
1

Defense Against Spoofed IP Traffic Using Hop-Count Filtering
Haining Wang Cheng Jin Kang G. Shin

Abstract— IP spoofing has often been exploited by Distributed Denial of
Service (DDoS) attacks to (1) conceal flooding sources and dilute localities in
flooding traffic, and (2) coax legitimate hosts into becomingreflectors, redi-
recting and amplifying flooding traffic. Thus, the ability to filter spoofed IP
packets near victim servers is essential to their own protection and preven-
tion of becoming involuntary DoS reflectors. Although an attacker can forge
any field in the IP header, he cannot falsify the number of hopsan IP packet
takes to reach its destination. More importantly, since thehop-count values
are diverse, an attacker cannotrandomlyspoof IP addresses while maintain-
ing consistent hop-counts. On the other hand, an Internet server can easily
infer the hop-count information from the Time-to-Live (TTL) field of the IP
header. Using a mapping between IP addresses and their hop-counts, the
server can distinguish spoofed IP packets from legitimate ones. Based on
this observation, we present a novel filtering technique, called Hop-Count
Filtering (HCF)—which builds an accurate IP-to-hop-count (IP2HC) map-
ping table—to detect and discard spoofed IP packets. HCF is easy to deploy,
as it does not require any support from the underlying network. Through
analysis using network measurement data, we show that HCF can identify
close to 90% of spoofed IP packets, and then discard them withlittle collat-
eral damage. We implement and evaluate HCF in the Linux kernel, demon-
strating its effectiveness with experimental measurements.

Keywords: IP spoofing, DDoS attacks, Hop-count, Host-based.

I. I NTRODUCTION

IP networks are vulnerable to source address spoofing [33].
For example, a compromised Internet host can spoof IP pack-
ets by using a raw socket to fill arbitrary source IP addresses
into packet headers. IP spoofing is commonly associated with
malicious network activities, such as Distributed Denial of Ser-
vice (DDoS) attacks [21], [27], [32], which block legitimate ac-
cess by either exhausting victim servers’ resources [7] or sat-
urating stub networks’ access links to the Internet [18]. Most
DDoS attacking tools spoof IP addresses by randomizing the 32-
bit source-address field in the IP header [12], [13], which con-
ceals attacking sources and dilutes localities in attacking traffic.
The recent “backscatter” study [32], which quantifies DoS ac-
tivities in the current Internet, has confirmed the wide-spread
use of randomness in spoofing IP addresses. Moreover, some
known DDoS attacks, such as smurf [8] and more recent DRDoS
(Distributed Reflection Denial of Service) attacks [18], [38], are
not possible without IP spoofing. Such attacks masquerade the
source IP address of each spoofed packet with the victim’s IP
address. Overall, DDoS attacks with IP spoofing are much more
difficult to defend.

To thwart DDoS attacks, researchers have taken two distinct
approaches:router-basedandhost-based. The router-based ap-
proach installs defense mechanisms inside IP routers to trace the
source(s) of attack [4], [30], [43], [45], [46], [49], or detect and
block attacking traffic [15], [23], [25], [29], [31], [36], [50], [56].

The work reported in this paper was supported in part by the NSF under
Grants CCR-0329629 & CNS-052392 and by the ONR under Grant No. N00014-
04-10726. This paper was previously presented in part at ACMCCS’2003.
The authors were with the Department of Electrical Engineering and Computer
Science, the University of Michigan, Ann Arbor, MI 48109-2122. Haining
Wang (hnw@cs.wm.edu) is now with College of William and Mary, Cheng Jin
(chengjin@cs.caltech.edu) with Caltech, and Kang G. Shin (kgshin@umich.edu)
with the University of Michigan.

However, these router-based solutions require not only router
support, but also coordination among different routers andnet-
works, and wide-spread deployment to reach their potential. In
contrast to the router-based approach, the host-based approach
can be deployed immediately. Moreover, end systems should
have a much stronger incentive to deploy defense mechanisms
than network service providers.

The current host-based approaches protect an Internet server
either by using sophisticated resource-management schemes [3],
[6], [40], [47] or by significantly reducing the resource con-
sumption of each request to withstand the flooding traffic such as
SYN cookies [5] and Client Puzzle [24], [53]. Without a mech-
anism to detect and discard spoofed IP traffic at the very begin-
ning of network processing, spoofed packets will share the same
resource principals and code paths as legitimate requests.Un-
der heavy attacks, current approaches are unlikely to be able to
sustain service availability due to resource depletion caused by
spoofed IP packets. Furthermore, most of existing host-based
solutions work at the transport-layer and above, and cannotpre-
vent the victim server from consuming CPU resource in servic-
ing interrupts from spoofed IP traffic. At high speed, incom-
ing IP packets generate many interrupts and can drasticallyslow
down the victim server [42] (also see Section VI). Therefore, the
ability to detect and filter spoofed packets at the IP layer with-
out any router support is essential to protection against DDoS
attacks. Since filtering spoofed IP packets is orthogonal tothe
resource-protection mechanisms at higher layers, it can beused
in conjunction with advanced resource-protection schemes.

In this paper, we propose a lightweight scheme that validates
incoming IP packets at an Internet server without using any cryp-
tographic methodology or router support. Our goal is not to
achieve perfect authentication, but to screen out most bogus traf-
fic with little collateral damage. The fundamental idea is touti-
lize inherent network information—that each packet carries and
an attacker cannot easily forge—to distinguish spoofed packets
from legitimate ones. The inherent network information we use
here is the number of hops a packet takes to reach its destina-
tion: although an attacker can forge any field in the IP header, he
cannot falsify the number of hops an IP packet takes to reach its
destination, which is solely determined by the Internet routing
infrastructure. The hop-count information is indirectly reflected
in the TTL field of the IP header, since each intermediate router
decrements the TTL value by one before forwarding a packet to
the next hop.

Based on hop-count, we propose a novel filtering technique,
calledHop-Count Filtering(HCF), to weed out spoofed IP pack-
ets at the very beginning of network processing, thus effectively
protecting victim servers’ resources from abuse. The rationale
behind HCF is that most randomly-spoofed IP packets, when
arriving at victims, do not carry hop-count values that are con-
sistent with the IP addresses being spoofed. As a receiver, an In-
ternet server can infer the hop-count information and checkfor
consistency of source IP addresses. Exploiting this observation,

2

HCF builds an accurate IP-to-hop-count (IP2HC) mapping table,
while using a moderate amount of storage, by clustering address
prefixes based on hop-count. To capture hop-count changes un-
der dynamic network conditions, we also devise a safe update
procedure for the IP2HC mapping table that prevents pollution
by attackers. The same pollution-proof method is used for both
initializing IP2HC mapping table and inserting additionalIP ad-
dresses into the table.

To minimize collateral damage, HCF has two running states,
learning andfiltering. Under normal conditions, HCF stays in
thelearningstate, watching for abnormal TTL behaviors without
discarding any packets. Even if a legitimate packet is incorrectly
identified as spoofed, it will not be dropped. Therefore, there
is no collateral damage in thelearningstate. Upon detection of
an attack, HCF switches to thefiltering state, in which HCF dis-
cards those IP packets with mismatching hop-counts. Through
analysis using network measurement data, we show that HCF
can recognize close to 90% of spoofed IP packets. In addition,
our hop-count-based clustering significantly reduces the number
of false positives.1 Thus, we can discard spoofed IP packets with
little collateral damage in thefiltering state. To ensure that the
filtering mechanism itself withstands attacks, our design is light-
weight and requires only a moderate amount of storage. We im-
plement HCF in the Linux kernel as the first step of incoming
packet processing at the IP layer. We evaluate the benefit of
HCF with experimental measurements and show that HCF is in-
deed effective in countering IP spoofing by providing significant
resource savings.

