
DNScup: Strong Cache Consistency Protocol for DNS

Xin Chen1

1Ask.com

Piscataway, NJ 08854, USA

xchen@ask.com

Haining Wang2

2College of William and Mary

Williamsburg, VA 23187, USA

hnw@cs.wm.edu

Shansi Ren3 Xiaodong Zhang 3

3Ohio State University

Columbus, OH 43210, USA

{sren,zhang}@cse.ohio-state.edu

Abstract

Effective caching in Domain Name System (DNS) is crit-
ical to its performance and scalability. Existing DNS only
supports weak cache consistency by using the Time-To-Live
(TTL) mechanism, which functions reasonably well in nor-
mal situations. However, maintaining strong cache con-
sistency in DNS as an indispensable exceptional handling
mechanism has become more and more demanding for three
important objectives: (1) to quickly respond and handle ex-
ceptional incidents, such as sudden and dramatic Internet
failures caused by natural and human disasters, (2) to adapt
increasingly frequent changes of IP addresses due to the in-
troduction of dynamic DNS techniques for various stationed
and mobile devices on the Internet, and (3) to provide fine-
grain controls for content delivery services to timely bal-
ance server load distributions. With agile adaptation to
various exceptional Internet dynamics, strong DNS cache
consistency improves the availability and reliability of In-
ternet services. In this paper, we propose a proactive DNS
cache update protocol, called DNScup, running as middle-
ware in DNS nameservers, to provide strong cache consis-
tency for DNS. The core of DNScup is a dynamic lease tech-
nique to keep track of the local DNS nameservers, whose
clients need cache coherence to avoid losing service avail-
ability. Based on the DNS Dynamic Update protocol, we
have built a DNScup prototype with minor modifications to
the current DNS implementation. Our trace-driven simu-
lation and system prototype demonstrate the effectiveness
of DNScup and its easy and incremental deployment on the
Internet.

Keywords — Domain Name System, Cache Consistency,
Service Availability, Middleware, Lease.

1 Introduction

The Domain Name System (DNS) is a distributed
database that provides a directory service to translate do-
main names to IP addresses [10], [11]. DNS consists of a

hierarchy of nameservers, with thirteen root nameservers at
the top. For such a hierarchical system, caching is critical
to its performance and scalability, which significantly re-
duces the workloads of root and TLD nameservers, lookup
latencies, and DNS traffic over the Internet. With the de-
ployment of caches, cache consistency has become a seri-
ous concern. Strong cache consistency is defined as an in-
surance in which no stale copy of a modified original will
be returned to clients, while under weak cache consistency,
a stale copy may be returned to clients.

Existing DNS only supports weak cache consistency by
using the Time-To-Live (TTL) mechanism. The majority
of TTLs of DNS resource records range from one hour
to one day [8]. While most of the domain-name-to-IP-
address (DN2IP) mappings are infrequently changed, the
TTL approach to coping with an expected mapping change
is still cumbersome. Among numerous DNS related Re-
quests For Comments (RFCs), only RFC 1034 [10] briefly
describes how to handle an expected mapping change: “if
a change can be anticipated, the TTL can be reduced prior
to the change to minimize inconsistency during the change,
and then increased back to its former value following the
change”; but the RFC does not specify in what magnitude
the TTL value should be reduced. The propagation of the
mapping change may take much longer than expected. This
pathology is induced by some local DNS nameservers that
do not follow the TTL expiration rule and violate it by a
large amount of time [12].

The inefficient and pathological DNS cache update due
to weak consistency quite often leads to service disruption.
More importantly, three recently-emerged reasons in prac-
tice cast a serious doubt on the efficacy of weak DNS cache
consistency provided by the TTL mechanism.

1. There are many unpredictable mapping changes due
to an emergency, such as terror attacks or natural dis-
asters, in which the loss or failure of network re-
sources (servers, links and routers) is inevitable [7]
and we must immediately re-direct the affected Inter-
net services to alternative or backup sites. Maintain-
ing DNS cache consistency is critical under such an

exceptional circumstance, since people highly demand
service availability at the crucial moment.

2. The dynamic DNS technique, which provides prompt
IP mapping for a server at home or a mobile host using
a temporary IP assigned by Dynamic Host Configura-
tion Protocol (DHCP), makes the association between
a domain name and its corresponding IP address much
less stable.

3. The TTL-based DNS redirection service provided by
Content Delivery Networks (CDNs) only supports a
coarse-grained load-balance, and is unable to support
quick reaction to network failures or flash crowds with-
out sacrificing the scalability and performance of DNS
[12].

