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Abstract— Virtual Machine Introspection (VMI) is an ap-
proach to inspecting and analyzing the software running inside a
virtual machine from the hypervisor. Similarly, memory forensics
analyzes the memory snapshots or dumps to understand the
runtime state of a physical or virtual machine. The existing VMI
and memory forensic tools rely on up-to-date kernel information
of the target operating system (OS) to work properly, which
often requires the availability of the kernel source code. This
requirement prevents these tools from being widely deployed
in real cloud environments. In this paper, we present a VMI
tool called HyperLink that partially retrieves running process
information from a guest virtual machine without its source
code. While current introspection and memory forensic solutions
support only one or a limited number of kernel versions of the
target OS, HyperLink is a one-for-many introspection and foren-
sic tool, i.e., it supports most, if not all, popular OSes regardless of
their versions. We implement both online and offline versions of
HyperLink. We validate the efficacy of HyperLink under different
versions of Linux, Windows, FreeBSD, and Mac OS X. For all the
OSes we tested, HyperLink can successfully retrieve the process
information in one minute or several seconds. Through online
and offline analyses, we demonstrate that HyperLink can help
users detect real-world kernel rootkits and play an important
role in intrusion detection. Due to its version-agnostic property,
HyperLink could become the first introspection and forensic tool
that works well in autonomic cloud computing environments.

I. INTRODUCTION

Nowadays cloud computing is commonly used to provide
IT services over the Internet. Typically, cloud systems are large
scale and complex by nature, and their complexity is still
growing at a steadily increasing rate. To handle the complexity
inside a cloud, autonomic computing solutions have been
adopted for easing administrative tasks. As firstly defined by
IBM researchers, the major goal of autonomic computing is
to enable self-management in a distributed system and hide
intrinsic complexity from human administrators and users [1],
[2]. A successful autonomic computing system should have the
property of self-protection, self-healing, self-configuration, and
self-optimization. To achieve these properties, the capability of
a computing system to monitor and detect security threats in
an accurate and timely manner is needed.

Over the years, in order to automatically detect security
threats, protect system from attacks, and recover from the
effects of attacks, virtualization has been widely employed for
various defensive purposes, including intrusion detection [3],
malware detection and analysis [4], [5], honeypots [6], [7], ker-

nel rootkit detection [8], [9], kernel integrity protection [10],
and detection of covertly executing binaries [11]. Being the
main enabling technology for cloud computing, virtualiza-
tion allows us allocating finite hardware resources among
a large number of software systems and programs. As the
key component of virtualization, a hypervisor runs directly
on the hardware or a host operating system (OS) to create
and manage the guest OSes. From a security perspective, the
hypervisor, working at a higher privilege level than guest
OSes, is an ideal place to deploy security infrastructures.
Among all autonomic security techniques, a concept called
Virtual Machine Introspection (VMI) [3] was proposed and has
progressed substantially over the last decade. In essence, VMI
refers to inspecting the states of a guest OS from the hypervisor
level and its use in virtualized environments is absolutely
crucial to effect risk mitigation in the filed of cloud computing.
Practical applications, such as list running processes, scan for
hidden processes, show open files, and show kernel loaded
modules, form the basis for many autonomic security solutions
at large scale.

However, it is known that VMI has a serious challenge
to overcome, commonly referred to as the semantic gap
problem [4], [12]. This problem is due to the fact that a
hypervisor can only see the hardware level information of the
guest OS, such as registers and memory pages, while system
administrators need to know the internal high level information
of the guest OS, such as processes, files, and modules. To
this end, some research [4], [13], [14] has been undertaken
to bridge the semantic gap, and therefore reconstruct those
key information of the guest OS. As a representative piece of
work, VMwatcher [4] attempts to reconstruct the process list
from the guest OS memory. The key idea of VMwatcher is to
retrieve the type structure of a process descriptor from kernel
source code. With this layout information, it can reconstruct
every process descriptor instance from the guest OS memory
and print out all the processes.

A closely-related research area is the memory forensic
analysis, in which researchers attempt to analyze memory
snapshots or dumps. Based on such analysis, researchers
extract some key information of the target system to investigate
system attacks. Similar to the VMI techniques, modern mem-
ory forensic tools also require kernel source code to obtain the
memory layout of a process descriptor or other components.

However, as kernel source code evolves, the layout of those
key data structures changes regularly. It is not uncommon that



the VMI or memory forensic tools developed for one specific
kernel version do not work for other versions. It would be
even more complicated when coping with OSes that are closed
source, since knowing the layout of their key data structures
requires great non-trivial reverse engineering efforts. Because
of these, existing VMI or memory forensic tools can only
support a limited number of kernel versions, which prevents
them from being deployed in a cloud computing environment.
Considering a cloud environment in which there may be tens
of different guest OSes with different distributions or kernel
versions, to extend existing tools to support a heterogeneous
environment at such a scale requires significant human efforts,
which is contradicting with the major objective of autonomic
computing—producing computing systems that require less
human efforts.