While HCF is simple and effective in thwarting IP spoofing, it
is not a complete solution to the generic DDoS problem. Rather,
it is only an important piece of the puzzle that weeds out spoofed
IP traffic. Like most other schemes in dealing with the DDoS
problem, HCF has its own limitations. An attacker may circum-
vent HCF entirely by not using spoofed traffic, or partially by
bombarding a victim with much more attacking traffic than seen
before. Also, a “determined” attacker may find a way to build an
IP2HC mapping table that is accurate enough for most spoofed
IP packets to evade HCF. Moreover, the actual deployment of
HCF requires further work in tuning its parameters and handling
the IP2HC inaccuracy caused by the Network Address Transla-
tor (NAT) boxes and possible hop-count instability. Neverthe-
less, HCF does greatly enhance the capability to counter DDoS
attacks by depriving an attacker of his powerful weapon, random
IP spoofing.

The remainder of the paper is organized as follows. Section II
presents the TTL-based hop-count computation, the pollution-
proof hop-count capturing mechanism, and the hop-count in-
spection algorithm, which are critical to HCF. Section III demon-
strates that the proposed HCF indeed works effectively in detect-
ing spoofed packets, based on a large set of previously-collected
traceroute data, and also robust against HCF-aware attack-
ers. Section IV presents the construction of the IP2HC map-
ping table. Section V details the two running states of HCF, the
inter-state transitions, and the placement of HCF. SectionVI de-
scribes our implementation and experimental evaluation ofHCF.
Section VII discusses related work. Finally, the paper concludes
with Section VIII.

1Those legitimate packets that are incorrectly identified asspoofed.

II. BASIC PRINCIPLES IN HCF

In this section, we describe the basic principles of HCF. Cen-
tral to HCF is the validation of the source IP address of each
packet via hop-count inspection. We first describe the hop-count
computation, and then present a safe update mechanism that cap-
tures the legitimate mappings between IP addresses and hop-
count values. Finally, we summarize HCF in the form of a high-
level inspection algorithm.

A. Hop-Count Computation

Since hop-count information is not directly stored in the IP
header, one has to compute it based on the final TTL value. TTL
is an 8-bit field in the IP header, originally introduced to spec-
ify the maximum lifetime of each packet in the Internet. Each
intermediate router decrements the TTL value of an in-transit IP
packet by one before forwarding it to the next-hop. The final
TTL value when a packet reaches its destination is, therefore,
the initial TTL decreased by the number of intermediate hops
(or simply hop-count). The challenge in hop-count computation
is that a destination only sees the final TTL value. It would have
been simple had all operating systems (OSes) used the same ini-
tial TTL value, but in practice, there is no consensus on the ini-
tial TTL value. Furthermore, since the OS for a given IP address
may change with time, we cannot assume a single static initial
TTL value for each IP address.

According to [14], most modern OSes use only a few selected
initial TTL values, 30, 32, 60, 64, 128, and 255. This set of initial
TTL values covers most of the popular OSes, such as Microsoft
Windows, Linux, variants of BSD, and many commercial Unix
systems. We observe that most of these initial TTL values arefar
apart, except between 30 and 32, 60 and 64, and between 32 and
60. Since Internet traces have shown that few Internet hostsare
apart by more than 30 hops [9], [10], which is also confirmed by
our own observation, one can determine the initial TTL valueof
a packet by selecting the smallest initial value in the set that is
larger than its final TTL. For example, if the final TTL value is
112, the initial TTL value is 128. To resolve ambiguities in the
cases of

�
30, 32�, �

60, 64�, and
�
32, 60�, we will compute a

hop-count value for each of the possible initial TTL values,and
accept the packet if there is a match with either of the possible
hop-counts.

The drawback of limiting the possible initial TTL values is
that packets from end-systems that use “odd” initial TTL values,
may be incorrectly identified as spoofed. This may happen if
a user switches OS from one that uses a “normal” initial TTL
value to another that uses an “odd” value. Since our filter starts to
discard packets only upon detection of a DDoS attack, such end-
systems would suffer only during an actual DDoS attack. The
study in [14] shows that the OSes that use “odd” initial TTLs are
typically older OSes. We expect such OSes to constitute a very
small percentage of end-hosts in the current Internet. Thus, the
benefit of deploying HCF should outweigh the risk of denying
service to those end-hosts during attacks.

B. Capturing Legitimate Hop-Count Values

To maintain an accurate IP2HC mapping table, we must cap-
ture valid hop-count mappings and legitimate changes in hop-
count, while foiling any attempt to slowly pollute the mapping

3

for each packet:
extract the final TTLTf and the source IP addressS;
infer the initial TTLTi ;
compute the hop-countHc = Ti � Tf ;
indexS to get the stored hop-countHs;
if (Hc

�� Hs)
the packet is spoofed;

else
the packet is legitimate;

Fig. 1. Hop-count inspection algorithm.

table. We can accomplish this through TCP connection estab-
lishment. The IP2HC mapping table should be updatedonly by
packets belonging to TCP connections in theestablished
state [54]. The three-way TCP handshake for connection setup
requires the active-open party to send an ACK (the last packet
in the three-way handshake) to acknowledge the passive party’s
initial sequence number. The zombie (or flooding source2) that
sends the SYN packet with a spoofed IP address will not re-
ceive the victim’s SYN/ACK packet and thus cannot complete
the three-way handshake.3 Using packets from established TCP
connections ensures that an attacker cannot slowly pollutea table
by spoofing source IP addresses.

While our pollution-proof mechanism provides safety, it may
be too expensive to inspect and update the IP2HC mapping table
with each newly-established TCP connection, since our update
function is on the critical path of TCP processing. We provide
a user-configurable parameterk to adjust the frequency of up-
dates (see Section V-A). Note that the pollution-proof mecha-
nism works to capture legitimate changes in hop-count as well
as hop-count values of new IP addresses.

C. Inspection and Validation Algorithm

Assuming that an accurate IP2HC mapping table is present
(see Section IV for details of its construction), Figure 1 outlines
the HCF procedure used to identify spoofed packets. The in-
spection algorithm extracts the source IP address and the final
TTL value from each IP packet. The algorithm infers the initial
TTL value and subtracts the final TTL value from it to obtain the
hop-count. The source IP address serves as the index into the
table to retrieve the correct hop-count for this IP address.If the
computed hop-count matches the stored hop-count, the packet
has been “authenticated”; otherwise, the packet is classified as
spoofed. Note that a spoofed IP address may happen to have the
same hop-count as the one from a zombie to the victim. In this
case, HCF will not be able to identify the spoofed packet. How-
ever, as shown in Section III-C.1, even with a limited range of
hop-count values, HCF is highly effective in identifying spoofed
IP addresses.

III. D OESHOP-COUNT FILTERING REALLY WORK?

The feasibility of HCF hinges on four factors: (1) diversityof
hop-count values, (2) effectiveness in detecting spoofed pack-

2In this paper, the terms zombie and flooding source are used interchangeably.
3There are known vulnerabilities with existing OSes where the initial sequence

numbers are fixed or easily predicted. However, this situation can be fixed with
a more intelligent selection algorithm.

ets, (3) robustness against evasions, and (4) stability of hop-
counts. In this section, we first assess whether valid hop-counts
to a server are diverse enough so that matching the hop-count
with the source IP address of each packet suffices to recognize
spoofed packets with a high probability. Second, we consider the
effectiveness of HCF against simple spoofing attacks. Third, we
evaluate the robustness of HCF by examining various ways an
attacker may circumvent filtering, and by showing that evasion
would be very difficult without severely limiting the damageor
exposing the attacking sources, which, in turn, makes the detec-
tion and blockage of the attacking traffic much easier. Finally,
the stability of hop-count values is discussed.

A. Diversity of Hop-Count Distribution

Since hop-count values have a limited range, typically be-
tween 1 and 30, multiple IP addresses may have the same hop-
count values. Consequently, HCF cannot recognize forged pack-
ets whose source IP addresses have the same hop-count value to
a destination as that of a zombie. It is prudent to examine hop-
count distributions at various locations in the Internet toensure
that the limited range doesn’t severely diminish the effectiveness
of HCF. A good hop-count distribution should have two proper-
ties: being symmetric around the mean value, and reasonably
diverse over the entire range. Symmetry is needed to take ad-
vantage of the full range of hop-count values, and diversityhelps
maximize the effectiveness of HCF.

Type Sample Number

.com sites 11
.edu sites 4
.org sites 2
.net sites 12

foreign sites 18

TABLE I

DIVERSITY OFtraceroute GATEWAY LOCATIONS.

