Battle of Botcraft: Fighting Bots in Online Games with
Human Observational Proofs

Steven Gianvecchio, Zhenyu Wu, Mengjun Xie, and Haining Wang
Department of Computer Science
The College of William and Mary
Williamsburg, VA 23187, USA

{srgian, adamwu, mjxie, hnw}@cs.wm.edu

ABSTRACT

The abuse of online games by automated programs, known
as game bots, for gaining unfair advantages has plagued mil-
lions of participating players with escalating severity in re-
cent years. The current methods for distinguishing bots and
humans are based on human interactive proofs (HIPs), such
as CAPTCHAs. However, HIP-based approaches have in-
herent drawbacks. In particular, they are too obtrusive to
be tolerated by human players in a gaming context. In this
paper, we propose a non-interactive approach based on hu-
man observational proofs (HOPs) for continuous game bot
detection. HOPs differentiate bots from human players by
passively monitoring input actions that are difficult for cur-
rent bots to perform in a human-like manner. We collect a
series of user-input traces in one of the most popular online
games, World of Warcraft. Based on the traces, we char-
acterize the game playing behaviors of bots and humans.
Then, we develop a HOP-based game bot defense system
that analyzes user-input actions with a cascade-correlation
neural network to distinguish bots from humans. The HOP
system is effective in capturing current game bots, which
raises the bar against game exploits and forces a determined
adversary to build more complicated game bots for detection
evasion in the future.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: General—
Security and Protection

General Terms: Security

Keywords: Game Bots, Human Observational Proofs

1. INTRODUCTION

The online gaming market has experienced rapid growth
for the past few years. In 2008, online gaming revenues
were estimated at $7.6 billion world-wide [30]. The most
profitable online games are subscription-based massive mul-
tiplayer online games (MMOGs), such as World of War-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CCS’09, November 9-13, 2009, Chicago, Illinois, USA.

Copyright 2009 ACM 978-1-60558-352-5/09/11 ...$10.00.

craft. In 2008, World of Warcraft reached 11.5 million sub-
scribers [7]. Each subscriber has to pay as much as $15 per
month. It is no surprise that MMOGs make up about half of
online gaming revenues [30]. As MMOGs gain in economic
and social importance, it has become imperative to shield
MMOGs from malicious exploits for the benefit of on-line
game companies and players.

Currently the most common form of malicious exploit and
the most difficult to thwart, is the use of game bots to gain
unfair advantages. Game bots have plagued most of the pop-
ular MMOGs, including World of Warcraft [29,39,41,44,54],
Second Life [37], and Ultima Online [18,46], and some non-
MMOGs such as Diablo 2 [14]. The primary goal of game
bots is to amass game currency, items, and experience. In-
terestingly, game currency can be traded for real currency?,
making cheating a profitable enterprise. Since MMOGs are
small economies, a large influx of game currency causes
hyper-inflation, hurting all players. Thus, the use of game
bots is a serious problem for not only giving some play-
ers unfair advantages but also for creating large imbalances
in game economies as a whole. With a large investment
in development costs, game service providers consider anti-
cheating mechanisms a high priority.

The existing methods for combating bots are not success-
ful in the protection of on-line games. The approaches based
on human interactive proofs (HIPs), such as CAPTCHAs,
are the most commonly used to distinguish bots from hu-
mans. However, the inherent interactive requirement makes
HIP-based approaches inadequate to apply in MMOGs. In
particular, multiple tests are needed throughout a game ses-
sion to block the login of bots; otherwise, a malicious player
can pass the one-time test and log a bot into the game. Al-
though multiple tests can foil the malicious player’s attempt
for bot login, they are too obtrusive and distractive for a reg-
ular player to tolerate as well. A different approach, taken
by some game companies, makes use of a process monitor to
scan for known bot or cheat programs running on a player’s
computer. Blizzard, the makers of World of Warcraft, de-
veloped such a system called the Warden that scans pro-
cesses and sends information back to their servers. A num-
ber of similar anti-cheat systems have been built for other
games [16,17,38,49]. However, this scan-based approach has
proven ineffective, and even worse, raises privacy concerns.
The Electronic Frontier Foundation views the Warden as
spyware [28]. Besides technical approaches, Blizzard has
pursued legal action against bot makers [3], claiming over $1

The exchange rate for World of Warcraft is 1,000 gold to
$11.70 as of July 25th, 2009 [48].

million per year in additional operating costs caused by game
bots in their lawsuit [6]. Moreover, Blizzard has banned
thousands of accounts for cheating [8], yet many players con-
tinue cheating via bots and slip through the cracks [39,41].

In this paper, we introduce an approach based on human
observational proofs (HOPs) to capture game bots. HOPs
offer two distinct advantages over HIPs. First, HOPs pro-
vide continuous monitoring throughout a session. Second,
HOPs are non-interactive, i.e., no test is presented to a
player, making HOPs completely non-obtrusive. The use of
HOPs is mainly motivated by the problems faced by HIPs
and methods used in behavioral biometric systems [1,20,40,
43]. Similar behavior-based approaches have been used in
many previous intrusion detection systems [21,23,26,42,51].
We collect a series of user-input measurements from a pop-
ular MMOG, World of Warcraft, to study the behaviors of
current game bots and humans. While human players visu-
ally recognize objects on the screen and physically control
the mouse and keyboard, game bots synthetically generate
mouse and keyboard events and cannot directly recognize
most objects. Our measurement results clearly show the
fundamental differences between current game bots and hu-
mans in how certain tasks are performed in the game. Pas-
sively observing these differences, HOPs provide an effective
way to detect current game bots.

Based on HOPs, we design and develop a game bot defense
system that analyzes user-input data to differentiate game
bots from human players in a timely manner. The proposed
HOP system consists of two major components: a client-
side exporter and a server-side analyzer. The exporter is
responsible for sending a stream of user-input actions to the
server. The analyzer then processes the user-input stream
and decides whether the client is operated by a bot or a
human. The core of the analyzer is a cascade neural net-
work that “learns” the behaviors of normal human players,
as neural networks are known to perform well with user-
input data [1,35,36]. Note that the latest MMOGs virtually
all support automatic updates, so the deployment of the
client-side exporter is not an issue. Moreover, the overhead
at the client side is negligible and the overhead at the server
side is small and affordable in terms of CPU and memory
consumptions even with thousands of players per server. To
validate the efficacy of our defense system, we conduct ex-
periments based on user-input traces of bots and humans.
The HOP system is able to capture 99.80% of current game
bots for World of Warcraft within 39.60 seconds on average.

It is an arms race between game exploits and their coun-
termeasures. Once highly motivated bot developers know
the HOP approach, it is possible for them to create more
advanced game bots to evade the HOP system. However,
the purpose of the HOP system is to raise the bar against
game exploits and force a determined bot developer to spend
significant time and effort in building next-generation game
bots for detection evasion. Note that, to operate the game
in a human-like manner, game bots have to process com-
plex visuals and model different aspects of human-computer
interaction and behavior, which we believe is non-trivial to
succeed.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the background of game bots and game
playing behaviors. Section 3 presents the measurements
and analyses of game playing inputs from human players
and game bots, respectively. Section 4 details the proposed

HOP system. Section 5 evaluates the effectiveness of our
HOP system for detecting game bots. Section 6 discusses
the limitations of this work. Section 7 surveys related work.
Section 8 concludes the paper.

2. BACKGROUND

In this section, we first briefly present the evolution of
game bots. Then, we describe the game playing behaviors
of human players and game bots, respectively, and highlight
their differences in a qualitative way.

