
Characterizing Industrial Control System Devices
on the Internet

Xuan Feng∗†, Qiang Li†, Haining Wang ‡, Limin Sun∗
∗ Institute of Information Engineering, Chinese Academy of Sciences, China

† School of Computer and Information Technology, Beijing Jiaotong University, China
‡ Department of Electrical and Computer Engineering, University of Delaware, USA

Abstract—Industrial control system (ICS) devices with IP
addresses are accessible on the Internet and play a crucial role
for critical infrastructures like power grid. However, there is
a lack of deep understanding of these devices’ characteristics
in the cyberspace. In this paper, we take a first step in this
direction by investigating these accessible industrial devices on
the Internet. Because of critical nature of industrial control
systems, the detection of online ICS devices should be done in
a real-time and non-intrusive manner. Thus, we first analyze 17
industrial protocols widely used in industrial control systems,
and train a probability model through the learning algorithm
to improve detection accuracy. Then, we discover online ICS
devices in the IPv4 space while reducing the noise of industrial
honeypots. To observe the dynamics of ICS devices in a relatively
long run, we have deployed our discovery system on Amazon
EC2 and detected online ICS devices in the whole IPv4 space for
eight times from August 2015 to March 2016. Based on the ICS
device data collection, we conduct a comprehensive data analysis
to characterize the usage of ICS devices, especially in the answer
to the following three questions: (1) what are the distribution
features of ICS devices, (2) who use these ICS devices, and (3)
what are the functions of these ICS devices.

I. INTRODUCTION

The number of industrial control system (ICS) devices with
computing and communication capabilities is rising rapidly,
and they are crucial for infrastructure-critical systems, such as
power, oil, and gas pipelines, water distribution, and wastewa-
ter collection systems. Supervisory control and data acquisition
(SCADA) [1] is often used to control remote ICS devices with
coded signals, and these ICS devices are typically computer-
based systems with access to the Internet. On one hand, the
online ICS devices operate over proprietary protocols and are
distributed throughout the whole IPv4 space (four billion IP
addresses), and using traditional way to discover all these de-
vices will cost few months. However, searching, characterizing
and protecting the exposed ICS devices need to be done in a
timely manner. On the other hand, characterizing the usage
of these online ICS devices can help us to better manage and
protect them. Such a deep understanding of these online ICS
devices is highly desirable for the interests of infrastructure-
critical systems, but is unfortunately still missing. In this paper,
we take a first step to address this challenge and shed light on
the usage of online ICS devices.

† Qiang Li is the corresponding author.

We first analyze 17 industrial protocols [2] that are widely
adopted in industrial control systems. We send common ICS
protocol requests to remote networks and determine whether
it runs the ICS protocol. While the idea of ICS measurement
seems simple, directly detecting ICS devices in practice is
faced with three major challenges. First, one may concern
that this measurement could cause interference on the nor-
mal operations to ICS devices. Second, the four billion IP
addresses is an enormous space to search for ICS devices.
As each SCADA protocol operates as the application layer
protocol over TCP/IP, there is a need to build standardized and
recognized communications to verify ICS devices. This also
induces significant time latency in device verification. Third,
there is an increasing trend of industrial honeypot deployment
because many government, enterprisers, and research institutes
attempt to track attack data for countering potential threats.

To tackle these challenges, we propose a real-time, non-
intrusive device discovery approach. First, we analyze 17
different kinds of industrial control protocols to select and
minimize the probes. Second, we propose a learning model to
determine the probability of an ICS honeypot and a heuristic
algorithm to verify it with the least number of packets. Third,
we do online detection of ICS devices based on the offline
training and analysis result. To discover live ICS candidates,
we use one stateless packet to filter out unqualified hosts first.
If the probability of a remote host being ICS is higher than
a pre-specific value, we further use a heuristic algorithm to
identify ICS devices. For ethic consideration, we send pack-
ets to a remote network by performing standards-compliant
handshakes without any malformed payload code. We also
clarify the purpose of our measurement by adding reverse DNS
entries for our measurement server [3], running a simple web
page on port 80 that describes the goals of this research, what
data we are collecting, and how to contact us to exclude from
our search if remote administrators are unwilling to have their
devices discovered.

Based on the protocol analysis and the proposed device dis-
covery approach, we develop our ICS device discovery system
using go scripts [4] and validate its effectiveness through real-
world experiments. The experimental results demonstrate that
our system are able to discover ICS devices with high precision
and recall rates. To observe the dynamics of ICS devices in a
relatively long run, we deploy the device discovery system in

TABLE I: Category of industrial control protocols

Category ICS Protocols

TCP-Based

OMRON FINS, HART-IP, Siemens S7, Mddbus,
IEC 104, DNP3, EtherNet/IP, Tridium Niagara Fox,

PCWorx, ProConOS, CodeSys, Red Lion Crimson V3,
General Electric SRTP, CSPV4, Automatic Tank Gauge

UDP-Based BACnet, OMRON FINS, MELSEC-Q, HART-IP

Amazon EC2 [5] to search the entire IP addresses and discover
these online ICS devices for eight times from August 2015 to
March 2016. Each time it takes us about 20 hours for the
completion of device discovery. Based the collected dataset,
we conduct a comprehensive data analysis to characterize the
usage of ICS devices on the Internet. In particular, we attempt
to answer the following three questions: (1) what are the
distribution features of ICS devices, (2) who use these ICS
devices, and (3) what are the functions of these ICS devices.

Overall, the major contributions of this work are summa-
rized as follows.
• We have investigated 17 industrial control protocols run-

ning on ICS devices and proposed an effective discovery
mechanism for searching online ICS devices in the entire
IPv4 space.

• We have implemented the discovery mechanism with go
scripts and evaluated it in the real-world experiments. We
have further deployed it on Amazon EC2 and conducted
ICS device discovery for eight times over eight months.

• We have analyzed the collected dataset of ICS devices
all over the Internet and characterize the usage and
distribution features of these devices in a comprehensive
manner.