To obtain actual hop-count distributions, we use the raw
traceroute data from 47 differenttraceroute gateways
in [11]. The locations oftraceroute gateways are diverse as
shown in Table I. Figure 2 shows the distribution of the number
of clients measured by each of the 47traceroute gateways.
Most of thetraceroute gateways measured hop-counts to
more than 40,000 clients.

0

0.2

0.4

0.6

0.8

1

26000 30000 34000 38000 42000

C
D

F

Number of Client IP Addresses

Client Population

Fig. 2. CDF of the number of client IP addresses.

4

We examined the hop-count distributions at alltracer-
oute gateways and found that the Gaussian distribution (bell-
shaped curve) could be a good first-order approximation, butwe
don’t make any claim whether hop-count distributions are indeed
Gaussian. Figures 3-6 show the hop-count distributions of four
selected sites: a well-connected commercial server, an educa-
tional institute, a non-profit organization, and one site outside of
the United States.

The mean valueµ of a Gaussian distribution specifies the cen-
ter of the bell-shaped curve. The standard deviationσ describes
the girth of the curve–the larger theσ, the more diverse the hop-
count distribution, and the more effective HCF will be. For each
given hop-count distribution, we use thenormfit function in
Matlab to computeµ andσ. We plot the CDF of the mean and
standard deviation of the fitted Gaussian function in Figures 7
and 8. We observe that most of theµ values fall between 14 and
19 hops, and theσ values between 3 and 5 hops. More impor-
tantly, in most distributions, the mode accounts for only 10% of
the total IP addresses, with the maximum and minimum of the
47 modes being 15% and 8%, respectively. Thus, the hop-count
distributions in our data set satisfy both the symmetry and diver-
sity properties to enable very effective filtering.

B. Effectiveness of HCF Against Simple Attacks

We now assess the effectiveness of HCF by asking the ques-
tion “what fraction of spoofed IP packets can be detected by the
proposed HCF?” We assume that potential victim servers know
the complete mapping between their client IP addresses and hop-
counts (to the victims themselves). In the next section, we will
discuss how to construct such mappings. Without loss of gen-
erality, we further assume that the attacker evenly dividesthe
flooding traffic among the flooding sources. To make the anal-
ysis tractable, we consider only static hop-counts. (The update
procedure that captures legitimate hop-count changes has been
shown in Section II-B.)

Most of the available DDoS attacking tools [12], [13] do not
alter the initial TTL values of packets. Thus, the final TTL value
of a spoofed packet will bear the hop-count between the flooding
source and the victim. We examine the effectiveness of HCF
against simple attackers that spoof source IP addresses while still
using the default initial TTL values at the flooding sources.To
assess the performance of HCF against such simple attacks, we
consider two scenarios: a single flooding source and multiple
flooding sources.

B.1 A Single Source

Figure 9 depicts the hop-count distributions seen at a hypo-
thetical server for both real client IP addresses and spoofed IP
addresses generated by a single flooding source. Since spoofed
IP addresses come from a single source, they all have an identical
hop-count. Hence, the hop-count distribution of spoofed packets
is a vertical bar of width one. The shaded area represents those
IP addresses — the fractionαh of total valid IP addresses — that
have the same hop-count to the server as the flooding source.
Thus, the fraction of spoofed IP addresses that cannot be de-
tected isαh, and the remaining fraction 1� αh will be identified
and discarded by HCF.

The attacker may happen to choose a zombie that is 16 or
17—the most popular hop-count values—hops away from the

victim as the flooding source. As shown in Section III-A, evenif
the attacker floods spoofed IP packets from such a zombie, HCF
should still identify nearly 90% of spoofed IP addresses. HCF
is highly effective against a single attacking source, reducing the
attacking traffic by one order of magnitude.

B.2 Multiple Sources

Distributed DoS attacks involve more than a single host. Sup-
pose there aren sources that flood a total ofF packets, and each
flooding source generatesF �n spoofed packets. We assume that
each flooding source generates traffic without altering the ini-
tial TTL value. If hi is the hop-count between the victim and
flooding sourcei, then the spoofed packets from sourcei that
HCF can identify isF

n �1� αhi �. The fraction,Z, of identifiable
spoofed packets generated byn flooding sources is:

Z �
F
n �1�αh1 �� ���� F

n �1�αhn �
F

� 1�
1
n

n

∑
i�1

αhi 	
This expression says that the overall effectiveness of having

multiple flooding sources is somewhere between that of the most
effective sourcei with the largestαhi and that of the least ef-
fective sourcej with the smallestαh j . Adding more flooding
sources does not diminish the ability of HCF to identify spoofed
IP packets. On the contrary, since hop-count distributionsfol-
low a Gaussian distribution, the existence of less effective flood-
ing sources (with smallαh’s) reduces the total volume of unde-
tectable attacking traffic.

C. Robustness Against HCF-aware Attackers

Once attackers become aware of HCF, they will attempt to
circumvent the hop-count inspection. The robustness of HCF
against such HCF-aware attackers is a serious concern to vic-
tim servers. In what follows, we first assess the effectiveness
of a simple evasion of randomizing initial TTL values. Then,
we show that in order to successfully evade HCF, more sophisti-
cated evasion attempts require a large amount of time and re-
sources, and elaborate planning, i.e., casual attackers are un-
likely to evade HCF.

C.1 Randomization of Initial TTLs

While the hop-count from a single flooding source to the vic-
tim is fixed, randomizing the initial TTL values will create an
illusion of attacking packets having many different hop-count
values at the victim server. Instead of using the default initial
TTL value, an attacker may simply randomize the initial TTL
values, hoping that many forged packets may happen to carry
matching final TTL values when they reach the victim.

An attacker may generate the full range of hop-counts from
1 to 30 by randomizing initial TTL values from the range
Id �
hz�30� Id � hz�1, wherehz is the hop-count from the flooding
source to the victim andId is the default initial TTL value at the
flooding source. The final TTL values,Tv’s, seen at the victim
areIr � hz, whereIr represents randomly-generated initial TTLs.
Sincehz is constant, ifIr follows a certain random distribution
R̃, thenTv’s follow the sameR̃ random distribution. Because the
victim derives the hop-count of a received IP packet based onits
Tv value, the perceived hop-count of a spoofed source IP address
is alsoR̃ randomly-distributed.

5

 0

 0.05

 0.1

 0.15

 0.2

 1 5 10 15 20 25 30

F
ra

ct
io

n
of

 IP
 A

dd
re

ss
es

Hop-Count

Gaussian fit
Real IP addresses

Fig. 3. Commercial.

 0

 0.05

 0.1

 0.15

 0.2

 1 5 10 15 20 25 30

F
ra

ct
io

n
of

 IP
 A

dd
re

ss
es

Hop-Count

Gaussian Fit
Real IP addresses

Fig. 4. Educational.

 0

 0.05

 0.1

 0.15

 0.2

 1 5 10 15 20 25 30

F
ra

ct
io

n
of

 IP
 A

dd
re

ss
es

Hop-Count

Gaussian Fit
Real IP addresses

Fig. 5. Non-profit.

 0

 0.05

 0.1

 0.15

 0.2

 1 5 10 15 20 25 30

F
ra

ct
io

n
of

 IP
 A

dd
re

ss
es

Hop-Count

Gaussian Fit
Real IP addresses

Fig. 6. Foreign.

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30

C
D

F

µ (hop)

Fig. 7. CDF of means of hop-count distributions.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

C
D

F

σ (hop)

Fig. 8. CDF of standard deviations of hop-count distributions.

