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Abstract—An increasing number of embedded devices are con-
necting to the Internet at a surprising rate. Those devices usually
run firmware and are exposed to the public by device search
engines. Firmware in embedded devices comes from different
manufacturers and product versions. More importantly, many
embedded devices are still using outdated versions of firmware
due to compatibility and release-time issues, raising serious
security concerns. In this paper, we propose generating fine-
grained fingerprints based on the subtle differences between the
filesystems of various firmware images. We leverage the natural
language processing technique to process the file content and the
document object model to obtain the firmware fingerprint. To
validate the fingerprints, we have crawled 9,716 firmware images
from official websites of device vendors and conducted real-world
experiments for performance evaluation. The results show that
the recall and precision of the firmware fingerprints exceed 90%.
Furthermore, we have deployed the prototype system on Amazon
EC2 and collected firmware in online embedded devices across
the IPv4 space. Our findings indicate that thousands of devices
are still using vulnerable firmware on the Internet.

I. INTRODUCTION

Numerous embedded devices connected to the Internet, such
as residential gateways/routers, IP-cameras, and net-printers,
play a significant role in our daily lives. Those devices are
assigned with IP addresses and accessible on the Internet. The
firmware is a type of software semi-permanently placed in
the hardware of embedded devices, providing basic control,
monitoring, and data manipulation. In general, the firmware
information (especially vendor names and product versions)
is associated with security vulnerabilities in embedded de-
vices. For instance, the buffer overflow vulnerability (CVE-
2015-4409) exists on Hikvision NVR DS-76xxNI-E1/2 and
DS-77xxxNI-E4 devices with a firmware version prior to
V3.4.0 [1]. Obtaining the details of firmware in embedded
devices is a pre-requisite to exploit or secure those devices
from offensive or defensive perspectives.

One pervasive but easily overlooked fact is that many
embedded devices are using mixed-version firmware on the
Internet. First, some outdated devices are not compatible with
the latest version of the firmware. Second, manufacturers and
vendors often release updates to the firmware after distributing
their products. When bugs and vulnerabilities of the firmware

†Zhi Li is the corresponding author.

are revealed, manufacturers and vendors are willing to publish
updates to the firmware. Firmware updates always occur
later than a products release. Third, updating firmware is a
non-trivial process for many users. They have to download
firmware images through the official support website or via
the administrative tools and install the firmware into the ROM
to reprogram integrated chip circuits of embedded devices.
Therefore, many embedded devices are still using the older
version firmware even when the update has been distributed.

Current device search engines (e.g., Shodan [2] and Cen-
sys [3]) collect most devices on the Internet and expose
the data to the public. Any user can query results through
keywords and obtain the data of online embedded devices.
For instance, if we use the keyword “camera”, Shodan would
return 287,551 items about camera devices with information
such as IP addresses, locations, and packet payloads. However,
the granularity of this information is too coarse to help us
manage and protect those devices. The exposure of embedded
devices to the public indicates that firmware is also exposed
in the cyberspace. Fine-grained information of firmware can
inform us which online embedded device is still vulnerable.

In this paper, we propose generating the fine-grained finger-
prints of the firmware. Fine-grained fingerprints indicate which
device, manufacturer, and product version the firmware origins
from. Based on the firmware fingerprints, we can find the
devices using firmware with a particular vulnerability on the
website of Common Vulnerabilities and Exposures (CVE) [4].
An intuitive insight behind our work is that different firmware
images are distinct from one another due to their filesystems.
Today’s embedded devices usually utilize Linux-based filesys-
tems, where tens of thousands of files reside. The filesystem
can act as the signature for recognizing firmware at the fine-
grained level. Especially, we leverage the directory “WWW”
in the filesystem as its files can be obtained online.

We send requests to online devices and receive their
response data. The greatest challenge is the inconsistency
between the response data and local files of the firmware.
Some files are resources (i.e., “*.jpg,” “*.icon,” and “*.ccs”);
some files are forbidden to access to login; and some files
are dynamic and changing according to different environ-
ments, like JavaScript. To eliminate this inconsistency, we
propose using the natural language processing technology and



document object model (DOM) to present the file. We filter
out inaccessible data and irrelevant content. A DOM tree is
used to generate the matrix of the firmware fingerprint. For
each item in the matrix, we use the HTTP GET method to
acquire <request, response> and recognize firmware at the
fine-grained level remotely. Note that our fingerprints can
recognize firmware according to the accessible files in the
directory “WWW” without requiring a password or login
permission.