The remainder of the paper is structured as follows. Section
2 presents our analysis of 17 industrial control protocols.
Section 3 describes our ICS device discovery approach and its
evaluation. Section 4 details our data analysis and character-
ization based on the device discovery experiments over eight
months. Section 5 surveys related work, and finally, Section 6
concludes.

II. INDUSTRIAL CONTROL PROTOCOLS

In this section, we analyze 17 industrial protocols running
on ICS devices, formalize their functions, and show how to
discover ICS devices using these protocols.

A. Industrial Control Protocol Analysis

ICS devices typically run a variety of industrial protocols
in the application layer. There is abundant information en-
capsulated in the packet header of these protocols, such as
device vendor, type and function. We can use such information
to identify ICS devices by analyzing the contents. Table I
shows 17 typical industrial protocols that are widely adopted
in industrial control systems. By exploiting these 17 protocols,
we can find most of devices exposed on the Internet. These in-
dustrial control protocols run as application-layer services over
standardized TCP/IP protocols. Industrial devices use them to

[SRC Address]Len [DST Address][ID]Type

[Ctrl Code][Link Ctrl] [Flow Ctrl][Mode]

[Conf]Write

[Authentication]

[Reset]Read

CRC

Func Code[Test]

[Ver]

Fig. 1: Functions of industrial control protocol.

Client Server

ICS Header + Payload

Response

Response

Response

ICS Header + Payload

TCP connection

(a) TCP-based.

Client Server

UDP Header + ICS Header + Payload

response

UDP Header + ICS Header + Payload

response

(b) UDP-based.

Fig. 2: ICS communication interactions between the detector
and the device based on TCP and UDP.

send configurations and control commands for interacting with
one another.

We analyze these 17 industrial control protocols (Table I).
We draw up their most functions used in industrial control
protocols. Figure 1 shows the formalized fields in their header
format, some optional fields we marked by “[]”. Their func-
tions are encapsulated in these fields, and they can be ob-
tained by extracting their response packets from the industrial
protocols in the application layer. The first line of header
fields indicate the industrial control protocol type, length,
version, checksum, as well as their source and destination
operation addresses. Some ICS protocols may have several
fields related to congestion and flow control functions. The
authentication and encryption fields are also needed to secure
the communication, but they are only supported by a few ICS
protocols. The most important and indispensable field for a
industrial control protocol is the application protocol data unit,
which sends signal code to acquire the device’s status and
control industrial devices (operation, start, stop, reset, etc). In
addition to a device’s status, we also can read some detailed
information like device’s registration based on the signal code.
Note that there are different forms in these fields, and we
extract these fields for identifying ICS devices by manually
dismantling their signal code.

Industrial protocols either operate over TCP or UDP. For
TCP-based, Figure 2a shows devices running a TCP-based
protocol first establish a standardized TCP connection, and
then transmit a probe packet by carrying different kinds of
payload. Based on the response to the probe packet, we
can identify and enumerate the respondent device’s detailed
information. Although 17 industrial protocols have different
packet structures to encapsulate their payloads, we have stored
their signal code in a file for matching comparison. Therefore,

Transaction ID Protocol ID Length UnitID Fcode Data

Modbus TCP/IP ADU

MBAP Header Modbus TCP/IP PDU

Length Ver Con Data

BVLCI APDU

FuncType

NPCI

0x81 0x0A 0x01 0x04

(a) Modbus protocol header

(b) BACnet protocol header

Fig. 3: Two ICS protocol examples.

we send a probe packet to a remote host with encapsulated
specific payload. If the host responds to the request, we extract
the response and match it with pre-specific values. If there is
a match, we identify it as an ICS device. For UDP-based,
Figure 2b shows devices running UDP-based protocol for
determining whether a host is an ICS device. Since it is
UDP-based, there is no need to establish a connection. We
encapsulate all signal code into the packet payload and send
it to the remote host. To correctly extract device information,
we send different probe packets to enumerate the detailed
properties of the device. In general, regardless of transport
layer protocols, we create a standardized packet with common
payload and then send it to a remote host for identifying ICS
devices, without including any malformed payload code.

B. Identifying ICS Devices

Due to the page limit, we only present the illustrations for
two ICS protocols: Modbus based on TCP and BACnet based
on UDP.

In Modbus, devices running the protocols first need to
build the TCP connection before exchanging data with one
another. Every time devices transmit data, that data carries
a function code, labeled as “Fcode”. Figure 3a shows this
protocol structure, where “Fcode” occupies 1 byte, specifying
a particular function to regulate the purpose of the data, such
as 04 (Read Input Register) and 03 (Read Holding Registers).
If we send a specific packet satisfying the Modbus protocol
standard, we can identify whether the host is the physical
device running Modbus from the response. Therefore, we send
a probe packet with a payload encapsulating the function code.
If the host responds to the function code request, we label the
host as a physical device running Modbus.

BACnet is used in building automation and control sys-
tems for applications such as heating, ventilating, and air-
conditioning, lighting control, access control, and fire detection
systems and their associated device. We first identify whether
an IP connected device is running BACnet. This works by
querying the device with a pre-generated BACnet message
as shown in Figure 3b. The BVLCI (BACnet Virtual Link
Control Information) set as “0x0A” indicates that this is an
Original-Unicast-NPDU and NPCI shows that this is “data
expecting a reply.” Newer versions of the BACnet protocol

Network Space

Horizontal

Scanner
ICS protocol

UDP scanner

ICS protocol

TCP scanner
Honey Detection

Algorithm

Statistical

Feature Honeypot

Training Data

Probability Model

Extracting

Fingerprint

<req1, pons1>

<req2, pons2>

……

<reqN, ponsN>

Probing

Candidates

Probability Model

Probing Candidates

(a) Offline

(b) Online

Industrial Control

Protocols

Fig. 4: Architecture overview.

will respond with an acknowledgement, and older versions
will return a BACnet error message. Presence of either the
acknowledgement or the error is sufficient to prove a BACnet
capable device is at the target IP address. Then, if an ac-
knowledgement is received, we can change the APDU fields
shown in Figure 3b attempting to enumerate several BACnet
properties on a responsive BACnet device.