As a simple example, we assume that the attacker generates
initial TTLs using uniform distribution. Figure 10 illustrates
the effect of randomized initial TTLs, wherehz

� 10. We use
a Gaussian curve withµ � 15 andσ � 3 to represent a typi-
cal hop-count distribution (see Section III-A) from real IPad-
dresses to the victim, and the box graph to represent the uni-
form hop-count distribution of spoofed IP addresses at the vic-
tim. The large overlap between the two graphs may appear to
indicate that our filtering mechanism is not effective. On the
contrary, uniformly-distributed random TTLs actually conceal
fewer spoofed IP addresses from HCF. For uniformly-distributed

TTLs, each spoofed source IP address has the probability 1�H
of having the matching TTL value, whereH is the number of
possible hop-counts. Consequently, for each possible hop-count
h, only αh�H fraction of IP addresses have correct TTL val-
ues. Overall, assuming that the range of possible hop-counts
is
hi � h j , wherei � j andH � j � i � 1, the fraction of spoofed
source IP addresses that have correct TTL values, is given as:

Z̄ � αhi

H � 	 	 	 �
αh j

H
� 1

H �
j

∑
k� i

αhk 	
Here we usēZ in place of 1� Z to simplify notation. In Fig-

6

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1 5 10 15 20 25 30

F
ra

ct
io

n
of

 IP
 A

dd
re

ss
es

Hop-Count

Real IP addresses
Forged IP addresses

Fig. 9. Hop-count distribution of IP addresses with a singleflood-
ing source.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 1 5 10 15 20 25 30

F
ra

ct
io

n
of

 IP
 A

dd
re

ss
es

Hop-Count

Real IP addresses
Forged IP addresses

Undetectable IP addresses

Fig. 10. Hop-count distribution of IP addresses with a single
flooding source, randomized TTL values.

ure 10, the range of generated hop-counts is between 10 and 20,
so H � 11. The summation will have a maximum value of 1,
thusZ̄ can be at most 1�H � 8	5%, which is represented by the
area under the shorter Gaussian distribution in Figure 10. In this
case, less than 10% of spoofed packets go undetected by HCF.

In general, an attacker could generate initial TTLs within the
range
hm�hn, based on a certaiñR distribution, where the frac-
tion of IP addresses with hop-counthk is phk. If the fraction of
the real IP addresses that have a hop-count ofhk is αhk, then the
fraction of the spoofed IP packets that will not be caught by HCF
is:

Z̄ �
n

∑
k�m

αhk � phk 	

The term inside the summation simply states that onlyphk frac-
tion of IP addresses with hop-counthk can be spoofed with
matching TTL values. It is not difficult to see that in order
to maximizeZ̄, an attacker must generate spoofed IP addresses
with the most popular hop-count,hk, for whichαhk is the largest
among allαs. Thus, this “more” sophisticated attack is no more
threatening than the simple attacks in Section III-B.1.

A more rigorous mathematical analysis of HCF’s robustness
against randomized TTL attacks is given in Appendix I.

C.2 Learning of Hop-Count Values

A successful evasion requires that HCF-aware attackers cor-
rectly set an appropriate initial TTL value for each spoofed
packet. Without loss of generality, we assume the same initial
TTL value I for all Internet hosts. A packet from a flooding
source, which ishz hops away from the victim, has a final TTL
value of I � hz. In order for the attacker to generate spoofed
packets from this flooding source without being detected, the
initial TTL value of each packet must be set toI � � I � �hs� hz�,
wherehs is the hop-count from the spoofed IP address to the vic-
tim. Each spoofed packet would then have the correct final TTL
value,I � �hs� hz� � hz

� I � hs, when it reaches the victim.
An attacker may easily learn the hop-count,hz, from a zombie

to the victim by runningtraceroute. However, randomly se-
lecting the source address foreachspoofed IP packet [12], [13]
makes it extremely difficult, if not impossible, for the attacker to
learnhs. To obtain the correcths values for all spoofed packets
sent to the victim, the attacker has to builda priori an IP2HC

mapping table that covers the entire spoofed IP address space.
This is much more difficult than building an IP2HC mapping ta-
ble at the victim, since the attacker cannot observe the finalTTL
values of normal traffic at the victim. For an attacker to build
such an IP2HC mapping table, he may have to compromise at
least one end-host behind every stub network whose IP addresses
are in the random IP address space, and performtraceroute
to geths for the corresponding IP2HC mapping entry. Even if
the attacker probes only one host per stub network, with a large
IP spoofing space, the probing activity will take considerable
amount of time. Moreover, network administrators are alertto
unusual access patterns or probing attempts, it would require an
excessive amount of effort to coordinate the probing attempts
with impunity. Without the correcths values, the attacker cannot
fabricate the appropriate initial TTL values to conceal forgery.

Without compromising end-hosts, an attacker may compute
hop-counts of to-be-spoofed IP addresses based on an existing
router-level topology of the Internet, and the underlying rout-
ing algorithms and policies. The recent Internet mapping efforts
such as Internet Map [9], Mercator [20], Rocketfuel [48], and
Skitter [10] projects, may make the approach plausible. How-
ever, the current topology mappings put together snapshotsof
various networks measured at different times. Thus-produced
topology maps are generally time-averaged approximationsof
actual network connectivity. More importantly, inter-domain
routing in the Internet is policy-based, and the routing policies
are not disclosed to the public. The path, and therefore the hop-
count, between a source and a destination is determined by rout-
ing policies and algorithms that are often unknown. Even if an
attacker has accurate information of the Internet topology, he
cannot obtain the correct hop-counts based on network connec-
tivity alone. We believe that the quality of network maps will
improve with better mapping technology, but we do not antici-
pate any near-term advance that can lead to accurate hop-counts
based on just Internet topology maps.

Instead of spoofing randomly-selected IP addresses, the at-
tacker may choose to spoof IP addresses from a set of already-
compromised machines that are much smaller in number than
232, so that he can measure allhs’s and fabricate appropriate ini-
tial TTLs. However, this reduces the attacker’s ability to launch
a successful attack in several ways. First, the list of would-be
spoofed source IP addresses is greatly reduced, which makesthe

7

detection and removal of flooding traffic much easier. Second,
source addresses of spoofed IP packets reveal the locationsof
compromised end-hosts, which makes IP traceback much eas-
ier. Third, the most popular distributed attacking tools, including
mstream, Shaft, Stacheldraht, TFN, TFN2k, Trinoo and Trinity,
generate randomized IP addresses in the space of 232 for spoof-
ing [12], [13]. Thus, the attacker must now modify the available
attacking tools, which may be difficult for an unsophisticated at-
tacker.

Overall, although it is not difficult to obtain the appropriate
initial TTL for a single IP address, the attacker has to spenda
significant amount of time and effort to achieve accurate hop-
count information for a large IP spoof space. While HCF cannot
eliminate DDoS attacks, it will make it much harder for them to
succeed.

D. Hop-Count Stability

The stability in hop-counts between an Internet server and its
clients is crucial for HCF to work correctly and effectively. Fre-
quent changes in the hop-count between the server and each of
its clients not only lead to excessive mapping updates, but also
greatly reduce filtering accuracy when an out-of-date mapping is
in use during attacks.

Hop-count stability is dictated by the end-to-end routing be-
haviors in the Internet. According to the study of end-to-end
routing stability in [37], the Internet paths were found to be
dominated by a few prevalent routes, and about two thirds of
the Internet paths studied were observed to have routes persist-
ing for either days or weeks. To confirm these findings, we use
dailytraceroutemeasurements taken at ten-minute intervals
among 113 sites [16] from January 1st to April 30th, 2003. We
observed a total of 10,814 distinct one-way paths, a majority of
which had 12,000 traceroute measurements each over the five-
month period. In these measurements, most of the paths experi-
enced very few hop-count changes: 95% of the paths had fewer
than five observable daily changes.

Furthermore, recent Internet experiments [28], [41] have
shown that, despite the large number of routing updates, (1)a
large fraction of destination prefixes have remarkably stable Bor-
der Gateway Protocol (BGP) routes; (2) popular prefixes tendto
have stable BGP routes for days or weeks; and (3) a vast majority
of BGP instability stems from a small number of unpopular des-
tinations. Within a single domain, a case study of intra-domain
routing behavior [44] indicates that the intra-domain topology
changes are due mainly to external changes4 and no network-
wide instability is observed.

Therefore, it is reasonable to expect hop-counts to be stable in
the Internet. Moreover, the proposed filter contains a dynamic
update procedure to capture hop-count changes as discussedin
Section IV-B.