To validate firmware fingerprints, we have implemented
a prototype system and conducted real-world experiments.
We have crawled 9,716 firmware images across seven man-
ufacturers’ websites and thousands of product versions. Our
results show that firmware fingerprints can achieve a 91%
precision and a 90% recall. Furthermore, we have deployed
the prototype system at a cloud server inside Amazon EC2 [5]
to collect firmware on the Internet-wide scale. We combine the
vulnerability in CVE websites [4] and the firmware versions
for quantifying the real-world effect of the firmware to the on-
line embedded devices. Our findings indicate that thousands of
online embedded devices are still using vulnerable firmware.

Overall, our contributions are summarized as follows:
• We have proposed automatically generating firmware

fingerprints at the fine-grained level based on the differ-
ences in the filesystems. It is the first work to recognize
firmware on the Internet.

• We have implemented a prototype system and conducted
real-world experiments for verifying the effectiveness of
our fingerprinting approach.

• We have used the fingerprints to discover embedded
devices still running outdated versions and vulnerable
firmware on the Internet.

The remainder of the paper is structured as follows: Section
II describes the motivation of firmware fingerprinting. Section
III presents the automatic fingerprint generation of online
embedded devices. Section IV details the implementation and
real-world experiments. Section V surveys related work, and
finally, Section VI concludes.

II. MOTIVATION

In this section, we present the motivation of firmware
fingerprinting. Firmware is the native software embedded in
the hardware of devices, simply known as “software for
hardware”.

The firmware category has three levels, which are shown
in Figure 1 with respect to the device type, manufacturers,
and product versions. First, the firmware runs at different
device types, like IP-cameras or webcams. The device type
is the most coarse-grained level for firmware category and
the easiest case to recognize on the Internet. Censys [3] and
Shodan [2] use keywords to identify the device type. Second,
the firmware comes from different manufacturers or vendors,
like Netgear, Hikvision, and D-Link. This level indicates the
organizations that distribute device products to the market.
The manufacturers would release firmware images to install on
their products and systems. The challenge of identifying this
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Fig. 1. The fine-grained levels of firmware.

category is that there are many manufacturers, and it is hard to
keep the fingerprinting updated with the addition of numerous
new devices. Third, the firmware has a different version while
coming from the same device type and manufacturer. This
is the hardest case to identify on the Internet. For instance,
D-Link V4.12 and V4.13 firmware images are installed on
routers. We observe that their filesystems are almost the same.
As far as we know, there is no previous work that can
recognize the firmware at such a fine-grained level.

Identifying firmware at the fine-grained levels can bring
several benefits. First, the vulnerability is directly associated
with the firmware version rather than the device type and man-
ufacturer. The trigger condition of the vulnerability consists of
the platform. The same vulnerability will not happen when it
runs on different platforms. For embedded devices, the plat-
form is the firmware version. From the defensive perspective,
discovering the firmware can help us find out which online
devices are still vulnerable. Second, we can use firmware
fingerprints to find devices on the Internet and quantify the
real-world impact regarding those mixed-version firmware
devices (instead of offline analysis). Security is not only
about the technology, but also about how to manage devices.
Administrators can know the number of outdated versions of
firmware being used within their enterprise network and notify
device owners to update the firmware once manufacturers
distribute the updates. Third, it helps manufacturers be aware
of the influence of the updated version after the release date
(i.e., how many users actively update their firmware over time).

We propose generating fine-grained fingerprints of firmware
based on the following observation. When manufacturers
fix bugs, add features, or improve performance, developers
must change documents in the filesystem for updating the
firmware. This modification on the filesystem can induce the
subtle differences between mixed-version firmware images.
We utilize the filesystem to act as the firmware signature
and discover those embedded devices that still use outdated
firmware versions on the Internet. Here, we only focus on
the Linux-based filesystem, which is the most commonly seen
in today’s embedded devices, including residential routers,
camera, and printers.

III. FINGERPRINTING FIRMWARE

In this section, we first introduce the overview of the
fingerprint generation approach. Then, we present the details
of the system design for fine-grained firmware fingerprints.
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Fig. 2. The overview of system design for generating fine-grained fingerprints of firmware.