In this paper, we explore the possibility of developing a
one-for-many VMI or memory forensic tool. More specifically,
we propose the concept of partial retrieval. While existing
tools extract every field of the key data structures from
memory, we observe that some fields are more critical than
other fields. Partial retrieval assumes that only retrieving these
critical fields would help for VMI and forensic analysis. Based
on the partial retrieval concept, we develop a tool called
HyperLink to support most, if not all, popular OSes regardless
of their versions. Moreover, while existing tools resort to kernel
source code to obtain the knowledge of the key data structures
in an OS, we observe that some user-perceivable invariants
can help us identify the data structures from memory. Thus,
HyperLink employs these user-perceivable invariants for infor-
mation reconstruction and completely avoids the dependence
on kernel source code.

We implement two versions of HyperLink prototype: an
online and an offline version. We evaluate the effectiveness
of HyperLink under different OSes with different versions.
The results show that HyperLink can accurately retrieve the
running process list of an OS in a timely fashion. Through
online and offline analyses, we demonstrate that HyperLink
can help to detect real-world kernel rootkits. We further
perform a comparison between HyperLink and other state-of-
the-art tools. While different tools have different advantages
and features, HyperLink prevails against existing tools in two
aspects — easy usability and low maintenance cost, which
make HyperLink an improvement over current tools. The
major research contributions of this work are summarized as
follows:

e We are the first to make an attempt for developing one-for-
many VMI and/or memory forensic tools to retrieve the list
of processes from the guest OS, when certain assumptions
are satisfied. We present the design, implementation, and
evaluation of the HyperLink tool. As far as we know,
HyperLink is the first tool that supports both online and
offline analyses for different OSes, including Windows,
Linux, FreeBSD, and Mac OS X systems, regardless of
their versions.

e HyperLink consists of two technical novelties: (1) intro-
ducing the concept of partial retrieval and (2) leveraging
user-perceivable invariants for information reconstruction,
instead of relying on kernel source code. These two inno-
vative approaches enable HyperLink to achieve the one-
for-many goal and work well in a cloud environment.

The remainder of the paper is organized as follows. Sec-
tion II describes the background of our work. Section III
presents the design of HyperLink. Section IV details the imple-
mentation of HyperLink. Section V presents the experimental
results on our testbed. Section VI discusses some potential
extensions to the HyperLink tool. Section VII surveys related
work, and finally, Section VIII concludes the paper.

II. BACKGROUND
A. Challenges in Modern Introspection and Forensics Tools

Existing introspection and memory forensic tools all face
one challenge, which is to re-construct kernel data structures,
one needs to know the definition of each data structure.
However, the definitions change constantly. We use one of
Linux kernel’s key data structures, the process descriptor
task_struct, as an example. In a Linux system, the
task_struct is defined as a struct in the kernel, with
each instance of the structure representing a process. The
task_struct is complicated and in a recent version of the
Linux kernel (version 3.19), it contains 210 members. How-
ever, some members in one kernel version do not necessarily
exist in other kernel versions. For example, several years ago,
when Linux kernel 3.0 was released, the task_struct only
contained 175 members. The definition of the task_struct
constantly varies with the evolution of Linux kernel versions.
Since Linux is an open source OS, developers can obtain the
definition of the task_struct from the kernel source, and
compute the offset of each member inside the task_struct
accordingly. However, because of this, very often the tools
developed can only work for one or limited versions of kernels.

For those closed source OSes, it is more challenging to
compute the layout of their key data structures. Normally some
sophisticated reverse engineering efforts are needed. Again,
the efforts spent on one version of OS may not be sufficient
for a different version. In summary, existing introspection and
memory forensic tools require a very high development and
maintenance cost. To address this limitation, we explore the
possibility of developing a one-for-many introspection/forensic
tool, which is able to work for most modern OSes regardless
of their versions.

B. Key Observations

We build the HyperLink tool based on the following key
observations:

e Modern OSes usually organize their key information using
linked lists. The key information consists of processes,
kernel modules, open files, and network connections etc.
A linked list is a data structure including a group of nodes
with each node having the same layout or definition.

e Since the layout of a node changes regularly across dif-
ferent kernel versions, researchers commonly believe that
up-to-date kernel data structure information is needed for
introspection and forensic analysis. Take process for an
example, while Linux uses task_struct to represent a
process, Windows uses EPROCESS to represent a process;
the layouts of the task_struct and EPROCESS are
surely different from each other, and they also change
across different kernel versions. However, in these data



TABLE I: Process Invariants

[ oS [ PID - Name [ PID - Name | PID - Name |
Linux 0 - swapper 1 - init not used
Windows 0 - Idle 4 - System not used
FreeBSD 0 - kernel 1 - audit 2 - init
Mac OS X | O - kernel_task 1 - launchd 2 - kextd

structures, some members are more crucial and more
fundamental than the others. More specifically, all of these
data structures include a process id, a process name, and
a next pointer that points to the next node in the linked
list. This property has never changed and it is also valid
for most of the other modern OSes.

e Researchers commonly believe that the entire layouts of
these key data structures have to be known, before one
can re-construct the linked lists from memory. However,
we observe that this is not necessarily true. Still take
process for an example, the data structure that represents
a process usually consists of a process id, a process name,
and a next pointer. We believe that with only these pieces
of information, one can re-construct the process list that
is sufficient for intrusion detection and memory forensic
analysis.