2.1 Game Bots

A variety of exploits have appeared in the virtual game
world for fun, for win, and for profit. Among these game ex-
ploits, game bots are regarded as the most commonly-used
and difficult-to-handle exploit. The earliest game bots were
developed for the first generation MMOGs such as Ultima
Online [46]. Even at that time, bot operators were already
quite sophisticated, creating small server farms to run their
bots [18,46]. At the early era of game bots, most of bot pro-
grammers wrote their own game clients. However, as a coun-
termeasure, game companies often update games, breaking
operations of those custom game clients. Bot programmers
were forced to update their game clients, keeping up with
the latest game version. This cycle proves to be very te-
dious for game bot programmers. Moreover, the complexity
of game clients has grown continuously, making it increas-
ingly difficult to develop and maintain a standalone custom
game client.

The arms race between game vendor and bot developer
has led to the birth of an interesting type of game bots that,
much like humans, play games by reading from screen and
using the mouse and keyboard. These advanced bots oper-
ate the standard game client by simply sending mouse and
keyboard events, reading certain pixels from the screen, and
possibly reading a few key regions in the memory address
space of the game application. Most bots are equipped with
macro scripting capabilities, similar to programs like Au-
tolt [4], which enables bots to be easily reprogrammed and
quickly adapted to the changes made by game companies.

2.2 Game Playing Behaviors

MMOGs, such as World of Warcraft, entertain players
by providing a large degree of freedom in terms of actions
a player can perform. In the game world, a player con-
trols a virtual character (avatar) to explore the landscape,
fight monsters, complete quests and interact with other play-
ers. In addition, a player can further customize the charac-
ter by learning skills and purchasing items (such as armor,
weapons, and even pets) with virtual currency. Each game
activity requires a player to interact with the game in a dif-
ferent fashion. As a result, it is expected that the inputs of
a human player will exhibit burstiness with strong locality
and the input contents vary significantly for different tasks
through game play. However, when a bot is used to play the
game, its main purpose is to gain rewards (level and virtual
currency) without human intervention by automating and
repeating simple actions (such as killing monsters). Being
much less sophisticated than human, bot actions would show
regular patterns and limited varieties.

Besides the high-level behavioral differences, humans and
bots also interact with the game very differently, despite
that both interact with the game via mouse and keyboard.

As biological entities, humans perceive the graphical output
of the game optically, and feed input to the game by phys-
ically operating devices such as keyboard and mouse. In
contrast, bots are computer programs that have no concept
of vision and are not bounded by mechanical physics. While
bots can analyze game graphics, it is computationally ex-
pensive. To avoid this computation cost, whenever possible,
bots attempt to obtain necessary information, such as the
locations of the avatar, monsters and other characters, and
the properties (health, level, etc.) of the avatar, by reading
the memory of the game program.

In general, bots control the avatar by simulating input
from devices via OS API calls, such as setting key press
state or repositioning mouse cursor. The techniques used
by bots are often crude, but in most cases, quite effective.
For example, without reading the graphics or scanning the
terrain, a bot can navigate to a target location by knowing
just two coordinates—the current location of the avatar and
that of the target. The bot then tries to approach the target
location by steering the avatar to go forward, left and right,
and then checks its progress by polling the two coordinates.
If the avatar location does not change in a given amount of
time, the bot assumes that an obstacle (trees, fences, steep
terrain, etc.) is in the way and tries to navigate around it
by moving backward a few steps, turning left or right, and
going forward. Occasionally, graphics analysis can be useful,
such as when picking up items on the ground. The bot can
again handle this situation in a simple and efficient manner
by exploiting the game user interface. When the cursor is
placed on top of an object, the game would display a small
information window on the lower-right corner. Thus, the
bot moves the mouse cursor in grid patterns, and relies on
the change of pixel colors on the lower-right corner of the
screen to know if it has found the object.

3. GAME PLAYING CHARACTERIZATION

In this section, we examine how bots and humans behave
in the game, in order to have a deep understanding of the dif-
ferences between humans and bots. Based on our game mea-
surements, we quantitatively characterize the game playing
behaviors of human players and bots, respectively. The be-
havioral differences between bots and humans form the basis
for our HOP-based system.

3.1 The Glider Bot

We select the Glider bot [29] as the sample game bot for
our research. The Glider bot is a very popular game bot
for World of Warcraft. It runs concurrently with the game
client, but requires system administrator privileges. This es-
calated privilege helps the Glider bot to circumvent the War-
den anti-bot system, and enables it to access the internal in-
formation of the game client via cross-process-address-space
reading. It operates by using a “profile”—a set of configu-
rations including several waypoints (map coordinates in the
game world) and options, such as levels of monsters to fight.
When in operation, the game bot controls the avatar to re-
peatedly run between the given waypoints, search and fight
monsters that match the given criteria, and collect bonus
items after winning fights.

3.2 Input Data Collection

We collect player input data for both human and bot us-
ing an external program in a non-intrusive manner, i.e., no

Table 1: Definitions of User-Input Actions
Action Definition

Keystroke The press and release of a key.
A series of continuous mouse
cursor position changes with no
mouse button pressed; the time-
stamps for each pair of cursor
position changes are no more
than 0.4 seconds apart.
A period of 0.4 seconds or longer
with no actions.
The press and release of a mouse
button; the cursor travels no more
than 10 pixels between the press
and release.
A point followed by a click within
0.4 seconds.
The press and release of a mouse
button; the cursor travels more
than 10 pixels between the press
and release.

Point

Pause

Click

Point-and-Click

Drag-and-Drop

modification to the game client program. The input data
collection program, a modified version of RUI [27], runs con-
currently with the game, polling and recording the keyboard
and mouse input device status with clock resolution close
to 0.015625 second (approximate 64 times/sec). Each in-
put event, such as key press or cursor position change, is
recorded along with a time stamp relative to the starting
time of the recording.

We invite 30 different human players to play World of
Warcraft and collect 55 hours of their user-input traces.
The players are a group of 25 men and 5 women with differ-
ent ages and different levels of gaming experience. The play-
ers are mostly college-aged, i.e., undergraduate and gradu-
ate students, with 9 players from 18-2/ years of age, 17 from
25-84, 3 from 35-44, and 1 over 45. The players’ levels of
computer gaming experience (described as “regular play”)
are 6 players with none, 2 with less than 1 year, 6 with 2
to 5 years, 7 with 5 to 10 years, and 9 with more than 10
years.

While the players are allowed to play from their home
computers, most players, 27 out of 30, play in the lab. The
players are free to select their characters (existing or new)
and their characters’ classes, items, skills, and so on. The
players are encouraged to farm, i.e., kill monsters and gather
treasures, but some instead explore or do quests. Most play-
ers, 20 out of 30, play as tank or physical-damage classes,
e.g., warrior, rogue, and hunter, while a few players, 10 out
of 30, play as magic-damage or healing classes, e.g., mage,
warlock, druid, and priest. The human characters range
from level 1 to mid-30s in the traces, with most characters,
23 out of 30, under level 10. The few higher level characters,
7 out of 10, in the 20s and 30s are existing characters and
not new ones starting from level 1.

Correspondingly, we run the game bot with 10 different
profiles in 7 locations in the game world for 40 hours and col-
lect its input traces. The 10 profiles are bot configurations
with different sets of waypoints that the bot follows while
farming, i.e., killing monsters and gathering treasure. The
profiles are setup in 7 locations with different monster levels
(from levels 1 to 40), monster densities (sparse to dense),

0.18 T T T T T T
0.16 1
0.14 1
0.12 1
0.1 1
0.08 1
0.06 1
0.04 1
0.02 1

0 L L —
0 2 4 6 8 10 12 14

Interval (sec.)
(a) Bot

Proportion

0.07 T T T T T T

0.06 1
0.05 1
0.04]

0.03 1

Proportion

0.02 1

0.01]

0 2 4 6 8 10 12 14
Interval (sec.)