Thus, cache inconsistency in DNS poses a potential
threat to the availability of Internet services. Although the
existing TTL-based solution can handle DNS dynamics in
cases under normal conditions, it lacks an effective mech-
anism to fulfill the DNS strong cache consistency require-
ments in some exceptional yet critical cases. In this paper,
we propose a proactive DNS cache update protocol, called
DNScup, working as middleware to maintain strong cache
consistency among DNS nameservers and improve the re-
sponsiveness of DNS-based service redirection. The core
of DNScup is a dynamic lease technique to keep track of
the local DNS nameservers whose clients are tightly cou-
pled with an Internet server1. Upon a DN2IP mapping
change of the corresponding Internet server, its authorita-
tive DNS nameserver proactively notifies these local DNS
nameservers still holding valid leases. While the notifi-
cation messages are carried by UDP, the dynamic lease
also minimizes storage usage and communication overhead,
making DNScup a lightweight and scalable solution. In ad-
dition to maintaining cache coherence among DNS name-
servers, DNScup can also be used to improve the respon-
siveness of DNS-based network controls as suggested in
[12]. Also, we can apply the functionality of DNScup to
maintain state consistency between a DNS nameserver of a
parent zone2 and the DNS nameservers of its child zones,
preventing the lame delegation problem [14].

Based on the DNS dynamic update protocol [17], we
have built a DNScup prototype with minor modifications to
current DNS implementation [6, 11]. Our trace-driven sim-
ulation and a system prototype demonstrate that DNScup
achieves strong cache consistency of DNS and signifi-
cantly improves its performance and scalability. Note that
DNScup is backward compatible with the TTL mechanism,
and can be incrementally deployed over the Internet. Those

1Either the clients frequently visit the Internet server or the services
provided by the Internet server is critical to the clients.

2Zone is a delegated authority unit that is a manageable domain name
space.

local DNS nameservers without valid leases still rely on the
TTL mechanism to maintain weak cache inconsistency.

The remainder of the paper is organized as follows. Sec-
tion 2 surveys related work. Section 3 presents our DNS
dynamics measurements. Section 4 gives a detailed descrip-
tion of the proposed DNScup mechanism. Section 5 evalu-
ates the DNScup based on the trace-driven simulations and
presents the prototype implementation of DNScup. Finally,
we conclude the paper in Section 6.

2 Related Work

DNS performance at either root nameservers [2, 5]
or local DNS nameservers and their caching effective-
ness [8, 9, 13, 21] have been studied in the past decade.
Danzig et al. [5] measured the DNS performance at one root
nameserver and three domain nameservers. They identified
a number of bugs in DNS implementation, and these bugs
and misconfigurations produced the majority of DNS traf-
fic. Brownlee et al. [2] gathered and analyzed DNS traffic
at the F root nameserver. They found that several bugs iden-
tified by Danzig et al. still existed in their measurements,
and the wide deployment of negative caching would reduce
the impact caused by bugs and configuration errors. Pang et
al. [13] characterized the load distribution, availability, and
deployment patterns in local and authoritative DNS name-
servers.

Jung et al. [8] measured the DNS performance at local
DNS nameservers (MIT and KAIST) and evaluated the ef-
fectiveness of DNS caching. Based on trace-driven simula-
tions, they found that lowering the TTLs of type A record
to a few hundred seconds has little adverse effect on cache
hit rates; and caching of NS records and protecting a sin-
gle nameserver from overload are crucial to the scalability
of DNS. Instead of collecting data at a few client locations,
Liston et al. [9] compared the DNS measurements at many
different sites, and investigated the degree to which they
vary from site to site. Shaikh et al. [18] demonstrated that
aggressively small TTLs (on the order of seconds) are detri-
mental to DNS performance, resulting in the increases of
name resolution latency (by two magnitudes), nameserver
workload and DNS traffic. Their work further confirmed
that DNS caching plays an important role in determining
client-perceived latency.

Based on both laboratory tests and live measurements,
Wessels et al. [21] found that existing DNS cache imple-
mentations employ different approaches in query load bal-
ancing at the upper levels. They suggested longer TTLs
for popular sites to reduce global DNS query load. In or-
der to improve the lookup latency, Wills and Shang [22]
explored the technique of actively querying DNS caches to
infer the relative popularity of Internet applications. Using
graphs, Cranor et al. [4] identified local and authoritative

DNS nameservers from large DNS traces, which is useful
for locating the related DNS caches.

However, none of the previous work focuses on DNS
cache consistency. DNS cache inconsistency may induce
a loss of service availability, which is much more serious
than performance degradation. More recently, P2P-based
DNS infrastructures have been proposed to replace the con-
ventional DNS hierarchy for better fault-tolerance and load-
balance [3, 16, 19]. Beehive[16] provides O(1) lookup la-
tency by actively pushing replication to DNS caches, which
may avoid cache inconsistency problem. Note that these
proposed schemes are heavily dependent on the wide de-
ployment of Distributed-Hash-Tables, and the proposed rev-
olutionary changes to the Internet directory service will take
a large amount of time and effort to become a reality. In
contrast, DNScup is an enhancement to the current DNS
implementations, which can fix the problem of cache in-
consistency in a timely and cost-effective way.