III. INDUSTRIAL DEVICE DISCOVERY

In this section, we first present the details on how to discover
visible industrial control devices on the Internet, and then we
verify our discovery approach in real-world experiments.

The overview of our measurement architecture is shown in
Figure 4. It contains two parts: an offline probability training
model for ICS honeypot detection and an online discovery
algorithm for ICS device detection. At the offline stage (Sec-
tion III-A), our goal lies in using the least number of probing
packets to identify an ICS honeypot. Because sending many
packets to ICS systems is an intrusive behavior, we should
minimize the number of probing packets. We extract statistical
features for hosts and train a probability model for every
ICS host candidate. We then propose a heuristic algorithm to
fingerprint an ICS honeypot based on network fingerprinting
technology [6]. At the online stage (Section III-B), we levearge
the probing packets to identify industrial devices illustrated in
Section II. We use a horizontal scanner to choose the live hosts
from 4 billion IP addresses. The horizontal scanner is based
on the analysis result of industrial control protocols, where we
collect the communication ports of ICS devices and generate
specific packets used for probing. As industrial control proto-
cols operate over the application layer, we use specific packets
to probe these live hosts and get the detailed information of
industrial control devices. After that, we adopt a honeypot
detection algorithm based on the proposed probability model
and probing candidates identified offline.

A. Offline Training

While we use the method in Section II to identify ICS
devices, there are some that may not be real devices. The
most important reason is the extensive deployment of ICS

honeypots, such as the Honeynet project [7], Digital Bond’s
SCADA Honeynet [8] and Conpot [9]. Because of the increas-
ing importance of ICS devices, tracking potential attacks is of
great interest to system administrators. Therefore, the number
of ICS honeypots is increasing with time. Detecting honeypots
is straightforward because they are simply simulations of net-
working services and have their own implementation details.
However, using the off-shelf tools, like Nmap [10], to detect
ICS honeypots creates a practical and ethical implications;
ICS environments are performing time-critical functions, and it
will be intrusive if the tools send too many packets. We need
to detect ICS honeypots using the least number of probing
packets.

To address this challenge, we propose a two-stage approach
to identify a honeypot without sending many packets. In the
first stage, we use the naive Bayes classifier [11] to compute
the probability whether the ICS device is a honeypot. Bayes
is based on the intuition that honeypot information has its
own characteristics compared with that of true ICS devices,
such as ISPs, owners and locations. The probability P (y|X)
is conditioned on several feature variables X , which have the
following relation according to conditional probability:

P (y|X) ∝ P (y)P (X|y)

The feature X is a vector consisting of statical information
extracted from the IP address of the ICS device, denoted as
X =< x1, x2, ..., xk >, where P (y|X) is the prior probability
that the ICS device is a honeypot under the condition infor-
mation X . For every statistical feature, we can get additional
information from its IP-related or historical characteristics
(xi) without sending any packets. For example, the device’s
registration information (DNS, ISPs, whois, location, etc.) or
the default honeypot configuration could be sourced without
probes.

Bayes inference is conditionally independent. We calculate
the probability P (X|y) = Πxi∈XP (xi|y). Each probability
P (xi|y) can be directly calculated by the following:

p(xi|y) =
p(xi ∩ y)

p(y)

p(xi ∩ y) =
Nxi∩y

Ntotal

Combining these equations, we can figure out the impact
factors of all the characteristics ({P (y|xi)}). Given a new
host, we can determine its probability p(y|X). If the value
is larger than the pre-specified threshold Sth, we add the host
into the candidate list to verify it at the next stage.

At the second stage, we verify each item in the candidate
list with a honeypot fingerprint. There is a tradeoff for the
honeypot fingerprint between accuracy and cost. Sending more
packet would improve the accuracy of detection, but it also
would affect the remote network, especially if they are ICS
systems. We propose a heuristic algorithm to generate a
honeypot fingerprint. Algorithm 1 shows how to generate a
honeypot fingerprint. Given different types of traditional ICS

Algorithm 1 Fingerprint generation.

Input: different kinds of ICS honeypot fingerprints, F =
{f1, ..., fN}, every fi has a accuracy Ri

Output: final fingerprint used to identify honeypots, Ffinal

1: for (each fi = {(p1, r1), ..., (pi, ri), ..., (pN , rN)} in F)
do

2: Ti =
N∑
i=1

cost(pi, ri)

3: heuristic criterion: H = {h1, h2, ..., hN}, hi = Ri

Ti

4: Sort(H)
5: choose the lowest-cost top K Ci and its related fi
6: generate final Ffinal

7: end for

honeypots F = {f1, f2, ..., fN } [12], each feature fi includes
a pair of probe and response, {(p1, r1), (pi, ri), ..., (pk, rk)},
where pi is the probing packet and ri is the response. We
define the cost as the number of (packet, response) pairs. The
accuracy is the value of the relative degree that is pre-define
in off-shelf tools. We use the heuristic criterion hi = Ri/Ti to
choose which packet to send to verify an ICS honeypot. The
algorithm generates a final cost vector H = {h1, h2, ..., hN}.
Then we choose the lowest-cost top K features to fingerprint
the honeypot due to the characteristics of ICS devices. We
determine the final features Ffinal as a honeypot fingerprint
to verify the ICS honeypot with the least number of packets.

B. Online Detection of ICS Devices

We utilize the standard application protocols to discover
physical devices running industrial protocols. The online de-
tection needs to be done in real time. In IPv4 space, there
are nearly 4 billion IP addresses. As shown in Figure 2,
TCP/UDP would introduce certain latencies. Moreover, for
the ICS protocol, we need extra probing packets to traverse
different fields to retrieve device information. Assuming that
each IP address costs several seconds of latency, the time spent
over 4 billion addresses will be several months, which is too
long in practice. We propose an online detection algorithm,
as aforementioned in Figure 4, utilizing industrial protocols
to identify devices (Section II) and use the probability model
and fingerprints to remove ICS honeypots (Section III-A). Our
online detection algorithm is shown in Algorithm 2.