C. Assumptions

As we know, the offsets of the process id, the process
name, and the next pointer in the data structure vary across
different kernel versions. However, we assume that there exist
some invariants for each OS. More specifically, we assume
that a small number of process related information does not
change often. For example, for the Linux systems that we
tested the first process is always named ‘“swapper” with a
process id 0, and the second process is always named “init”
with a process id 1. For Windows system, its first process is
named “Idle” whose process id is 0, and the second process
is named “System” whose process id is 4. These observations
hold for the operating systems we studied spanning nearly 12
years (Table III and Table ??). We summarize our assumptions
in Table I for this work.

The other OSes have similar properties. These properties
are persistent across different kernel versions, and more im-
portantly, are user perceivable. This implies that we can easily
obtain and update the assumption information by running
process or task list command without the availability of kernel
source code. Based on this user perceivable information and
the basic structure of the linked list, we are able to compute
the offsets of these key members and then reconstruct the task
linked list.

III. DESIGN

In this section, we first outline the design rationale behind
HyperLink. Next, we introduce the linked list used in modern
OSes, given that the main task of HyperLink is to reconstruct
the process linked list. Finally, we explain how we extract the
linked list from memory.

#define TASK_COMM_LEN 16
struct task_struct {

struct list_head tasks;

pid_t pid;
pid_t tgid;

char comm[TASK_COMM_LEN];

Fig. 1: Definition of task_struct in Linux 3.19
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Fig. 2: Process linked list in Linux and Windows
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Fig. 3: Process linked list in FreeBSD and Mac OS X
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A. Design Rationale Behind HyperLink

On one hand, HyperLink shares the same goal with many
existing introspection/forensic tools, i.e., deriving high level
system information from memory. On the other hand, Hy-
perLink is different from existing tools in information recon-
struction. For each node in the linked list, existing tools treat
every field equally. Developers believe every field is equally
important, and they attempt to reconstruct every field of the
node. That is the reason why they need the source code or the
memory layout of the whole data structure. We coin the term
full retrieval to represent this approach. In contrast, we believe
that not every field is critical for VMI or memory forensic
analysis. In fact, some fields are more critical than many other
fields, such as process name, process id, and next pointer.
Therefore, we decide to only reconstruct the these fundamental
fields. Figure 1 gives an example of task_struct definition
in Linux 3.19. The ‘tasks’ field uses a list to store the records
of all processes. The ‘pid’ field stores the PID of a process
and the ‘comm’ field stores a fixed size array (16 bytes) of
characters to contain the executable name of a process. We
will show in Section V that, extracting the process linked list
with only these pieces of information would help for forensic
analysis, including hidden process or rootkit detection. We coin
the term partial retrieval to represent our approach.



B. Linked List in Modern Operating Systems

We observe that there are two types of linked lists used by
modern OSes to organize their processes, as shown in Figures 2
and 3. While an OS usually defines hundreds of members for
the process structure, in order to reconstruct the process linked
list, what we care most are the process name and the next
pointer. It can be seen from Figures 2 and 3 that, the difference
between these two types of linked lists is: in the first type (Type
1), the next pointer points to the next pointer of the next node,
but in the second type (Type 2), the next pointer points to
the start of the next node. In fact, both Linux and Windows
use Type 1 linked lists to organize their processes, while both
FreeBSD and Mac OS X use Type 2 linked lists to organize
their processes.

C. Extract the Linked List from Memory

For both types of linked lists, though we do not know
the offset of the next pointer or the process name inside
the task_struct, one fact is that for each instance, the
gap between its next pointer and its name is a constant. We
define a; to be the offset of the next pointer of process 1
in task_struct, as to be the offset of the next pointer of
process 2, 81 to be the offset of the name of process 1, and
B2 to be the offset of the name of process 2. We have the
following equation holds:

(1 — B1) = (a2 — Ba). (D

Note that for the first couple of processes in the linked list,
normally their id and their name do not change across different
kernel versions. Therefore, based on the equation above, we
can retrieve the whole linked list out of memory by conducting
the following three steps.

e We first search the process name in kernel memory space.
For example, for Linux systems, we know that “swapper”
is the name of the first process and “init” is the name of the
second process. Therefore, we can search these two strings
in memory and there could be many matches. Note that we
only search the process names in the kernel space to reduce
the number of false positives. Then, for each pair of the
results, we search their surrounding memory addresses!',
and check if it is a pointer. If so, we test whether it is the
“next pointer” based on the above equation: if it satisfies
the equation, we think it is the “next pointer*; otherwise,
we ignore it.

e Once we identify the name and the next pointer of the first
process, we can compute the offset from the name to the
next pointer in bytes. This computed offset is an invariant
for every process. Starting from the first process, based on
this invariant, we are able to traverse the memory space
and identify every node in the process linked list.

e When the nodes in memory are identified, combining with
the knowledge of the process ids of the first couple of
processes, we can also compute the offset of a process id.
Thus, we can retrieve the whole linked list, with process
id, name, and next pointer of each node, which we think
are sufficient for performing forensic analysis.

'Based on our experience, the next pointer is usually located within 4096
bytes distance of the name, and this observation holds for every OS we have
tested.

IV. IMPLEMENTATION

We implement two versions of the HyperLink tool — online
and offline version. Both versions are implemented in C
language. The offline HyperLink requires a memory dump file
as its input, while the online HyperLink can access the guest
OS memory while it is running. We present the implementation
details of both versions as follows.