A. Overview

Architecture. Figure 2 shows the system overview for
generating firmware fingerprints, including the filesystem,
file processing, and file structure modules. In the filesystem
module, we use web crawling scripts to download firmware
images from official websites of manufacturers. The filesystem
is extracted from the firmware image, and we obtain its files in
terms of filename, location, and extension. We obtain the raw
list from the filesystem, where each item is in the format “lo-
cation/filename” associated with a file. In the file-processing
module, we determine whether local files are consistent with
their respective response data. For remote accessibility, we use
the system emulator to simulate the firmware in the virtual
environment and obtain accessible files. For the file’s content,
we use the natural language processing (NLP) to parse the
file, remove redundant content, and stream. After the text
processing, we obtain the final list with each item in the
format “location/filename” associated with a string. In the file
structure module, we transfer every file in the final list to a
DOM tree and a vector. We put all vectors together to generate
the firmware matrix. The matrix is the firmware fingerprint.

Example. To explain how our approach works, consider
this example. We download the D-Link DIR-300 Wireless
Router Firmware with version 1.06 from its support page
on the official website and interpret the binary image to
extract the filesystem. For this image, a raw list contains
389 different kinds of file types (e.g., PHP, HTML, XML)
in the directory “WWW”. Then we simulate the firmware
image in the virtual hosts and acquire its online accessible
files. There are 203 files in the final list from which we
receive a positive reply. For every file, we remove redundant
content and use a DOM tree to transfer it to a structured
vector. The fingerprint of the firmware D-Link V1.06 is the
matrix including 203 vectors. For each vector, we generate
the request based on its directory and filename. We receive
the response data from online devices. We then identify this
firmware through calculating the similarity between responses
and vectors in the matrix.

B. Filesystem

Collecting the firmware filesystem is the first and largely
independent component for generating fingerprints. We crawl
firmware images, extract the filesystems from their binary

images and generate a raw file list based on the filename,
location, and extension.

Web Crawler. Most device manufacturers provide a support
page on their official websites where we can obtain the device
firmware and detailed descriptions, such as the vendor, product
name, release date, version number, and change logs. Our web
scraper is essentially a crawler designed to parse the URL
and download firmware images at manufacturers’ websites.
Because each website has different configuration templates,
the web crawler has a corresponding scraping script for
searching firmware images. Particularly, we perform breadth-
first searching on websites to explore the URL of the firmware,
until no new links can be found. We use keywords (e.g.,
“download” and “firmware”) to discover these downloaded
URLs. After downloading these binary images, we use the
metadata on the official websites to label the image with
information, such as device type, vendor name, and product
version.

Filesystem Extraction. All of the firmware images we
downloaded are binary files. BINWALK [6] is a third-party
tool to analyze and reverse-engineer binary files. We use
BINWALK to unpack binary files of firmware images. In
general, most firmware filesystems have more than 1,000 files.
Then, we store all files for every firmware image.

Not all files are used to recognize the firmware on the
Internet. Many directories (e.g., “bin”, “etc” and “lib”) in the
filesystem cannot be remotely accessed. Among these folders,
the directory “WWW” is used to provide web services for
users. Device manufacturers and vendors usually develop the
web interface as administrative tools for updates and manage-
ment. One advantage is that we can obtain the content of the
files in the directory “WWW” by sending HTTP methods. For
instance, if an embedded device with IP “10.20.30.6” owns the
file “help.html” in the location “WWW/XX, we can directly
send the HTTP GET request “10.20.30.6/XX/help.html” to
access this file. Therefore, we use the files in this directory
to generate the fingerprints of the firmware.

Furthermore, we use the location, filename, and extension
to extract files from the directory “WWW”. The location is
the relative path similar to the directory for files, which is the
parameter URL in the HTTP method. In each iterative search
directory, we use the backslash to concatenate the directory
name with the sub-directory name. We extract their filenames
and add them to the raw list. For each item in the raw list,



we use the “location/filename” to represent the file. There are
various file formats in the filesystem. We only keep files with
text contents. If the file consists of non-textual information
(e.g., images, audio, and videos), we just drop it out. We use
the file extension to filter out unqualified files, such as “*.png”.
We store the remaining files in the raw list.

C. File Processing

The raw list cannot directly act as the signature of the
firmware because there are several inconsistent places between
the local files and the response data from online devices. Some
files are forbidden to access, and some are dynamic. If we use
these files to generate firmware fingerprints, we would obtain
ineffective response data, leading to performance degradation.
We eliminate the different places between local files and the
response data through a heuristic rule:

• If the local file is different from the remote response data,
we delete the item; otherwise, we keep it.

We first find out whether the file can be remotely accessible
through simulating the firmware. Then, we use the natural lan-
guage processing technology to pull data from files, redirect,
and remove redundancies.