While DNS caching does not support strong consistency,
the DNS Dynamic Update mechanism [17, 20] maintains a
strong consistency between the primary master DNS name-
server of a zone and its slave DNS nameservers within the
same zone. In terms of DNS semantics, our proposed DNS
cache update mechanism can be viewed as an external ex-
tension to the DNS Dynamic Update protocol, which makes
the implementation and deployment of DNScup much eas-
ier.

3 Measurements of DNS Dynamics

The purpose of our DNS dynamics measurements is
to answer the question of how often a DN2IP mapping
changes. In general, a mapping change may cause two dif-
ferent effects. If the original DN2IP mapping is one-to-one,
then the change may lead to the loss of Internet services. We
classify this kind of changes as physical changes. However,
if the original DN2IP mapping is one to many, the changes
may be anticipated to balance the workload of a web site as
CDN does. We classify these changes as logical changes.

The various mappings in the DNS name space are called
resource records. Any type of resource records may change
for different reasons. Among DNS resource records, the
type A record is the most popular record being queried, ac-
counting for about 60% DNS lookups on the Internet [8].
Moreover, the inconsistency of A records may directly lead
to service unavailability. Therefore, in the rest of the paper,
A record is the major target of our study.

3.1 Domain Name Collections

Since Web service is one of the most popular Internet
services, our measurements are focused on the dynamics of

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000 1e+06

N
um

be
r

of
 D

om
ai

ns

Number of Requests

.com
.edu
.net
.org

country
.mil

.gov
.biz

.coop

Figure 1. The regular domain name distri-
bution with the number of requests in each
groups.

the mappings between Web domain names and their corre-
sponding IP addresses (A records). We collected the Web
domain names from the recent IRCache [1] proxy traces.
All Web domain names are classified into three categories:
domains using CDN techniques, domains using dynamic
DNS techniques, and the rest of collected domains. We re-
fer them as CDN domains, Dyn domains, and regular do-
mains. We distinguish CDN and Dyn domains from the rest
based on the specific text strings from their providers (e.g.,
Akamai for CDN domains, DynDns.com for Dyn do-
mains). The regular domain name distribution with respect
to the number of requests in Top-Level Domains (TLDs) is
plotted in Figure 1. Most regular domain names fall into the
five major groups: .com, .net, .org, .edu, and
country domains. We select 3,000 domain names from each
of the five major groups.

Table 1. Measurement Parameters
Class TTL (s) Resolution (s) Duration

1 [0,60) 20 1 day
2 [60,300) 60 3 days
3 [300,3600) 300 7 days
4 [3600,86400) 3600 7 days
5 [86400,∞) 86400 1 month

3.2 Measurements of Mapping Changes

Each domain name in our collection is periodically re-
solved to check if the mapping has been changed. The
sampling resolution of detecting a DN2IP mapping change
is highly dependent upon the values of TTLs. According
to the sampling resolution, the Web domain names being

10-4

10-3

10-2

10-1

100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
D

F
 o

f C
ha

ng
e

F
re

qu
en

cy

Change Frequency (Updates/Resolving Queries)

10-4

10-3

10-2

10-1

100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
D

F
 o

f C
ha

ng
e

F
re

qu
en

cy

Change Frequency (Updates/Resolving Queries)

10-4

10-3

10-2

10-1

100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
D

F
 o

f C
ha

ng
e

F
re

qu
en

cy

Change Frequency (Updates/Resolving Queries)

(a) Class 1 (b) Class 2 (c) Class 3

10-4

10-3

10-2

10-1

100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
D

F
 o

f C
ha

ng
e

F
re

qu
en

cy

Change Frequency (Updates/Resolving Queries)

10-4

10-3

10-2

10-1

100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
D

F
 o

f C
ha

ng
e

F
re

qu
en

cy

Change Frequency (Updates/Resolving Queries)
[0,60) [60,300) [300,3600) [3600,86400) [86400,inf)

0

0.2

0.4

0.6

0.8

1

Domains Grouped by TTLs

C
ha

ng
e

D
is

tr
ib

ut
io

n

New IPs Added
IP Rotation
IPs Changed

(d) Class 4 (e) Class 5 (f) Change Classifications

Figure 2. The DN2IP mapping change for each class with different TTLs.

probed in our measurements are divided into five classes as
shown in Table 1. Since all CDN and Dyn domains’ TTL
values are bounded by 300 seconds, they belong to either
classes 1 or 2. The regular domains of each TLD may fall
in all five possible classes, because of the wide spectrum of
their TTLs. The duration of a measurement experiment of
different class varies from 1 day to 1 month

A DN2IP mapping change is detected when the re-
sponses of two consecutive DNS probes for the same do-
main name are different from each other. We define the
relative change frequency of a domain name as the ratio
between the number of mapping changes we detected and
the total number of DNS probes we sent for that domain
name. For ease of presentation, we employ relative change
frequency as the metric to study the dynamics of DN2IP
mapping changes, and simply call it change frequency in
the rest of this paper.