A. Online Version

We incorporate the online HyperLink within the Qe-
mu/KVM hypervisor source code. Qemu provides a monitor,
a command line console through which users can type com-
mands to interact with Qemu. For instance, users can type
“info registers” to view the virtual registers for the running
guest OS. Qemu has implemented a standard interface through
which we can define our own command. Therefore, we define
a “ps” command and implement the corresponding functions.
The main purpose of these functions is to print the processes
list of the guest OS.

The major challenge for the online HyperLink is to ac-
cess guest memory. However, modern hypervisors have al-
ready provided such facilities. For example, in Qemu, one
can invoke the function cpu_memory_rw_debug() to access
the virtual memory address of the guest OS and can call
cpu_physical_memory_rw() to access the physical memory
address of the guest OS.

B. Offline Version

While our online HyperLink is coupled with the hypervisor
code, the offline HyperLink is an independent tool (compiled
and ran alone). The offline HyperLink takes guest OS memory
dump files as its input. It has options to take one or two dump
files dependent on the usage. Normally, when users provide
one dump file, HyperLink analyzes the dump file, retrieves
field offsets from the dump file, and uses these offsets to
reconstruct the linked list. When two dump files are provided,
the first file is used as a clean dump and the second file is the
target dump. HyperLink first retrieves offsets from the clean
dump file, uses the offsets information to analyze the target
dump, and extracts the linked list from the target dump file.
This is a special use case and is very likely in a virtualized
or cloud environment, in which there could be many virtual
machines running the same OS. The assumption is that the
clean dump file can always be trusted, but the target OS is
likely compromised.

C. Data Structure in Multiple Linked Lists

One problem we might have is that, one data structure
instance could be contained in multiple linked lists in the
memory. Take the process linked list as an example, one
task_struct instance can be contained in several linked
lists: the task list, which is what we are looking for, the
children list, which represents a list of children processes, and
the sibling list, which represents the list of sibling processes.

For any given task_struct nodes in memory, they may
be contained in both list tasks and list children. To avoid false
positives, we have to identify the right linked list. In cases
like this, we can increase the search space to locate three



TABLE II: Testbed Setup

[ Component [ Specification ]
Host CPU Intel 15-2410M 2.30GHz, Quad-Core
Host Memory 4GB
Host OS Fedora 20 x86_64
Host Kernel 3.11.10-301.fc20.x86_64
Qemu 2.2.0
Guest Memory 1GB

TABLE III: List of OSes that HyperLink can support

[ [ Version | Guest Kernel | Release |
Red Hat Linux 8 2.4.18-14 2002.09
5 Cent OS Linux 4.4 2.6.9-42 2006.08
E Cent OS Linux 6.3 2.6.32-279 2012.09
Ubuntu Linux 14.04.1 3.13.0-32.57 | 2014.07
Windows 2000 Professional NT 5.0 1999.12
% Windows 2003 Server R2 NT 5.2 2005.12
2 Windows Vista Home SP2 NT 6.0 2009.04
‘§ Windows 7 Ultimate SP1 NT 6.1 2009.07
Windows 8 Pro NT 6.2 2012.10
A FreeBSD 6.1 6.1-RLS 2006.05
E’.ﬁ FreeBSD 7.2 7.2-RLS 2009.05
8 FreeBSD 8.4 8.4-RLS 2013.06
I FreeBSD 9.2 9.2-RLS 2013.09

consecutive process names. Theoretically it is possible that
three nodes can be linked consecutively in multiple linked
lists, our experimental results show that this scenario does not
happen for the first three nodes in Windows, Linux, FreeBSD,
and Mac OS. During our evaluation, we manually compared
the output results of HyperLink and the ground truth (which
can be obtained from inside the guest OS), and we do not see
any false positives. Based on the experimental results, we can
see that for Windows and Linux, searching the first two nodes
would suffice, while for FreeBSD and Mac OS, the first three
nodes are needed.

V. EXPERIMENTAL EVALUATION

Our evaluation consists of six parts: (1) we validate that
HyperLink has the property of one-for-many, i.e., it supports
many popular OSes and is version agnostic; (2) we illustrate
our results for Mac OS X and explain why Mac OS X is
special; (3) we demonstrate that, by using HyperLink, one can
detect a hidden process, and thereby, detect kernel rootkits or
intrusion; (4) we perform a comparison between HyperLink
and various state of the art tools; (5) in order to further
demonstrate the advantage of HyperLink, we perform a more
detailed comparison between HyperLink and the most mature
product: Volatility; (6) we study whether a process list is
sufficient for intrusion detection. The system configuration of
our testbed is shown in Table II.

A. OS Generality

We first validate that HyperLink supports multiple different
OSes. We list all the OSes we have tested in Tables III.
More specifically, we have tested HyperLink with a variety of
operating systems including: four versions of Linux systems,
four versions of Windows systems, and four versions FreeBSD

[ systeml ]./bin/main -o mac dump.mac dump.mac

0S Type: Mac 0S X

PID COMMAND

0 kernel_task

1 launchd
21 kextd
22 notifyd
23 DirectoryService
24 syslogd
25 configd
26 diskarbitrationd
27 distnoted
28 mDNSResponder
32 securityd
36 slapd
37 ntpd
40 named
41 Python
42 httpd
43 nmbd
44 krbb5kde
45 kadmind
46 Python
50 usbmuxd
51 SystemStarter
54 servermgrd
56 RFBRegisterMDNS
57 PasswordService

Total number of processes: 93

Fig. 4: Running HyperLink offline analysis against a Mac OS
X 10.6 memory dump

systems. The results show that both the online and the offline
version of HyperLink work effectively in retrieving the process
information from the guest OSes. For most of the cases,
HyperLink can accurately retrieve the process information in
less than one minute. It is evident that these OSes span a
long time, in terms of the their release dates. Take Linux and
Windows operating systems for example, the first and the last
studied versions span nearly 12 years, from personal computer
OS to server computer OS. This demonstrates the efficacy of
HyperLink for most mainstream operating systems.