(b) Human

Figure 1: Keystroke Inter-arrival Time Distribution

0.3 T T T T T

025 1 1

0.2 [1

0.15 | 1

Proportion

0.05 { 1

0 L L L L
0 1 2 3 4 5 6

Duration (sec.)
(a) Bot

0.09 T T T T T
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

0

Proportion

2 3 4 5 6
Duration (sec.)
(b) Human

Figure 2: Keystroke Duration Distribution

and different obstacles (barren plains to forest with lots of
small trees). The game bot profiles are half run with a war-
rior and half run with a mage. These two bot characters
range from level 1 to over 30 in the traces.

We conduct post processing on the input trace data to
extract information with regard to high-level user-input ac-
tions. For example, we pair up a key press event with a
subsequent key release event of the same key to form a
keystroke action; we gather a continuous sequence of cur-
sor position change events to form a point action (mouse
movement action). Table 1 gives a complete list of high
level actions we derive and their corresponding definitions.

3.3 Game Playing Input Analysis

We analyze the Glider bot and human keyboard and mouse
input traces with respect to timing patterns (duration and
inter-arrival time) and kinematics (distance, displacement,
and velocity). Our bot analysis below is limited to the cur-
rent game bots.

Two keyboard usage metrics for human and bot are pre-
sented in Figures 1 and 2, respectively. Both figures are
clipped for better presentation, and the trailing data clipped
away contribute less than 3% of the total for either hu-
man or bot. Figure 1 shows the distribution of keystroke
inter-arrival time, i.e., the interval between two consecutive
key presses, with a bin resolution of 0.1 seconds. There
are two major differences between the bots and humans.

First, the bot issues keystrokes significantly faster than hu-
mans. While 16.2% of consecutive keystrokes by the bot are
less than 0.1 second apart, only 3.2% of human keystrokes
are that fast. This is because human players have to initi-
ate keystroke action by physical movement of fingers, and
hence, pressing keys at such high frequency would be very
tiring. Second, the keystrokes of the bot exhibit obvious
periodic patterns. The empirical probabilities of the bot
pressing a key every 1 or 5.5 seconds are significantly higher
than their neighbor intervals, which provides us some in-
sights into the internals of the bot: it uses periodic timers to
poll the status of the avatar (i.e., current coordinate), and
issue keyboard commands accordingly (e.g., bypass possi-
ble obstacles by turning left/right and jumping). However,
for human players, their keystroke intervals follow a Pareto
distribution, which matches the conclusions of previous re-
search [53]. Figure 2 shows the distribution of keystroke
durations, with the bin resolution of 0.03 second. These
figures reassures our previous observations: the bot presses
keys with much shorter duration—over 36.9% of keystrokes
are less than 0.12 seconds long, while only 3.9% of human
keystrokes are completed within such a duration; the bot ex-
hibits the periodic keyboard usage pattern—keystrokes with
around 0.25 second duration are significantly more than its
neighbor durations.

Figure 3 shows the relationship between the mouse speed
and the displacement between the origin and target coordi-
nates for the point-and-click. Less than 0.1% of the total

5000

s 4000 N 1
5 .
2 e
< 3000 s 1
< L
= P
B 2000 | K 1
9] it +
=9]
n o LT

1000 § & ¢) 1

. it L .
0 200 400 600 800 1000 1200
Displacement (px.)
(a) Bot

Figure 3: Average Speed vs.

0.6

05 1

04 1

Proportion

02 1

0.1 1

0 1 1 1 1
0 1 2 3 4 5

Duration (sec.)
(a) Bot

5000 -
4000 | ’ 1
S .
2
= 3000 1
<
=
3 2000 1
[
=9
w)
1000 g 1
0 e
0 200 400 600 800 1000 1200
Displacement (px.)
(b) Human

Displacement for Point-and-Click

0.18
0.16 1
0.14 1
0.12 1
0.1 1
0.08 r 1
0.06 1
0.04 1
0.02 1

0

Proportion

i L I

0 1 2 3 4 5
Duration (sec.)

(b) Human

Figure 4: Drag-and-Drop Duration Distribution

data points for either human or bot are clipped away. The
bots exhibit two very unique features. First, unlike human
players, who move the mouse with very dynamic speed at
all displacement lengths, the bots tend to move the mouse
at several fixed speeds for each displacement, and the speed
increases linearly as displacement lengthens. This feature
implies that, again, the bots use several fixed length timers
for mouse movements. Second, we also observe that the
bots make a significant amount of high speed moves with
zero displacement, that is, after a series of fast movements,
the cursor is placed back exactly at its origin. Such a be-
havior is absent in the human data, because it is physically
difficult and unnecessary.

Figure 4 shows the distribution of mouse drag-and-drop
duration, with the bin resolution of 0.03 second. For the
bots, 100% of actions are accomplished within 0.3 second.
However, for human players, only 56.6% of drag-and-drop
actions finish within the same time window; over-one-second
actions contribute 25.5% of the total, within which, about
0.8% of actions are more than 5 seconds long, and are thus
clipped away from the figure.

Figure 5 illustrates the distribution of mouse movement
efficiency for point-and-click and drag-and-drop. We de-
fine movement efficiency as the ratio between the cursor dis-
placement and the traversed distance over a series of move-
ments. In other words, the closer the cursor movement is
to a straight line between the origin and target coordinates,
the higher the movement efficiency. Note that, while the bin

width is 0.02, the last bin only contains the actions with effi-
ciency of 1.0. Bots exhibit significant deviation from human
players on this metric: 81.7% of bot mouse movements have
perfect efficiency, compared to that only 14.1% of human
mouse movements are equally efficient. Aside from 3.8%
of mouse movements with efficiency less than 0.02 (most
of which are zero efficiency moves, due to the cursor being
placed back to the origin), a bot rarely moves the mouse
with other efficiencies. However, for human players, the ob-
served probability of mouse movement efficiency follows an
exponential distribution.

Finally, Figure 6 presents the relationship between the
average mouse move speed and the direction of the target
coordinate, plotted in polar coordinate with angular reso-
lution of 10 degrees (7/36). Each arrow represents the av-
erage velocity vector of mouse movements whose target po-
sition is £5 degrees in its direction. For the bots, there
is no evident correlation between the speed and the direc-
tion. In contrast, for human players, there is a clear diag-
onal, symmetric, and bounded movement pattern: diagonal
movements are generally faster than horizontal and verti-
cal movements, upward movements are slightly faster than
downward movements, and leftward movements are slightly
faster than rightward movements; overall, the movement
speed is bounded to a certain value. The diagonal and sym-
metric pattern is attributed to the human hand physiology,
and the speed boundary is due to the physical constraint of
human arms.

0.9 T T T T T
0.8 -
0.7 r
0.6
05 r
04 r
03
02
0.1 r

Proportion

0 0.2 0.4 0.6 0.8 1
Efficiency

(a) Bot

0.16
0.14
0.12

0.1
0.08
0.06
0.04
0.02

Proportion

0 0.2 0.4 0.6 0.8 1
Efficiency

(b) Human

Figure 5: Point-and-Click and Drag-and-Drop Movement Efficiency Distribution

12007

i o
800 1200
Speed (px./sec.)

U200

(a) B”ot

12007

400

i o
800 1200
Speed (px./sec.)

00

(b) Human

Figure 6: Average Velocity for Point-and-Click

4. HOP SYSTEM

In this section, we describe the design of our proposed
HOP system. The HOP system consists of client-side ex-
porters and a server-side analyzer. Each client-side exporter
collects and sends a stream of user-input actions taken at a
game client to the game server. The server-side analyzer
then processes each input stream and decides whether the
corresponding client is operated by a bot or a human player.
Figure 7 illustrates the high-level structure of the HOP sys-
tem.