The change frequencies for five different classes are
shown in Figures 2 (a), (b), (c), (d) and (e), respectively.
Based on the DNS probing results, we identify three causes
that lead to the DN2IP mapping changes: (1) a domain
name is relocated to a different IP address; (2) the available
IP addresses for a domain name increase; and (3) the IP ad-
dress of a domain name rotates around a set of IP addresses.
The first cause results in physical changes, while the second
and third causes result in logical changes. The distributions
of the changes due to different causes are shown in Figure
2 (f) for all five classes.

Physical Changes: As shown in Figures 2 (c), (d)
and (e), the domains in classes 3, 4, and 5 rarely change
their DN2IP mappings, with about 95% domains in these
classes remaining intact. Moreover, those domains that
have changed their DN2IP mappings have very low change
frequencies. For instance, in class 5, almost all changed
domains have their change frequencies below 10%, which
means a change happens every 10 days. On average, the
change frequencies are about 3%, 0.1%, and 0.2% for the
domains in classes 3, 4, and 5, respectively. This implies
that the average life times of DN2IP mappings are 2.5 hours,
42 days, and 500 days, respectively. However, as shown in
Figure 2 (f), nearly 40% mapping changes in class 3 and
the majorities of mapping changes in classes 4 and 5 are
physical changes. Any physical change could cause a cache
inconsistency, leading to a loss of service availability. Con-
sidering the large number of domain names in classes 3, 4,
and 5, the probability of a physical change happening per
minute is close to one. Therefore, maintaining strong cache
consistency is essential to avoid loss of connection.

Logical Changes: The DN2IP mappings in classes 1
and 2 are frequently changed. In class 1, more than 70%
domains change their IP addresses during a one-day mea-
surement. Most changed domains have their change fre-
quencies around 10%. In class 2, only about 20% domains
change their IP addresses during a three-day measurement,
but most changed domains have relatively high frequencies
(e.g., 80%). On average, the change frequencies of classes 1

and 2 are about 10% and 8%, much higher than the previous
classes. The average life times of DN2IP mappings are 200
seconds and 750 seconds in classes 1 and 2, respectively.
As shown in Figure 2 (f), such frequent changes are mainly
due to IP address rotation (e.g., CDN’s load balancing over
multiple hosts), and most of the DN2IP mapping changes
are logical ones.

We observe that CDN domains have very high change
frequencies: 10% with TTLs between 0 and 60 seconds;
and close to 70% with TTLs between 60 and 300 seconds.
Two major CDN providers dominate the domains of the two
ranges: Akamai with TTL 20 seconds; and Speedera with
TTL 120 seconds. The domain names served by Akamai
have change frequencies around 10%, while those served
by Speedera have change frequencies close to 100%. In
contrast to CDN domains, the Dyn domains have a low
mapping change frequencies: 0.4% with TTL larger than or
equal to 300 seconds; and close to zero with TTL less than
300 seconds. Compared with the actual change frequencies
of CDN and Dyn domains, the corresponding TTL values
are aggressively small, resulting in up to 10 and 25 times
more DNS traffic than necessary. This redundant DNS traf-
fic would be significantly reduced if server-initiated notifi-
cation service were used.

4 DNS Cache Update Protocol (DNScup)

To maintain strong cache consistency, DNScup requires
the authoritative DNS nameserver to keep track of the recent
visitors (i.e., local DNS nameservers) that access and cache
a DNS resource record. The recent in this context implies
that the cached records should have not expired yet in these
local DNS nameservers’ caches. To make the presentation
easier to understand, we refer to these local DNS name-
servers, i.e., recent visitors, as DNS caches in the rest of the
paper. We design a dynamic lease scheme to balance DNS
nameserver storage requirements and DNS traffic between
an authoritative DNS nameserver and its DNS caches.

Before detailing the design of dynamic lease, we sketch
the cache update process as follows. Once the authoritative
DNS nameserver has updated a DNS resource record either
manually or via an internal dynamic update message, it re-
trieves the track file and gets all local DNS nameservers that
have queried this record whose leases have not expired yet
(i.e., DNS caches). The authoritative DNS nameserver then
sends cache update messages to these DNS caches through
UDP. The notified DNS caches will update their cached
DNS resource records and acknowledge the authoritative
DNS nameserver. The cache update process is shown as
steps 3 and 4 in Figure 3, in which steps 1 and 2 are the
process of granting a lease to a DNS cache.

Client

1

LAN
Internet

1

Client

(DNS Cache)
Local Nameserver

4

4. DNS cache update message.
3. DNS dynamic update message.

3

Authoritative Nameserver

2. Granted Lease (with selected lease length).
1. DNS query (with request rate in local nameserver).

2

��������

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

��������

�����
�����
�����
�����

����
����
����

����
����
����

����
����
����
����
����

����
����
����
����
����

���
���
���
���

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

Figure 3. DNScup update process.

