
1

IP Easy-pass: A Light-weight Network-edge Resource Access

Control

Haining Wang† Abhijit Bose‡ Mohamed El-Gendy‡ Kang G. Shin‡

†Department of Computer Science ‡EECS Department
College of William and Mary The University of Michigan

Williamsburg, VA 23187 Ann Arbor, MI 48109
hnw@cs.wm.edu {abose,mgendy,kgshin}@eecs.umich.edu

Abstract— Providing real-time communication services to
multimedia applications and subscription-based Internet ac-
cess often requires that sufficient network resources be re-
served for real-time traffic. However, the reserved network
resource is susceptible to resource theft and abuse. Without
a resource access control mechanism that can efficiently dif-
ferentiate legitimate real-time traffic from attacking pack-
ets, the traffic conditioning and policing enforced at ISP
(Internet Service Provider) edge routers cannot protect the
reserved network resource from embezzlement. On the con-
trary to the usual expectation, the traffic policing at edge
routers aggravates their vulnerability to flooding attacks
by blindly dropping packets. In this paper, we propose a
fast and light-weight IP network-edge resource access con-
trol mechanism, called IP Easy-pass, to prevent unauthorized
access to reserved network resources at edge devices. We
attach a unique pass to each legitimate real-time packet so
that an ISP edge router can validate the legitimacy of the
incoming IP packet very quickly and simply by checking its
pass. We present the generation of Easy-pass, its embed-
ding, and verification procedures. We implement the IP
Easy-pass mechanism in the Linux kernel, and measure its
overhead on our testbed. Finally, we demonstrate its effec-
tiveness against packet forgery and resource embezzlement
attempts by conducting a series of experiments.

Keywords— Resource Access Control, Network QoS.

I. Introduction

The Internet is an open system, and hence, there is no
strict access control upon network resources. An end-host
with a valid IP address and connection to the Internet
can inject any number of IP packets in the Internet. As
a best-effort model, the current Internet is vulnerable to
DoS (Denial of Service) attacks [7, 26], in which an at-
tacker either knocks off a victim server by sending a few
crafted packets, or blocks legitimate users’ access to its
Internet service by flooding bogus packets. The use of
flooding packets is the most common DoS attack, due to
its simple nature and also due to readily available tools.
The flooding traffic cripples the Internet service either by
swamping the victim server or by clogging the network link
that connects the victim to the Internet. To protect Inter-
net servers and network resources, various packet filtering
techniques have been proposed and used as defensive mech-
anisms [13, 17, 20, 27, 31, 35, 38, 39]. Packet filters installed
at Internet servers or their nearby firewalls [17, 31, 35, 39]
only prevent malicious IP packets from reaching the victim,
but cannot protect network resources from theft and abuse.
The intermediate-router-based packet filters [20, 27, 35, 38]

can block further propagation of flooding traffic in the net-
work, but cannot protect the upstream network resources.
The ingress/egress filtering techniques [13] at ISP edge
routers can prevent IP packets from being spoofed as an
outsider, but cannot discriminate bogus IP packets with
valid IP addresses within the same local area network.

To provide real-time communication services to multi-
media applications or “subscribed” Internet users, the pro-
posed network QoS (Quality of Service) infrastructure like
DiffServ (Differentiated Service) [5] reserves network re-
sources for real-time traffic. Within the network QoS archi-
tecture, the reserved network resources should be allocated
to only the subscribers who purchase value-added services
from ISPs via SLAs (Service-Level Agreements) [11, 42].
However, the reserved network resources will become a con-
spicuous target to potential adversaries, and will be more
vulnerable to packet forgery and resource embezzlement.
We call such attacks, targeting at reserved network re-
sources and violating network QoS guarantees, as DQoS
(Denial of Quality of Service) attacks. Basically, there are
two distinct DQoS attacks: (1) control flow attacks, e.g.,
killer reservation in RSVP (Resource ReSerVation Proto-
col [41]), which directly attack the signaling/control proto-
col in the control plane for network resource reservation and
connection setup; and (2) data flow attacks, e.g., resource
theft in the data plane, in which bogus data packets grab
the reserved bandwidth from the “owners,” or genuine real-
time data flows. Without efficient countermeasures, DQoS
attacks will become rampant once network QoS has been
widely deployed.

Previous research efforts have focused on providing se-
cure communication in the control plane for control flows,
such as in ARQoS [1] and Authenticated QoS [2] projects.
They proposed a secure RSVP, in which resources are
reserved online using strong authentication, and subse-
quently, compliance with the reservation request param-
eters is verified. However, little attention has been paid
to defend against DQoS attacks in the data plane, and
block the attacking traffic from consuming the reserved
network resources. Currently, the use of reserved network
resources hinges on IP addresses and the setting of the
ToS (Type-of-Service) field in the IP header, which can be
easily spoofed. Even if we secure the QoS signaling proce-
dure, an adversary within the same stub network or at a

2

neighboring network that is connected with the same ISP,
can passively monitor the ongoing traffic towards ISP edge
routers. The adversary can then impersonate legitimate
sources by flooding the spoofed data packets that have the
same IP header as valid data packets. The packet filters
based on packet header information only cannot screen out
these spoofed packets. Moreover, to meet the SLA (Service
Level Agreement) [22] between an ISP and its end-users,
edge routers perform traffic shaping and policing according
to specified traffic profiles. Without a resource access con-
trol mechanism that can efficiently differentiate legitimate
real-time traffic from spoofed packets, the traffic condition-
ing and policing conducted at ISP edge routers cannot pro-
tect the reserved network resource from embezzlement. On
the contrary to its intent, the traffic policing at edge routers
aggravates their vulnerability to flooding attacks by blindly
dropping packets, since flooding bogus packets can easily
cause traffic violation at the edge routers. Even a small
amount of attacking traffic can disrupt the loss rate, de-
lay and jitter guarantees, and can seriously degrade the
promised quality of service.

In this paper, we propose a fast and light-weight mech-
anism for resource access control at an ISP edge router. It
primarily protects real-time IP data flows, for which net-
work resources are reserved, from DQoS attacks. Our re-
source access control mechanism is a checkpoint at edge
routers, and is used for packet-level admission control. We
call it an IP Easy-pass , because it is similar to the check-
point at a toll road where only the cars with pre-paid stick-
ers can go through the Easy-pass lane. Note that we apply
the IP Easy-pass mechanism in the data plane, and assume
the existence of a secure channel for QoS signaling in the
control plane between a given end-host and the ISP edge
router that connects the end-host to the Internet. Prior to
data transfer, through the secure QoS signaling channel,
the end-host and the ISP edge router must communicate
shared secrets for generating and verifying Easy-passes.

Since IP is stateless, we attach a unique Easy-pass to ev-
ery real-time data packet. Each IP Easy-pass is encrypted
order-sensitive information to warrant the legitimacy of a
packet carrying it, and plays the role of an admission ticket
that can be used only once and then becomes void. Stale
passes are invalid. Even if an attacker can sniff the already-
used passes, he cannot deceive the ISP edge router by sim-
ply copying these void passes into spoofed packets. Thus,
the freshness of a pass is crucial to the admission of the
data packet carrying the pass. A correct sequence of Easy-
passes is pre-determined by both sides, and should be ro-
bust against cryptanalysis. It is extremely difficult, if not
impossible, for a third party to decrypt the garbled passes
and predict the correct sequence in a short time. This prop-
erty ensures that an adversary cannot easily forge a valid
unused IP Easy-pass. The rule for access control is simple:
the ISP edge router knows the correct sequence of passes;
it accepts the packet with a new pass that is in the right
track; otherwise, any packet with a duplicated or out-of-

track pass, is classified as forgery and simply dropped.1

Because the generation and verification of passes are
done on a per-packet basis, they have to be very fast and
light-weight, incurring as little overhead as possible. To
generate encrypted passes, several parameters, including a
symmetric secret key and the fundamental elements of pro-
ducing plain passes, are shared between a given end-host
and the ISP edge router that connects the end-host to the
Internet. We attach an IP Easy-pass at the end of each IP
packet as its trailer. The RC5 algorithm [32], a fast sym-
metric block cipher, is used for Easy-pass encryption and
decryption. The plaintext and ciphertext of Easy-pass are
both 64 bits long. We implement the IP Easy-pass mech-
anism in the Linux kernel as loadable kernel modules, and
evaluate its overhead and performance. Finally, we ana-
lyze its effectiveness against packet forgery and resource
embezzlement.