Remote Accessiblity. We do not assume that we have the
password and login permissions of embedded devices. We
propose to send HTTP requests to determine whether files
in the raw list are accessible. Typically, web services can
give the response data with encapsulated headers, including
Method, URL, Parameters (GET and POST), Cookies, and
User-Agent [7]. We use the GET method and set URL as a
concatenation of the directory and filename. Firmware images
are running in either the simulation environment or real
devices.

We propose using the system emulator QEMU [8] to run
the bootstrap of kernels of the Linux-based filesystem. If we
know the architecture (i.e., ARM or MIPS) and endianness
(i.e., big-endian or little-endian format) of the firmware image,
the QEMU emulator can simulate the images in the virtual
environment. Once the firmware image is emulated, the virtual
host would be allocated a network interface and an individual
IP address. We use the ping request to check whether the
virtual host’s network connectivity is available. We do not
focus on other hardware-specific peripherals of embedded
devices because the firmware fingerprints only need the files in
the directory “WWW”. However, some manufacturers do not
provide information about the architecture and endianness of
the firmware images for business reasons. The state-of-the-art
emulator tool cannot simulate this kind of firmware image. In
this case, we suggest using real devices to run the firmware
images.

Text Processing. Once the firmware is running, we
use the HTTP GET method and the URL parameter is
“IP/location/filename”. According to HTTP status codes [7],
if the virtual host gives the response, we store the response
data in the candidate list. If the virtual host does not give
the response data, we would remove it from the raw list.
Sometimes, the emulator cannot simulate firmware correctly

because of the customization configuration of the firmware.
Even with the status code is 200 OK, we still obtain the wrong
response data, such as a NULL payload or an error message
for the same HTTP request. In this case, we directly filter out
those files. The remaining local files are stored in the raw list,
and their response data is stored in the candidate list.

The redirect can bring about the inconsistency between local
files and response data. Developers would move the pages to
a new location for load balancing or simple randomization.
For instance, firmware D-Link DIR-300 version 1.06 has
a JavaScript file that redirects the request with the URL
“/index.html” to the URL “bsc internet.php”. The response
data would be different from local files in the filesystem. We
use the regular expression to extract the new location and
filename in the redirected places of files. We replace the item
in the raw list with the “new location/new filename”. Here, we
focus on two typical files for redirections: HTML redirects and
JavaScript redirects.

Content redundancy is another factor influencing the re-
sponse data. We use the natural language processing technol-
ogy to handle the content of files. There are usually conjunc-
tive words, delimiter separated words, and letter-case separated
words. For instance, words are divided by the symbol ‘/’ in
the hyperlinks. Regular expressions are used to split them
into individual words. We use stemming to transfer words to
their original or root forms (e.g., “services” is replaced by the
word “service”). The stemming process reduces the amount
of textual information. After stemming, we remove numbers,
punctuations, and stopwords. Stopwords are some of the most
common words, such as “the” and “is.” There are many tags
surrounded by angle brackets for the files in the raw list. These
tags appear in pairs like < p > and < /p >. The first one
is the start indicator, and the second is the end tag with a
forward slash. We keep these tags to extract the file structure
to present the firmware in the next section (§III-D). After file
processing, we obtain the final list of the firmware: each item
has the directory path, filename, and the content.

D. File Structure

Dynamic files would cause inconsistent places between
the response data and local files in the firmware filesystem,
like JavaScript files. When the same firmware is running
in different environments, dynamic files will change the file
content from the original, such as a set of parameters. Figure 3
shows the same file “ adv mac filter” of the same firmware
(D-Link DIR-300 Wireless Router, Firmware Version V1.06)
in different environments. The upper one is running in the
QEMU emulator, and the lower one is running on the real
device. The variable “option” in the file will be dynamically
changed according to the particular environment. When we
use the emulator to run the firmware, the field “option” is
blank (Figure 3, upper). When the real device is running the
firmware, the field “option” shows MAC addresses and names
of eight attached devices (Figure 3, lower). We can’t directly
use the response data to represent the local file because of the



<tr>
<td align=middle>

<input type=checkbox id='entry_enable_' value="1" >
</td>
<td>

<input type=text id=mac_ size=18 maxlength=17 value="">
</td>
<td>

<input type=button id=copy_ value="<<" onclick="copy_mac()">
</td>
<td>

<select id='dhcp_'>\n\t\t\t\t\t\t<option value=0></option selected>
<option value="00:F7:6F:B3:36:99">iPhonedJeanNoel</option>
<option value="78:1F:DB:94:DE:86">android-f7d639c45d5d9bc7</option>
<option value="A8:88:08:CD:9A:CA">iPaddebeatrice</option>
<option value="F0:DB:F8:62:57:30">iPhonedbeatrice</option>
<option value="64:20:0C:E0:F2:4D">iPad</option>
<option value="C4:34:6B:D4:FB:19">HPD4FB19</option>
<option value="7C:05:07:B5:26:7F"></option>
<option value="50:46:5D:A3:0F:9E">win8</option>
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Fig. 3. The same file of the same firmware in the two different environments.

dynamic files. Here, we use the file structure to represent the
file to eliminate the inconsistent places caused by the dynamic
files.