IV. CONSTRUCTION OFIP2HC MAPPING TABLE

We have shown that HCF can remove nearly 90% of spoofed
traffic with an accurate mapping between IP addresses and hop-
counts. Thus, building an accurate IP2HC mapping table is criti-
cal to detect the maximum number of spoofed IP packets. In this

4Here the external changes are the routing updates conveyed by external link-
state advertisements [44].

64/26 20

0/24

0/25

128/25

0/26

64/26

128/26

192/26

0/27

32/27

64/27

96/27

128/27

160/27

192/27

224/27

16 21

17 20

26 20

56 20

57 21

58 20

59 21

62 20

79 20

105 20

111 20

128 20

200 20

218 20

227 20

240 20

245 20

24/29 20

60/30 20

128/25 20

Fig. 11. An example of hop-count clustering.

section, we detail our approach to constructing a table. Ourob-
jectives in building a table are: (1) accurate IP2HC mapping, (2)
up-to-date IP2HC mapping, and (3) moderate storage require-
ment. By clustering address prefixes based on hop-counts, we
can build accurate IP2HC mapping tables and maximize the ef-
fectiveness of HCF without storing the hop-count for each IP
address.

A. IP Address Aggregation

Ideally, the IP2HC mapping table has one entry for each valid
IP address. However, this will consume a very large amount of
memory, and it is unlikely that an Internet server will receive le-
gitimate requests from all live IP addresses in the Internet. By
aggregating IP address, we can reduce the space requirementof
IP2HC mapping significantly. More importantly, with IP address
aggregation, it is sufficient to capture the hop-count valueof
one IP address from each subnet in order to build a complete
HCF mapping table. In this following, we present and evaluate
the techniques for IP address aggregation in constructing IP2HC
mapping tables.

A.1 Aggregation Techniques

Aggregating hosts according to address prefix, especially the
24-bit address prefix, is a common method. It is straightfor-
ward to implement in practice and can offer fast lookup with
an efficient implementation. Assuming an array with one-byte
hop-count entry per network prefix, the storage requirementis
224 bytes or 16 MB. The memory requirement is modest com-
pared to contemporary servers which are typically equippedwith
multi-gigabytes of memory. Under this setup, the lookup op-
eration consists of computing a 24-bit address prefix from the
source IP address in each packet and indexing it into the map-
ping table to find the right hop-count value. For systems with
limited memory, the HCF mapping table can be implemented as
a hash-table of prefixes of known clients. While 24-bit aggrega-
tion may not be the most accurate, it is a certainly a deployable
solution.

Since IP addresses within each 24-bit address prefix may be
allocated to different physical networks, these hosts are not nec-
essarily co-located and most likely don’t have identical hop-
counts. To obtain a more accurate IP2HC mapping, one can

8

further divide IP addresses within each 24-bit prefix into smaller
clusters based on hop-count. Using a binary tree, we can clus-
ter IP addresses with the same hop-count. The leaves of the tree
represent the 254 (excluding the network address and the subnet
mask) valid IP addresses inside a 24-bit address prefix. In each
iteration, we examine two sibling nodes and aggregate the two
nodes as long as they share a common hop-count, or one of them
is empty. If aggregation is possible, the parent node will have the
same hop-count as the children. We can thus find the largest pos-
sible aggregation for a given set of IP addresses. Figure 11 shows
an example of clustering a set of IP addresses (with the last octet
shown) by their hop-counts using the aggregation tree (showing
the first four levels). For example, the IP address range, 128to
245, is aggregated into a 128/25 prefix with a hop-count of 20,
and the three IP addresses, 79, 105, and 111 are aggregated into
a 64/26 prefix with a hop-count of 20. We are able to aggregate
11 of 17 IP addresses into four network prefixes. The remaining
ones must be stored as individual IP addresses.

Based on the BGP routing table information, a network-aware
clustering technique [26] has been proposed to identify a group
of Web clients that are topologically close to each other and
likely to be under a single administration. In contrast, hop-count
clustering is self-reliant, and the IP addresses within thesame
cluster may not be topologically close to each other while they
have the same hop-count to the victim server.

To understand whether our clustering method improves HCF
over the simpler 24-bit aggregation, we compare the filtering
accuracies of mapping tables built under different aggregation
techniques.

A.2 Evaluation of Filtering Accuracy

We treat eachtraceroute gateway (Section III-A) as a
“web server,” and its measured IP addresses as clients to this
web server. We build a table based on the set of client IP ad-
dresses at each web server and evaluate the filtering accuracy un-
der each aggregation method. We assume that the attacker gen-
erates packets by randomly selecting source IP addresses among
legitimate clients. We further assume that the attacker knows the
general hop-count distribution for each web server and usesit to
randomly generate a hop-count for each spoofed packet. This
is the most effective DDoS attack that an attacker can launch
without learning the exact IP2HC mapping.

We use the percentages of false positives and false negatives
to measure filtering accuracy. False positives are those legitimate
client IP addresses that are incorrectly identified as spoofed.
False negatives are spoofed IP addresses that go undetectedby
HCF. A good aggregation method should minimize both.

Under each aggregation method, we build an IP2HC mapping
table for each web server. Since a 24-bit prefix may contain
addresses with different hop-counts, we use the minimum hop-
count of all IP addresses inside the 24-bit network address as
the hop-count of the network. To filter an IP packet, the source
IP address is mapped into the proper table entry through pre-
fix matching, and the hop-count in the packet is checked against
the one stored in the table. Since 24-bit aggregation cannotpre-
serve hop-counts for all IP addresses within each address prefix,
we examine the performance of three types of filtering policies:
Strict Filtering, +1 Filtering, and +2 Filtering. Strict Filtering
drops packets whose hop-counts do not match those stored in

the table. +1 Filtering drops packets whose hop-counts differ
by more than one hop from those in the table, and +2 Filtering
drops packets whose hop-counts differ by more than two hops.
32-bit Strict Filtering is the ideal case where the mapping table
has one entry for each valid IP address. Packet filtering based on
a table built using hop-count clustering is calledCluster-based
Filtering.

Figure 12 presents the combined false positive and false neg-
ative results for the five filtering schemes: 32-bit Strict, 24-bit
Strict, 24-bit +1, 24-bit +2, and Clustering-based Filterings. The
x-axis is the percentage of false negatives, and they-axis is the
percentage of false positives. Each point in the figure represents
the pair of percentages for a single web server. We observe that
the 24-bit strict filtering yields a similar percentage of false neg-
atives as 32-bit Strict Filtering, only 5% of false negatives. This
is because the percentage of false negatives is determined by the
distribution of hop-counts, and 24-bit aggregation does not alter
the hop-count distribution. However, under 24-bit Strict Filter-
ing, most web servers suffer about 10% of false positives, while
the percentage of false positives under 32-bit Strict Filtering is
zero. As we relax the filtering criterion as in 24-bit +1/+2 Filter-
ing, false positives of 24-bit aggregation are halved whilefalse
negatives approximately doubled. If one desires a simpler imple-
mentation than Cluster-based Filtering, +1 Filtering under 24-bit
aggregation offers a reasonable compromise.

With hop-count-based clustering, we never aggregate IP ad-
dresses that do not share the same hop-count. Hence, we can
eliminate false positives as long as we update the mapping table
when client hop-counts change. As shown in Figure 12, where
the points of Clustering-based Filtering overlap with those of 32-
bit Strict Filtering, Clustering-based Filtering has nearly identi-
cal performance as 32-bit Strict Filtering.

Compared with the 24-bit aggregation, the clustering ap-
proach is more accurate but consumes more memory. Figure 13
shows the number of entries in the IP2HC mapping for each web
server used in our experiments. Thex-axis is the web server ID,
ranked according to the number of client IP addresses, and they-
axis is the number of table entries. The number of entries under
Cluster-based Filtering does not include the intermediatenodes
used to generate the mapping, e.g., the internal nodes in theclus-
tering trees, because these internal nodes do not need to be stored
in the final mapping table. Since the clustering algorithm and the
aggregation tree are completely deterministic, we can easily re-
construct the tree on demand to reduce memory consumption.
Clustering-based Filtering increases the number of entries by no
more than 20% in all but one case, in comparison with the 24-bit
Strict Filtering. The 32-bit Strict Filtering, while having slightly
higher accuracy, increases the number of entries by at least67%.