B. Mac OS X

Mac OS X is another mainstream operating system that
HyperLink can naturally support. However, at this moment, it
is not easy for us to fully test HyperLink against Mac OS X
with different versions. There are two major observations.

First, running Mac OS X as a guest OS has always been
an issue in modern hypervisors, such as Xen and Qemu.
This is mainly because Apple, as a hardware company, does
not allow people to run their OSes on non-Apple hardware.
Thus, running Mac OS X as a guest on Intel/AMD based
hardware is a violation of Apple’s end user license agreements
(EULA) [15]. However, a large number of developers are using
Intel/AMD based hardware and such a legal limitation to some
extent prevents many developers from actively extending the
hypervisor to support Mac OS X. Therefore, the progress of
supporting Mac OS X in a virtual machine is quite slow. As
far as we know, only until 2014, Qemu/KVM has not provided
support for Mac OS X. In contrast, it has been almost 10 years
since Qemu/KVM supported Windows/Linux as guest OSes.
According to a Qemu/KVM developer’s guide [16], to install
a Mac OS X on top of Qemu/KVM hypervisors, it requires



Qemu to be newer than version 2.1.0 (released in July, 2014)
and the underlying Linux kernel to be newer than version 3.15
(released in June, 2014.

Second, based on this guide [16], we are able to install Mac
OS X 10.6 (also named Snow Leopard) and run HyperLink
against Mac OS X 10.6. Our experiments show that HyperLink
works well for Mac OS X 10.6 for both online and offline
analysis, HyperLink can quickly print all the processes in the
Mac OS X. However, we cannot install any old version of
Mac OS X (Such as Leopard or Cheetah) as a Qemuw/KVM
guest. Our speculation is that the support for Mac OS X is still
immature in Qemu/KVM. To demonstrate HyperLink works
for Mac OS X 10.6, the screen shot for our offline analysis
is shown in Figure 4. Due to limited space, the figure only
illustrates the first 25 processes while there are totally 93
processes. Given the fact that commodity hypervisors have
recently started to support for Mac OS X, we envision that
installing Mac OS X on top of modern hypervisors as a guest
OS would not be a problem in the near future. We will attempt
to test HyperLink against more versions of Mac OS X in our
future work.

C. Kernel Rootkit Detection Case Study

Next, we demonstrate how we use HyperLink to detect
kernel rootkits by conducting both online and offline analyses.
To this end, we design a two-step experiment.

The first step is, for a clean Linux system, we try to inspect
its processes internally and externally. For internal inspection,
we mean inspecting its processes from inside the guest OS,
which can be done by running ps command. For external
inspection, we mean inspecting its processes from outside
of the guest OS, i.e., by using HyperLink either via online
analysis or via offline analysis in hypervisor. Since the guest
OS is clean, the internal view and external view should be the
same. Figure 5 shows the internal view of the clean system,
due to limited space, we do not show the external view in the
paper, but we observe that the internal view is indeed the same
as the external view.

In the next step, we create a compromised Linux system.
When a system is compromised, very often attackers install
kernel rootkits. Typically the rootkit creates a malicious pro-
cess, and by intercepting system calls, the rootkit can hide
that malicious process and it is invisible from inside the OS.
However, the malicious process is still in the process linked
list. By reconstructing the process linked list from outside, we
should be able to detect the existence of the malicious process.

In our experiment, we employ several real world kernel
rootkits for validation of our approach, including KBeast [17],
Adore-ng [18], DR [19], [20], and Suterusu [21]. These
rootkits have different implementation schemes, but one com-
monality shared between these rootkits is that they all achieve
the malicious goal via a hidden process. Take the rootkit
KBeast for instance, when it is installed, and we run the
malicious binary _h4x_bd (provided by KBeast), it creates a
malicious process named _h4x_bd. However, when we run the
ps command inside the infected OS, the malicious process
is not shown to the user. What we see from the internal
view 1is still the same as we see in a clean OS (Figure 5).
Then, we inspect the process list from outside. As Figures 6

[root@localhost " ]# ps —-eo pid,comm

PID COMMAND

1 init

2 ksoftirqgd/0
3 events/0
4 khelper

5 kthread

8 kblockd/0
9 kacpid

81 khubd

83 kseriod
138 pdflush
139 pdflush
140 kswapd0
141 aio/0

293 kpsmoused
312 kmirrord
322 kjournald
640 minilogd
1014 udevd
1129 kauditd
1223 kjournald
1493 dhclient
1582 sshd