The remainder of the paper is organized as follows. Sec-
tion 2 discusses related work. Section 3 details the vulner-
ability of the reserved network resource to DQoS attacks.
Section 4 presents the architecture of the Easy-pass mech-
anism. Section 5 describes the generation of a plain Easy-
pass, the encryption/decryption algorithm, the verification
procedure and its embedding as an IP trailer. Section 6
details the implementation of Easy-pass in the Linux ker-
nel, measures its overhead and evaluates the effectiveness
of the Easy-pass scheme in our DiffServ testbed. Finally,
Section 7 concludes the paper with a summary of our work.

II. Related Work

The IPsec [19, 36] protocol is often used to provide end-
to-end secure communications at the network layer. It pro-
tects each IP packet, supporting address authentication,
data integrity and confidentiality. IPsec defends against
replay attacks by including a 32-bit sequence number with
each IPsec packet header. Besides serving secure commu-
nications between two end-hosts, IPsec can also be used
as edge-to-edge or end-to-edge models. The edge-to-edge
model has been widely used to achieve VPN (Virtual Pri-
vate Network) services over the public Internet between
two gateways. In the VPN model, the end-hosts in a local
area network are trusted entities. Although rarely used,
the end-to-edge model fits in our scenario of network-edge
resource access control, where adversaries may reside in the
same local area network as victims.

However, IPsec is heavy-weight, incurring non-negligible
overhead in data transmission [4,15,24]. A 10% increase of
end-to-end latency overhead introduced by IPsec may not
be a serious problem to file transfers or Web sessions. How-
ever, such an overhead may violate the delay requirements
for delivering real-time data. Furthermore, in a study of
Voice over IPsec, the effective bandwidth was observed to
be reduced by up to 50% compared to VoIP [4]. We com-
pare the overhead of IP Easy-pass with that of the lightest
version of IPsec that supports end-to-edge model (IPsec

1Considering possible packet losses, we admit normal out-of-
sequence packets, which are still in the right track, as legal traffic.

3

AH tunnel mode) in Section VI-B.4. Overall, IPsec is in-
appropriate for protecting the reserved network resources
at edges, especially in wireless LAN and DSL environments.

The hop integrity schemes proposed by Gouda et al. [14]
support router authentication and hop-by-hop message in-
tegrity. The hop integrity protocols are executed at all
routers in a network, and provide a minimum level of secure
communications between two adjacent routers to defend
against message modification and message replay. How-
ever, hop integrity does not keep track of individual data
flows or sessions. It cannot prevent resource theft and mes-
sage replay attacks between an end-host and its ISP edge
router. Moreover, the accumulation of per-hop overhead
may violate the end-to-end QoS requirements. In contrast,
our scheme is intended mainly to protect the end-hosts that
subscribe to premium service against the flooding attacks
from malicious neighbors. For such DQoS problems, we
need a light-weight network resource access control mecha-
nism whose overhead does not cause violation of the strin-
gent timing requirements of real-time traffic.

TESLA [28,29] is an efficient packet-level source authen-
tication protocol for broadcast and multicast. Through
loosely-synchronized time clocks and delayed key disclo-
sures, TESLA achieves asymmetric cryptographic prop-
erties without using public-key-based digital signatures.
TESLA incurs low communication and computation over-
heads, is scalable to a large number of receivers and can
tolerate packet losses. However, two aspects of TESLA
make it inappropriate to authenticate real-time traffic at
an ISP router for accessing reserved network resources.
First, the authentication for a received packet is deferred
until the corresponding key is disclosed. The addition of
this key disclosure delay may violate the end-to-end la-
tency requirement. Second, a receiver has to buffer these
recently-arrived packets whose keys have not yet been dis-
closed. Since multiple premium sessions could run concur-
rently between different end-hosts and the ISP edge router,
buffering this real-time traffic from different sessions incurs
a very high memory overhead at the ISP edge router.

Session-level admission control in the network QoS in-
frastructure has been studied for a decade or so. A num-
ber of schemes have been proposed [6, 16, 18, 41], such as
measurement-based admission control [16], distributed ad-
mission control [18], and endpoint admission control [6],
just to name a few. The fundamental goal of session-level
admission control for real-time applications is to accommo-
date new session requests without compromising the ongo-
ing sessions’ QoS guarantees. However, IP Easy-pass is a
packet-level resource authorization mechanism, which pro-
tects the reserved network resource from attacking traffic.

To protect a server’s resources on the victim side, many
schemes [3,30,34] have been proposed and implemented to
counter DoS flooding attacks using sophisticated resource
management schemes. These schemes provide more accu-
rate resource accounting and fine-grained service isolation,
for example, to shield interactive video traffic from bulk
data transfers. However, these defensive mechanisms at
victim servers cannot prevent the abuse of the reserved

network-edge resources. In contrast, our scheme aims
to protect the reserved network resources, instead of the
server’s resources.

III. Vulnerability of Reserved Network
Resource

We will now show that the reserved network resource
in the QoS infrastructure like DiffServ [5] is vulnerable to
spoofed traffic, and the premium service [8] provided by
an ISP is susceptible to flooding attacks. Two entities as-
sociated with the reserved network resource are a given
end-host who has subscribed to the premium service (i.e.,
the customer), and the ISP edge router that connects the
end-host to the outside world (i.e., the service provider).
Before detailing the vulnerability of reserved network-edge
resources, we first describe the DiffServ architecture briefly,
in which DQoS attacks may happen. Note that the IP
Easy-pass mechanism, which is independent of any network
QoS architecture, is not tied to the DiffServ architecture
and can be applied to any other QoS infrastructures. We
discuss the IP Easy-pass in the context of DiffServ, just for
the convenience of presentation and experimentation.

A. DiffServ Architecture

To support network QoS, the DiffServ infrastructure has
been proposed as a promising solution due mainly to its
scalability and robustness. Within a DiffServ domain,
packets entering a DiffServ-enabled network are marked
with different DSCPs (DiffServ Code Points), and based
on this marking, they are subject to classification and
traffic conditioning (such as metering, shaping, and polic-
ing), leading to a small set of packet forwarding techniques
called PHBs (Per-Hop Behaviors). The DiffServ architec-
ture achieves scalability by applying traffic conditioning
and per-flow management at edge routers only, and by ap-
plying PHBs to traffic aggregates at core routers. DiffServ
provides three different services: premium, assured, and
best-effort. Corresponding to these three different services,
three types of PHBs are specified by DiffServ: EF (Ex-
pedited Forwarding), AF (Assured Forwarding), and BE
(Best-Effort). EF is intended to support premium service
for real-time applications that require strict guarantees on
bandwidth, delay, delay-jitter2 and packet loss. Because
DiffServ routers differentiate EF packets from other types
of packets based solely on the value of six-bit DSCP field in
the IP header, the network resource reserved for EF traffic
at ISP edge routers, including link bandwidth and router
buffers, is vulnerable to spoofed EF flood and becomes the
target of malicious attacks.

B. Attack Model and Assumptions

DQoS attacks in the data plane are launched by ma-
licious insiders or unfriendly neighbors who have not sub-
scribed to the premium service. We assume that the adver-

2Delay-jitter is the variation in inter-arrival times between packets
delivered to the final output device. The delay jitter bound for a
packet stream is defined to be the bound of the maximum difference
between delays experienced by any two packets [40].

4

Michnet

Internet Internet2

CAEN
UMnet

School of
Education

Plant
Operations

LSA

FXB

Arbor
Lakes

Cooley

UMHSnet

The ATM BIN and
the proposed
new GigaBIN

OC12

OC3

GigE

Fig. 1. The topology of UM campus networks

sary is located in the same stub network as the victim, or at
a different stub network but is connected to the same ISP.
The adversary can be a cracked machine, an unhappy em-
ployee, or a naughty freshman. As the joint of connecting
the stub networks to the rest of Internet, each ISP edge
router performs traffic conditioning and policing for EF
traffic: any violation of SLA will be punished by dropping
packets. However, such traffic conditioning works only if
no packets are spoofed; otherwise, a blindly dropping pol-
icy makes the premium service much more vulnerable to a
flood of spoofed EF packets. The reason for this is that
the network resource reserved for premium service is only
a small portion of the link bandwidth and buffer space at
ISP edge routers, due mainly to the following usage and
financial factors: (1) most of the traffic will continue to
be best-effort (BE), since BE service is free; and (2) those
users who have subscribed to the premium service will not
waste their money by overbooking the resource. There-
fore, flooding even a small amount of spoofed EF traffic
can easily compromise the quality of premium service.