B. Table Initialization and Update

Before running HCF, we need to initialize the IP2HC mapping
table and then keep the mapping table updated. The most critical
aspect in initializing and updating the IP2HC mapping tableis to
ensure that only valid IP2HC mappings are stored in the table.

B.1 Initialization and Addition of New Entries

To populate an IP2HC mapping table initially, the administra-
tor of an Internet server should collect traces of its clients to ob-
tain both IP addresses and the corresponding hop-count values.

9

 0

 5

 10

 15

 20

 25

 5 10 15 20 25 30

F
al

se
 P

os
iti

ve
 P

er
ce

nt
ag

e

False Negative Percentage

32-bit Strict Filtering
24-bit Strict Filtering

24-bit +1 Filtering
24-bit +2 Filtering

Clustering-based Filtering

Fig. 12. Accuracy of various filters. (Note that the points of
Clustering-based Filtering overlap with those of 32-bit Strict
Filtering.)

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 5 10 15 20 25 30 35 40 45

H
F

T
 E

nt
rie

s

Traceroute Gateway Rank

32-bit Strict Filtering
24-bit Strict Filtering

Clustering-based Filtering

Fig. 13. IP2HC mapping table size.

The initial collection period should be long enough to ensure
good filtering accuracy even at the very beginning, and the du-
ration should depend on the amount of daily traffic the serveris
receiving. For a popular site such ascnn.com or espn.com,
a collection period of a few days could be sufficient, while for a
lightly-loaded site, a few weeks might be more appropriate.

After the initial population of the mapping table and activa-
tion, HCF will continue adding new entries to the mapping table
when requests with previously-unseen legitimate IP addresses
are sighted. Thus, over time, the IP2HC mapping table will cap-
ture the correct mapping between IP address and hop-count for
all clients of a server. This ensures that spoofed IP traffic can be
detected, and then discarded with little collateral damageduring
a DDoS attack.

B.2 Updating Hop-Counts

IP2HC mapping must be kept up-to-date as hop-counts of ex-
isting IP addresses change. The hop-count from a client to a
server could change as a result of relocation of networks, rout-
ing instability, or temporary network failures. Some of these
events are transient and therefore can be omitted, but longer-term
changes in hop-count must be captured.

Under 24-bit or 32-bit Strict Filtering, a table update involves
indexing the table using a given IP address and changing the in-
dexed table entry with a new hop-count. Under hop-count clus-
tering, an update, or adding a new node, may split a node or
merge two adjacent nodes on the existing hop-count clustering
tree. To carry out the update, one first allocates memory for a
new clustering tree. The new clustering tree has a fixed format
of depth eight, represented as an array of 511 elements. We pop-
ulate the array with nodes on the existing clustering tree with up-
dated hop-count(s). We can then repeat the procedure described
in Section IV-A.1. In addition, one may need to split an exist-
ing node because one of its two immediate child nodes now has
a different hop-count as clustering percolates up the tree.When
this happens, we replace the parent node with its two child nodes,
one having the new hop-count and the other retaining the origi-
nal hop-count.

Re-clustering should have a relatively small impact on system
performance for two reasons. First, each re-clustering instance is
a local event on a tree of at most 511 nodes. Second, since hop-
count changes are not frequent in the network as reported in [37]
and re-affirmed by our own limited observations, re-clustering

will probably occur infrequently in practice.

C. Hop-Count Ambiguity Caused by NATs

The existence of NAT boxes, some of which may connect mul-
tiple stub networks, could make a single IP address appear to
have multiple valid hop-counts at the same time. This may lower
the IP2HC mapping accuracy in the table. However, since a NAT
box enforces the assignment of a single source IP address to ev-
ery outgoing IP packet, this automatically prevents the zombies
behind NAT boxes from IP spoofing.

To cope with the hop-count ambiguity caused by NAT boxes,
a simple possible solution is to have NAT boxes reset the TTL
value of each outgoing IP packet to a default initial TTL. Then,
there will be a strict one-to-one mapping between the IP address
of a NAT box and a hop-count. While the computed hop-count
is the one from the NAT box, instead of the end-hosts behind it,
to the victim, this does not affect the filtering accuracy at all as
long as the victim maintains the same skewed hop-count as the
one computed from IP header. The drawback of this simple solu-
tion is the required modification at NAT boxes. However, since
NAT boxes must manipulate the IP headers of passing packets
anyway, the overhead induced by the proposed TTL reseting is
minor.

V. RUNNING STATES OFHCF

Since HCF causes delay in the critical path of packet process-
ing, it should not be active at all times. We therefore introduce
two running states inside HCF: thelearningstate captures legit-
imate changes in hop-count and detects the presence of spoofed
packets, and thefiltering state actively discards spoofed pack-
ets. By default, HCF stays in the learning state and monitorsthe
trend of hop-count changes without discarding packets. Upon
detection of a flux of spoofed packets, HCF switches to the fil-
tering state to examine each packet and discard spoofed IP pack-
ets. In this section, we discuss the details of each state andshow
that having two states can better protect servers against spoofed
IP traffic, while minimizing overhead.

A. Tasks in Two States

Figure 14 lists the tasks performed by each state. In the learn-
ing state, HCF performs the following tasks: sample incoming
packets for hop-count inspection, calculate the spoofed packet
counter, and update the IP2HC mapping table in case of legiti-

10

In the learningstate:
for eachsampledpacketp:

spoo f= IP2HC Inspect(p);
t = Average(spoo f);
if (spoo f)

if (t
�

T1)
Switch to thefiltering state;

Accept(p);

for thek-th TCP control blocktcb:
UpdateTable(tcb);

In thefiltering state:
for each packetp:

spoo f= IP2HC Inspect(p);
t = Average(spoo f);
if (spoo f)

Drop(p);
elseAccept(p);

if (t � T2)
Switch to thelearningstate;

Fig. 14. Operations in two HCF states.

mate hop-count changes. Packets are sampled at exponentially-
distributed intervals with meanm in either time or the number of
packets. The exponential distribution can be precomputed and
made into a lookup table for fast on-line access. For each sam-
pled packet, IP2HCInspect() returns a binary numberspoo f,
depending on whether the packet is judged as spoofed or not.
This is then used by Average() to compute an average spoof
countert per unit time. Whent is greater than a thresholdT1,
HCF enters the filtering state. HCF in the learning state willalso
update the IP2HC mapping table using the TCP control block of
everyk-th established TCP connection.

To minimize the overhead of hop-count inspection and dy-
namic update in the learning state, their execution frequencies
are adaptively chosen to be inversely proportional to the server’s
workload. We measure the server’s workload by the number
of established TCP connections. If the server is lightly-loaded,
HCF calls for IP2HC inspection and dynamic update more fre-
quently by reducingk and m, which determine the idle times
for table update and inspection, respectively. In contrast, for
a heavily-loaded server, bothk andm are increased. The two
thresholdsT1 andT2, used for detecting spoofed packets, should
also be adjusted based on load. The general guideline for set-
ting execution rates and thresholds with the dynamics of server’s
workload is given as follows:

Load� � Rates� � Threshold�

However, we only recommend these parameters to be user-
configurable. Their specific values depend on the requirement
of individual networks in balancing between security and per-
formance.

HCF in the filtering state performs a similar set of tasks as in
the learning state. The key difference is that HCF in the filtering

state must examine every packet (instead of sampling only a sub-
set of packets) and discards spoofed packets, if any. HCF stays
in the filtering state as long as a certain number of spoofed IP
packets are detected. When the ongoing spoofing ceases, HCF
switches back to the learning state. This is accomplished by
checking the spoof countert against another thresholdT2, which
should be smaller thanT1 for better stability. HCF should not
alternate between the learning and filtering states whent fluctu-
ates aroundT1. Making the second thresholdT2 � T1 avoids this
instability. Note that HCF’s filtering accuracy is independent of
the settings ofT1 andT2.