4.1 Client-Side Exporter

Since each game client already receives raw user-input
events, the client-side exporter simply uses the available in-
formation to derive input actions, i.e., keystroke, point,
click, and drag-and-drop, and sends them back to the
server along with regular game-related data. Ideally, the
client-side exporter should be implemented as an integral
part of the game executable or existing anti-cheat systems
[16,17,38,49]. For the prototype of our HOP system, we

implement it as a standalone external program, as we do
not have source code access to the World of Warcraft.

4.2 Server-Side Analyzer

The server-side analyzer is composed of two major com-
ponents: the user-input action classifier and the decision
maker. The work-flow of the server-side analyzer is as fol-
lows. For each user-input action stream, the system first
stores consecutive actions into the action accumulator. A
configurable number of actions form an action block, and
each action block is then processed by the classifier. The
output of the classifier contains the classification score for
the corresponding action block, i.e., how close the group of
actions look to those of a bot, and is stored into the output
accumulator. Finally, when the output accumulator aggre-
gates a configurable amount of neural network output, the
decision maker makes a judgment. Each judgment reflects
whether the player is possibly operated by a bot since the
last judgment. The output accumulator is refreshed after
each decision is made. The analyzer continuously processes
user-input actions throughout each user’s game session.

—= Action
\\“‘ & ' Accumulator
Res N , \/ Ul Action
User Input s Ul Action
Actions S _
v Ul Action

Output
Accumulator

NN Output
Neural NN Output Decision
Network Maker
NN Output

Figure 7: Overview of the HOP system

4.2.1 Neural Network Classification

We employ artificial neural networks for user-input action
classification due to the following two reasons. First, neu-
ral networks are especially appropriate for solving pattern
recognition and classification problem involving a large num-
ber of parameters with complex inter-dependencies. The ef-
fectiveness of neural networks with user-input data classifi-
cation has already been demonstrated in behavioral biomet-
ric identification systems [1,35,36]. Second, neural networks
are not simple functions of their inputs and outputs. While
the detection methods based solely on those metrics with
clearly defined equations are susceptible to inverse function
attacks, neural networks, often described as a “black box”,
are much more difficult to attack. Note that our HOP sys-
tem is not necessarily tied to neural networks, and we will
consider other classification methods, such as support vector
machines (SVMs) or decision trees, in our future work.

The neural network we build for the HOP system is a
cascade-correlation neural network, a variant of feed-forward
neural networks that use the idea of cascade training [19].
Unlike standard multi-layer back-propagation (BP) percep-
tron networks, a cascade correlation neural network does not
have a fixed topology, but rather is built from the ground up.
Initially, the neural network only consists of the inputs di-
rectly connected to the output neuron. During the training
of the neural network, a group of neurons are created and
trained separately, and the best one is inserted into the net-
work. The training process continues to include new neurons
into the network, until the neural network reaches its train-
ing target or the size of the network reaches a pre-defined
limit.

Figure 8 illustrates the general construction of the cascade-
correlation neural network. There are eight input values for
each user-input action, including seven action metric param-
eters and a bias value that is used to differentiate the type
of action, e.g., keyboard action or mouse action. The neu-
ral network takes input from all actions in an action block.
The connections between the input node and neurons, and
among neurons, are represented by intersections between a
horizontal line and a vertical line. The weight of each con-
nection is shown as a square over the intersection, where
larger size indicates heavier weight.

The seven action metric parameters are: action duration,
mouse travel distance, displacement, efficiency, speed, an-
gle of displacement, and virtual key (a numeric value corre-
sponding to a keyboard key or a mouse button). The speed
and efficiency are derived parameters from the basic param-
eters, such as duration, distance and displacement. These
derived parameters are used mainly to help the neural net-
work capture the inherent association between input param-
eters, reduce the network complexity, and thus, speedup the

New neurons Output
Neuron
Duration O s
Distance O ‘ & } Action 1
Bias O B i 3 ﬁl(
Duration O £
Distance O T } Action 2
Bias O £ £ B : ﬁl(

Figure 8: A Cascade Neural Network

training process. The number of actions in an action block
directly affects the total amount of input data to the neu-
ral network. Increasing the block size provides the neural
network with more context information and can, up to a
certain point, further improve the classification accuracy of
the trained network. However, too many input actions can
also increase the overall complexity of the neural network
and slow down the training process.

4.2.2 Decision Making

The decision maker refers to using accumulated output
from the neural network to determine whether the corre-
sponding user-input data is likely from a bot or a human
player. Different algorithms can be applied to consolidate
accumulated classifications. We employ a simple “voting”
scheme: if the majority of the neural network output clas-
sifies the user-input actions as those of a bot, the decision
will be that the game is operated by a bot, and vice versa.
The decision process is a summary of the classifications of
user-input actions over a period of time. While individual
classification cannot be 100% correct, the more accumulated
output, the more confidence we have in the decision. On the
other hand, the more accumulated output, the more user-
input actions are required, which translates to more data
storage and longer time for decision making.

4.3 Performance Impact and Scalability

The nature of MMOGs dictates our design of the HOP
system to be scalable and light-weight, limiting performance
impacts on game clients and the server. At the client side,

the system resource consumed by the collection of user-input
actions is minor. In addition to the system resource of a
game client, an MMOG player’s gaming experience also de-
pends on network performance. Since the user-input ac-
tions are short messages, 16 bytes of data per user-input
action, the additional bandwidth consumption induced by
the client-side exporter is negligible. The presence of the
exporter thus is imperceptible for end users. At the server
side, the scalability is critical to the success of our HOP
system. The server-side analyzer is very efficient in terms
of memory and CPU usage, which is shown in Section 5.4.
The size of additional memory consumed per player is com-
parable to the size of the player’s avatar name. A single
processor core is capable of processing tens of thousands of
users simultaneously in real-time. Therefore, the HOP sys-
tem is scalable to the heavy workload at a game server.

S. EXPERIMENTS

In this section, we evaluate the efficacy of our HOP sys-
tem through a series of experiments, in terms of detection
accuracy, detection speed, and system overhead. The met-
rics we use for detection accuracy include true positive rate
and true negative rate. The true positive rate is the per-
centage of bots that are correctly identified, while the true
negative rate is the percentage of humans that are correctly
identified. The detection speed is determined by the total
number of actions needed to make decisions and the average
time cost per action. In general, the larger the number of ac-
tions required for decisions and the higher the average time
cost per action, the slower the detection speed becomes.

5.1 Experimental Setup

Our experiments are based on 95 hours of traces, including
55 hours of human traces and 40 hours of game bot traces.
In total, these traces contain 3,000,066 raw user-input events
and 286,626 user-input actions, with 10 bot instances and
30 humans involved. The 10 bot instances are generated by
running the Glider bot with 10 different profiles. The human
players are a diverse group, including men and women with
different ages and different levels of gaming experience. The
more detailed trace information has been given in Section
3.2.

The experiments are conducted using 10-fold cross vali-
dation. Each test is performed on a different human or bot
that is left out of the training set for that test. Therefore,
to validate a given configuration, 20 different partitions are
created, one for each of the 10 bots and 10 sets of three
humans. The partitions consist of a training set of either
9 bots and 30 humans or 10 bots and 27 humans, and a
test set of either one bot or three humans. Thus, each test
is performed on unknown data that the system has not yet
been trained on.

5.2 Detection Results

The HOP system has four configurable parameters: the
number of actions per block, the number of nodes, the thresh-
old, and the number of outputs per output block. The first
two parameters mainly determine the size and complexity of
the neural network, while the second two parameters largely
affect the detection performance of the entire system. The
threshold determines how a neural network output is inter-
preted: a value over the threshold indicates a bot, while a
value under the threshold indicates a human. Note that hu-

mans have a value of 0.0 and bots have a value of 1.0 in the
training of the neural network.