There may be several internal routers and switches be-
tween an end-host and its ISP edge router. For ex-
ample, from the EECS Department at the University of
Michigan (UM), we use traceroute to track the route to
www.cnn.com, and find that it takes four hops to reach
mich.net, the regional ISP for the University of Michi-
gan. The result is shown as follows. The topology of the
UM campus network is shown in Figure 1. Within each
segmental LAN environment, there is enough bandwidth—
e.g., the link speed of CAEN (Computer-Aided Engineer-
ing Network) varies between OC-12 (622 Mb/s) and OC-
48 (2.4 Gb/s)—to support real-time applications, such as
VoIP (Voice over IP). It is also a common practice that no
traffic conditioning is performed at internal routers. We
further assume that these internal routers and switches are
not sabotaged, so that in-flight packets cannot be inter-
cepted and modified. However, the adversary can eaves-
drop all the traffic between the end-host and the ISP edge
router, and inject any packet at will.

> 1 eecs2s-gw (141.213.10.1)
> 2 CAEN-EECS-GW (141.213.3.4)
> 3 141.213.101.4 (141.213.101.4)
> 4 141.213.127.14 (141.213.127.14)

Service
subscriber

(Sub)

Premium
traffic

Attacking
traffic

DiffServ
router

(R)

Adversary
(Adv)

Receiving
host

(Recv)

100 Mbps

100 Mbps

100 Mbps

EF
BE

Fig. 2. The network topology of the experiment testbed

> 5 atm3-0x1.michnet8.mich.net (192.122.183.13)

Suppose mich.net provides VoIP service, then between
mich.net and users at the University of Michigan, there
must be SLAs on the provision of network resources for sup-
porting voice traffic. Typically, outgoing voice traffic will
be policed at the edge router of mich.net before travers-
ing its ISP network. Carrying voice traffic does not cost
much bandwidth, and its provision at the ISP edge router
should be a small portion of its link capacity. Under such
a scenario, a malicious user inside the campus network,
who has not subscribed to the premium service, may mon-
itor the ongoing voice traffic, and then flood duplicate or
spoofed packets, simply launching a replay attack. The
perceived quality of VoIP service will be degraded signif-
icantly. Moreover, during certain peak times of the day
(e.g., 10 am – 12 noon and 2 pm – 4 pm when most tele-
phone calls are made), the individual callers may compete
with each other for the reserved bandwidth. A rejected
caller may disrupt the already-established calls by flood-
ing spoofed packets, thereby degrading the ongoing phone
conversations. Once several such conversations have been
forced to abort, the resource left will allow the ISP edge
router to admit such an aggressive caller’s request even at
these peak times.

We also assume that the QoS control plane is secured.
Before transmitting EF data, the end-host must have al-
ready set up a secure channel with the ISP edge router for
resource reservation signaling. Otherwise, attackers can
deceive the ISP edge router during RSVP signaling, and
easily abuse the reserved resource without flooding spoofed
EF traffic in QoS data plane. Besides the ARQoS [1] and
Authenticated QoS [2] projects, the IETF NSIS Working
Group [37] has recently been formed to develop a set of
standards for end-to-end resource reservation and QoS sig-
naling between different administrative domains.

C. Flooding Attacks Disrupting Premium Service

To demonstrate the susceptibility of premium service to
flooding attacks, we performed a series of experiments in
our DiffServ testbed. The topology of our testbed is shown
in Figure 2. Our testbed consists of one Linux-based soft-
ware router, R, and three end-hosts. One end-host, Recv

5

0

0.1

0.2

0.3

0.4

0.5

0.6

No
Flood

30 0.5 80 100 150 200 300

Flooding Rate (Kbps)

Packet Loss Rate

Fig. 3. Vulnerability of EF traffic to flooding attacks (I) (loss rate)

0

1

2

3

4

5

6

7

8

Ti
m

e
(m

s)

No
Flood

30 50 80 100 150 200 300

Flooding Rate (Kbps)

Jitter

Fig. 4. Vulnerability of EF traffic to flooding attacks (II) (jitter)

is used as the receiving host, and the other two as send-
ing hosts—one, Sub, is a normal service subscriber and the
other, Adv, is the adversary. Based on a set of traffic control
(tc) APIs in the Linux kernel, we built a router configura-
tion agent and placed it on the router of our testbed in or-
der to configure the traffic control blocks inside the router.
On the end-hosts, we built traffic generation agents, which
are a modified version of Iperf [12], to generate both TCP
and UDP traffic. Each of the machines in the testbed has
a 600 MHz Pentium III processor with 256MB RAM.

In order to support real-time traffic, we deployed the
DiffServ EF (Expedite Forwarding) PHB (Per-Hop Behav-
ior) [8] at the router. In our experiments, 500Kbps of the
link bandwidth between the router R and the receiving host
Recv is reserved for the EF traffic originating from the le-
gitimate end-host Sub. Inside the router, the TBF (Token
Bucket Filter) is used for EF traffic conditioning, and the
packet scheduling policy is PQ (Priority Queueing). Due to
the simple testbed setup, the measured end-to-end delays
are not realistic, so we did not include them here.

Well-behaved EF traffic carried by UDP is transmitted
from Sub to Recv. The packet size is 1000 bytes. If no
flooding attacks occur, the reserved network resource serves
the EF traffic well, and achieves the goal of low loss rate,
low delay and low jitter. However, under flooding attacks,
even a small amount of flooding traffic can seriously de-

grade the quality of service received by EF traffic. As
shown in Figure 3, for the flooding rate of 100 Kbps that
is only one fifth of the reserved link bandwidth, the loss
rate is increased from 0 to 19%. The measured end-to-end
delay-jitter (J)3 is plotted in Figure 4. Under the flood-
ing rate of 100 Kbps, the jitter surges from 3µs to 5.95
ms, clearly showing that the flooding traffic increases the
jitter by several orders of magnitude. Such serious degra-
dation in packet loss and jitter will make many real-time
applications like VoIP or video-conferencing infeasible.

IV. IP Easy-pass Architecture

We aim to prevent DQoS attacks in the data plane by
deploying the IP Easy-pass mechanism at both a sending
end-host that subscribes the premium service and the ISP
edge router that connects end-hosts to the Internet. A valid
pass authorizes the packet that carries the pass to access
the reserved network resource at ISP edge routers. At the
end-host, as the last-step of IP processing, we generate and
encrypt a unique pass , and then attach it to each outgo-
ing EF packet. At the ISP edge router, as the first-step of
IP processing, we decrypt and verify the pass, then detach
it from the received EF packet. If the verification suc-
ceeds, the packet will be forwarded to routing processing;
otherwise, it will be simply discarded. The architecture of
Easy-pass is shown in Figure 5. Real-time or premium-class
applications running on the sending end-hosts are trans-
parently protected by the IP Easy-pass mechanism, which
does not require any modification of applications. In the
rest of this section, we address why we need encryption,
and discuss the scalability of Easy-pass and its extension
to inter-domain and Mobile IP scenarios.

A. Why Encryption?

In plaintext, a pass is just a random number. However,
a sequence of passes for an EF data flow are generated ac-
cording to certain rules. Had we only used Pseudo-random
Number Generators (PRNGs), such as the popular linear
congruential algorithm for constructing passes, without en-
cryption, adversaries would have determined the parame-
ters of the PRNG algorithm with the exposure of a small
part of the sequence of random numbers, and would then
have learned the whole sequence of passes. Therefore, we
employ a symmetric cipher for Easy-pass encryption and
decryption. Both the sending host and the ISP edge router
agree a priori on the generation rules and the shared secret
key.

As mentioned before, during secure QoS signaling we
should have established a security association between the
end-host who subscribes the premium service and its ISP
edge router in the control plane. By utilizing the secure
channel in QoS signaling, the end-host and the ISP edge
router can share the secret information for constructing
Easy-passes. Even without an already-established secure

3Calculated as a low-pass filter of the delay variation between two
successive packets: J = J + (|D(i− 1, i)|− J)/16, where D(i− 1, i) is

the delay variation between packets i and (i− 1) and 1
16

is the value
of the low-pass filter.

6

End-Host

Applications

Operating System

Network Interface

Customer
Network

End-Host

Access Router

IP-EZ
Router
Module

Router
Operating

System

N
et

w
or

k
In

te
rf

ac
e

N
et

w
or

k
In

te
rf

ac
e

Provider
NetworkIP-EZ

Encrypted Channel

Remove
IP-EZ Pass

� � �
� � �

IP Stack

IP-EZ HostModule

� �

EZpkt

Fig. 5. Architecture of the IP Easy-pass framework

QoS signaling channel, in the control plane we can utilize
Diffie-Hellman and public-key based schemes [9] to derive
a shared secret key between the end-host and the ISP edge
router for Easy-pass construction, encryption and decryp-
tion.