Our algorithm’s input is the detection range, and the output
is the ICS device list in this range. At the beginning of
detection, we first randomize the IP sequence (line 1). If we
simply probed every address in numerical order (e.g., 10.0.0.1,
10.0.0.2, 10.0.0.3.), it would cause a burst of consecutive
packets, disturbing the remote network. They are used in
many previous works [13], [14]. To avoid this, we use the
alternative to IP-sequential, a completely random permuta-
tion of the address space [15] (e.g., 19.2.112.1, 150.0.0.2,
220.1.2.3.). We target uniformly and randomly over the full
range and intermingle probes to many subnets, which reduces
the instantaneous load on individual networks and produces
an unbiased random sampling.

TABLE II: The cost and relative degree of features

Features Cost (packet) Relative degree

Amount of open ports 6 26/297

HTTP configuration 4 9/297

Modbus signal code 5 15/297

S7 signal code 9 15/297

To reduce measurement latency, we also apply the following
two existing techniques to filter out unqualified hosts. We
send one packet to every address to determine whether there
is a live host (line 3). Recent research ZMap [16] suggests
that one packet can cover nearly 98% of the detection range
and speed up the measurement. We adopt this approach by
just sending out one packet to a random address each time
to discover physical devices. For each address, we do not
build a state connection like a TCP connection. Instead, we
use the stateless connection to send probing packets without
any waiting (line 4), which can significantly speed up the
measurement time.

Once we detect live hosts from the detection range, we adopt
industrial control protocols to verify whether these live hosts
are ICS devices. The number of candidates is greatly reduced
to the order of millions compared with the initial 4 billion.
For each candidate, we first conduct a three-way handshake
using TCP to build a state connection or straightly seed probes
using UDP. To identify industrial protocols, we send a probing
packet encapsulating its standard header and common data
payload. To get more information, we may seed more packets
or traverse special fields to extract more information from
devices. For example, to identify S7 protocol, we traverse
packets for the correct value of the “DST TSAP” field and
pass through the COTP connection. We then build an S7
communication connection and gain more information from
the devices.

In the last stage, we remove the detected honeypots from
the candidate list. We use the probability model to calculate
the honeypot probability for each ICS candidate. If its value is
larger than the pre-defined threshold (line 12), we will further
verify it; otherwise, we will include it to the ICS list. After
filtering with the Bayes probability, the number of candidates
is greatly reduced. Then we use the heuristic algorithm to
verify whether the candidate is a honeypot. If it is a honeypot,
we remove it from the candidate list and add it to the honeypot
list. Finally, our algorithm outputs a list of ICS devices.

C. Discovery Approach Validation

First, we evaluate the performance of our proposed honeypot
detection algorithm. We randomly select 617 ICS devices
from the whole IPv4 space with a random permutation of the
address space. We manually tag their labels among these ICS
devices and find 42 ICS honeypots, which are used as our
experiment dataset.

For the Bayes probability model, we collect some common
features as statistical features. For examples, the host’s ISP

Algorithm 2 Online detection of ICS devices.

Input: The list of the detection range, list;
Output: The list of ICS devices, list′;

1: Using a random algorithm to resort the listr = list;
2: for (each IP in listr) do
3: send one packet
4: each packet with stateless
5: add each live host into list′

6: end for
7: for (each IP in list′) do
8: using ICS protocols verifies it
9: add the quantified host into list′

10: end for
11: for (each IP in list′) do
12: if (p(yi|X) > Sth) then
13: send packet with packets FF with algorithm 1.
14: if (get its responses & match the fingerprint) then
15: add it into listhoneypots, remove it from list′

16: end if
17: end if
18: end for

TABLE III: Comparison between our generated fingerprints
and traditional fingerprints

Cost (every host) Accuracy

Traditional fingerprint 20+ packets 100%

Our generated fingerprint 5 packets 95.2%

is the VPS provider, the host’s ICS banner has default infor-
mation, the host can get its own rDNS (reverse DNS) and
geo-location. They can be obtained through IP-based online
rDNS service, MaxMind’s GEOIP [17], and field values of
response packets.

We use the first 297 hosts as our training dataset to train
our naive Bayes classifier [18], and the remaining part as
the test dataset. Figure 5 shows the performance of the
probability model under different values of threshold Sth.
When Sth is small, the false negative rate is low but the
false positive rate is high, implying that the number of ICS
honeypot candidates will increase. When Sth becomes large,
the situation is reversed. We can use Sth to strike a balance
between the false positive rate and the false negative rate based
on the actual situation.

For ICS honeypot fingerprinting, we use Algorithm 1 to
generate the probing packets. Conpot [9], one typical ICS
honeypot, is used to verify our approach. There are four
features for the honeypot: the amount of open ports, HTTP
configuration, Modbus and S7 signal code. We use 281 ICS
devices and 16 ICS honeypots as the training dataset. Table II
shows the cost and relative degree to extract each feature.
The cost is the number of probes sent to remote devices,
and the relative degree is the rate of the number of response
hosts to the total number of hosts. The test dataset includes
294 ICS devices and 26 ICS honeypots. Table III shows the

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Sth(e−2)

0.0

0.2

0.4

0.6

0.8

1.0
P
re
ci
si
o
n
 a
n
d
 r
e
ca

ll

Precision

Recall

Fig. 5: Precision and recall with
different Sth.

0 100 200 300 400 500
Detection Rate (kpp/s)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

H
it
 R
a
te
 (
p
e
rc
e
n
t)

Two-stage Mechanism

Fig. 6: The hit rate and detection rate
for live host discovery.

PLCscan Our Approach The Same
0

20

40

60

80

100

120

140

160

N
u
m
b
e
r
o
f
D
e
v
ic
e
s

Fig. 7: Comparison of our approach
with PLCscan.

performance of our generated fingerprints in the test dataset.
The results show that our fingerprints can guarantee a 95.2%
accuracy using only one fourth of packets for traditional
fingerprinting.