The DOM tree can be used to extract the structure of the file.
Dynamic languages (i.e., JavaScript) often use the DOM tree
to describe the file organization and structure. Many webpages
use DOM as an interface to describe the combination of style,
scripts, and HTML tags for animated documents. The DOM
tree provides a representation of the document as a structured
tree, where nodes are tags, objects, or scripts. Figure 3 shows
two DOM trees of the file in different environments. We
observe that two structures are the same if we do not count
the deepest node in the DOM tree. The file structure remains
stable even though the contents have changed.

We extract elements from local files and generate their DOM
trees. For every DOM tree, we use the pre-order traversal to
generate its vector. The pre-order traversal can be reversible,
so we can recover the tree from the vector. Every element of
the vector is the set of all nodes of the DOM tree, starting
from the root. Removing the end-node in the DOM tree is
equal to eliminating the end content of the vector. Figure 3
shows that two documents are transferred to the vector. After
removing end-node “option5”, these two files are the same.

E. Firmware Fingerprints

Every item in the final list can be transferred to a vector. We
put these vectors together to form a matrix for presenting the
fingerprint of the firmware. Figure 4 shows how the local files
are transferred to DOM trees and vectors for generating the
matrix. One firmware image has one matrix as its fingerprint.
Every vector in the matrix has its pair < request, response >.
If we would like to obtain a local file, we generate the
request based on its vector in the matrix. We send it to online
embedded devices and receive the response data. We compare
the response data and the vector to identify whether the
firmware is running on the device. We calculate the similarity
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Fig. 4. Firmware fingerprints based on DOM trees of local files.

between the response data and the vector in the matrix based
on following rules:

• If the length of the item is equal to the depth of the DOM
tree, we remove it because of the inference of dynamic
changing. We then transfer the vector to the string to
compare it with the response data.

• We use the longest matching state subsequence (LMSS)
to present the similarity between the string from the
vector and the response data. LMSS is the maximum
subsequence common in the two string sequences.

• We use the LMSS average to present the similarity value
of the device. For instance, we send 50 request packets to
remote devices and receive their responses. We calculate
all LMSS values between every response and vectors, and
the average is the similarity value of the device.

If the similarity value is larger than the threshold (see Sec-
tion IV), we identify the information of the firmware running
on the device, such as device type, manufacturer, and version.

IV. REAL-WORLD EXPERIMENTS

In this section, we first present the implementation of the
prototype system and conduct the real-world experiments to
validate the effectiveness of our proposed firmware fingerprint-
ing approach. Then, we use firmware fingerprints to discover
embedded devices that are still using outdated-version and
vulnerable firmware on the Internet.

A. Implementation

We have implemented a prototype system of firmware
fingerprint generation as a self-contained piece of software
based on open source libraries. For seven official websites
of manufacturers, we have written crawling scripts to down-
load firmware images based on Scrapy [9]. Every binary
image would be pipelined to our Python script based on
BINWALK [6] for extracting the filesystem and QEMU [8]
for simulating the firmware. We use the Natural Language
Toolkit [10] to process the file content and Beautiful Soup [11]
to extract DOM trees for the files. We transfer the files into
vectors according to the pre-order traversal and put vectors
together as the matrix for firmware fingerprints.

B. The Similarity of Firmware Filesystems

First, we downloaded 9,716 firmware from seven manu-
facturers’ websites. The device type is either the gateway or



TABLE I
SUMMARY OF FIRMWARE IMAGES AND FILESYSTEMS

Device type Manufacturer Firmware versions Filesystems

Gateways or
Routers

Belkin 120 57
D-Link 2,110 597
Linksys 78 53
Netgear 2,063 870
Zyxel 868 115

Tomato 3,283 3,281
TP-Link 1,194 323
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Fig. 5. The distribution of the directory “WWW” of firmware filesystems
extracted form Table I.

the router, and they are the mainstream manufacturers in the
market, including hundreds of device products with hundreds
of versions of firmware. The distribution of firmware images
across products and versions is not uniform. For instance, D-
Link re-released two products with different hardware but with
the same version of firmware. Here, we focus on the firmware
version rather than the products because current vulnerabilities
occur in the software (firmware) rather in the hardware.