4.1 Lease Length Effectiveness

A critical question in applying a lease mechanism is how
to choose the appropriate length of a lease to balance the
storage usage and communication overhead. Lease storage
usage on the authoritative DNS nameserver is represented
by the probability of the nameserver holding a lease for each
DNS cache. Its upper bound is 1, indicating that the name-
server always keeps a lease for a DNS cache. The commu-
nication overhead is represented by the query rate between
the nameserver and its DNS caches. Since our practical al-
gorithms always set the maximal lease length much smaller
than the lifetime of a resource record, we only consider the
lease renewal requests and ignore the update messages.

We assume that the query arrival rate from DNS caches
for a DNS resource record follows a Poisson distribution
with average arrival rate of λ. The rationale behind this as-
sumption is two-fold: (1) a DNS resolution precedes the
beginning of a session communication; and (2) Floyd and
Paxson [15] have shown that the session-level (like FTP
and Telnet) arrival rate still follows a Poisson distribution,
although the packet arrival rate is non-Poisson. The time
interval between two contiguous leases is equal to the aver-
age interval of two contiguous queries, 1

λ . Suppose that the
authoritative DNS nameserver grants a fixed-length lease,
t, at the arrival of a query. The expected probability for the
nameserver to maintain the lease, P , is thus

P = t/(t +
1
λ

). (4.1)

The lease renewal message rate is defined as lease renewal
frequency. Since a lease is renewed at the interval of t + 1

λ ,
the lease renewal message rate M is

M =
1

t + 1
λ

. (4.2)

Suppose the lease length is increased from t1 to t2.
Given the query rate λ, the increase of lease probability on

the nameserver is:

�P = t2/(t2 +
1
λ

) − t1/(t1 +
1
λ

) =
λt2 − λt1

(λt1 + 1)(λt2 + 1)

The reduction of message rate is:

�M = 1/(t1 +
1
λ

) − 1/(t2 +
1
λ

) = λ ∗ λt2 − λt1
(λt1 + 1)(λt2 + 1)

Thus, for a given resource record with a query rate λ, the
ratio between the reduction of message rate and the increase
of lease probability is a constant, which is equal to λ.

4.2 Dynamic Lease Algorithms

Assuming the overhead allowance (storage or communi-
cation) is pre-defined, we propose two dynamic lease algo-
rithms: one minimizes the communication overhead given
a constraint on storage budget; and the other minimizes the
storage overhead, given a constraint on communication traf-
fic.

4.2.1 Storage-constrained Dynamic Lease

We define the storage overhead allowance as the maximal
number of leases Pmax that a nameserver can manage. The
storage-constrained dynamic lease minimizes the message
exchanges for signing and keeping the leases.

Suppose that a total of n DNS resource records Ri(i =
1, ..., n), are maintained on the authoritative DNS name-
server, each with maximal lease length Li(i = 1, ..., n).
Each record Ri is queried by m DNS caches Cj(j =
1, ..., m), with the query rate λij . We define Mij and Pi,j

as the query rate and lease probability of record Ri by cache
Cj . Our objective is to determine the appropriate lease
length of every resource record for each DNS cache lij ,
in order to minimize the overall communication overhead
Mall, the sum of Mij . The decision should be made under
the following constraints:

• for the record Ri and DNS cache Cj , the lease length
lij should be within the range of 0 and Li.

• the total storage Pall should be less than the storage
overhead allowance Pmax, the sum of Pij .

Thus, this problem can be defined as below:

minimize Mall =
n∑

i=1

m∑

j=1

Mij

subject to for any Ri and Cij ,0 ≤ lij ≤ Li

Pall =
n∑

i=1

m∑

j=1

Pij ≤ Pmax

We refer this kind of optimization as the storage-based lease
problem (SLP). Since SLP is equivalent to a Knapsack
problem, it is NP-complete, but its approximation solution
can be found by utilizing the greedy algorithm.

If we have multiple records with different maximal lease
lengths, we need to sort the �Mij

�Pij
, each of which is equal

to λij , and then we grant the lease to the DNS cache with
the highest query rate. It is clear that, in order to reduce
communication overhead, we should grant the lease to the
DNS cache with the highest query rate.

If the nameserver always grants leases with their maxi-
mal lengths to the DNS caches selected as above until the
storage constraint reached, we can guarantee that the total
query rate covered by leases is maximal.

4.2.2 Communication-constrained Dynamic Lease

Similarly, given the communication overhead allowance,
we can design an algorithm that minimizes the storage over-
head. It is also a NP-complete problem, and we employ
the greedy algorithm to find the optimal solution. Different
from the storage-constrained dynamic lease, at the begin-
ning of the algorithm, all DNS caches related to each re-
source record are granted with the maximum-length leases.
After that, we select the DNS cache with the smallest query
rate and deprive its lease. This selection and deprivation
continue until the communication allowance is satisfied. In
this way, we can guarantee that the number of leases main-
tained by the nameserver under the communication con-
straint is minimal.