We first configure the number of actions per block and
the number of nodes. The true positive and true negative
rates with different numbers of actions and different numbers
of nodes are shown in Figure 9 (a) and (b), respectively.
These tests are performed with a default threshold of 0.5.
The neural network becomes more accurate as more actions
are provided, but we see diminishing returns in accuracy as
the number of actions increases, e.g., going from 4 actions
to 6 actions requires 50% more input but only provides a
relatively small increase in the overall accuracy.

In most cases, the binomial theorem predicts that combin-
ing three decisions for the 4-action neural network should
be more accurate than combining two decisions for the 6-
or 8-action neural networks. Therefore, we choose to use
a neural network with 4 actions as input, which gives true
positive and negative rates of 0.971-0.977 and 0.959-0.973,
respectively.

The overall true positive and negative rates do not always
grow as the number of nodes increases. At some points, in-
creasing the number of nodes no longer improves the true
positive or negative rates and the neural network starts to
over-fit the training set. A neural network of 40 nodes pro-
vides a true positive rate of 0.976 and a true negative rate
of 0.961, which is the best combination of true positive and
true negative rates with 4 actions as input. Therefore, we
set up the neural network based on this configuration.

With the neural network configured, the threshold and
the number of outputs per block determine the overall per-
formance of the system. The threshold can be increased or
decreased from the default value of 0.5 to bias the neural
network towards bots or humans, improving the true posi-
tive rate or the true negative rate, respectively. The number
of outputs per block affects both the detection accuracy and
the detection speed of the system. As the number of outputs
per block increases, the detection accuracy of the system in-
creases, but the detection speed decreases as more neural
network outputs are needed to make decisions.

The true positive and negative rates with different thresh-
olds and different numbers of outputs for bots and humans
are listed in Table 2. The top number in each cell is the true
positive rate and the bottom number is the true negative
rate rate. The neural network has 40 nodes and takes 4 ac-
tions as input. There are a number of settings that allow for
a true positive or true negative rate of 1.0, though not both.
To avoid a false positive—mistaking a human for a bot, we
prefer a high true negative rate. The smallest number of
outputs per block that achieves a true negative rate of 1.0 is
9 outputs per block with the threshold of 0.75, which gives
a true positive rate of 0.998.

With the fully configured system (40 nodes, 4-action in-
put, the threshold of 0.75, and 9 outputs per block), Table
3 lists the true positive and negative rates for each of the
individual bots in our traces. The true negative rates are
1.0 for all of the humans, so none of the human players in
our traces are misclassified as bots. The true positive rates
are between 0.988 and 1.000 for the bots in our traces, with
the average true positive rate of 0.998.

The detection speed of the system is a function of the
total number of actions required for decision making and the
average time cost per action. The total number of actions is
36 (i.e., 9 outputs x 4 actions per output). The time cost per

True Positive Rate

of Nodes
(a) True Positive Rate

Figure 9: True Positive and Negative Rates versus # of Accumulated Actions and # of Nodes

True Negative Rate

0.88 1 1 T T
20 30 40 50 60 70

of Nodes
(b) True Negative Rate

Table 2: True Positive and Negative Rates versus Thresholds and # of Accumulated Outputs

of Accumulated Outputs

Threshold \— 3 5 7 9 11 13 [15 | 17 | 19 | 21
0.25 0.978 | 0.995 | 0.997 | 0.999 | 0.999 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
0.959 | 0.977 | 0.983 | 0.987 | 0.990 | 0.992 | 0.994 | 0.994 | 0.996 | 0.996 | 0.997
05 0.961 | 0.991 | 0.997 | 0.998 | 0.999 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
’ 0.976 | 0.990 | 0.994 | 0.996 | 0.998 | 0.998 | 0.998 | 0.998 | 0.999 [0.998 | 0.999
0.75 0.926 | 0.980 | 0.992 | 0.997 | 0.998 | 0.998 | 0.998 | 1.000 | 1.000 | 1.000 | 1.000
0.985 | 0.995 | 0.997 | 0.998 | 1.000 | 0.999 | 0.999 | 1.000 | 1.000 | 0.999 | 1.000
0.9 0.859 | 0.935 | 0.964 | 0.980 | 0.985 | 0.996 | 0.995 | 0.996 | 0.995 [0.998 | 0.998
’ 0.991 | 0.998 | 0.999 | 0.999 | 1.000 | 0.999 | 0.999 | 1.000 | 1.000 | 0.999 | 1.000
0.95 0.775 | 0.856 | 0.895 | 0.922 | 0.940 | 0.947 | 0.958 | 0.969 | 0.976 | 0.975 | 0.983
0.994 | 0.999 | 0.999 | 0.999 | 1.000 | 0.999 | 0.999 | 1.000 | 1.000 | 0.999 | 1.000
0.975 0.624 | 0.668 | 0.700 | 0.723 | 0.737 | 0.757 | 0.770 | 0.776 | 0.792 | 0.796 | 0.804
0.996 | 0.999 [0.999 | 0.999 | 1.000 | 0.999 | 0.999 | 1.000 [1.000 | 0.999 | 1.000

action varies. The average time cost per action, ignoring idle
periods longer than 10 seconds, is 1.10 seconds. If a player
is idle, strictly speaking, no one is “operating” the game,
so no decision can be made. Of course, idle players (bots
or humans) are not performing any actions and should not
be a concern. Based on the total number of actions and
the average time cost per action, Figure 10 illustrates the
decision time distribution for bots and humans. From the
decision time distribution, we can see that our HOP system
is able to make decisions for capturing bots within 39.60
seconds on average.

Note that we perform the same experiments with BP neu-
ral networks and observe that the cascade neural network is
more accurate in bot classification than BP neural networks
that use incremental, quick propagation, or resilient propa-
gation method. The results for BP neural networks are not
included in the paper due to space limit.

5.3 Detection of Other Game Bots

To further test our HOP system, without retraining the
neural network, we perform a smaller experiment on a dif-
ferent game bot from a different game. While Diablo 2 is not
an MMOG, it has an MMOG-like economy (items may be
traded with thousands of other players) and is also plagued

by game bots. This set of experiments studies MMBot, a
popular free bot for Diablo 2 that is built using the Autolt
scripting language [4]. Similar to Glider, MMBot automates
various tasks in the game to accumulate treasure or expe-
rience. However, unlike Glider, MMBot does not read the
memory space of the game, but instead is based entirely on
keyboard/mouse automation, and pixel scanning. As Diablo
2 has a much different interface (top-down isometric view
rather than first person view like World of Warcraft) and
much different controls, the purpose of these experiments is
to test how general our system is and to show that it is not
limited to any specific bot or game.

We collect a total of 20 hours of Diablo 2 traces, both bot
and human. We run MMBot for 10 hours and have 5 humans
play Diablo 2 for a total of 10 hours. We then reuse our
existing neural network (40 nodes, 4 action-input, 9 inputs
per block) with the adjusted threshold value to optimize our
detection results. Without retraining, the neural network
achieves a true positive rate of 0.864 on the bot and a true
negative rate of 1.0 on the human players. This result shows
that our HOP system is able to capture certain invariants in
the behavior of bots across different games and different bot
implementations, indicating the possible potential of HOP-
based systems for other applications.