Secondly, we evaluate the the performance of our online
detection of ICS devices. We conduct experiments to measure
the latency of our online detection approach. The detection
time of our approach contains three parts: (1) discovering a
live host, (2) verifying ICS protocols, and (3) determining
the honeypot, denoted as T = T1 + T2 + T3. The time
cost of each part is equal to the number ∗ unit time, i.e.,
Ti = Ni ∗ ui. Note that the magnitudes of the numbers in
the three parts are different. For instance, we detect the whole
IPv4 space, in which N1 is 40 billion, N2 is less than hundreds
of thousands, and N3 is just thousands. Although each item
in the determining-the-honeypot stage costs the largest unit of
time, its total time latency is neglectful compared with the
discovering-the-live-host stage. This is because we evaluate
the first stage for discovering live hosts from a huge range of
the IPv4 space, which dominates the majority of our detection
time.

As shown in Figure 6, there is a tradeoff between the
hit rate and the detection rate. The hit rate is equal to
Ncandidates/Ntotal, where Ntotal is the total number of IP
addresses and Ncandidates is the number of responding hosts.
The higher the hit rate, the less time we spend on detection.
The detection rate is the speed of discovering physical devices,
(i.e., the latency incurred in our Internet-wide discovery).
When the detection rate is 50,000 packets per second, we
can achieve a stable hit rate for discovering physical devices.
Although ZMap [16] is able to scan the entire IP space
under 45 minutes, the time is basically a theoretical bound
and only includes host discovery. Our approach collects more
information about physical devices than the survival scan by
ZMap. A practical issue is that network congestion reduces the
hit rate. Our suggestion is to adopt the most stable detection
rate while keeping the hit rate high.

Furthermore, we evaluate the precision of our online detec-
tion approach in the ICS protocol verification stage. Because
device detection occurs in the remote Internet space, there is
no ground truth about a device except for its IP address. To
gain this truth, we use the traditional tool PLCscan [19] to

TABLE IV: The precision and recall of our approach

Condition positive Condition negative

Test outcome positive 111 13

Test outcome negative 29 3,972

find physical devices running ICS protocols. It is a utility that
was released to identify SCADA devices [1] on the network.
We choose a /20 subnet with 4,096 IP addresses to detect
physical devices. As shown in Figure 7, our approach is able
to detect 140 industrial control devices while PLCscan can
merely find 124. We compare the coverage range of the two
approaches, and observe that 111 devices are the same in both
scans. Using PLCscan results as the ground truth, our precision
is 89.5% and recall is 79.3%, as listed in Table IV. However,
our approach only takes 5 seconds, while PLCscan needs more
than 1 hour. This is because PLCscan needs to traverse every
IP address with a state connection and has a complicated
packets-probing process of using more than a dozen of packets.
By contrast, we use just one packet in the industrial protocol
to verify industrial devices. Thus, our approach demonstrates
efficient and non-intrusive behaviors.

IV. DATA ANALYSIS AND CHARACTERIZATION

We have developed a prototype of our device discovery
system to detect ICS devices from all over the world by
probing the entire IPv4 space. We attempt to understand the
usage characteristics of ICS devices in the cyberspace and
answer the following questions: “What are the distribution
features of ICS devices?”, “Who use ICS devices?, and “What
are the functions of ICS devices?”

A. Data Collection

We have implemented 17 industrial control protocols [2] as
shown in Table I. Each ICS protocol runs over the application
layer, and we verify it by sending a pre-speciality data payload.
The parsing scripts of industrial control protocols are imple-
mented using the go language [4]. For TCP-based industrial
control protocols, we establish three-way handshakes then
communicate in the application layer and verify whether they
are running the ICS protocols. For UDP-based industrial con-
trol protocols, we send pre-generated UDP packets that have

TABLE V: ICS devices discovery at the Internet scale

Begin Time Device Count Industrial Control Protocols

2015-08-31 23,983 Modbus,Siemens S7

2015-09-02 24,050 Modbus,Siemens S7

2015-09-05 23,956 Modbus,Siemens S7

2015-10-23 76,817
Modbus,Siemens S7, EtherNet/IP,

BACnet, Tridium Niagara Fox,
Crimson Red Lion

2015-10-28 20,524 Modbus

2015-10-29 20,514 Modbus

2015-11-30 21,185 Modbus

2016-03-17 141,008

BACnet, MELSEC-Q, OMRON FINS,
HART-IP, Siemens S7, DNP3,

EtherNet/IP, Tridium Niagara Fox,
PCWorx, Red Lion Crimson V3,

General Electric SRTP, Automatic Tank,
Mddbus, IEC 104,

ProConOS, CodeSys,CSPV4

payloads with special industrial control protocol structures.
The response packets are used to match the ICS protocol
structure.

In the horizontal scanning stage, we send a single TCP
packet that has “SYN” filed in its header and a “NULL” data
payload to determine whether a remote host is live. Note that
we need to send a pre-generated UDP packet when protocols
are based on UDP. By reusing the stateless connection and
IP address randomization algorithms of the network scanning
tool, we send a probe packet to every IP address with a certain
communication port, such as “20000” and “502”. If the host
responds with “SYN-ACK” in the TCP header or responds
to the pre-generated packet, we put this host into the set of
candidates; otherwise, we discard it. The candidates are stored
as a JSON file to be handled in the next phase.

In the honeypot detection stage, we calculate the probability
of each live host from these statistical features. If the prob-
ability is larger than the pre-threshold value, we remove it
from the ICS list and add it to the honeypot list. We use the
heuristic algorithm to send probing packets to verify whether it
is a honeypot. Finally, the detailed information about physical
devices is also stored in a JSON file. To speed up these
processes, we use a pipeline to connect the two stages to
guarantee that every host in the candidate list can be identified
by the go scripts.

We have deployed our prototype system running on a Cloud
computing server inside Amazon EC2 [5]. The server runs
Ubuntu 14.04.2 LTS (GNU/Linux 3.13.0-48-generic x86 64)
with 2 vCPU, 8GB of memory and 450Mbps bandwidth.
After probing the entire IP space, we fetch the data set from
the server and use Python to pre-process and extract useful
information (such as IP, timestamp, and response information).
Using the prototype system, we have conducted the exper-
iments for eight times from August 2015 to March 2016,
and the details are shown in Table V. Each time, we have
exhaustively searched the entire IP address space (close to
3.7 billion addresses). We excluded both reserved/unallocated
IP space from IANA [20] and those IPs that send emails

Fig. 8: Physical devices distribution map as a form of the
Hilbert curve.

