm) as one of its parameter. However,
determining the optimal value of K is an open hard problem.
To work around the problem, TVMPP runs the cluster-and-cut
algorithm multiple times using a series of K values, and pick
the best optimization. Figure 5(b) shows that the improvement
of TVMPP optimizations as we run it for more K values.

D. Experiment 2: Incremental Optimization

Using the optimized deployment schemes generated in the
previous experiment as the existing service node placements,
we simulate realistic workload / traffic pattern changes in the
data center by manually scaling up and down the traffic and
resource requirements of about 10% deployed nodes. Particu-
larly, three applications reduce their traffic rates and resource
requirements, two by 75%, and one by 50%; nine applications
increase their traffic rates and resource requirements, one
by 50%, five by 100%, two by 150%, and one by 200%.

Possible reasons of these changes are: natural workload change
over time, tenant service upgrade, SLA revision, etc. The
optimization objective of this experiment is, thus, to recover
the system stress degradation by finding new placements with
stress no greater than that of the original optimized placements.
We compare the performance of NetDEO and TVMPP in terms
of the running time and the number of displaced service nodes
in their solutions (the smaller value the better for both metrics).

As shown in Figure 6, NetDEO outperforms TVMPP with
dominating factors. With respect to Tree, FatTree and BCube
topologies, NetDEO is 67.25%, 95.54% and 98.40% faster,
and moves 26.55%, 78.41% and 98.66% less number of
service nodes than TVMPP. The dominating success is well
expected for NetDEO, because it is designed with incremental
optimization in mind, while TVMPP is not. TVMPP treats
the slightly altered setup as a totally new problem and solves
it from scratch. The changes in the traffic matrix leads to a
different partitioning sequence which in turn yields to different
service – server mappings. And as a consequence of this
avalanche effect, with even a small change in traffic, the new
solution of TVMPP is likely to be totally different from its
previous solution.

E. Experiment 3: Upgrade Suggestions

This experiment consists of two sub-experiments which
examines NetDEO’s capability to provide data center network
and server system upgrade suggestions. We use setups similar
to that of Experiment 1, but with some modifications according
to our use cases.

1) Network Upgrade: In this experiment, we simulate an
overloaded data center network by scaling up all traffic rates
of our service applications by 100 times. As a result, it is
impossible to deploy the applications on any of the three
topologies without violating network capacity constraints. And
thus, the challenge is to deploy all applications without net-
work capacity violation, with the minimum number of network
links requiring an upgrade.

As shown in Figure 7(a), for Tree, FatTree and BCube
topologies, NetDEO identifies viable deployment solutions that
(on average) upgrade 13.90, 14.41, and 11.57 network links
with double capacity, respectively. In contract TVMPP’s solu-
tions require over 3 times more link upgrades than NetDEO
for all topologies. The results of a randomized deployment are
also shown in the same figure as references.

2) Server Upgrade: In this experiment, we solve the prob-
lem of service consolidation and server upgrading. Suppose the
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(b) Server Upgrade Improvements

Fig. 7. Experiment 3: (a) Network Upgrade Solutions; (b) Server Upgrade Solutions.

�

� �

0

120

240

360

480

600

720

840

0 180 360 540 720 900 1080

T
im

e
 (

s
e
c
)

Number of Service Nodes

Classic Tree NetDEO FatTree

Classic FatTree NetDEO Tree

Classic BCube NetDEO BCube

Fig. 8. Experiment 4: Scalability Test Results

�

� �

�

����

����

����

����

�����

�����

� ��� ��� ��� ��� ��� 	��

������

����	
����


����

�������

(a) Tree

�

�

����

����

����

����

�����

�����

� ��� ��� ��� ��� ��� 	��

������

����	
����


����

�������

��������

������

(b) FatTree

�

� �

�

����

����

����

����

�����

�����

�����

� ��� ��� ��� ��� ��� 	��

������

����	
����


����

�������

���������

����	�
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Fig. 9. Experiment 4: Optimization vs. Running Time

CN operator has a limited budget to upgrade some servers. The
goal of this experiment is to find answers to the questions of
which servers to upgrade, and how to deploy services after the
upgrade to benefit the most from the upgrade. This experiment
demonstrates a unique capability of NetDEO, because (1) a
random server upgrade without service node relocation has no
benefit to the existing CN performance; and (2) TVMPP is not
capable of handling inhomogeneous server capacities.