1592 xinetd
1613 mingetty
1723 sshd

1725 bash

1758 ps

Fig. 5: Internal view of a clean Cent OS 4.4 Linux system

[ systeml ]./bin/main -o linux dump.cent44.2 dump.cent44.2
0S Type: Linux
PID COMMAND
0 swapper
1 init
2 ksoftirgd/0
3 events/0
4 khelper
5 kthread
8 kblockd/0
9 kacpid
81 khubd
83 kseriod
138 pdflush
139 pdflush
140 kswapd0
141 aio/0
293 kpsmoused
312 kmirrord
322 kjournald
640 minilogd
1014 udevd
1129 kauditd
1223 kjournald
1493 dhclient
1582 sshd
1592 xinetd
1613 mingetty
1723 sshd
1725 bash
‘1919 _h4x_bd‘

Total number of processes: 28

Fig. 6: Running HyperLink offline analysis against a compro-
mised Cent OS 4.4 Linux memory dump

and 7 show, by using HyperLink with either offline or online
analysis, we can identify the hidden malicious process and
HyperLink successfully help users to detect kernel rootkits
process. Similarly, using this view-comparison approach, we
verify that, the other kernel rootkits, including Adore-ng, DR,
and Suterusu can also be detected.



(gemu) ps linux

PID COMMAND
0 swapper
init
2 ksoftirqgd/0
3 events/0
4 khelper
5 kthread
8 kblockd/0
9 kacpid
81 khubd
83 kseriod
138 pdflush
139 pdflush
140 kswapd0
141 aio/0
293 kpsmoused
312 kmirrord
322 kjournald
640 minilogd
1014 udevd
1129 kauditd
1223 kjournald
1493 dhclient
1582 sshd
1592 xinetd
1613 mingetty
1723 sshd
1725 bash
1919 _h4x_bd‘
Total number of processes: 28

Fig. 7: Running HyperLink online analysis from outside of a
compromised Cent OS 4.4 Linux system

D. A Comparison between HyperLink and state-of-the-art
Tools

We also perform a detailed comparison between HyperLink
and the other state-of-the-art tools. First, we briefly introduce
those state-of-the-art tools:

e VMwatcher: VMwatcher [4] is one of the pioneer works
in the VMI area. Its key idea is that: assume kernel source
code is available and the data structures of processes or file
systems are known facts, these data structures can be used
as a signature; by searching these signatures in memory,
one can identify the process list, similarly, by searching
these signatures in disk, one can identify various files.

e Virtuoso: Virtuoso [13] is another related work which
aims to narrow the semantic gap in VMI. What makes
Virtuoso different from previous VMI tools lies in that,
it does not rely on kernel source, instead it introduces
another OS. In other words, in its threat model, there are
two virtual machines: one is the untrusted virtual machine
and the other one is trusted or secured virtual machine.
Running system utilities in the trusted guest OS multiple
times, Virtuoso records all the instructions which they call
instruction traces, and then it analyzes and merges these
instruction traces for converting memory references from
the trusted guest OS to the untrusted guest OS. In this way,
it enables the system utility to run in the trusted guest OS
and gather information from the untrusted guest OS.

e VMST: VMST [14] can be seen as a large step forward
compared to Virtuoso. Again, it requires another secure
virtual machine. The idea is to redirect system calls from
the untrusted virtual machine to the secure virtual machine.
In this way, it leverages the code from the secure guest OS
and analyzes data from the untrusted guest OS and hence

producing introspection results for the untrusted guest OS.

e Volatility: While the above tools work in the context
of VMI, Volatility [22] is a pure memory forensic tool.
Compared to the tools above, Volatility is the most mature
product. It has been widely used for commercial and
research purposes. One of its assumptions is the same as
VMwatcher, i.e., either the source code of the target OS has
to be known or one need to do some pre-processing steps
to gain the knowledge of those key data structures Take
Linux as an example, one has to write a kernel module,
install the kernel module in the target OS, and this kernel
module will compute the offsets. Thereafter, the layout
of those key data structures will be captured. With such
information, Volatility can then analyze memory dumps
and extract security related information, such as process
list, open connection, and kernel module list, from the
memory dump.

e Volafox: Volafox [23] is similar to Volatility, but it is
mainly designed for FreeBSD, Mac OS X, and Solaris,
while Volatility only supports Windows and Linux (al-
though now it also supports Mac OS X). Similarly, users
either have to access kernel source code, or have access
to the target OS. With this information, Volafox can
then analyze memory dumps and extract security related
information from the memory dump file, just as Volatility
can do.

Here we can compare HyperLink with the above tools, and
Table IV shows the comparisons. We can see from Table IV
that HyperLink prevails against existing tools in the following
aspects:

e VMwatcher, Volatility, and Volafox require source code or
access to the target OS, but HyperLink does not.

e Virtuoso and VMST require an additional VM, i.e., the
trusted OS, however, HyperLink does not require.

e While VMwatcher, Virtuoso, and VMST only enable on-
line analysis, Volatility and Volafox only support offline
analysis, HyperLink supports both online and offline.

e Virtuoso, Volatility, and Volafox require users to do certain
preparation work, but HyperLink can run immediately. For
example, Virtuoso requires a training stage and analysis
stage before it can generate a tool for runtime use. And
Volatility and Volafox both require users to install tools,
compile modules, and run commands in the target system
to gain kernel data structures and kernel symbols. In
contrast, HyperLink does not need to perform these actions.

In summary, compared with those state of the arts tools,
HyperLink has advantages for the following two reasons:

e From users’ perspective, easy usability. Since HyperLink
does not require any setup effort and an additional OS,
users can run one simple command to perform the analysis.

e From developers’ perspective, low maintenance cost. Since
HyperLink is based on those invariants that do not change
across different kernel versions, we do not need to fre-
quently update HyperLink to support new kernel versions.