B. Scalability of Easy-pass

To verify the Easy-passes attached to outgoing EF pack-
ets, the ISP edge router must maintain a 16-byte key for
each end-host (see Section V.B) that subscribes to the pre-
mium service, and consume a few runtime variables for each
on-line premium user (see Section V.C).

One may question the scalability of Easy-pass at the ISP
edge router. Note that in the DiffServ architecture, the
edge routers should still maintain per-flow states and per-
form flow-based traffic conditioning on EF and AF traffic.
The 16-byte key induced by Easy-pass can be stored as a
new component of a traffic profile, which typically consists
of average rate, peak rate, burst size, etc., for each EF flow.
Every time when the edge router retrieves the traffic profile
to perform traffic conditioning on EF traffic, the key will
be automatically fetched into the router memory and main-
tained with other traditional parameters of the traffic pro-
file. Since the runtime variables per on-line premium user
are volatile, there is no need to retrieve or store them at
edge routers. Thus, the Easy-pass mechanism only incurs
a low per-host state overhead. Moreover, in general, the
number of end-hosts from which EF flows originate should
be no more than the number of EF flows themselves. The
per-host Easy-pass verification should, therefore, not im-
pose any scalability problem upon the ISP edge router.

Furthermore, it is possible for a group of end-hosts that
subscribe to the premium service to share the same se-
cret key in order to reduce the key maintenance overhead
at the ISP edge router. The members of the same group
must trust each other, and the size of a group should be
properly bounded so that the probability of Easy-pass col-
lision4 among their sessions is very low. However, key-
management is done in the control plane and also off-line
before the data transfer begins. How to agree on a key,

4Two different data packets have the same value of Easy-pass.

how to re-key and how to distribute a key are beyond the
scope of this paper. (One can use one of many existing
approaches for this purpose.)

C. Extension of Easy-pass

The Easy-pass mechanism can be easily extended to val-
idate the legitimacy of high-tiered traffic between two ad-
jacent ISP edge routers that belong to two different ISPs.
The inter-domain case is even simpler than that of intra-
domain, because we deal with a single EF aggregate (in-
stead of individual EF flows) between the two adjacent ISP
edge routers in the inter-domain case. At the egress inter-
face of one edge router, we attach Easy-passes for outgoing
EF packets that are destined for the other domain. Then,
the passes are validated at the ingress interface of the cor-
responding adjacent edge router to differentiate them from
spoofed crossing EF traffic. Only one secret key is needed
at these two adjacent ISP edge routers for validating the
EF aggregate between them.

Note that the entities of Easy-pass in the inter-domain
case are two adjacent edge routers. In the inter-domain sce-
nario, the number of symmetric keys maintained at an ISP
edge router is a linear function of the number of its egress
interfaces (i.e., the number of neighboring edge routers in
other domains it is connected to). Since the number of
neighboring edge routers in other domains is much less than
that of end-hosts it connected to the Internet, there is no
scalability problem in maintaining secret keys in the inter-
domain case.

In the context of Mobile IP, we can also apply the Easy-
pass mechanism to validate the IP packets that originated
from a legitimate mobile node for accessing the ISP re-
sources subscribed by a foreign network. Since the mobile
node needs to register with the foreign agent when it is
connected to a foreign network, the mobile node and the
foreign agent may set up a secure channel to negotiate how
to share secrets for Easy-pass construction during this reg-
istration.

7

V. Description of IP Easy-pass Algorithms

We now describe how to generate a sequence of passes
for an EF data flow, then investigate the choice of encryp-
tion/decryption algorithms, and finally, present the verifi-
cation and embedding of Easy-passes.

A. Generation of Easy-Pass

The main parameters in generating a sequence of plain-
text passes include a nonce Λ, a gradient ∆, and a direction
γ. Of the tuple {Λ, ∆, γ}, the first two elements are ran-
dom numbers, and the last one is a boolean. The nonce is
the starting point in generating a sequence of Easy-passes.
The gradient is the span between two consecutive Easy-
passes. The direction determines if the trend of the Easy-
pass sequence is in an increasing/decreasing order, and its
value is determined at run-time. The purpose of dynami-
cally setting the direction of a sequence and randomizing
both the starting point and the span is to avoid Easy-pass
collision among the premium sessions, which run on the
same end-host (or the same group of end-hosts) and share
the same secret key with the ISP edge router.

If the number of bits in an Easy-pass is N , then the
range space Ω of Easy-pass is 2N . The chosen space for
the initial nonce Λ is [0,Ω]; and that for the gradient is {
∆ | 0 ≤ ∆ ≤ 2k ∩ (Ω mod ∆ 6= 0), k << N}. The
growth direction of Easy-passes is dynamically determined
by the chosen Λ. If Λ > Ω/2, then the value of Easy-passes
decreases; on the other hand, if Λ < Ω/2, then the value
of Easy-passes increases. Let d(.) be the direction of Easy-
passes for EF traffic transmitted between end-host m and
the ISP edge router: ‘0’ for increasing order and ‘1’ for
decreasing order.

dm(Λ) = γ =

{
0 if Λ ≤ Ω/2;
1 if Λ > Ω/2.

(1)

The plain Easy-pass is the sum of an initial random num-
ber Λ and the corresponding gradient ∆. Let V (.) be the
value of Easy-pass for the n-th data transmission. The
construction of a plain Easy-pass is described as follows:

V (n) = Λ + (−1)γ × (n− 1)×∆. (2)

where n is the transmission order of a data packet starting
from 1. The algorithm for constructing an IP Easy-pass is
illustrated in Table I. Step 0 in Table I shows the selection
of two fundamental elements {Λ,∆} during the secure QoS
signaling phase (e.g. via secure RSVP). The rest of steps in
Table I present the construction algorithm of an Easy-pass.
When the value of an Easy-pass reaches the lower limit, 0,
or the upper limit, Ω, we need to wrap around the value
to continue within the range space. The number of packets
per round is bΩ/∆c.

V (n) =

{
V (n)− Ω if V (n) > Ω;
V (n) + Ω if V (n) < 0.

(3)

To prevent the wrap-around sequencer from coinciding
with the previous values, in accordance to number theory,
we require that the gradient ∆ be a prime number.

TABLE I

Pseudocode of Constructing an Easy-pass

0. Before data transmission:

nonce ← Λ; //select a random number for nonce

gradient ← ∆; // select a prime number from [0, 2k]

1. At the very beginning of data transmission:

n← 1;

W0 ← Λ;

If (Λ < bΩ/2c)
γ ← 0;

Else

γ ← 1;

2. On data transmission, build the n-th Easy-pass Wn as:

Switch (γ) {
Case 0 :

Wn ← Wn−1 + ∆;

If (Wn > Ω)

Wn ← Wn − Ω; // wrap around

Case 1 :

Wn ← Wn−1 −∆;

If (Wn < 0)

Wn ← Wn + Ω; // wrap around

}
n← n+ 1;

To exemplify the working mechanism of IP Easy-pass, we
list two sequences of Easy-passes in plaintext with different
initial nonces as follows: {57, 74, 91, 108, 12, 29, 46, 63,
· · ·} and {66, 59, 32, 15, 118, 101, 84, 67, · · ·}. Here we
assume that the sample space for nonce Λ is [0,120], and the
randomly-selected nonces of the first and second sequences
are 57 and 67, respectively. Both sequences have the same
gradient ∆ as 17. Since the nonce of the first sequence, 57,
is smaller than 60—the median of Ω, the first sequence is
increasing. In contrast, the second sequence is decreasing,
due to its nonce being larger than 60. Once the plaintext
value of Easy-pass is computed, we encrypt it and attach
the encrypted Easy-pass to the outgoing EF packet as an
IP trailer. We discuss the choice of encryption/decryption
algorithm in the following.

B. Choice of Encryption/Decryption Algorithm

Since encryption/decryption is performed on each EF
data packet, the overhead incurred by the encryp-
tion/decryption algorithm should be as low as possible
without degrading its security. In the Easy-pass mecha-
nism, we employ RC-5 [32] to encrypt Easy-passes at the
end-host, and then decrypt them at the ISP edge router.
This is mainly because (1) RC-5 is one of the fastest en-
cryption/decryption algorithms available, and (2) RC-5 is
fully parameterized, allowing flexible choices for its param-
eters. Briefly, RC-5 is a symmetric block cipher, in which
the plaintext and ciphertext are fixed-length bit sequences.