We configure NetDEO to search solutions with up to 4×
server resource capacity upgrade. As shown in Figure 7(b),
for Tree, FatTree and BCube topologies, NetDEO provides
deployment solutions that (on average) upgrade 64.65 (5.99%),
63.27 (5.86%), and 62.85 (5.82%) servers with average ca-
pacity increase of 1.69×, 1.67×, and 1.69×, respectively.
Correspondingly, with the new deployment solutions, the
stress is improved by 8.18%, 8.01%, and 6.03%, and the
server occupation is reduced by 3.23%, 3.30%, and 2.91%,
for Tree, FatTree and BCube topologies respectively. These
new solutions with server upgrades enjoy not only improved
performance comparable to the cost of upgrade, but also
reduced server occupation, which can lead to lowered energy
consumption as well as reduced maintenance cost.

F. Experiment 4: Scalability and Time Complexity

In this experiment, we evaluate the scalability of NetDEO
with respect to the number of service nodes. Because the
NetDEO algorithm belongs to the SA optimization, presenting
the asymptotic upper bound of the runtime is meaningless in
practice6. Instead, we present its empirical running time of
reaching an acceptable level of optimization, given different
sizes of input, and approximate the runtime using curve-fitting.

6SA optimization algorithms guarantee to find the optimal solution when
they completely converge, and their time complexity for solving NP-hard
problem is known to be exponential.

As shown in Figure 8, we plot the run time vs. service
node count of NetDEO with 110, 226, 420, 823 and 1,067
service nodes for each topology. We find that the series of
data points for each topology can be curve-fitted by a 4th
degree polynomial with very high (> 99.9%) confidence. The
results indicate that the empirical time complexity of NetDEO
algorithm is O(n4), in agreement with previous SA research
[33]. Also shown in the same figure are the running time and
fitting curves of a classic SA algorithm solving the same set
of problems. And we observe that NetDEO has effectively
speed up the convergence rate (by about 8–10%), thanks to
our algorithm enhancements.

Figures 9(a), 9(b), and 9(c) present the optimization vs.
running time relationships of NetDEO and classic SA algo-
rithms for each topology, sampling individual instances of
optimization progresses7. Each point on the curves represents
a valid deployment scheme found by the algorithms during
the iterative optimizations. We can observe that for the Tree
topology, both algorithms exhibit very similar convergence rate
with respect to time. However, given the same number of
iterations, NetDEO converges more efficiently than the classic
SA, and arrives at a more optimized final solution. For both
FatTree and BCube topology, the curves of NetDEO are mostly
below those of the classic SA. This demonstrates that the
NetDEO’s convergence performance for these two topologies
is superior than that of the classic SA, both in terms of time
and efficiency. To visualize the performance superiority of
NetDEO, we draw horizontal marker lines on Figures 9(b)
and 9(c) at stress 2935 and 3617, respectively. These stresses
are the best optimizations that classic SA achieves for each
respective topology. In each figure, the horizontal marker line

7Note that, in these figures, NetDEO’s curves extend longer along the
x(time)-axis. This is because we plot both algorithms for a fixed number
of iterations, rather than fixed amount of time.



intersects with the curves of both NetDEO and Classic, and the
x-axis values of the intersection points correspond to the time
each algorithm uses to derive solutions with equal or less stress
scores. We can see that for FatTree and BCube topologies,
NetDEO uses only 392 and 383 seconds, respectively; and
NetDEO performs 22.2% and 38.3% faster than the classic
SA, respectively.

VI. DISCUSSION

In this section, we discuss several issues related to the tuning
of algorithm key parameters, additional constraint considera-
tions, and solution optimality guarantee.

A. Parameter Tuning

NetDEO’s convergence efficiency is dependent on the con-
figuration of the three activation functions presented in Table
I. The semantic meanings of these parameters are as the
following:

• The slope of ActFun_1() determines the thermal dissi-
pation rate – the higher the value, the faster the thermal
energy is dissipated to zero. This value functions similar
to the cooling schedule of the classic SA algorithm.

• The slope of ActFun_2() determines the “free energy”
conversion rate – the higher the value, the faster the free
energy is converted to thermal energy, in other words, the
stronger the feedback of current optimization progress to
the cooling schedule.

• The slope of ActFun_3() determines the sensitivity of
greediness to the thermal energy – the higher the value,
the more sensitive.