5 System Evaluation

We use trace-driven simulations to evaluate the effec-
tiveness of dynamic lease algorithm, and build a prototype
of DNScup on top of Bind 9.2.3 to demonstrate its easy and
incremental deployment on the Internet.

5.1 Trace-driven Simulation

Our DNS traces were collected in an academic environ-
ment, where three local DNS nameservers provide DNS
services for about two thousand client machines. The one-
week trace collection is from July 2, 2003 to July 9, 2003.
Based on the DNS traces, we simulate a scenario in which
a number of clients are using three local DNS nameservers.
The local DNS nameservers decide whether or not granting
a lease for one cached resource record based on its query
rate.

Considering the client caching effect on query intervals,
we assume that clients cache each resource record for 15
minutes, which is the default setting in Mozilla. The query
rate for each domain name is computed by analyzing the

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1 10 100 1000 10000

M
ea

n
of

 C
V

Caching Period (second)

NS I: 95% confidence interval
NS II: 95% confidence interval
NS III: 95% confidence interval

Figure 4. The mean of CV of query interval in
DNS traces.

first-day traces. For three categories of domain names (reg-
ular, CDN, and Dyn domains), we set different maximal
lease length based on their DN2IP mapping change rates.
The maximal length for a regular domain is set to six days,
while those for DNS and Dyn domains are set to 200 and
6,000 seconds, respectively.

5.1.1 Poisson Distribution Validation

The DNS query behavior is related to the Web request
access pattern. As most Web browsers cache DNS re-
sponses, the time interval between two continuous queries
for one domain name likely follows Poisson distribution.
We use the mean of Coefficient of Variation (CV) to study
the query interval distribution in our DNS traces. Figure 4
shows the dynamics of the mean of CV with respect to the
cache duration at the client side. With the increase of the
client cache duration, as the mean of CV is closer to 1, the
time intervals are more likely to follow a Poisson distribu-
tion. It is also noticeable that the 95% confidence interval
of the mean is very small in all cases.

5.1.2 Simulation Results

We introduce two relative system metrics to evaluate the
lease algorithms: storage percentage and query rate per-
centage. The storage percentage is defined as the ratio be-
tween the number of leases granted to querying DNS caches
and the maximal number of leases that an authoritative DNS
nameserver could grant. There are two extreme cases: (1)
if the authoritative DNS nameserver grants a lease to each
query and all its resource records have valid leases all the
time, the storage percentage is 100%; and (2) if no lease is
granted to any query, the storage percentage is zero. The
query rate percentage is defined as the ratio between the
query rate issued from a DNS cache and the maximal query

rate that the DNS cache could generate. If no lease is
granted, the lease algorithm degrades to the polling scheme
and generates the maximal query rate. Thus, the query rate
percentage becomes 100% under this extreme scenario.

We compare the simple fixed-length lease scheme, which
grants the same length lease to every incoming query, with
the proposed dynamic lease. Our simulation results clearly
show that the performance of dynamic lease is superior to
that of the fixed-length lease. Figure 5 illustrates the simu-
lation results of regular domains based on the traces at the
first DNS nameserver. Note that the X-axis in Figure 5 (b)
is in logarithmic scale. For CDN and Dyn domains and the
cases at the other two DNS nameservers, we have similar
results. Due to space limit, we do not present them here.
In our trace-driven experiments, the storage percentage is
bounded at 60%, since in pratice only a portion of resource
records have valid leases at a time.

Dynamic lease is effective to reduce storage overhead.
As shown in Figure 5 (a), under the query rate percentage
of 20%, the storage percentage of dynamic lease is 19%
while that of fixed-length lease is 47%. Thus, dynamic
lease reduces storage overhead by 60%. At the same time,
dynamic lease is also effective in reducing communication
overhead. As shown in Figure 5 (b), under the storage per-
centage of 1%, the query rate percentage of dynamic lease is
56% while that of fixed-length lease is 88%. The reduction
of communication overhead is about 36%.

In our experiments, due to the limitation of the trace
length (seven days), the maximal length for regular domains
is relatively small. Since regular domains seldom change
their DN2IP mappings, we may use a much higher lease
length to gain a better performance. Note that the lease se-
lection in our experiment is done off-line based on the trace
analyses, and the lease length remains constant. In reality,
a DNS cache may monitor the rates of cached records in
the incoming queries. When it detects a significant change
in query rates, the DNS cache will notify the authoritative
DNS nameserver to re-negotiate the current leases.