Fig. 9: ICS devices distribution in world map.

to complain about our scanning activities. All together, we
added about 610 million IP address to our blacklist to exclude
them from the Internet-wide search. In Table V, for each
data collection, we used 50,000 packets per second, and each
experiment was finished in about 20 hours.

B. What are the distribution features of ICS devices?

We first investigate the IP-layer distribution of these ICS
devices. We adopt the Hilbert curve [21] as the form of ICS
device distribution map in the Internet space. It is a type of
space-filling curve visualization of mapping the entire 32-bit
IPv4 address space in two dimensions. As shown in Figure
8, many ICS devices have an irregular distribution. Although
ICS device distribution is irregular in the Internet space, we
would like to find out whether there is any correlation between
spatial location and device distribution.

Furthermore, we explore the spatial association with ICS
devices. We use MaxMind’s GEOIP [17] database to map
between IP addresses and their locations. This database has a
mapping between IP addresses and their locations at the city
level. More fine-grained location information is unavailable
and also unnecessary for analyzing ICS devices in our study.
Figure 9 shows the ICS devices’ spatial distribution in the
world map. The darker blue color shows that there are more
ICS devices deploying in this domain. We can also see that

0 20 40 60 80 100 120

Number of Countries

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
C
D
F
o
f
Lo
ca
ti
o
n
s

Modbus

S7

FOX

BAC

ENIP

RedLion

Fig. 10: Location distri-
bution of ICS devices at
country-level.

0 500 1000 1500 2000

Number of Cities

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
D
F
o
f
Lo
ca
ti
o
n
s

Modbus

S7

FOX

BAC

ENIP

RedLion

Fig. 11: Location distribu-
tion of ICS devices at city-
level.

0 200 400 600 800 1000 1200

Number of Domains

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
D
F
o
f
D
o
m
a
in
s

Modbus

S7

FOX

BAC

ENIP

RedLion

Fig. 12: Domain distribu-
tion of ICS devices.

0 500 1000 1500

Number of ISPs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
D
F
o
f
IS
P
s

Modbus

S7

FOX

BAC

ENIP

RedLion

Fig. 13: ISP distribution of
ICS devices.

their location distribution is not a uniform distribution. There
are in total more than 128 countries with devices running
ICS. We further analyze the ICS device distribution at the
country level. As shown in Figure 10, more than 84% of the
Modbus devices are located in the top 20 countries, 68% of the
Modbus devices are in the top 10 countries, and there is a long-
tail effect in their ICS device distribution. Other ICS devices
exhibit similar distribution characteristics. At the city-level,
Figure 11 shows a long-tail effect in ICS device distributions.
The three ICS protocols, Modbus, Fox and BACnet, have
the largest coverage. More than 47% of Modbus devices are
in the top 10 cities, 60% of the Modbus are in the top 20
cities, and the top 200 cities can include 85% of the Modbus
devices. Redlion has the least coverage, with only 69 countries
having physical devices running Redlion. The long-tail effect
of the ICS device location distribution is more prominent at
the city-level than at the country-level. RedLion, S7 and ENIP
have a more obvious long-tail effect than the others. These
observations might be due to fact that in more economically
developed countries, there are more industrial infrastructures
where S7 and Modbus are the typical SCADA [1] devices.

We have not observed any distribution of ICS devices at
the IP level, but there is an obvious long tail effect of location
distribution of these devices. This is because IP addresses are
allocated by IANA and are continually backwards compatible.

C. Who use ICS devices?

To find out who use these devices, we utilize online rDNS
to map each IP address to its domain name and use offline
Geolocation compatible with python to map each IP address
to its server provider and geo-location. An obvious problem is
that rDNS does not associate each IP address with a domain
name. This is because many device owners do not register
rDNS with their IP addresses. In our data set, nearly half of
the IP addresses have a null domain name. Different from
rDNS, the Geolocation library has an IP address for every
server provider and location. To find out domain names, we
leverage both rDNS and the Geolocation library.

TABLE VI: Top 10 Countries and its GDP

Country/Region Rank Of GDP Number of Devices

1 United States 1 47,818

2 China 2 13,828

3 Canada 10 5,497

4 France 6 3,786

5 United kingdom 5 3,726

6 Italy 8 3,543

7 Germany 4 3,322

8 Poland 25 2,899

9 Russian 12 2,860

10 South Korea 11 2,796

Each domain name has several successive strings with
dots, (e.g., “static-71-170-4-117.dllstx.fios.verizon.net”). We
extract the last two strings as a domain name from our
data set, and there are almost 1,300 domains. We extract the
antepenultimate string to illustrate the enterprise name in the
domain name. As shown in Figure 12, more than 66% of
Modbus devices are in the top 50 domains (owner names), and
83% of Modbus devices are in the top 200 domains. There is
also a long-tail effect for the owners of these ICS devices.
We also get server providers of Modbus devices. As shown in
Figure 13, there are almost 2,000 server providers, obviously
a long-tail effect in their distribution over server providers.

To further discuss the relationship between ICS devices and
economic development, we refer to the data from the Interna-
tional Monetary Fund’s World Economic Outlook (WEO) [22],
April 2015. Countries are sorted by nominal GDP estimates
from financial and statistical institutions in this data. Intu-
itively, a more developed country has more ICS devices, which
is indicated by Table VI. The top 10 device countries are all
in the top 25 with the highest GDP. ICS devices are naturally
parts of industrial control systems, whose number is an im-
portant indication of economic development. Therefore, there
is a positive correlation between ICS device distribution and
economic development. However, some other aspects of these
ICS devices, such as temporal dimension, temporal-spatial

TABLE VII: Types of devices running Modbus and Ether-
Net/IP in Internet-wide range

Device Type Count Device Type Count

M
od

bu
s

programmable
logic controller 861

E
th

er
N

et
/I

P

communications
adapter 1,989

solar panel 620 programmable
logic controller 1,852

water flow
controller 436 generic device

(deprecated) 402

scada controller 212 human-machine
interface 68

light controller 32 safety discrete
I/O device 15

power controller 13 generic device
(keyable) 6

network analyer 6 AC Drive 3
power monitor 1 generic type 2,853
generic type 17,546

dimension, or other ICS devices running other protocols, have
not yet been studied in this work. We will conduct further
investigations in the future.