In our filtering accuracy experiments, we have assumed that
the IP2HC mapping table holds the complete IP addresses of
clients. However, in reality, there are always new requestscom-
ing in from unseen address prefixes, regardless of how well a
mapping table is initialized or kept up-to-date. To protectagainst
attacking traffic that uses unseen IP addresses, we must drop
all packets that have no corresponding entries in the table—
the functionIP2HC Inspect returns true ifp doesn’t exist
in the table. While undesirable, HCF ensures that legitimate re-
quests from known IP addresses are still served during an attack.
Clearly, such collateral damage can be made very low by care-
fully aggregating IP addresses and diligently populating an HCF
mapping table over a long period of time.

B. Blocking Bandwidth Attacks

To protect server resources such as CPU and memory, HCF
can be installed at a server itself or at any network device near
the servers, i.e., inside the ‘last-mile’ region, such as the fire-
wall of an organization. However, this scheme will not be effec-
tive against DDoS attacks that target the bandwidth of a network
to/from the server. The task of protecting the access link ofan
entire stub network is more complicated and difficult because
the filtering has to be applied at the upstream router of the ac-
cess link, which must involve the stub network’s ISP.

The difficulty in protecting against bandwidth flooding is that
packet filtering must be separated from detection of spoofed
packets as the filtering has to be done at the ISP’s edge router.
One or more machines inside the stub network must run HCF
and actively watch for traces of IP spoofing by always staying
alert. In addition, at least one machine inside the stub network
needs to maintain an updated HCF table since only end-hosts can
see established TCP connections. Under an attack, this machine
should notify the network administrator who then coordinates
with the ISP to install a packet filter based on the HCF table
on the ISP’s edge router. Our two running-state design makes
it natural to separate these two functions — detection and filter-
ing of spoofed packets. Once the HCF table is enabled at the
ISP’s edge router, most spoofed packets will be intercepted, and
only a very small percentage of the spoofed packets that slip
through HCF, will consume bandwidth. In this case, having two
separable states is crucial since routers usually cannot observe
established TCP connections and use the safe update procedure.

C. Staying “Alert” to DRDoS Attacks

In DRDoS attacks, an attacker forges IP packets that contain
legitimate requests, such as DNS queries, by setting the source
IP addresses of these spoofed packets to the actual victim’sIP
address. The attacker then sends these spoofed packets to a large

11

number of reflectors. Each reflector only receives a moderate
flux of spoofed IP packets so that it can easily sustain the avail-
ability of its normal service. The usual intrusion detection meth-
ods based on the ongoing traffic volume or access patterns may
not be sensitive enough to detect the presence of such spoofed
traffic. In contrast, HCF specifically looks for IP spoofing, so
it will be able to detect attempts to fool servers into actingas
reflectors. Although HCF is not perfect and some spoofed pack-
ets may still slip through the filter, HCF can detect and intercept
enough of the spoofed packets to thwart DRDoS attacks.

VI. RESOURCESAVINGS

This section details the implementation of a proof-of-concept
HCF inside the Linux kernel and presents its evaluation on a real
testbed. For HCF to be useful, the per-packet overhead must be
much lower than the normal processing of an IP packet. In addi-
tion, since HCF operates at the IP layers, spoofed packets, even
when detected, will still consume CPU cycles due to interrupt
handling and data link layer processing. We justify the deploy-
ment of HCF in practice by measuring the per-packet overhead
of HCF and the amount of resource savings when HCF is active.

A. Implementing the Hop-Count Filter

To validate the efficacy of HCF in a real system, we implement
a test module inside the Linux kernel. The test module resides in
the IP packet receive function,ip rcv. To minimize the CPU
cycles consumed by spoofed IP packets, we insert the filtering
function before the code segment that performs the expensive
checksum verification. Our test module has the basic data struc-
tures and functions to support search and update operationsto
the hop-count mapping.

The hop-count mapping is organized as a 4096-bucket hash
table with chaining to resolve collisions. Each entry in thehash
table represents a 24-bit address prefix, and it uses a binarytree
to cluster hosts within the single 24-bit address prefix. Search-
ing for the hop-count of an IP address consists of locating the
entry for its 24-bit address prefix in the hash table, and thenfind-
ing the proper cluster that the IP address belongs to in the tree.
Given an IP address, HCF computes the hash key by XORing
the upper and lower 12-bits of the first 24 bits of the source IP
address. Since 4096 is relatively small compared to the set of
possible 24-bit address prefixes, collisions are likely to occur.
To estimate the average size of a chained list, we hash the client
IP addresses from [11] into the 4096-bucket hash table to find
that, on average, there are 11 entries on a chain, with the max-
imum being 25. Thus, we use fixed 11-entry chained lists. We
determine the size of the clustering tree by choosing a minimum
clustering unit of four IP addresses, so the tree has a depth of six
(26 � 64). This binary tree can then be implemented as a linear
array of 127 elements. Each element in this array stores the hop-
count value of a particular clustering. We set the array element
to be the hop-count if clustering is possible, and zero otherwise.
The clustering overhead has not yet been evaluated.

To implement table update, we insert the function call into the
kernel TCP code past the point where the three-way handshake
of TCP connection is completed. For everyk-th established TCP
connection, the update function takes the argument of the source
IP address and the final TTL value of the ACK packet that com-
pletes the handshake. Then, the function searches the IP2HC

Scenarios with HCF without HCF
avg min avg min

TCPSYN 388 240 7507 3664
TCPopen+close 456 264 18002 3700

ping 64B 396 240 20194 3604
ping flood 358 256 20139 3616

TCP bulk 443 168 6538 3700
UDP bulk 490 184 6524 3628

TABLE II

CPUOVERHEAD OFHCF AND NORMAL IP PROCESSING.

mapping table for an entry that corresponds to this source IPad-
dress, and will either overwrite the existing entry or create a new
entry for a first-time visitor.

B. Experimental Evaluation

For HCF to be useful, the per-packet overhead must be much
lower than the normal processing of an IP packet. We exam-
ine the per-packet overhead of HCF by instrumenting the Linux
kernel to time the filtering function as well as the critical path in
processing IP packets. We use the built-in Linux macrordtscl
to record the execution time in CPU cycles. While we cannot
generalize our experimental results to predict the performance
of HCF under real DDoS attacks, we can confirm whether HCF
provides significant resource savings.

We set up a simple testbed of two machines connected to a
100 Mbps Ethernet hub. A Dell Precision workstation with 1.9
GHz Pentium 4 processor and 1 GB of memory, simulates the
victim server where HCF is installed. A second machine gener-
ates various types of IP traffic to emulate incoming attack traffic
to the victim server. To minimize the effect of caches, we ran-
domize each hash key to simulate randomized IP addresses to
hit all buckets in the hash table. For each hop-count look-up,
we assume the worst case search time. The search of a 24-bit
address prefix traverses the entire chained list of 11 entries, and
the hop-count lookup within the 24-bit prefix traverses the entire
depth of the tree.

We generate two types of traffic, TCP and ICMP, to emulate
flooding traffic in DDoS attacks. In the case of flooding TCP
traffic, we use a modified version oftcptraceroute [1] to
generate TCP SYN packets to simulate a SYN flooding attack.
In addition, we also repeatedly open a TCP connection on the
victim machine and close it right away, which includes sending
both SYN and FIN packets. Linux delays most of the process-
ing and the establishment of the connection control block until
receiving the final ACK from the host that does the activeopen.
Since the processing to establish a connection is included in our
open + close experiment, the measured critical path may be
longer than that in a SYN flooding attack. To emulate ICMP at-
tacks, we run two experiments of single-streampings. The first
uses default 64-byte packets at 10 ms intervals, and the second
usesping flood (ping -f) with the default packet size of 64
bytes and sends packets as fast as the system can transmit. To
understand the impact of HCF on normal IP traffic, we also con-
sider bulk data transfers under both TCP and UDP. We compare
the per-packet overhead without HCF with the per-packet over-
head of the filtering function in Table II.