8

0 1 2 3 4 5 6

10

20

40

60

80

N
um

be
r

of
 R

ou
nd

s

CPU Time (microseconds)

4 8 16

Fig. 6. CPU overhead for RC-5 encryption/decryption

RC-5 is word-oriented, with a variable number of rounds
and a variable-length cryptographic key. It is fast and has
low memory requirement. Finally, RC-5 provides high-level
security when parameter values are chosen properly.

The parameters in RC-5 that are adjustable include the
word size in bits w, the number of rounds r, and the num-
ber of bytes in secret key b. Note that RC-5 uses an ex-
panded key table, S, that is derived from the secret key.
The size of table S also depends on the number of rounds,
which is equal to 2 · (r + 1) words. RC-5 allows a range of
parameter values so that one may choose a certain set of
parameters that balance the requirements between security
and performance. Moreover, applications can adjust these
parameters when their own requirements change.

To test the efficiency of RC-5, we choose a secure option
of RC5-32/10/16, where w = 32, r = 10, and b = 16, so
that the secret key length is 128 bits. We conduct sim-
ple experiments on an off-the-shelf 550 MHz Pentium III
PC with 256MB RAM, running Linux kernel 2.4.7. The
CPU time for encryption and decryption on the option of
32/10/16 is only 1µs. Next, we vary the number of rounds
and length of the secret key, to find out which one dom-
inates the consumption of CPU cycles. As shown in Fig-
ure 6, the increase in the number of rounds from 10 to
80 linearly increases the CPU overhead, but increasing the
secret key length does not affect the CPU overhead. There-
fore, we choose 16 bytes (128 bits) for the secret key length,
instead of 32 or 64 bits that are easier to break. Note that
it took 1,757 days and 58,747,597,657 work units to crack a
64-bit RC5 key [10], so it would take much longer to crack
a 128-bit RC5 key. On the other hand, we choose the num-
ber of rounds to be 10 in order to reduce the resulting CPU
overhead.

The input (plaintext) and output (ciphertext) of RC-5
are two words long. Since we choose the length of word as
32 bits, the length of Easy-pass is 64 bits. Then, the range
space Ω is 264. Such a large space guarantees avoidance of
Easy-pass collision, i.e., no two valid data packets within a
reasonable time interval will have the same Easy-pass. For
example, even if a real-time session reserves a 100 Mbps
bandwidth, its average packet size is only 50 bytes, and its
duration lasts for four weeks, the required space to avoid
any Easy-pass collision is still less than 240.

C. Verification of Easy-passes

At the ISP edge router, after decrypting the encrypted
Easy-pass in each received EF packet, we verify its legiti-
macy according to the generation rule of Easy-passes. The
first step of the verification procedure is simply checking if
Vd−Λ

∆ is an integer, where Vd is the value of the decrypted
Easy-pass of the received EF packet. The next step is to
make sure that the integer is fresh, i.e., it did not appear
before.

If there is no out-of-order transmission between the end-
host and its ISP edge router, after decrypting the Easy-pass
from each valid EF packet, the ISP edge router will see a
sequence of random numbers starting from Λ with an in-
terval of ∆. Assume that the last checking number, |Vd−Λ

∆ |,
is an integer I , then the correct checking number for the
one being validated should be I + 1. The correct sequence
of checking numbers should be a series of {0, 1, 2, 3, · · ·}.

However, in case of data corruption and congestion,
packet losses or out-of-order packet arrivals may occur at
the edge router. To account for possible holes in the se-
quence of checking numbers, we introduce a range-window.
Given the maximum possible out-of-order value within the
first-mile environment ism, we set the range-window size to
2m. We also introduce two variables: one is base to record
the checking number of the latest received in-order packet;
the other is a 2m-bit long variable, called flag, which is a
bit-index-array whose default value is zero, to record the
received out-of-order packets. In this paper, we set m as
16, so the range-window covers 32 packets. Then, flag is
a 32-bit word. Note that with changes of real conditions,
the value of m is adjustable.

39 40

Received Packet Out-of-order Packets

Base tt1 4

33 34 36 37

Flag: 00 00 1 111 1Flag: 00 00000

The First Quarter of Range-Window

3831 32 35

Fig. 7. Tracking the out-of-order delivery

When the difference between the incoming packet’s
checking number and the base is larger than 1, an out-
of-order delivery or packet loss is detected. As shown in
Figure 7, at time t1, the base is 32 but the received packet’s
checking number is 35. Since 35− 32 = 3 > 1, out-of-order
delivery or packet loss is detected. The value of base is not
updated until the holes in the sequence are filled or the
range-window later reaches its limit.

0 0 0 0 0 0 0 01 0 0 0 0 0 0 0

0 0 0 0 0 0 0 01 0 0 0 0 0 0 0

0 1 0 1 0 1 1 1

0 1 0 1 0 1 1 11 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

Second Byte Third Byte Fouth ByteFirst Byte

Fig. 8. Left shift the flag for 8 bits to update the out-of-order state

In Figure 7, we only show one quarter of the range-

9

TABLE II

Pseudocode of Verifying an Easy-pass

Decrypt the Easy-pass to get Vd

Cn = |Vd−Λ

∆ |; // derive the checking number

If (Cn is not integer)

discard the packet // attacking packet

Else

i = Cn - B; // get the index

If (i < 0)

discard the packet // duplicate packet

Else

If (i > 1) // out-of-order

Switch (flag[i]) { // check the bit in flag

Case ‘1’ :

discard the packet // duplicate packet

Case ‘0’ :

accept the packet;

flag[i] = ‘1’;

If (flag[1:8] == ‘0xFF’ || flag[32] == ‘1’)

flag << 8; // left shift 8 bits

B = B + 8; // update the base

// no holes in the first byte or

// reaches the highest-end

}

If (i == ‘1’) // in the right track

accept the packet

B = Cn; // update the base

window, and the first byte of flag is initially set to its
default “00000000”. When the packet with the checking
number 35 arrives, the third bit in the flag is set to “1”,
indicating that the packet has been received. Any later
arrival of a packet with the same checking number will be
treated as a duplicate and discarded. Following this rule,
at time t4, the first byte of flag becomes “00100111”. The
index of the received packet in the flag is its checking num-
ber decremented by base. In this manner, the verification
module keeps track of the holes in the sequence of check-
ing numbers, and updates the list of holes by changing the
corresponding bit in flag from ‘0’ to ‘1’ when one of them
is filled.

Once the first byte of flag becomes ‘0xFF’ or the range-
window reaches its right-most end, we left-shift the flag 8
bits and reset the last byte to ‘0x00’, as shown in Figure 8.
Then, we increase base by 8 correspondingly. This shift
is very important to seamlessly keep track of the status of
the out-of-order delivery using as little memory as possible.
Note that in real-time communications, a data packet that
arrived after its deadline would be useless. Thus, even if
there exist holes in the first byte of the range-window, once
its right limit is reached, the legitimacy of these holes in
the first byte is negated and the belated packets or retrans-
missions for these holes will be discarded. The pseudocode
of verifying an Easy-pass is shown in Table II.

In summary, the filtering rule for weeding out attacking
traffic at the ISP edge router is simple: if the checking

Original IP Packet Tailer

Pass
EZ

IP Payload
IP

Header

Fig. 9. Embedding the Easy-pass into an IP packet

number meets any one of the following conditions: (1) it
is not an integer; (2) it is smaller than the value of base;
and (3) its value is larger than the value of base but the
corresponding bit in flag is already set to 1. Then, the
packet carrying such a pass will be identified as spoofed
and hence discarded without further processing.

D. Embedding of Easy-Pass

We embed an Easy-pass, which is 64 bits long, as the
trailer to an IP packet. The attachment of an Easy-pass is
shown in Figure 9. One advantage of attaching the Easy-
pass value as a trailer to each IP packet is that it is attached
by the end-host and subsequently removed upon verifica-
tion by the edge router before passing the packet on to the
ISP network. Therefore, none of the downstream routers
and the receiving end-hosts need to be modified to accom-
modate the proposed scheme. Another advantage is that
like MPLS, attachment of the Easy-pass value is completely
transparent to the transport-layer protocol (TCP or UDP)
and the various application-layer protocols above.