We perform an empirical study on the impact of varying slope
parameters. Specifically, for each of the three slope parameters,
we create a pair of alternative configurations in which the value
of the parameter is 4 times higher or lower than the original
value used in our evaluations. We apply these alternative
configurations in solving the initial deployment problem with
1,080 nodes (the largest problem set in experiment 4) and
compare the solution qualities (system stress) and running
times against NetDEO solving the same problem with original
configurations.

The results of the study are presented in Table II. The “Opt.”
row shows how the quality of solutions compare against the
one obtains using original configuration. A negative percentage
means improvements, while a positive number means degrada-
tion. We can observe that shallower slope for ActFun_1()
(i.e., slower thermal dissipation), as well as steeper slopes for
ActFun_2() and ActFun_3() (i.e., faster thermal energy
conversion, and greediness control more sensitive to thermal
energy, respectively) improve the solution qualities, while the
inverse degrade solution qualities. The “Time“ row shows the
impact of running time by using the alternative configurations.
We can observe that all alternative configurations result in
significantly longer running time. This phenomenon could
be explained as the following: the solution-quality-improving
configurations promote stochastic search behavior, and thereby
delaying convergence; the solution-quality-degrading configu-
rations discourage stochastic behavior, which in turn prolongs
each iteration (more potential moves are rejected, and thus
each neighborhood search has to run longer).

TABLE II. EFFECTS OF DIFFERENT ACTIVATION FUNCTION

PARAMETERS

ActFun 1 ActFun 2 ActFun 3

Low High Low High Low High

Opt. -5.57% 8.49% 2.82% -1.12% 10.32% -6.64%

Time 84.31% 73.40% 80.85% 83.86% 77.86% 85.82%

B. Additional Constraints

Real world service node deployment in cloud network
could face multiple constraints. In this paper, our evaluation
considers only the constraint of server resource capacity vs.
service node resource requirement. However, NetDEO is fully
capable capturing other constraints.

For example, certain network topologies (such as BCube)
require the servers to forward traffic, which incurs additional
processing cost. If considered as significant, this cost could
be modeled as one of the resource constraint of the server.
For example, a constant number ∆γnet can be added to the
γi component (i.e., server load factor) in the calculation of
the server’s repulsive potential, to reserve a fixed amount of
processor resource for network processing.

More generally, additional constraints of node deployment
can be modeled as a form of “potential energy”, and appended
to the service node potential calculation in equation (8).

C. Optimality Guarantee

NetDEO is designed to perform CN optimization while
minimizing service node displacements. Its efficacy and per-
formance advantage are evident through our empirical evalu-
ation. However, due to the stochastic nature of the underlying
algorithm, we could not provide a bound or guarantee to the
solution optimality. To our knowledge, this is a common limita-
tion of existing algorithms for solving QAP-variant problems,
because of the hardness of the QAP (hard-to-approximate and
intractable [34]).

VII. CONCLUSION

In this paper, we have presented NetDEO, a cloud network
performance optimization framework to achieve continuous
and cost effective data center maintenance. Different from pre-
vious approaches, NetDEO takes into account the applicability
of solutions, the evolutionary nature of data center networks,
and the real-world constraints encountered by network opera-
tors. NetDEO employs a pseudo-physical optimization model
and an enhanced simulated annealing optimization algorithm.
Our comprehensive evaluation shows that for incremental op-
timization problems, NetDEO significant outperforms existing
solutions, in terms of solutions quality and running time. For
initial deployment problem, NetDEO’s optimization and run-
ning time are comparable to or better than existing solutions. In
addition, NetDEO can help the operators to efficiently upgrade
data center hardware.

In terms of limitations, there are two application constraints.
First, in order for NetDEO to perform efficient optimiza-
tions, the CN operators need to supply the correct network
configurations, as well as an accurate estimation of service
workload. And sometimes the latter is difficult to obtain.



Second, the theoretical time complexity of NetDEO algorithm
is exponential. However, empirically NetDEO can reach good
optimization within a reasonable time frame.

We are currently in the process of porting NetDEO onto
operational data centers and evaluating its performance using
traffic traces generated by real-world applications. Our future
work also involves designing techniques that reduce NetDEO’s
monitoring overhead, exploring mechanisms that minimize op-
erators’ intervention, and incorporating additional constraints
such as security rules and administrative policies.
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