Because of these, we believe HyperLink can be better
utilized in a cloud environment, in which there might be



TABLE IV: A Comparison Between HyperLink and State-of-the-Art Tools

[ Tool [ Support OS [ Online/Offline [ Source Code [ A Trusted OS | Setup ]
HyperLink | Windows, Linux, FreeBSD (Every Version) | Both Online and Offline No No No
VMwatcher Windows XP, Linux (Specific Versions) Online Only Yes No No

Virtuoso Windows, Linux, Haiku OS Online Only No Yes Yes
VMST Linux Only Online Only No Yes No
Volatility Windows, Linux, Mac OS X Offline Only Yes No Yes
Volafox Mac OS X, BSD, Solaris Offline Only Yes No Yes

thousands of guest OSes running different distributions and
different kernel versions. Note that none of existing tools can
support many different OSes/versions, and it is unlikely the
cloud administrators/vendors would spend significant develop-
ment efforts to support every individual guest OS. In this sce-
nario, HyperLink will play an important role in VMI/memory
forensic analysis. Note that we do not claim that HyperLink
will replace these promising tools, but we expect it to be com-
plementary to existing tools and offers system administrators
one more option.

E. Case Study: A More Detailed Comparison Between Hyper-
Link and Volatility

For a more detailed comparison with existing tools, we
conduct an additional experiment. In this experiment, we
consider that when a new release of an OS is out, how much
efforts the developers as well as end users need to make,
before they can do the introspection/forensic analysis on this
new OS. Among the above state-of-the-art tools, VMwatcher,
Virtuoso, and VMST are not publicly available. Furthermore,
considering that Volatility is the most mature and widely used
product, we choose it as our target for comparison.

After we had tested HyperLink against the OSes listed in
Tables III, we realized that Microsoft was about to release its
Windows 10 [24], [25] and it was in the public beta testing
stage when the paper was written. Therefore, we downloaded
Windows 10 Technical Preview Evaluation version from Mi-
crosoft website [26], installed it on our Qemu/KVM virtual
machine, and then we tested HyperLink against Windows 10.
Our experimental results showed that, without any changes to
HyperLink source code, both the online and offline version of
HyperLink could print the process list of the Windows 10.

We noticed that Volatility developers also announced that
they had included the support for Windows 10 in their re-
lease, i.e., Volatility 2.4. By inspecting its source code, we
observed that two python files were added: winlO.py and
winlQ_tp_x64_vtypes.py. The former has 48 lines of python
code, and the latter has 11,616 lines of python code. Further
investigation revealed that winl0_tp_x64_vtypes.py was called
the profile for Windows 10. More specifically, for each version
of Windows, Volatility included a profile file in its source
code, and the profile file described the key data structures
of the Windows kernel. The profile file was generated as
follows: although Windows is a closed source OS, Microsoft
releases a debug package for each of its OS [27]. The debug
package included the symbol information of the Windows
kernel. By parsing the debug package, one can know the data
structure information of the Windows kernel. In fact, Volatility

developers use a third-party tool, called pdbparse [28], to
analyze the debug package and then generate the profile file.

Therefore, when Windows 10 is rolled out, Volatility
developers need to do: (1) add 48 lines of python code in
winl0.py; (2) download Windows 10 debug package, use the
tool pdbparse to parse the debug package, and generate the
profile file, i.e., winl0_tp_x64_vtypes.py. In contrast, Hyper-
Link developers need no changes to support Windows 10. This
manifests the low maintenance cost of HyperLink.

Compared with Windows, Linux has more diverse kernels.
Linux kernel is released more frequently than Windows and
end users can also customize their own Linux kernels. It is not
practical for Volatility developers to include a profile file for
each Linux kernel version. Thus, Volatility developers provide
a kernel module in its source code, and this kernel module
is shipped with Volatility. According to Volatility’s official
document [29], when end users need to analyze a new kernel,
they need to do: (1) compile and install the kernel module in
the target system (which might be compromised already) and
(2) run commands to create the profile file. Once the profile
file is generated, the end users can then run Volatility to do the
forensic analysis. In contrast, HyperLink end users does not
require any work and support any versions of Linux kernel,
regardless of its distribution or version. This manifests the easy
usability of HyperLink.

VI. DISCUSSION

In this section, we discuss some potential enhancements
and limitations to HyperLink.

A. Hypervisor Independency

While our offline analysis version is an independent tool,
our online analysis version is based on Qemu/KVM, in other
words, we modify the Qemu source code for developing
HyperLink. However, since HyperLink is implemented as a
command, it is not closely coupled with any other parts of
Qemu source code. Therefore, we believe that it is straight-
forward to port HyperLink to other hypervisors, such as Xen.
Although we are not able to modify closed source hypervisor,
such as VMware ESX server and Hyper-V, we believe that
these hypervisor vendors can adopt the same approach.