D. What are the functions of ICS devices?

Different ICS protocols have different ways to identify and
extract ICS device functions. We extract this information (de-
vice type) based on the ICS protocol payload format. Modbus
and EtherNet/IP are standard communication protocols for
ICS, and we could infer their functions based their detailed
information. For instance, Table VII shows our inference of
the functions of ICS devices with Modbus and EtherNet/IP.

Other protocols are not standard communication protocols
but particular protocols for certain industrial domains or used
for certain companies. For instance, BACnet and Tridum
Niagara Fox are mainly used in automation control, DNP3 and
IEC 104 are usually used in electric power systems, Red Lion
Crimson v3 is used as ICS HMI touch panels, Siemens S7
is used in traditional PLC (Programmable Logic Controller),
and PCworks is the consistent engineering software for all
controllers from Phoenix Contact.

We could also infer a device’s function based on the pro-
tocols themselves and the detailed information of the devices.
However, the challenge is that many ICS devices refuse to
respond to the question of what they are being used for, an
it is not an option to send too many packets to remote ICS
devices.

V. RELATED WORK

Active probing. Active probing is the process of identify-
ing network services by transmitting certain packets toward
network hosts and extracting their responses. Nmap [23] is a
popularized tool to identify the OS of a remote host based on
differences between TCP implementations [6]. It has also been
used to track specific devices based on device clock skews
in the physical layer and extract service information in the
application layer [24].

Our work is closely related to the active probing technique
that detects banners in the application layer. Banner grabbing

is routinely performed during the penetration testing of a net-
work, in order to identify software version or type advertised
in application properties during a connection attempt. Previous
work [25] demonstrates that it can be done in real-time to
remotely determine the applications or services running on a
particular host of interest. Similar to banner grabbing with
active probing, our work analyzes 17 Industrial protocols that
operate as application layer protocols. We send standardized
packets to remote networks and determine ICS devices if
their responses satisfy industrial protocol properties. Our work
differs from others in that we first filter out unqualified remote
hosts and then build normal ICS protocol connection activities.
Our approach is less intrusive with the least number of probe
packets, and achieves high accuracy.

Scanning. Prior work demonstrates the use of Internet-
wide scanning for discovering live hosts, called horizontal
scanning. Since there are 4 billion IPv4 addresses in total,
horizontal scanning is time consuming. The network recon-
naissance research [16], [26]–[29] mainly focuses on speeding
up the scanning performance. Over time, the scanning does
get progressively faster—from 4 months down to 30 days,
one day, and more recently, 45 minutes. Xie et al. [26]
proposed the UDmap algorithm to identify and analyze hosts
across the entire IP address space. Heidemann et al. [27]
explored the visible Internet to characterize the edge nodes
and evaluate their usages via an active scanner within 30
days. Hong et al. [29] searched the entire Internet and then
classified IP addresses as popular or unpopular. Leonard et
al. [28] implemented IRLscanner as an Internet-wide detection
mechanism with an improved speed of 24 hours. The focus
of IRLscanner is on typical application layer protocols such
as HTTP and SMTP, while the focus of our work is on ICS
device detection. Durumeric et al. [16] proposed ZMap for
Internet-wide host detection with the speed of 45 minutes.
However, such a high speed often cannot be achieved in
practice due to network congestions. Similar to ZMap, our
approach sends just one packet to every IP address but aims
to extract device information as much as possible. Different
from these previous scanning studies, our work is to identify
ICS devices by leveraging Internet-wide scanning.

Industrial control system measurement. An industrial
control system is a classic case of cyber physical systems
associated with the physical world. For remote access, in-
dustrial control devices should be access-controlled by a
firewall or a virtual private network (VPN). However, SCADA-
enabled devices expose themselves in the public Internet,
enabling attackers to remotely locate and subsequently exploit
vulnerabilities. There are several previous research works
focusing on exploiting the cyberspace scanning for security
event detection [30], [31]. Igure et al. [32] presented serious
security problems about SCADA-enabled devices that network
reconnaissance could discover. Durumeric et al. [31] detected a
security event (an OpenSSL flaw “Heartbleed”) at the Internet
scale. If similar problems arise in an industrial control system,
a real-time discovery mechanism is needed. Our work is a first
step to identify ICS devices and characterize their usage on

the Internet-wide range.
The most related work to ours is the very recent work by

Formby et al. [33], who adopted fingerprinting methods to
discover two types of ICS devices. They used passive probing
to extract the static and low-latency nature of ICS as their
signatures to improve their discovery accuracy. By contrast, we
use active probing to investigate ICS devices in the Internet-
wide range. Our approach is able to probe any network subsets
to detect and measure ICS devices. We could also incorporate
their passive measurement techniques to improve our own
measurement performance.

VI. CONCLUSIONS

ICS devices with IP addresses are accessible on the Internet
and play a crucial role for critical infrastructures. In this
paper, we have discovered ICS devices in a real-time and
non-intrusive manner and characterized their usage on the
Internet. Specifically, we have analyzed 17 Industrial proto-
cols widely used in ICS devices and adopted a standardized
communication to extract ICS device information with normal
packet payload. A probability model is trained to find an ICS
honeypot candidate, and a honeypot fingerprint is generated
by our heuristic algorithm. We have proposed an online
algorithm to discover ICS devices all over the Internet. In
the experiments conducted from August 2015 to March 2016,
we have attempted to detect visible ICS devices as many
as possible within the entire IPv4 space. Based on the ICS
device data collection, we have performed a comprehensive
data analysis to characterize the usage of ICS devices on
the Internet, especially in the answer to the following three
questions: (1) what are the distribution features of ICS devices,
(2) who use these ICS devices, and (3) what are the functions
of these ICS devices.