Then, we extract filesystems from the downloaded firmware
images. Table I shows the number of filesystems from down-
loaded firmware images. We are able to extract 5,296 filesys-
tems from the firmware images. Note that only 54.5% of the
firmware images can be successfully unpacked into filesys-
tems. It is the reason that incomplete encryption filesystem or
unrecognized firmware would lead to the failure of unpacking
binary files. For example, TP-Link usually distributes multiple
partial images for their firmware, preventing us from obtaining
their filesystems. We can generate firmware fingerprints only
if their filesystems are capable of being unpacked successfully.

Furthermore, we conducted experiments to validate whether
the subtle differences of the filesystem still exist in the direc-
tory “WWW”. In this directory, the average number of files
is 123. The manufacturer Belkin has the largest file number
at nearly 3,000, and the vendor Netgear has the smallest file
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Fig. 6. The similarity matrix of different filesystems of firmware images.

number at only 2. We use 5,296 filesystems (successfully
unpacked) from Table I. The file content is extracted, and
we use a hash algorithm to calculate its MD5 checksums.
Figure 5 shows the distribution of the directory “WWW”
of firmware filesystems across different manufacturers and
product versions. There are 2,635 unique hash values among
those firmware images. Of those, 1,636 firmware images have
distinct hash values; 377 firmware images incur one hash
collision; and 300 images appear to have two hash collisions.
We further observe these firmware images with the hash
collision. If the firmware comes from different manufacturers
or device types, there are not any collisions at all. The hash
collision only happens when the firmware versions are very
similar. For instance, four firmware images (D-Link TM-
G5240 4.01.B02, 4.0.0B28, 4.01.B01, and 4.00B29) share the
same hash value. We find that images with the hash collision
are often updated by manufacturers to fix the same function,
such as bugs, vulnerabilities, or performance issues. From the
defensive perspective, the same vulnerability may occur across
these firmware versions with the hash collision. We consider
them as one type of firmware image. It is important to note
that the hash-value matching is the most stringent standard for
firmware classification. If the hash value of filesystems from
two firmware image is the same, we cannot distinguish them.

C. Performance

We explore the degree of difference between various
firmware images. We calculate the similarity of their firmware
fingerprints with the equation:

sim(Mi,Mj) =
|Mi

⋂
Mj |

|Mi

⋃
Mj |

,

where M is the matrix for presenting the firmware fingerprint;
i and j are the firmware images i and j. If the vector in the
matrix Mi is equal to the vector in the matrix Mj , we add 1;
otherwise, we add zero. |Mi

⋂
Mj | is the sum of equal vectors

of the two matrices i and j, and the |Mi

⋃
Mj | is the sum

of vectors of two matrices. The similarity degree reaches its
highest value at sim score 1 and its worst score at 0. Figure 6
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shows the similarity matrix of 160 firmware fingerprints.
The deeper the color, the higher the similarity. When the
firmware comes from different manufacturers, the similarity
is nearly zero, as shown in the color white. When the version
numbers are close, the similarity is high in the dark color. We
have observed that there are significant differences when the
firmware comes from different manufacturers and only slight
differences when the images have different versions but the
same manufacturer. The honeypot can imitate the firmware on
the Internet by producing fake services or webpages on the
Internet. Our approach can easily distinguish them because the
similarity between the honeypot and truth firmware is lower
than the similarity of firmware from different manufacturers.

First, we conducted experiments to recognize manufacturers
of the firmware without the version information. Existing
device search engines (Shodan [2]) use keywords pickup by
manual efforts to identify where the firmware comes from. In
our firmware fingerprints, we only randomly select one pair
< request, response > from the matrix. The result shows
that we can achieve 100% precision and 91.4% recall.

Moreover, we have conducted the experiments to validate
the performance of firmware fingerprints at fine-grained lev-
els. Figure 7 shows the distribution of the similarity among
different firmware. The red points are the firmware Netgear
V1.0.0.34, and the blue points are others. The black dotted line
is the separate line between the firmware Netgear V1.0.0.34
and others. We use precision and recall to present the perfor-
mance.