Table 3: True Positive Rates for Bots

Bots
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10
0.988 [1.000 | 0.998 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 [0.998 | 1.000
0.07 T T T T 0.07 T T T T
0.06 | 0.06 |
0.05 0.05
= =
5) 5)
£ 004 £ 004
2 2.
S 0.03 S 0.03 |
~ ~
0.02 0.02
0.01 | 0.01 |
0 0
0 20 40 60 80 100 0 20 40 60 80 100
Decision Time (sec.) Decision Time (sec.)
(a) Bot (b) Human

Figure 10: Decision Time Distribution

5.4 System Overhead

Our proposed system at the server side (i.e., the server-
side analyzer) is required to process thousands of users si-
multaneously in real-time, so it must be efficient in terms of
memory and computation. Now we estimate the overhead
of the analyzer for supporting 5,000 users, far more than
the regular workload of a typical World of Warcraft server.
The analyzer process, which includes the neural network, is
profiled using valgrind and consumes only 37 KBytes of
memory during operation. The prototype of our system is
designed to use a single-thread multiple-client model with
time-multiplexing, and thus only one process is used. Of
course, additional processes could be used to process in par-
allel.

The primary memory requirement is to accommodate the
accumulated user-input actions and neural network outputs
for each online user. A single user-input action consumes 16
bytes, 4 bytes each for distance, duration, and displacement,
and 2 bytes each for virtual key and angle. A block of 4 user-
input actions consumes 64 bytes. A block of up to 16 neural
network outputs requires 2 bytes as a bit-array. The per-
user memory requirement is approximately 66 bytes, barely
more than the maximum length of account names on World
of Warcraft, which is 64 bytes. If 66 bytes is scaled to 5,000
online users, this is only 330 KBytes in total, which is neg-
ligible considering that the game currently stores the posi-
tion, level, health, and literally dozens of other attributes
and items for each user.

The computational overhead is also very low. The compu-
tation time for processing all 95 hours of traces is measured
using the Linux time command. The analyzer can process
the full set of traces, over 286,626 user-input actions, in only
385 milliseconds on a Pentium 4 Xeon 3.0Ghz. In other
words, the analyzer can process approximately 296 hours of
traces per second using a single CPU. A server with 5,000
users would generate approximately 1.38 hours of traces per
second, a tiny fraction of the above processing rate.

6. LIMITATIONS

The limitations of this research work are mainly in two as-
pects: experimental limitations and potential evasion against
the HOP system. In the following, we give a detailed de-
scription of these limitations.

6.1 Experimental Limitations

The size of our player group, 30, is insufficient to cover
all kinds of human playing behaviors. It would be better to
have a larger group size for characterizing the human play-
ing behaviors in MMOGs. In addition, our study is mainly
conducted in a lab environment, which limits the possible
variations in hardware, as well as other environmental fac-
tors. Although lab settings allow for greater control, they
are less ecologically valid than natural settings, where people
play games on their home computers. In our future work, we
plan to recruit a larger number of players with more players
playing at home.

Our analysis is limited to one type of bots in one game.
Although Glider is a typical World of Warcraft bot, there
are a number of other bots [39,41,44,54] and their behaviors
may vary. Moreover, other games may be quite different
from World of Warcraft in terms of game plays, controls,
and so on. A further study across multiple MMOGs with
multiple bots is needed to confirm whether our HOP system
is effective for broader applications. Additionally, while the
bot and human characters in our study overlap in levels
and classes, a more controlled experiment with the exact
matchings in levels, classes, items, and skills, could lead to
more accurate experimental results.

A few details of our experiments cannot be fully described
due to limited space, which could hinder the reproduction of
our work. In particular, the exact waypoints that the game
bots followed and the monsters they fought are not included
in the paper. To compensate for this limitation, we have
made our bot profiles and our detection system available
online at http://www.cs.wm.edu/ hnw/hop/.

6.2 Potential Evasion

Like other intrusion detection systems, HOPs are open to
future evasions. Upon the adoption of the proposed HOP
system, the bot creators will seek various ways to evade it.
The focus of the following discussion is on two main potential
evasions: (1) bots could either interfere with the user-input
collection or manipulate the user-input stream at the client
side; and (2) bots could mimic human behaviors to evade
detection.

Since the user-input stream is collected at the client side,
the bots can easily interfere with the user-input collection.
A bot program could hinder the user-input collection either
by disabling the client-side exporter or by intercepting the
network traffic containing the user-input data. However, the
server-side analyzer can simply block any game client that
refuse to send the user-input stream. In other words, a sim-
ple policy of “no user-input, no game” can simply thwart this
potential evasion. For those bot programs that attempt to
manipulate the user-input stream, since they already have
total control over the user-input through mouse and key-
board events, the additional benefit provided by the manip-
ulation would be limited.

A more effective evasion for bots is to mimic human be-
haviors. The most obvious approach to mimicking humans
would be a replay attack. That is, a bot could record a
human play of the game and then simply replay the record-
ing. However, the game environment especially in MMOGs
is highly dynamic. A simple replay attack, based on a pre-
recorded game play, cannot successfully adapt to the con-
stantly changing game conditions. Meanwhile, fully control-
ling the game via replay would require separate recordings
of virtually all possible interactions with the game, which is
clearly not feasible due to the large variety of different game
tasks.

A more sophisticated approach is to use random models
for generating the different user-input actions. However, this
approach would require a separate model for each statistic
and each type of user-input action. With six different action
types and seven statistics, it needs more than 40 models just
to capture the marginal distributions. In addition, there are
complicated inter-relations between different actions, statis-
tics, and game tasks. While there are new techniques that
can generate synthetic user-input with some human behav-
ioral characteristics, current techniques can merely generate
random mouse movements (not useful for performing spe-
cific tasks) and are limited to capturing only basic statis-
tics [35, 36].

More importantly, the HOP system is not based on any
single metric of the human behavior, but rather, a collection
of different kinds of behavioral metrics composed by neural
networks. A successful evasion of the neural network could
require a simultaneous attack on several of these different
metrics. Although it is relatively easy to mimic a single
metric of the human behavior, such as keystroke inter-arrival
time, fully mimicking all aspects of the human behavior in
a highly dynamic environment like MMOGs could require
non-trivial efforts.

The threat of mimicry attacks [50] is real to behavior-
based intrusion detection systems including HOP. In gen-
eral, we believe that it is possible for a highly motivated bot
creator to build a more complicated game bot, which mim-
ics multiple aspects of human behaviors, to evade the HOP
system but at the cost of significant time and efforts.

7. RELATED WORK

Exploiting online games has attracted increasing interest
in recent years. Yan et al. [56] summarized commonly-
used exploiting methods in online games and categorized
them along three dimensions: vulnerability, consequence,
and exploiter. In addition, they pointed out that fairness
should be taken into account to understand game exploits.
Webb et al. [52] presented a different classification of game
exploits. They categorized 15 types of exploits into four
levels: game, application, protocol, and infrastructure, and
discussed countermeasures for both client-server and peer-
to-peer architectures. Muttik [34] surveyed security threats
emerging in MMOGs, and discussed potential solutions to
secure online games from multiple perspectives including
technology, economy, and human factor. Hoglund and Mc-
Graw [24] provided a comprehensive coverage of game ex-
ploits in MMOGs, shedding light on a number of topics and
issues.

7.1 Anti-Cheating

With the ever-increasing severity of game exploits, secur-
ing online games has received wide attention. The research
work on anti-cheating generally can be classified into two
categories: game cheating prevention and game cheating
detection. The former refers to the mechanisms that de-
ter game cheating from happening and the latter comprises
the methods that identify occurrences of cheating in a game.
For MMOGs, a cheat-proof design, especially the design of
the game client program and the communication protocol,
is essential to prevent most of game exploits from occurring.
This is because (1) the client program of an MMOG is under
the full control of a game player and (2) the communication
at the client side might be manipulated for the advantage of
player.