If an end-host that subscribes to the premium service is
only one-hop away from the ISP edge router, no IP frag-
mentation happens. However, if the end-host is a few hops
away from the ISP edge router, it is possible that an IP
packet is fragmented during the transmission from the end-
host to the ISP edge router. The recent Internet measure-
ment [33] has shown that less than 1% of IP packets in
the Internet are fragmented. Although the occurrence of
packet fragmentation between an end-host and its ISP edge
routers is even rarer, the possible fragmentation will de-
tach the pass from the fragments, except for the last one.
A malicious attacker can exploit the fragmented packets
to steal the reserved resource. Moreover, IP packet frag-
mentation is still “considered harmful” to end-to-end per-
formance [33]. Therefore, enforcing no fragmentation not
only fills the security holes, but also improves end-to-end
performance.

To prevent possible fragmentation between an end-host
and the ISP edge router, we require that a path MTU
discovery [25] should be performed before EF data trans-
mission, guaranteeing no fragmentation in the correspond-
ing EF data flow. Currently, most Unix-variant OSes
support the path MTU discovery mechanism. We can
enable the path MTU discovery by appropriately set-
ting the corresponding system control parameter, e.g.,
ip path mtu discovery in Solaris and ip no pmtu disc in
Linux. Note that the attachment of easy-pass is the last
step of IP processing at the sending host. For each frag-
ment of an IP packet, we attach a unique easy-pass as its

10

EZpass_put(skb) RC5_setup(key)

RC5_Encrypt()
attach pass as

pkt trailer

IP stack processing

ip_build_xmit()

continue packet
processing

HostModule

send packet to
interface

Fig. 10. HostModule sequence of operation

trailer before forwarding it to the data-link layer. At the
other end, as the first-step of IP processing at the ISP edge
router, the easy-pass is detached from the fragment before
packet re-assembly.

VI. Implementation and Evaluation

The IP Easy-pass mechanism is implemented in the
Linux kernel, and its effectiveness against flooding at-
tacks is evaluated on the DiffServ testbed described in
Section III-C. In this section, we first describe the im-
plementation of Easy-pass, measure the overhead incurred
by Easy-pass and discuss its impact on end-to-end per-
formance. Finally, we perform a series of experiments to
demonstrate Easy-pass’s protection of real-time traffic.

A. Implementation of Easy-pass

We implement the IP Easy-pass scheme as two loadable
Linux kernel modules. One module, HostModule, is located
at the end-host which generates and attaches 64-bit Easy-
passes to IP packets; and the other module, RouterModule
installed at the edge router, extracts the Easy-pass and
verifies its legitimacy before forwarding the packet to the
next-hop.

HostModule uses a hook that has been added to the
IP layer transmission function (ip build xmit()) of the
Linux kernel version 2.4.7. After preparation of an IP
packet for transmission over the network, the packet is
sent to HostModule via EZpass put(), which calculates
the Easy-pass value, based on the current packet count
from the designated data flow (via RC5 setup()). The
module then encrypts the field at runtime using RC5 (via
RC5 Encrypt()) and attaches it to the payload as the
trailer of the packet. The entire packet is then placed on
the outgoing interface. The sequence of HostModule oper-
ations is illustrated in Figure 10. In an alternative imple-
mentation, we use Linux Netfilter hooks (specifically the
NF IP POST ROUTING hook) to edit the packet and add the
calculated RC5 Easy-pass before placing it on the wire.

At the edge-router side, after packet classification
RouterModule uses a hook added to the IP-layer re-
ceiving function (ip rcv()) to retrieve the encrypted
Easy-pass value from the premium packet IP header
(via EZpass get()). The module then decrypts (via
RC5 Decrypt()) and verifies the pass. If the packet is found
to have the correct Easy-pass value, it is allowed to pro-
ceed through the protocol stack. Otherwise, the packet is
dropped. The detailed operational sequence of RouterMod-

EZpass_get(pkt)

RC5_Decrypt()

remove pass

ip_rcv()

RouterModule

classify

premium

check pass

continue
routing

processing

best-effort

< drop pkt >

< valid >

Fig. 11. RouterModule sequence of operation

ule is illustrated in Figure 11.
Compared with inserting Easy-pass into IP header op-

tion fields, attaching the Easy-pass as a trailer has the
advantage of being transparent to protocol checking and
processing. Neither header modification nor payload data
shifting is required in this case. The only fields that have
to be updated are the IP packet total length and the IP
checksum, which are done inside our modules. This eases
the implementation of our Easy-pass mechanism.

B. Overhead of Easy-pass

We evaluate the overhead of Easy-pass in terms of band-
width and CPU consumption, discuss the impact of Easy-
pass processing overhead upon the EF throughput, and
finally, compare the overhead of Easy-pass with that of
IPsec.

B.1 Bandwidth Overhead

Each Easy-pass introduces an additional 8 bytes. In the
context of video traffic, in which the typical packet size is
800 or 1000 bytes [21], the bandwidth overhead of Easy-
pass is 1% or 0.8%. In the context of streaming audio traf-
fic, the bandwidth overhead is increased to 3.1% or 1.5%,
with respect to the 254- or 500-byte packets [23]. Such an
increase of bandwidth overhead is acceptable to most users.

However, in the context of VoIP, the packet payload
ranges from 20 to 150 bytes with an RTP/UDP/IP header
of 40 bytes (IP=20 bytes; UDP=12 bytes; RTP=8 bytes),
then the bandwidth overhead of Easy-pass becomes 4.2%
up to 13.3%. To further reduce the bandwidth overhead,
we can trade security for performance by decreasing the
length of Easy-pass from 64 to 32 bits. Most importantly,
the Easy-pass is detached from its data packet by the ISP
edge router before forwarding the packet to its next hop.
Therefore, the Easy-pass mechanism induces no overhead
on the reserved link bandwidth of the ISP, and costs noth-
ing along the downstream links and routers.

B.2 Computational Overhead

The computational overhead of Easy-pass per packet is
included in the processing overhead of an EF packet at the
sending host and the ISP edge router, respectively. We first
measure the processing overhead of Easy-pass per packet

11

0

5

10

15

20

25

30

35

40

Without EZ-Pass With EZ-Pass Hop-Integrity

Ti
m

e
(M

ic
ro

se
co

nd
s)

Processing Overhead

Fig. 12. Processing overhead with and without Easy-Pass

at the sending host in our testbed as a relative footprint,
since it depends on the CPU power and the workload of
the end-host being tested. Our measured result is 1.29 µs
on average, and its dominating factor is the RC-5 encryp-
tion. We have found it more important to characterize the
overhead of Easy-pass induced at the ISP edge router than
that at the end-host, since the end-host can allocate more
resources for each outgoing real-time packet than the edge
router can. Moreover, the verification of Easy-pass requires
more CPU cycles than the Easy-pass embedding procedure
at the end-host.

At the ISP edge router, we measure the processing over-
head for each EF packet with and without the Easy-pass.
In this set of experiments, we vary the reserved bandwidth
from 100 Kbps to 2 Mbps, and the packet size from 100
to 1000 bytes. The network resources are well-provisioned
and the EF traffic is well-behaved, so there is no queue-
ing delay for the EF traffic. Our measured results are
constant, irrespective of packet size and traffic rate. The
measured per-packet processing time in the case of an em-
bedded Easy-pass is 8 µs, whereas the same without the
Easy-pass is 6 µs. The results are shown in Figure 12. The
overhead incurred by the verification of Easy-pass is 2 µs
per packet. For the purpose of comparison, the authentica-
tion overhead of the hop-integrity mechanism [14], which is
37 µs per packet, is also shown in the Figure 12. This value
was derived in a separate study [14] using a slightly faster
machine—a Pentium III 730 MHz running Linux OS. More-
over, the verification of Easy-pass is performed only once
at the ISP edge router, not at every downstream router.
Since the average end-to-end delay between two Internet
hosts ranges from tens to hundreds of milliseconds, the pro-
cessing overhead of Easy-pass per packet is negligible.