Precision =
TP

TP + FP
, Recall =

TP

TP + FN

where TP is the true positive number, FP is the false positive
number, and FN is the false negative number. Figure 8 shows
the precision and recall of the firmware along with different
threshold values. The X-axis indicates the values of the
threshold, and the Y-axis indicates the recognition performance
of the firmware. The blue curve is the recall, and the red curve
is the precision. We observe that when our threshold is high,
the recall decreases, and the number of missing identifications

becomes larger. We suggest determining the threshold value
according to the requirements of the firmware recognition.
Figure 9 shows the precision and recall of the firmware along
with the number of pairs < request, response >. The X-
axis indicates the number of pairs, and the Y-axis indicates
the recognition performance of the firmware. We can see that
the precision becomes larger when we increase the number
of pairs; otherwise, the recall decreases. When the number of
pairs < request, response > is close to 75, the recall and
precision both arrive at 90%.

D. Firmware Measurement
We would like to use the fingerprints to find out which

online embedded devices are still using outdated-version and
vulnerable firmware. We use the firmware fingerprints to
recognize which host is using the firmware. Fingerprints come
from three vendors: D-Link, Beklin and Netgear. D-Link
firmware versions are across V1.01 to V4.14, Netgear versions
contain V1.0.0.34 to V1.0.0.44, and Beklin versions contain
V1.00.06 to V1.00.30. To discover the mixed-version firmware
on the Internet, we have deployed the prototype system
running on Amazon EC2 with 450Mbps of bandwidth. It is
Ubuntu 14.04.2 LTS (GNU/Linux 3.13.0-48-generic x86 64)
with two vCPU, 8GB of memory and 450Mbps of bandwidth.

The IPv4 space has nearly 4 billion addresses. For
this reason, we cannot directly use dozens of pairs <
request, response > to access every IP address. First, we use
visible and publicly available IP addresses as the measurement
space rather than the ones located behind firewalls or network
address translation (NAT). According to the allocated IP space
by IANA [12], we choose 3.7 billion addresses for firmware
measurement. We only focus on ports such as 80 and 8080,
because the directory “WWW” usually provides the response
data on those two ports. We reuse the scanner tool ZMap [13]
to send a TCP-SYN packet to every IP address. If the host
gives a response, we add it to the alive list; otherwise, we
drop it out.

After the horizontal scanning, the alive list still has millions
of alive IP addresses. As aforementioned, we can identify



TABLE II
REAL DEVICES WITH MIXED-VERSION FIRMWARE ON THE INTERNET

Version Number Version Number
D

-L
in

k

V1.01 25

N
et

ge
ar

V1.0.0.34 3138
V 1.06 97 V1.1.1.58 98
V1.10 29 V1.0.0.44 119
V1.20 1 V1.0.0.40 19
V1.21 251
V1.40 6

B
ek

lin V1.00.06 51
V3.01 2 V1.00.30 9
V3.11 1 V1.00.08 28
V3.13 1
V4.14 31 Total 3906

which vendor the firmware comes from by using one pair
< request, response >. Second, we randomly select one
packet from the matrix of firmware fingerprints to iden-
tify its manufacturer. We obtain a smaller list (nearly hun-
dred thousand) where each host uses either D-Link, Bek-
lin or Netgear firmware. Then, we use the remaining pair
< request, response > and send the request to every host
on this list. If the similarity is larger than the threshold, we
identify that a particular version of firmware is running over
this IP address. Table II shows online embedded devices run-
ning those different versions of the firmware in the cyberspace.
We can see that there is no uniform distribution for firmware
versions. The number of the latest version only occupies a
small percentage compared with other firmware. It conforms
to our previous understanding that many embedded devices
are still using outdated-version firmware even though their
manufacturers have distributed update patches.

Finally, we use proof-of-concept exploits to validate whether
those online embedded devices are vulnerable in Table II. The
fundamental question of “which devices are still vulnerable”
dictates that we should identify the online devices by firmware
version. For ethic considerations, we do not use the exploita-
tion scripts to validate whether the devices are vulnerable. We
have crawled the vulnerabilities from the CVE website [4].
For each item in vulnerability list, we obtain their common
weakness enumeration specification (CWE) from the National
Vulnerability Database [14]. The CWE provides information
about software security vulnerabilities according to the system
architecture. We compare the version information in Table II
with the CWE item to determine whether the online embedded
device is vulnerable. If it does match, the online embedded
device running the firmware is vulnerable. We found that many
embedded devices are vulnerable on the Internet. Netgear
firmware V1.0.0.34 has been used in 3138 embedded devices,
which has Cross-Site Scripting (CVE-2013-3069) and SMB
Symlink Traversa (CVE-2013-3073). Our findings show that
embedded devices are still vulnerable because of outdated
versions of the firmware.