The prevention of game exploits has been the subject of
a number of works. Baughman et al. [2] uncovered the
possibility of time cheats (e.g., look-ahead and suppress-
correct cheats) through exploiting communication protocols
for both centralized and distributed online games, and de-
signed a lockstep protocol, which tightly synchronizes the
message communication via two-phase commitment, to pre-
vent cheats. Following their work, a number of other time-
cheat-resistant protocols [9,13,15] have been developed. In
[32], Ménch et al. proposed a framework for preventing game
client programs from being tampered with. The framework
employs mobile guards, small pieces of code dynamically
downloaded from the game server, to validate and protect
the game client. Yampolskiy et al. [55] devised a protection
mechanism for online card games, which embeds CAPTCHA
tests in the cards by replacing the card face with text. Be-
sides software approaches, hardware-based approaches to
countering game exploits have also been proposed. Golle
et al. [22] presented a special hardware device that imple-
ments physical CAPTCHA tests. The device can prevent
game bots based on the premise that physical CAPTCHA
tests such as pressing certain buttons are too difficult for
bots to resolve without human involvement.

In practice, it is extremely hard to eliminate all potential
game exploits. Thus, accurate and quick detection of game
exploits is critical for securing on-line games. Since game
bots are a commonly-used exploit, a fair amount of research
has focused on detecting and countering them. Based on
traffic analysis, Chen et al. [10] found that the traffic gen-

erated by the official client differs from that generated by
standalone bot programs. Their approach, however, is not
effective against recent game bots, as the majority of cur-
rent MMOG bots interact with official clients. In [11,12],
the difference of movement paths between human players
and bots in a first-person shooter (FPS) game is revealed
and then used for the development of trajectory-based de-
tection methods. However, it is unlikely that this type of
detection method can achieve similar speed and accuracy
in MMOGs, because maps used in MMOGs are much larger
than those in FPS games and avatar trajectories in MMOGs
are far more complicated. Indeed, Mitterhofer et al. [31]
used movement paths in World of Warcraft and their method
requires from 12 to 60 minutes to detect game bots. Tha-
wonmas et al. [47] introduced a behavior-based bot detection
method, which relies on discrepancies in action frequencies
between human players and bots. However, compared to our
work, the metric used for their detection, action frequency,
is coarse-grained and has low discriminability, resulting in
low detection ratio (0.36 recall ratio on average) and long
detection time (at least 15 minutes).

As game clients in general cannot be trusted, usually the
detection decision is made at servers. Schluessler et al. [45]
presented a client-side detection scheme, which detects input
data generated by game bots by utilizing special hardware.
The hardware is used to provide a tamper-resistant envi-
ronment for the detection module. The detection module
compares the input data generated by input devices (mouse
and keyboard) with those consumed by the game application
and fires an alert once a discrepancy is found.

7.2 Behavioral Biometrics

The idea of HOPs is largely inspired by behavioral bio-
metrics based on keystroke dynamics [5,25,33,40] and mouse
dynamics [1, 20, 43]. Analogous to handwritten signatures,
keystroke dynamics and mouse dynamics are regarded as
unique to each person. Therefore, their applications in user
authentication and identification have been extensively in-
vestigated [1,5,20,25,33,40,43]. Generating synthetic mouse
dynamics from real mouse actions has also been studied
[35,36]. In spite of the fact that our system also utilizes
the characteristics of keystroke and mouse dynamics, it sig-
nificantly differs from aforementioned biometric systems in
that our system leverages the distinction on game play be-
tween human players and game bots, which is reflected by
keystroke and mouse dynamics, to distinguish human play-
ers from game bots. In contrast, those biometric systems ex-
ploit the uniqueness of keystroke dynamics or mouse dynam-
ics for identification, i.e., matching a person with his/her
identity on the basis of either dynamics.

8. CONCLUSION

In this paper, we presented a game bot defense system
that utilizes HOPs to detect game bots. The proposed HOPs
leverage the differences of game playing behaviors such as
keyboard and mouse actions between human players and
game bots to identify bot programs. Compared to conven-
tional HIPs such as CAPTCHAs, HOPs are transparent to
users and work in a continuous manner. We collected 95-
hour user-input traces from World of Warcraft. By carefully
analyzing the traces, we revealed that there exist significant
differences between bots and humans in a variety of charac-

teristics derived from game playing actions, which motivate
the design of the proposed HOP defense system.

The HOP defense system comprises a client-side exporter
and a server-side analyzer. The exporter is used to trans-
mit a stream of user-input actions and the analyzer is used
to process the action stream to capture bots. The core of
the analyzer is a cascade-correlation neural network, which
takes an action stream as input and determines if the stream
generator is a bot or a human player. We also employed a
simple voting algorithm to further improve detection accu-
racy. Based on the collected user-input traces, we conducted
a series of experiments to evaluate the effectiveness of the
defense system under different configurations. Our results
show that the system can detect over 99% of current game
bots with no false positives within a minute and the overhead
of the detection is negligible or minor in terms of induced
network traffic, CPU, and memory cost. As our detection
engine only relies on user-input information, our HOP sys-
tem is generic to MMOGs.

Acknowledgments

We are very grateful to our shepherd Paul C. Van Oorschot
and the anonymous reviewers for their insightful and de-
tailed comments. This work was partially supported by NSF
grants CNS-0627339 and CNS-0627340.

9. REFERENCES

[1] A. A. E. Ahmed and I. Traore. A new biometric technology
based on mouse dynamics. IEEE Trans. on Dependable and
Secure Computing (TDSC), 4(3), 2007.

[2] N. E. Baughman and B. N. Levine. Cheat-proof playout for
centralized and distributed online games. In Proceedings of
the 20th IEEE INFOCOM, Anchorage, AK, USA, April
2001.

[3] BBC News Staff. Legal battle over warcraft ‘bot’.

http://news.bbc.co.uk/2/hi/technology/7314353.stm

[Accessed: Jan. 30, 2009].

J. Bennett. Autolt: Automate and script windows tasks.

http://wuw.autoit.com/ [Accessed: Apr. 20, 2009].

[5] F. Bergadano, D. Gunetti, and C. Picardi. User

authentication through keystroke dynamics. ACM Trans.

on Information and System Security (TISSEC), 5(4), 2002.

Blizzard Entertainment. MDY industries, LLC., vs.

Blizzard Entertainment, Inc., and Vivendi Games, Inc.

http://gamepolitics.com/images/legal/blizz-v-MDY.pdf

[Accessed: Jan. 30, 2009].

Blizzard Entertainment. World of Warcraft subscriber base

reaches 11.5 million worldwide. http://eu.blizzard.com/

en/press/081223.html [Accessed: Jul. 24, 2009].

P. Caldwell. Blizzard bans 59,000 WOW accounts.

http://wuw.gamespot.com/news/6154708.html [Accessed:

Aug. 13, 2009].

[9] B. D. Chen and M. Maheswaran. A cheat controlled
protocol for centralized online multiplayer games. In
Proceedings of the 3rd ACM SIGCOMM NetGames,
Portland, OR, USA, August 2004.

[10] K.-T. Chen, J.-W. Jiang, P. Huang, H.-H. Chu, C.-L. Lei,
and W.-C. Chen. Identifying MMORPG bots: A traffic
analysis approach. In Proceedings of the 2006 ACM
SIGCHI International Conference on Advances in
Computer Entertainment Technology (ACE’06), June 2006.

[11] K.-T. Chen, A. Liao, H.-K. K. Pao, and H.-H. Chu. Game
bot detection based on avatar trajectory. In Proceedings of
the 7th International Conference on Entertainment
Computing, Pittsburgh, PA, USA, September 2008.

[12] K.-T. Chen, H.-K. K. Pao, and H.-C. Chang. Game bot
identification based on manifold learning. In Proceedings of

[4

=

7

8

[13]

[14]

[15]

[16]

(17)
(18]

19]

20]

(21]

(22]

(23]

[24]

[25]

[26]

27)

28]

[29]
(30]

(31]

(32]

(33]

(34]

the 7th ACM SIGCOMM NetGames, Worcester, MA, USA,
October 2008.