5.2 Prototype Implementation

We have modified the prompt notification of the zone
mechanism in the BIND 9.2.3 implementation. We define
a new type of message called CACHE-UPDATE with a new
opcode 6 in the query/response headers for lease negotia-
tion. Each DNS query includes the query rate originated
from the local clients, which is expressed in a new 16-bit
field called RRC (recent reference counter) at the question
section. If a lease is granted, its duration is specified in a
new 16-bit field called LLT (lease length time) at the answer
section of the response from authoritative DNS nameserver.

According to our design, three core components of
DNScup have been added to BIND 9.2.3, including the

10

20

100

 0 10 20 30 40 50 60 70

Q
ue

ry
 R

at
e

P
er

ce
nt

ag
e

Storage Percentage

47%

19%

Fixed Lease
Dynamic Lease

 0

 20

 40

 60

 80

 100

 0.001 0.01 0.1 1 10 100

Q
ue

ry
 R

at
e

P
er

ce
nt

ag
e

Storage Percentage

88%

56%

Fixed Lease
Dynamic Lease

(a) Storage Requirement (b) Query Rate

Figure 5. Performance comparison between fixed and dynamic lease

detection module, the listening module, and the notifica-
tion module. The detection module detects a DNS record
change; the listening module monitors incoming DNS
queries and updates the track file when necessary; and
the notification module propagates DNS CACHE-UPDATE
messages. The normal DNS operations remain intact. The
interactions among all components are illustrated in Fig-
ure 6. For DNS resource records of the authoritative DNS
nameserver, the named daemon creates a database file to
keep track of the incoming DNS queries. Each tuple in
this file consists of five fields, including the source IP ad-
dress, queried zone name, query type, query time, and lease
length. When a DNS query comes in, the named first de-
cides if a lease should be granted based on the query rate
carried with the query. If yes, a new tuple is added to the
track file, and the corresponding response is sent back.

DNS
database

dynamic
update

notification module

check changes

named modules
unchanged

inform updates

fetch servers list

message

normal DNS queries

dynamic update queries

normal DNS queries

fetch results
CACHE−UPDATE

CACHE−UPDATE messages

DNScup Structure

normal DNS responses

CACHE−UPDATE ACKs

detection module listening module

update cache
check updates

 message
CACHE−UPDATE lease−track

file

Figure 6. Structure of DNScup Prototype

We validate our implementation in a testbed
environment—a hierarchy of DNS nameservers in a
LAN. The testbed is shown in Figure 7. By utilizing
multiple virtual IP addresses, we run a master authoritative
DNS nameserver and its two slaves on a machine. The
root nameserver and two DNS caches are mimicked at
three different machines, respectively. The machines used
in our experiments are 1GHz Pentium IIIs with 128MB

RAM running RedHat Linux 9.1, connected by a 100 Mbps
Ethernet. We construct 40 zones from the 50 most popular
domain names in IRCache proxy traces. The simulated
DNS system accepts all kinds of existing messages as well
as DNScup messages. Our preliminary experimental results
indicate that all message sizes are far below the limitation
of 512 bytes, set by RFC 1035 [11]; and the difference in
computation overhead between TTL and DNScup is hardly
noticeable.

DNS Cache 2

Root Server DNS Cache 1

LAN

Name Server

Name Server Name Server
(slave 1) (slave 2)

(master)

Figure 7. DNScup Implementation Testbed

5.3 Secure DNScup

DNScup may raise some concerns on the DNS secu-
rity. In our current implementation, we transmit DNS mes-
sages in plain text for simplicity and efficiency. However,
to protect DNS caches against poisoned CACHE-UPDATE
messages originated from a compromised DNS nameserver,
we need a secure communication channel for cache up-
date. Fortunately, DNSSEC [6] and the secure DNS Dy-
namic Update protocols [23] have been proposed. Coupled
with the proposed secure DNS mechanisms, DNScup can
achieve a secure cache update without much difficulty.

6 Conclusion

In this paper, we have proposed a DNS cache update
protocol, called DNScup, working as middleware to main-

tain strong consistency in DNS caches. To investigate the
dynamics of DN2IP mapping changes, we have conducted
a wide range of DNS related measurements, with the fol-
lowing major observations. (1) While the physical mapping
changes per Web domain name rarely happen, the probabil-
ity of a physical change per minute within a class is close to
one. (2) Compared with the frequencies of logical mapping
changes, the values of the corresponding TTLs are much
smaller, resulting in a large amount of redundant DNS traf-
fic.

Based on our measurements, we conclude that main-
taining strong cache consistency is essential to prevent po-
tential losses of service availability, particularly under the
conditions of sudden and unexpected changes on the Inter-
net. Furthermore, with strong cache consistency support,
CDNs and other mechanisms can provide fine-grained load-
balance, quick responsiveness to network failure or flash
crowd, and end-to-end mobility, without degrading the scal-
ability and performance of DNS.