V. RELATED WORK

Due to the growing popularity of exposing embedded de-
vices on the Internet, several related works have analyzed
firmware, fingerprinting technology, and online embedded
devices.

Firmware. There are two conventional methods for analyz-
ing firmware images, including static analysis and dynamic
analysis. Static analysis is performed over the source code
and detects underlying vulnerabilities without executing the
firmware. Costin et al. [15] collected 32 thousand firmware
images and unpacked them to run simple static analysis
tasks over those files within the filesystem. The limitation
is that the firmware in the runtime environment is different
from the documents in the filesystems. Dynamic analysis
is performed over the firmware on a real device or virtual
host. Zaddach et al. [16] presented AVATAR to simulate
peripherals of embedded devices for the firmware images and
performed dynamic analysis on the virtual hosts. Chen et
al. [17] presented FIRMADYNE to reduce costs and time for
simulating firmware images over the hardware of devices for
a large-scale dynamic analysis. In contrast, our work utilizes
the static analysis to obtain filesystems from firmware images
and dynamic analysis to eliminate the inconsistencies between
firmware fingerprints and local files in the filesystems. Cui et
al. [18] focused on a particular embedded device (HP LaserJet
printer) for exploiting a vulnerability caused by the firmware
update. Our work is about generating firmware fingerprints
and using them to quantify the real-world impacts of security
issues caused by mixed versions.

Fingerprint technology. Fingerprinting is a technique for
identifying the operating system (OS), applications, or network
services. State-of-the-art tools (e.g., Nmap [19]) usually utilize
the differences between TCP/IP implementations to identify
OS versions. They also use service banners in the application-
level protocols to find applications and network services. Feng
et.al [20] proposed to utilized the banner of industrial control
protocols to discover cyber-physical system devices on the
Internet. Li et.al [21] extracted the graphic user interface
(GUI) from the HTTP protocol banners and used the GUI
as the unique fingerprint of surveillance devices. However,
these fingerprinting techniques are unable to recognize the
firmware of embedded devices in a fine-grained manner on
the Internet. Much of the firmware of embedded devices uses
Linux systems and supports more network protocols, making
those existing tools ineffective for fingerprinting the firmware.
The clock skew [22], [23] was proposed for fingerprinting
devices by exploiting the differences in time synchronization
based on network time protocol [24]. Many embedded devices
run the same version of firmware, and the distribution of
firmware images across products is not uniform. By contrast,
the vulnerability is associated with the version of firmware
rather than individual devices.

Embedded devices. With the increasing prevalence of the
Internet of Things [25], [26], embedded devices are connecting
to the Internet. Cui et al. [27] spent four months finding



540 thousand online devices without access credentials based
on scanner tools. Shodan [2] and Censys [3], [28] are able
to discover devices and web services on the Internet and
present the graphical user interface to the public. They provide
a global view of online devices for researchers to identify
distributed systems and potential security issues. ShoVAT [29]
uses Shodan to assess the vulnerability of embedded devices.
However, attackers and malicious users can also use the easy-
to-use tools to find online devices before attacking. Even if
these device search engines forbid this illegal use, attackers
can still find online embedded devices through ZMap [13] and
Masscan [30], which can scan the whole IPv4 space in a short
period of time. The large-scale measurement of embedded
devices has avoided the direct analysis of firmware images.
The trigger condition of the vulnerability is the version of
firmware images in the platform. Discovering firmware with
vulnerabilities is a pre-requisite to secure those online devices.

VI. CONCLUSION

Online embedded devices play a crucial role in our daily
lives, but device search engines and network scanning tools
can expose them to the public. These embedded devices
are using mixed versions of firmware on the Internet. Many
vulnerabilities are triggered in a particular firmware version
of embedded devices, raising serious security concerns. In this
paper, we proposed a novel approach for accurately generating
firmware fingerprints at the fine-grained level. The core of our
approach is to use the filesystem of firmware as the signature to
recognize the firmware versions. We used the natural language
processing technology and document object model to obtain
the firmware fingerprint. Based on firmware fingerprints, we
utilized a heuristic rule to compare the similarity between the
matrix and HTTP pairs to identify the firmware version. We
implemented a prototype of our approach and evaluated its
effectiveness through real-world experiments. The results show
that our automatically generated fingerprints can achieve 90%
recall and 91% precision. Furthermore, we used firmware fin-
gerprints to quantify the real-world impacts of mixed versions
of firmware on the Internet.
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