E. Cronin, B. Filstrup, and S. Jamin. Cheat-proofing dead
reckoned multiplayer games (extended abstract). In
Proceedings of the 2nd International Conference on
Application and Development of Computer Games, Hong
Kong, China, January 2003.

Diablo 2 Guide. D2 bots. http://www.diablo2guide.com/
bots.php [Accessed: Nov. 2, 2008].

C. G. Dickey, D. Zappala, V. Lo, and J. Marr. Low latency
and cheat-proof event ordering for peer-to-peer games. In
Proceedings of the 14th ACM NOSSDAV, Cork, Ireland,
June 2004.

DMW World. DMW anti-cheat system.
http://wuw.dmwworld.com/viewfaq/show/374 [Accessed:
Aug. 13, 2009].

Even Balance Inc. PunkBuster online countermeasures.
http://wuw.evenbalance.com [Accessed: Jul. 9, 2008].
Exploits R Us. Ultima Online bots and cheats. http://www.
exploitsrus.com/uo/bots.html [Accessed: Nov. 2, 2008].
S. E. Fahlman and C. Lebiere. The cascade-correlation
learning architecture. In Advances in Neural Information
Processing Systems 2, 1990.

H. Gamboa and A. Fred. A behavioral biometric system
based on human computer interaction. In Proceedings of
SPIE: Biometric Technology for Human Identification,
volume 5404, 2004.

S. Gianvecchio, M. Xie, Z. Wu, and H. Wang. Measurement
and classification of humans and bots in internet chat. In
Proceedings of the 17th USENIX Security Symposium, San
Jose, CA, USA, July 2008.

P. Golle and N. Ducheneaut. Preventing bots from playing
online games. Computers in Entertainment, 3(3), 2005.

G. Gu, R. Perdisci, J. Zhang, and W. Lee. BotMiner:
Clustering analysis of network traffic for protocol- and
structure-independent botnet detection. In Proceedings of
the 17th USENIX Security Symposium, San Jose, CA,
USA, July 2008.

G. Hoglund and G. McGraw. Ezxploiting Online Games:
Cheating Massively Distributed Systems. No Starch Press,
2007.

R. Joyce and G. Gupta. Identity authentication based on
keystroke latencies. Communications of the ACM, 33(2),
1990.

E. Kirda, C. Kruegel, G. Banks, G. Vigna, and

R. Kemmerer. Behavior-based Spyware Detection. In
Proceedings of the 15th USENIX Security Symposium,
Vancouver, Canada, August 2006.

U. Kukreja, W. E. Stevenson, and F. E. Ritter. RUI -
recording user input from interfaces under Windows and
Mac OS X. Behavior Research Methods, Instruments, and
Computers, 38(4):656-659, 2006.

C. McSherry. A new gaming feature? spyware.
http://www.eff.org/deeplinks/2005/10/
new-gaming-feature-spyware [Accessed: Jul. 9, 2008].
MDY Industries. MMO glider. http://www.mmoglider.com/
[Accessed: Nov. 2, 2008].

W. Meloni. State of the game industry 2008. In GameOn
Finance Conference, San Diego, CA, USA, October 2008.
S. Mitterhofer, C. Platzer, C. Kruegel, and E. Kirda.
Server-side bot detection in massive multiplayer online
games. [EEE Security and Privacy, 7(3), May/June 2009.
C. Moénch, G. Grimen, and R. Midtstraum. Protecting
online games against cheating. In Proceedings of the 5th
ACM SIGCOMM NetGames, Singapore, October 2006.

F. Monrose and A. Rubin. Authentication via keystroke
dynamics. In Proceedings of the 4th ACM CCS, Zurich,
Switzerland, April 1997.

I. Muttik. Securing virtual worlds against real attacks.
http://www.mcafee.com/us/local_content/white_papers/
threat_center/wp_online_gaming.pdf [Accessed: Nov. 2,

(35]

(36]

(37)

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47)

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

2008].

A. Nazar. Synthesis and simulation of mouse dynamics.
Master’s thesis, University of Victoria, October 2007.

A. Nazar, I. Traore, and A. A. E. Ahmed. Inverse
biometrics for mouse dynamics. International Journal of
Pattern Recognition and Artificial Intelligence,
22(3):461-495, 2008.

P. Neva. Bots back in the box.
http://www.secondlifeherald.com/s1h/2006/11/bots_
back_in_th.html [Accessed: Nov. 2, 2008].

nProtect. nProtect GameGuard. http://eng.nprotect.
com/nprotect_gameguard.htm [Accessed: Jul. 9, 2008].

M. M. Owned. World of Warcraft bots and programs
forum. http://www.mmowned. com/forums/bots-programs/
[Accessed: Jul. 21, 2009].

A. Peacock, X. Ke, and M. Wilkerson. Typing patterns: A
key to user identification. IEEE Security and Privacy, 2(5),
2004.

PiroX. PiroX Bot - World of Warcraft bot.
http://www.piroxbots.com/ [Accessed: Jul. 25, 2009].

M. D. Preda, M. Christodorescu, S. Jha, and S. Debray. A
semantics-based approach to malware detection. In
Proceedings of the 84th ACM POPL, Nice, France, January
2007.

M. Pusara and C. E. Brodley. User re-authentication via
mouse movements. In Proceedings of the 2004 ACM
Workshop on Visualization and Data Mining for Computer
Security, Washington, DC, USA, October 2004.

Rhabot. Rhabot - World of Warcraft bot.
http://www.rhabot.com/ [Accessed: Nov. 2, 2008].

T. Schluessler, S. Goglin, and E. Johnson. Is a bot at the
controls?: Detecting input data attacks. In Proceedings of
the 6th ACM SIGCOMM NetGames, Melbourne,
Australia, September 2007.

Slashdot. Confessions of an Ultima Online gold farmer.
http://slashdot.org/games/05/01/26/1531210.shtml
[Accessed: Jul. 9, 2008].

R. Thawonmas, Y. Kashifuji, and K.-T. Chen. Detection of
MMORPG bots based on behavior analysis. In Proceedings
of 5th ACM International Conference on Advances in
Computer Entertainment Technology (ACE’08),
Yokohama, Japan, December 2008.

The MMO RPG Exchange. World of Warcraft exchange.
http://themmorpgexchange.com/ [Accessed: Jul. 25, 2009].
Valve Corporation. Valve anti-cheat system (VAC).
https://support.steampowered.com/kb_article.php?p_
faqid=370 [Accessed: Jul. 9, 2008].

D. Wagner and P. Soto. Mimicry attacks on host-based
intrusion detection systems. In Proceedings of the 9th ACM
CCS, Washingtion, DC, USA, November 2002.

H. Wang, D. Zhang, and K. G. Shin. Detecting SYN
flooding attacks. In Proceedings of the 21st IEEE
INFOCOM, New York, NY, USA, June 2002.

S. D. Webb and S. Soh. Cheating in networked computer
games — a review. In Proceedings of the 2nd International
Conference on Digital Interactive Media in Entertainment
and Arts, Perth, Australia, September 2007.

W. Willinger, V. Paxson, and M. S. Taqqu. Self-similarity
and heavy tails: Structural modeling of network traffic. In
Statistical Techniques and Applications, pages 27-53.
Verlag, 1998.

WoW Panda. ZoloFighter - World of Warcraft bot.
http://www.zolohouse.com/wow/wowFighter/ [Accessed:
Jul. 25, 2009].

R. V. Yampolskiy and V. Govindaraju. Embedded
non-interactive continuous bot detection. Computers in
Entertainment, 5(4), 2007.

J. Yan and B. Randell. A systematic classification of
cheating in online games. In Proceedings of the 4th ACM
SIGCOMM NetGames, Hawthorne, NY, USA, October
2005.