B.3 Impact upon EF Throughput

The per-packet processing overhead of Easy-pass at edge
routers not only increases the end-to-end delay, but also
decreases the packet-forwarding rate. Although the per-
packet processing overhead of Easy-pass is independent of
packet size and traffic rate, the cumulative Easy-pass pro-
cessing overhead is proportional to the number of EF pack-
ets being forwarded per unit of time. Thus, we need to

0.0 2.0 4.0 6.0 8.0 10.0
Time (s)

10620.0

10640.0

10660.0

10680.0

10700.0

10720.0

Th
ro

ug
hp

ut
 (K

bp
s)

Without Easy−pass
With Easy−pass

Fig. 13. Impact of processing overhead upon EF throughput

consider the impact of the cumulative Easy-pass processing
overhead on EF throughput, and measure the potentially
largest degradation of EF throughput caused by Easy-pass.
So, we ran a set of experiments on our DiffServ testbed. In
order to generate an extremely large of number of EF pack-
ets, we set the EF packet size as small as 64 bytes while
setting the reserved EF bandwidth as large as 10 Mbps.
As shown in Figure 13, the EF throughput degradation
caused by Easy-pass is negligible. The largest degradation
of EF throughput is only 0.036% in this extreme experi-
mental setup that is unfavorable to Easy-pass. Therefore,
the decrease of packet-forwarding rate due to the addition
of Easy-pass is negligible.

B.4 Comparison with IPsec

Although IPsec can achieve end-to-edge authentication
by using tunnel mode, its security model is overkill for pro-
tecting reserved network resources at edges. We compare
Easy-pass with IPsec AH (Authentication Header) in tun-
nel mode in three different aspects.

Bandwidth overhead: The length of Easy-pass is 8
bytes, whereas the header overhead of the IPsec AH tun-
nel mode is 44 bytes, which is 5.5 times as much as that of
Easy-pass.

CPU overhead: We measure the Easy-pass CPU over-
head on an off-the-shelf 600 MHz Pentium III PC with
256MB RAM as shown above, which is 2µs; in contrast, in a
similar platform, the CPU overhead of IPsec authentication
(HMAC-MD5) is 15 to 30 times more than that of Easy-
pass with different packet sizes [28], since IPsec authenti-
cation covers the entire IP packet. Note that the addition
of IPsec encapsulation overhead will further widen the gap
of CPU cycle consumption between IPsec and Easy-pass.

Memory overhead at edges: To combat a replay-attack,
IPsec maintains a window of 64 sequence numbers for each
IP flow. Since the sequence number is 32 bits long, the
memory required by anti-replay in IPsec is 4096 bits for
each IP flow, whereas Easy-pass only introduces 32-bit flag
and 8-bit base variables to achieve the same goal. There-
fore, at an edge router, IPsec consumes more than 100
times the memory space of Easy-pass.

12

TABLE III

Packet-loss rate for low-rate EF traffic

w/o EZ-Pass w/ EZ-Pass

Flood Rate 502 254 502 254

20K 22% 21% 0 0

40K 38% 35% 0 0

60K 45% 40% 0 0

80K 54% 54% 0 0

100K 63% 61% 0 0

120K 71% 68% 0 0

160K 85% 80% 0 0

TABLE IV

End-to-end delay-jitter for low-rate EF traffic

w/o EZ-Pass w/ EZ-Pass

Flood Rate 502 254 502 254

20K 9.3ms 6.8ms 5.8µs 5.2µs

40K 10.2ms 7.2ms 6.3µs 5.8µs

60K 10.5ms 7.4ms 6.7µs 6.1µs

80K 10.8ms 7.5ms 7.0µs 6.2µs

100K 11.1ms 7.7ms 7.1µs 6.3µs

120K 11.2ms 7.9ms 7.3µs 6.5µs

160K 11.9ms 8.6ms 7.8µs 6.7µs

C. Effectiveness Against Resource Theft

To validate the effectiveness of Easy-pass against mali-
cious attacks, we performed a series of experiments on our
DiffServ testbed. Basically, our experiments can be divided
into two groups: one for protecting low-rate EF traffic,
such as audio streams; and the other for protecting high-
rate EF traffic, such as video streams. Since multimedia
traffic (real-time audio and video) is usually transported
by UDP [21, 23], all the EF traffic in our experiments are
carried by UDP.

C.1 Protection of Low-rate (Audio) Traffic

As an example of bandwidth requirement for support-
ing real-time audio applications, we set the source sending
rate and the reserved bandwidth at the router to 80 Kbps,
respectively. Since the typical packet sizes for real-time au-
dio are 254 and 502 bytes [23] (depending on the encoding
rate), we vary the packet size from 254 to 502 bytes in this
set of experiments.

Table III illustrates the EF packet-loss rate for differ-
ent flooding rates ranging from 20 Kbps—one fourth of re-
served bandwidth—to 160 Kbps, twice the reserved band-
width. Without Easy-pass, the packet-loss rate ranges from
21% to 85%. Under the same flooding rate, the larger
packet size incurs a slightly higher packet-loss rate, due to
a slightly larger burst size. In contrast, with Easy-pass, all
the attacking packets are identified and discarded. That is,
the reserved bandwidth is saved, and hence, no legitimate
packets are dropped.

TABLE V

Packet-loss rate for high-rate EF traffic

w/o EZ-Pass w/ EZ-Pass

Flooding rate 1000 800 1000 800

300K 22% 21% 0 0

500K 30% 27% 0 0

800K 37% 33% 0 0

1M 42% 38% 0 0

1.2M 48% 44% 0 0

1.5M 57% 53% 0 0

3M 67% 62% 0 0

TABLE VI

End-to-end delay-jitter for high-rate EF traffic

w/o EZ-Pass w/ EZ-Pass

Flooding rate 1000 800 1000 800

300K 2.8ms 2.1ms 2.0µs 2.0µs

500K 3.6ms 2.4ms 2.3µs 2.2µs

800K 3.8ms 2.9ms 2.5µs 2.3µs

1M 4.2.ms 3.3ms 2.8µs 2.6µs

1.2M 4.5ms 3.6ms 3.4µs 3.1µs

1.5M 4.8ms 3.9ms 3.9µs 3.5µs

3M 5.2ms 4.3ms 4.3µs 3.9µs

Table IV presents the corresponding results for end-to-
end delay-jitter obtained from the same set of experiments.
Without Easy-pass the jitter ranges from 6.8 to 11.9 ms.
Also, for the same flooding rate, the larger packet size in-
curs a slightly higher jitter. In contrast, with Easy-pass,
the jitter remains to the same order of magnitude in the
experiment without any flooding attacks.

C.2 Protection of High-rate (Video) Traffic

Since MPEG-1, a popular video compression technique,
has an encoding rate of 1.5 Mbps, in our second group of
experiments, we set the source sending rate to 1.5 Mpbs,
and reserve 1.5 Mbps bandwidth at the router. Since the
typical packets for real-time video are 800 and 1000 bytes
long [21], the EF packet size is varied from 800 to 1000
bytes in these experiments.

Table V presents the EF packet-loss rate for different
flooding rates ranging from 300 Kbps, one fifth of re-
served bandwidth, to 3 Mbps, twice the reserved band-
width. Without Easy-pass, the packet loss rate ranges
from 21% to 67%. As in the low-rate case, for the same
flooding rate, the larger packet size incurs a slightly higher
packet-loss rate. With Easy-pass, all the flooding traffic
is identified and discarded, hence protecting the reserved
bandwidth. None of the legitimate packets were dropped.

Table VI presents the results of end-to-end delay-jitter
for the EF traffic. Unsurprisingly, without Easy-pass, the
jitter ranges from 2.1 to 5.2 ms, while Easy-pass preserves
the jitter at the same level of the experiment without any
flooding attacks. In general, the experimental results of

13

the high-rate case are similar to those of the low-rate case,
demonstrating the effectiveness of Easy-pass against flood-
ing attacks.

VII. Conclusion

In this paper, we proposed a fast and light-weighted IP
network-edge resource access control mechanism, called IP
Easy-pass , to protect reserved network resources at edge
devices from theft and abuse. By conducting experiments
on a DiffServ testbed, we demonstrated the vulnerability of
the reserved network resource to flooding attacks, and the
need for IP-layer resource access control. In our scheme,
a unique, encrypted, pass is attached to each legitimate
real-time packet at the end-host. The ISP edge router vali-
dates the legitimacy of each incoming real-time packet sim-
ply by checking its pass. We presented the architecture of
Easy-pass and discussed its scalability. Then, we described
how to create an Easy-pass at the end-host, and how to
verify it at the ISP edge router using the RC5 encryp-
tion/decryption algorithm. The Easy-pass mechanism has
been implemented as loadable Linux kernel modules.

We measured the computational overhead of Easy-pass,
and found it to be a negligible fraction (a few microseconds)
of the processing time of each packet at both the end-host
as well as the edge router. Since the verification of Easy-
pass is done at the ISP edge router only, not every down-
stream router, the Easy-pass overhead added to the end-to-
end delay of an application traffic stream is negligible when
compared to typical delay values of tens of milliseconds.
Moreover, in the experimental setup that is unfavorable to
Easy-pass, we found that the throughput degradation due
to the addition of Easy-pass is negligible, and hence, con-
cluded that the decrease of packet-forwarding rate caused
by Easy-pass is negligible.