B. Direct Kernel Object Manipulation

Using HyperLink, we can detect kernel rootkits that hijack
system calls and filter the malicious process. However, there is
a more sophisticated technique used by attackers called DKOM
(Direct Kernel Object Manipulation). With such a technique,
attackers, instead of filtering the malicious process, can directly



remove the corresponding node from the linked list. Such an
attack is built on the knowledge that kernel usually maintains
two process linked lists: one is used by user level utilities,
like ps command, and the other is used by the CPU scheduler.
Therefore, removing its node from the former linked list does
not prevent the malicious process from being scheduled. To
address this problem, we can extend HyperLink to extract both
linked lists from memory, any inconsistency between these two
linked lists would suggest anomaly.

C. Limitations

On one hand, the process related information is essential
to VMI and memory forensics as shown in previous sections.
On the other hand, there are some other information that
might also be helpful for VMI and memory forensics, such as
open connections and loaded modules. Compared with those
matured forensic tools like Volatility, HyperLink currently does
not provide many features. However, since these kinds of
information are also organized using a linked list, we believe
that the same approach of HyperLink can be applied to extract
these kinds of information from the memory, which will be our
future work.

VII. RELATED WORK

The related work can be broadly divided into two cat-
egories: virtual machine introspection (VMI) and memory
forensics.

A. Virtual Machine Introspection (VMI)

VMI was first proposed by Garfinkel et al. [3] in 2003.
Since then, researchers have made significant progress towards
solving the semantic gap problem in VMI. Payne et al. [30]
presented XenAccess, a monitoring library that leverages ex-
isting functionalities included in Xen, enables developers to
access virtual memory, and provides virtual disk monitoring
capabilities. Later, based on XenAccess, the same group of
researchers then released LibVMI [31], [32], aiming to be
extensible to other hypervisors, such as KVM. LibVMI itself
is not a VMI tool, but provides APIs to simplify VMI devel-
opment. They also integrated LibVMI into existing memory
forensic tools like Volatility. While LibVMI’s goal is to support
multiple hypervisors, HyperLink’s goal is to support multiple
operating systems.

Dolan-Gavitt et al. [13] presented Virtuoso, a technique
that can automatically extract introspection related kernel
information by first monitoring the execution of an in-guest
tool and then mimicking the same execution sequences. Fu et
al. [14] proposed VMST tools that can automatically identify
the introspection related data and redirect these data accesses
to the in-guest kernel memory. Gu et al. [33] presented a
process implanting technique with the idea that, instead of
inspecting the guest OS from the outside, it can implant a host
process inside the guest OS and protect that process from the
hypervisor. In this way, the implanted process can monitor the
guest OS internally (as opposed to externally). Hale et al. [34],
[35] argued that it is useful to deploy certain services in the
guest OS and place corresponding safeguard services in the
hypervisor.

As Jain et al. [12] surveyed and summarized, compared to
the original prototype [36], immense progress has been made
in the last decade to improve the robustness and efficiency
of VMI. However, as we illustrated in Section 5.4, current
VMI tools are still inadequate for large scale, real-world
environments, such as the cloud computing environments.
We believe that HyperLink has its advantage of requiring
significant smaller setup and maintenance efforts than the
existing solutions.

B. Memory Forensics

Memory forensics is the analysis of a computer system’s
memory dump. Prior to 2004, this term is mainly used for
debugging purposes. In 2004, it was introduced by Ford [37]
to the field of security investigation by defining the concept of
forensic analysis in the context of a computer crime: “Forensic
analysis is the investigation of an event that involves looking
for evidence and interpreting that evidence. In the case of
a computer crime in which a system was compromised, the
investigator needs to find out who, what, where, when, how,
and why.” Since then, a suite of memory forensic tools have
been created, including commercial tools such as Memo-
ryze [38], MoonSols Windows Memory Toolkit [39], and open
source tools such as Volatility and Volafox. Nowadays, these
tools are widely used for investigating computer attacks, in
particular, those stealthy attacks that avoid leaving data on
the system’s hard drives. Among them, Volatility, because
of its free and open source property, has arguably become
the most popular memory forensic framework. In fact, it has
been used, studied, and enhanced by many researchers [40],
[41], [42]. Another memory forensic tool close to Volatility
and HyperLink is Volatilitux [43]. Volatilitux is essentially
the equivalent of the Volatility framework and shares some
key heuristics with HyperLink; however, it is mainly used for
investigating physical memory dumps of Linux systems and is
not related to virtualization.

In addition, previous research has studied the problem of
digging specific data structures from memory, such as [44],
[45], and different approaches have been proposed. From the
security’s perspective, those specific data structures can be
used as a signature for intrusion detection. The researchers
have demonstrated that they can detect botnets and malware
by identifying those data structures in memory.

VIII. CONCLUSION

In this paper, we have investigated the possibility of devel-
oping a one-for-many VMI and/or memory forensic tool. In
particular, we have presented the design, implementation, and
evaluation of the proposed tool called HyperLink. As the first
step towards one-for-all, HyperLink has been tested against dif-
ferent OSes, including different versions of Linux, Windows,
and FreeBSD. Our evaluation results show that HyperLink is
able to accurately retrieve the process information of a target
OS in a timely manner. HyperLink can be used for both online
and offline analyses. By conducting online and offline analyses,
we have demonstrated that HyperLink can detect real world
kernel rootkits. We have also performed a detailed comparison
between HyperLink and the state-of-the-art tools. Overall,
HyperLink outperforms the existing tools in terms of easy
usability and low maintenance cost. Therefore, HyperLink will



help cloud vendors to fulfill the major objective of autonomic
computing, system self-management, inside clouds.
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