VII. ACKNOWLEDGMENTS

We are grateful to our shepherd Ranveer Chandra and
anonymous reviewers for their insightful feedback. This work
was supported in part by the National Natural Science Foun-
dation of China (Grant No. U1536107), National Key Re-
search and Development Program (No. 2016YFB0800202),
Innovation Foundation of the Chinese Academy of Sci-
ences (No. CXJJ-16M118), and the “Strategic Priority Re-
search Program” of the Chinese Academy of Sciences,Grant
No.XDA06040101.

REFERENCES

[1] S. A. Boyer, SCADA: supervisory control and data acquisition. Inter-
national Society of Automation, 2009.

[2] Ics-cert year in review 2015. [Online]. Available: https://ics-cert.us-cert.
gov/Year-Review-2015

[3] Internet-wide ics devices scaning research. [Online]. Available:
https://www.cpsteam.org/

[4] The go programming language. [Online]. Available: https://golang.org/
[5] Amazon elastic compute cloud (amazon ec2). [Online]. Available:

https://aws.amazon.com/ec2/
[6] D. E. Comer and J. C. Lin, “Probing tcp implementations,” in Usenix

Summer, 1994, pp. 245–255.
[7] The honeynet project. [Online]. Available: https://www.honeynet.org/
[8] Digital bonds scada honeynet. [Online]. Available: http://www.

digitalbond.com/tools/scada-honeynet/

[9] Conpot. [Online]. Available: https://github.com/mushorg/conpot/
[10] G. F. Lyon, Nmap Network Scanning: The Official Nmap Project Guide

to Network Discovery and Security Scanning. Insecure, 2009.
[11] C. M. Bishop, “Pattern recognition and machine learning (information

science and statistics),” 2007.
[12] J. Caballero, S. Venkataraman, P. Poosankam, M. G. Kang, D. Song,

and A. Blum, “Fig: Automatic fingerprint generation,” in Proceedings
of NDSS, 2007.

[13] M. Allman, V. Paxson, and J. Terrell, “A brief history of scanning,”
in Proceedings of the 7th ACM SIGCOMM conference on Internet
measurement. ACM, 2007, pp. 77–82.

[14] G. Bartlett, J. Heidemann, and C. Papadopoulos, “Understanding passive
and active service discovery,” in Proceedings of the 7th ACM SIGCOMM
conference on Internet measurement. ACM, 2007, pp. 57–70.

[15] numpy: Randomly permute a sequence. [Online].
Available: http://docs.scipy.org/doc/numpy/reference/generated/numpy.
random.permutation.html

[16] Z. Durumeric, E. Wustrow, and J. A. Halderman, “Zmap: Fast internet-
wide scanning and its security applications.” in Proceedings of Usenix
Security, 2013, pp. 605–620.

[17] Maxmind geoip2. [Online]. Available: https://www.maxmind.com/en/
geoip2-services-and-databases

[18] K. P. Murphy, “Naive bayes classifiers,” University of British Columbia,
2006.

[19] Plcscan plc devices detection on the network. [Online]. Available:
https://code.google.com/p/plcscan/

[20] Assigned numbers authority (iana). [Online]. Available: http://www.
iana.org/

[21] B. Moon, H. V. Jagadish, C. Faloutsos, and J. H. Saltz, “Analysis
of the clustering properties of the hilbert space-filling curve,” IEEE
Transactions on Knowledge and Data Engineering, vol. 13, no. 1, pp.
124–141, 2001.

[22] International monetary funds world economic outlook (weo),april 2015.
[Online]. Available: http://www.imf.org/external/pubs/ft/weo/2015/01/

[23] Nmap, network security scanner tool. [Online]. Available: https:
//nmap.org/

[24] T. Kohno, A. Broido, and K. C. Claffy, “Remote physical device fin-
gerprinting,” IEEE Transactions on Dependable and Secure Computing,
vol. 2, no. 2, pp. 93–108, 2005.

[25] D. Stuttard and M. Pinto, The Web Application Hacker’s Handbook:
Finding and Exploiting Security Flaws. John Wiley & Sons, 2011.

[26] Y. Xie, F. Yu, K. Achan, E. Gillum, M. Goldszmidt, and T. Wobber,
“How dynamic are ip addresses?” in ACM SIGCOMM Computer Com-
munication Review, vol. 37, no. 4. ACM, 2007, pp. 301–312.

[27] J. Heidemann, Y. Pradkin, R. Govindan, C. Papadopoulos, G. Bartlett,
and J. Bannister, “Census and survey of the visible internet,” in Proceed-
ings of the 8th ACM SIGCOMM conference on Internet measurement.
ACM, 2008, pp. 169–182.

[28] D. Leonard and D. Loguinov, “Demystifying service discovery: imple-
menting an internet-wide scanner,” in Proceedings of the 10th ACM
SIGCOMM conference on Internet measurement. ACM, 2010, pp. 109–
122.

[29] C.-Y. Hong, F. Yu, and Y. Xie, “Populated ip addresses: classification and
applications,” in Proceedings of the 2012 ACM conference on Computer
and communications security. ACM, 2012, pp. 329–340.

[30] E. Bou-Harb, M. Debbabi, and C. Assi, “Cyber scanning: a comprehen-
sive survey,” IEEE Communications Surveys & Tutorials, vol. 16, no. 3,
pp. 1496–1519, 2013.

[31] Z. Durumeric, J. Kasten, D. Adrian, J. A. Halderman, M. Bailey,
F. Li, N. Weaver, J. Amann, J. Beekman, M. Payer et al., “The matter
of heartbleed,” in Proceedings of the 2014 Conference on Internet
Measurement Conference. ACM, 2014, pp. 475–488.

[32] V. M. Igure, S. A. Laughter, and R. D. Williams, “Security issues in
scada networks,” Computers & Security, vol. 25, no. 7, pp. 498–506,
2006.

[33] D. Formby, P. Srinivasan, A. Leonard, J. Rogers, and R. Beyah, “Whos in
control of your control system? device fingerprinting for cyber-physical
systems,” in Proceedings of NDSS, 2016.