In order to evaluate the effectiveness of Easy-pass against
flooding attacks, we conducted a series of experiments on
our DiffServ testbed. The experimental results have shown
that the Easy-pass mechanism effectively shields the re-
served network resources from spoofed packets—it is shown
to protect the legitimate packets from either loss or in-
creased end-to-end delay-jitters for all the flooding rates we
considered. Furthermore, the Easy-pass mechanism can be
easily extended to the inter-domain scenario without any
scalability problem, in which two adjacent ISP edge routers
validate a higher-tiered traffic aggregate between them. In
summary, IP Easy-pass is a light-weight and effective mech-
anism for providing network-edge resource access control.

References

[1] The ARQoS project. Available: http://arqos.csc.ncsu.edu/.
[2] The authenticated QoS project. Available:

http://www.citi.umich.edu/projects/qos/.
[3] G. Banga, P. Druschel, and J. Mogul. Resource containers: A

new facility for resource management in server systems. In Pro-
ceedings of USENIX OSDI’99, New Orleans, LA, February 1999.

[4] R. Barbieri, D. Bruschi, and E. Rosti. Voice over IPsec: Analysis
and solutions. In Proceedings of 18th Annual Computer Security
Applications Conference, December 2002.

[5] S. Blake and et al. An architecture for differentiated services. In
RFC 2475, December 1998.

[6] L. Breslau, E. Knightly, S. Shenker, I. Stoica, and H. Zhang.
Endpoint admission control: Architectural issues and perfor-
mance. In Proceedings of ACM SIGCOMM’2000, Stockholm,
Sweden, August 2000.

[7] CERT Advisory CA-2000.01. Denial-of-service development,
January 2000. Available: http://www.cert.org/advisories/CA-
2000-01.html.

[8] B. Davie and et al. An expedited forwarding PHB (per-hop
behavior). In RFC 3246, March 2002.

[9] Whitfield Diffie and Martin E. Hellman. New directions in cryp-
tography. IEEE Transactions on Information Theory, 22(6),
November 1976.

[10] Distributed.net. Rc5-64 project, July 2002. Available:
http://www.distributed.net/rc5/.

[11] Z. Duan, Z. Zhang, and Y. T. Hou. Service overlay networks:
SLA, QoS and bandwidth provisioning. IEEE/ACM Transac-
tions on Networking, 11(6), December 2003.

[12] M. El-Gendy, A. Bose, H. Wang, and K. G. Shin. Statistical char-
acterization for per-hop QoS. In Proceedings of IWQoS’2003,
Monterey, CA, June 2003.

[13] P. Ferguson and D. Senie. Network ingress filtering: Defeating
denial of service attacks which employ IP source address spoof-
ing. In RFC 2267, January 1998.

[14] M. G. Gouda, E. N. Elnozahy, C.-T. Huang, and T. M. McGuire.
Hop integrity in computer networks. IEEE/ACM Transactions
on Networking, 10(3), June 2002.

[15] G. Hadjichristofi, N. Davis IV, and C. Midkiff. IPsec overhead
in wireline and wireless networks for web and email applications.
In Proceedings of IEEE IPCCC ’2003, Phoenix, AZ, April 2003.

[16] S. Jamin, P. Danzig, S. Shenker, and L. Zhang. A measurement-
based admission control algorithm for integrated services packet
networks. IEEE/ACM Transactions on Networking, 5(1),
February 1997.

[17] C. Jin, H. Wang, and K. G. Shin. Hop-count filtering: An ef-
fective defense against spoofed DDoS traffic. In Proceedings of
ACM CCS ’2003, Washington D.C, October 2003.

[18] F. Kelly, P. Key, and S. Zachary. Distributed admission control.
IEEE Journal on Selected Areas in Communications, 18(12),
December 2000.

[19] S. Kent and R. Atkinson. Security architecture for the internet
prtocotl. In RFC 2401, November 1998.

[20] J. Li, J. Mirkovic, M. Wang, P. Reiher, and L. Zhang. SAVE:
Source address validity enforcement protocol. In Proceedings of
IEEE INFOCOM ’2002, New York City, NY, June 2002.

[21] M. Li, M. Claypool, and B. Kinicki. MediaPlayer versus Re-
alPlayer — a comparison of network turbulence. In Proceed-
ings of ACM Internet Measurement Workshop’2002, Marseille,
France, November 2002.

[22] J. Martin and A. Nilsson. On service level agreements for IP
networks. In Proceedings of IEEE INFOCOM ’2002, New York
City, NY, June 2002.

[23] A. Mena and J. Heidemann. An empirical study of real audio
traffic. In Proceedings of IEEE INFOCOM ’2000, Tel Aviv,
Israel, March 2000.

[24] S. Miltchev, S. Ioannidis, and A. D. Keromytis. A study of the
relative costs of network security protocols. In Proceedings of
the USENIX Annual Technical Conference’2002 Freenix Track,
Monterey, CA, June 2002.

[25] J.C. Mogul and S.E. Deering. Path mtu discovery. In RFC 1191,
Novemeber 1990.

[26] D. Moore, G. Voelker, and S. Savage. Inferring internet denial
of service activity. In Proceedings of USENIX Security Sympo-
sium’2001, Washington D.C., August 2001.

[27] K. Park and H. Lee. On the effectiveness of route-based packet
filtering for distributed DoS attack prevention in power-law in-
ternets. In Proceedings of ACM SIGCOMM ’2001, San Diego,
CA, August 2001.

[28] A. Perrig, R. Canetti, J. D. Tygar, and D. Song. Efficient authen-
tication and signing of multicast streams over lossy channels. In
Proceedings of IEEE Symposium on Security and Privacy’2000,
May 2000.

[29] A. Perrig, R. Canetti, J. D. Tygar, and D. Song. The TESLA
broadcast authentication protocol. In RSA Cryptobytes, Sum-
mer 2002.

[30] X. Qie, R. Pang, and L. Peterson. Defensive programming: Us-
ing an annotation toolkit to build dos-resistant software. In Pro-
ceedings of USENIX OSDI’2002, Boston, MA, December 2002.

[31] J. Reumann, H. Jamjoom, and K. G. Shin. Adaptive packet

14

filters. In Proceedings of IEEE Globcom ’2001, San Antonio,
TX, November 2001.

[32] R. L. Rivest. The RC5 encryption algorithm. Lecture Notes in
Computer Science, 1008, Springer-Verlag, 1995.

[33] C. Shannon, D. Moore, and K. C. Claffy. Beyond folklore: ob-
servations on fragmented traffic. IEEE/ACM Transactions on
Networking, 10(6), December 2002.

[34] O. Spatscheck and L. Peterson. Defending against denial of ser-
vice attacks in Scout. In Proceedings of USENIX OSDI’99, New
Orleans, LA, February 1999.

[35] M. Sung and J. Xu. IP traceback-based intelligent packet fil-
tering: A novel technique for defending against internet DDoS
attacks. In Proceedings of of IEEE ICNP ’2002, Paris, France,
November 2002.

[36] R. Thayer, N. Doraswamy, and R. Glenn. IP security document
roadmap. In RFC 2411, November 1998.

[37] H. Tschofenig and D. Kroeselberg. Security threats for NSIS. In
Internet Draft, draft-ietf-nsis-threats-01.txt, January 2003.

[38] H. Wang and K. G. Shin. Transport-aware IP routers: A built-in
protection mechanism to counter DDoS attacks. IEEE Trans-
actions on Parallel and Distributed Systems, 14(9), September
2003.

[39] A. Yaar, A. Perrig, and D. Song. Pi: A path identification
mechanism to defend against DDoS attacks. In Proceedings of
IEEE Symposium on Security and Privacy, Oakland, CA, May
2003.

[40] H. Zhang. Service disciplines for guaranteed performance service
in packet-switching networks. Proceedings of the IEEE, 83(10),
October 1995.

[41] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala.
RSVP: A new resource reservation protocol. IEEE Network,
7(5), September 1993.

[42] Z. Zhang, Z. Duan, L. Gao, and Y. T. Hou. Decoupling qos
control from core routers: A novel bandwidth broker architecture
for scalable support of guaranteed services. In Proceedings of
ACM SIGCOMM ’2000, Stockholm, Sweden, August 2000.