To keep track of the local DNS nameservers whose
clients need strong cache consistency for always-on Inter-
net services, DNScup uses dynamic lease to reduce the stor-
age overhead and communication overhead. Based on the
DNS Dynamic Update protocol, we build a DNScup pro-
totype with minor modifications to the current DNS imple-
mentation. The components of DNScup implementation in-
clude the detection module, the listening module, the noti-
fication module, and the lease-track file. Our trace-driven
simulation and prototype implementation demonstrate that
DNScup achieves the strong cache consistency in DNS
and significantly improves its availability, performance and
scalability.

Acknowledgment: We thank anonymous reviewers for
their comments and suggestions. We appreciate William
L. Bynum for reading the paper and his comments. This
work is partially supported by the National Science Founda-
tion under grants CNS-0098055, CNS-0405909, and CNS-
0509054/0509061.

References

[1] Ircache home. http://www.ircache.net/.
[2] N. Brownlee, K. Claffy, and E. Nemeth. DNS Root/gTLD

performance measurements. In Proceedings of USENIX
LISA’2001, San Antonio, TX, December 2001.

[3] R. Cox, A. Muthitacharoen, and R. Morris. Serving DNS
using a peer-to-peer lookup service. In Proceedings of
IPTPS’2002, Cambridge, MA, March 2002.

[4] C. Cranor, E. Gansner, B. Krishnamurthy, and
O. Spatscheck. Characterizing large DNS traces us-
ing graphs. In Proceedings of ACM IMW’2001, San
Francisco, CA, November 2001.

[5] P. Danzig, K. Obraczka, and A. Kumar. An analysis of
wide-area name server traffic: A study of the internet do-
main name system. In Proceedings of ACM SIGCOMM’92,
Baltimore, MD, August 1992.

[6] D. Eastlake. Domain name system security extensions. In
RFC 2535, March 1999.

[7] J. Eisenberg and C. Partridge. The internet under crisis con-
ditions: Learning from september 11. ACM Computer Com-
munication Review, 33(2), April 2003.

[8] E. S. J. Jung, H. Balakrishnan, and R. Morris. DNS perfor-
mance and the effectiveness of caching. In Proceedings of
ACM IMW’2002, San Francisco, CA, October 2002.

[9] R. Liston, S. Srinivasan, and E. Zegura. Diversity in DNS
performance measures. In Proceedings ACM IMW’2002,
Marseille, France, November 2002.

[10] P. Mockapetris. Domain names-concepts and facilities. In
RFC1034, November 1987.

[11] P. Mockapetris. Domain names-implementation and specifi-
cation. In RFC 1035, November 1987.

[12] J. Pang, A. Akella, A. Shaikh, B. Krishnamurthy, and S. Se-
shan. On the responsiveness of DNS-based network control.
In Proceedings of ACM IMC’2004, Taormina, Sicily, Italy,
October 2004.

[13] J. Pang, J. Hendricks, A. Akella, R. D. Prisco, B. Maggs, and
S. Seshan. Availability, usage and deployment character-
isitics of the domain name system. In Proceedings of ACM
IMC’2004, Taormina, Sicily, Italy, October 2004.

[14] V. Pappas, Z. Xu, S. Lu, A. Terzes, D. Massey, and L. Zhang.
Impact of configuration errors on DNS robustness. In Pro-
ceedings of ACM SIGCOMM’2004, Portland, OR, August
2004.

[15] V. Paxson and S. Floyd. Wide-area traffic: The failure of
poisson modeling. IEEE/ACM Transactions on Networking,
3(3):226–244, June 1995.

[16] V. Ramasubramanian and E. Sirer. The design and imple-
mentation of a next generation name service for the internet.
In Proceedings of ACM SIGCOMM’2004, Portland, Oregon,
USA, August 2004.

[17] Y. Rekhter, S. Thomson, J. Bound, and P. Vixie. Dynamic
updates in the domain name system. In RFC2136, April
1997.

[18] A. Shaikh, R. Tewari, and M. Agrawal. On the effectiveness
of DNS-based server selection. In Proceedings of IEEE IN-
FOCOM’2001, Anchorage, AK, April 2001.

[19] M. Walfish, H. Balakrishnan, and S. Shenker. Untangling
the web from dns. In Proceedings of USENIX NSDI’2004,
San Francisco, CA, USA, March 2004.

[20] B. Wellington. Secure domain name system dynamic up-
date. In RFC3007, November 2000.

[21] D. Wessels, M. Fomenkov, N. Brownlee, and K. Claffy.
Measurement and laboratory simulations of the upper DNS
hierarchy. In Proceedings of PAM’2004, Antibes Juan-les-
Pins, France, April 2004.

[22] C. Wills, M. Mikhailov, and H. Shang. Inferring relative
popularity of internet applications by actively querying DNS
caches. In Proceedings of ACM IMC’03, Miami, FL, Octo-
ber 2003.

[23] C. Wills and H. Shang. The contribution of DNS lookup
costs to web object retrieval. In Technical Report TR-00-12,
Worcester Polytechnic Institute, July 2002.