We present the recorded processing times in CPU cycles in
Table II. The column under ’with HCF’ lists the execution times
of the filtering function. The column under ‘without HCF’ lists
the packet processing times without HCF. Each row in the ta-

12

ble represents a single experiment, and each experiment is run
with a large number (� 40,000) of packets to compute the av-
erage number of cycles. We present both the minimum and the
average numbers. There exists a difference between averagecy-
cles and minimum cycles for two reasons. First, some packets
take longer to process than others, e.g., a SYN/ACK packet takes
more time than a FIN packet. Second, the average cycles may in-
clude lower-level interrupt processing, such as input processing
by the Linux Ethernet driver. We observe that, in general, the fil-
tering function uses significantly fewer cycles than the emulated
attack traffic, at least an order of magnitude less. Consequently,
HCF should provide significant resource savings by detecting
and discarding spoofed traffic. Moreover, for both TCP and UDP
bulk transfers, the CPU overhead induced by HCF is small (less
than 7%). Note that the processing of regular packets takes fewer
cycles than the emulated attack traffic. We attribute this toTCP
header prediction and the much simpler protocol processingin
UDP. It is fair to say that the filtering function adds only a small
overhead to the processing of legitimate IP traffic. However, this
is by far more than compensated by not processing spoofed traf-
fic.

To illustrate the potential savings in CPU cycles, we compute
the actual resource savings we can achieve, when an attacker
launches a spoofed DDoS attack against a server. Given attack
and legitimate traffic,a andb, in terms of the fraction of total
traffic per unit time, the average number of CPU cycles con-
sumed per packet without HCF isa � tD � b � tL, wheretD andtL
are the per-packet processing times of attack and legitimate traf-
fic, respectively. The average number of CPU cycles consumed
per packet with HCF is:

�1� α� �a � tDF � α �a � tD � b � �tL � tLF � �
with tDF andtLF being the filtering overhead for attack and legit-
imate traffic, respectively, andα the percentage of attack traffic
that we cannot filter out. Let’s also assume that the attackeruses
64-byteping traffic to attack the server that implements HCF.
The results for variousa, b, andα parameters are plotted in Fig-
ure 15. Thex-axis is the percentage of total traffic contributed
by the DDoS attack, namelya. They-axis is the number of CPU
cycles saved as the percentage of total CPU cycles consumed
without HCF. The figure contains a number of curves, each cor-
responding to anα value. Since the per-packet overhead of the
DDoS traffic (20,194) is much higher than TCP bulk transfer
(6,538), the percentage of the DDoS traffic that HCF can filter,

�1 � α�, essentially becomes the sole determining factor in re-
source savings. As the composition of total traffic varies, the
percentage of resource savings remains essentially the same as

�1� α�.
VII. R ELATED WORK

Several efficient mechanisms [17], [19], [35], [52] are avail-
able to detect DDoS attacks. In addition, researchers have also
used the distribution of TTL values seen at servers to detectab-
normal load spikes due to DDoS traffic [39]. The Razor team
at Bindview built Despoof [2], which is a command-line anti-
spoofing utility. Despoof compares the TTL of a received packet
that is considered “suspicious,” with the actual TTL of a test
packet sent to the source IP address, for verification. However,

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

P
er

ce
nt

ag
e

of
 s

av
ed

 C
P

U
 c

yc
le

s

Percentage of DDoS traffic

Filtering 90% of DDoS Traffic
Filtering 70% of DDoS Traffic
Filtering 50% of DDoS Traffic

Fig. 15. Resource savings by HCF.

Despoof requires the administrator to determine which packets
should be examined, and to manually perform this verification.
Thus, the per-packet processing overhead is prohibitivelyhigh
for weeding out spoofed traffic in real time.

In parallel with, and independently of, our work, the possi-
bility of using TTL for detecting spoofed packet was discussed
in [51]. Their results have shown that the final TTL values from
an IP address were predictable and generally clustered around
a single value, which is consistent with our observation of hop-
counts being mostly stable. However, the authors did not provide
a detailed solution against spoofed DDoS attacks. Neither did
they provide any analysis of the effectiveness of using TTL val-
ues, nor the construction, update, and deployment of an accurate
TTL mapping table. In this paper, we examine these questions
and develop a deployable solution.

There are a number of recent router-based filtering techniques
to lessen the effects of DDoS packets or to curb their propaga-
tions in the Internet. As a proactive solution to DDoS attacks,
these filtering schemes [15], [29], [36], [55], which must execute
on IP routers or rely on routers’ markings, have been proposed
to prevent spoofed IP packets from reaching intended victims.
The most straightforward scheme isingress filtering[15], which
blocks spoofed packets at edge routers, where address ownership
is relatively unambiguous, and traffic load is low. However,the
success of ingress filtering hinges on its wide-deployment in IP
routers. Most ISPs are reluctant to implement this service due to
administrative overhead and lack of immediate benefits to their
customers.

Given the reachability constraints imposed by routing and
network topology, router-based distributed packet filtering
(DPF) [36] utilizes routing information to determine whether an
incoming packet at a router is valid with respect to the inscribed
source and destination IP addresses in the packet. The experi-
mental results reported in [36] show that a significant fraction
of spoofed packets may be filtered out, and those spoofed pack-
ets that DPF fails to capture, can be localized into five candidate
sites that are easy to trace back.

To validate that an IP packet carries a true source address,
SAVE [29], a source address validity enforcement protocol,
builds a table of incoming source IP addresses at each router
that associates each of its incoming interfaces with a set ofvalid
incoming network addresses. SAVE runs on each IP router and
checks whether each IP packet arrives at the expected interface.
By matching incoming IP addresses with their expected receiv-

13

ing interfaces, the set of IP source addresses that any attacker
can spoof are greatly reduced.

Based on IP traceback marking, Path Identifier (Pi) [55] em-
beds a path fingerprint in each packet so that a victim can identify
all packets traversing the same path across the Internet, even for
those with spoofed IP addresses. Instead of probabilistic mark-
ing, marking in Pi is deterministic. By checking the marking
on each packet, the victim can filter out all attacking packets
that match the path signatures of already-known attacking pack-
ets. Pi is effective even if only half of the routers in the Internet
participate in packet marking. There also exist commercialsolu-
tions [22], [34] that block the propagation of DDoS traffic with
router support.

However, the main difference between our scheme and these
solutions is that HCF is an end-system mechanism that does not
requireany network support. This difference implies that our
solution is immediately deployable in the Internet. HCF works
well because no single entity controls the value of the TTL field,
and thus, destinations can use it to fingerprint legitimate IP pack-
ets. We speculate that end-host-based filtering can be much
more effective if intermediate routers could do more than merely
decrementing TTL by one.

VIII. C ONCLUSION AND FUTURE WORK

In this paper, we present a hop-count-based filtering scheme
that detects and discards spoofed IP packets to conserve system
resources. Our scheme inspects the hop-count of incoming pack-
ets to validate their legitimacy. Using only a moderate amount of
storage, HCF constructs an accurate IP2HC mapping table viaIP
address aggregation and hop-count clustering. A pollution-proof
mechanism initializes and updates entries in the mapping table.
By default, HCF stays in thelearningstate, monitoring abnormal
IP2HC mapping behaviors without discarding any packet. Once
spoofed DDoS traffic is detected, HCF switches to thefiltering
state and discards most of the spoofed packets.

By analyzing actual network measurements, we have shown
that HCF can remove 90% of spoofed traffic. Moreover, even if
an attacker is aware of HCF, he cannot easily circumvent HCF.
Our experimental evaluation has shown that HCF can be effi-
ciently implemented inside the Linux kernel. Our analysis and
experimental results have indicated that HCF is a simple andef-
fective solution in protecting Internet servers against spoofed IP
packets. Furthermore, HCF is readily deployable in end-systems
since it does not require any network support.

There are several issues that warrant further research. First, to
install the HCF system at a victim site for practical use, we need
a systematic procedure for setting the parameters of HCF, such
as the frequency of dynamic updates. Second, we would like to
build and deploy HCF in various high-profile server sites to see
how effective it is against real spoofed DDoS traffic.

REFERENCES

[1] Dave Andersen. tcptraceroute. Available:
http://nms.lcs.mit.edu/software/ron/.

[2] Razor Team at Bindview. Despoof, 2000. Available:
http://razor.bindview.com/tools/desc/despoofreadme.html.

[3] G. Banga, P. Druschel, and J. Mogul. Resource containers: A new facility
for resource management in server systems. InProceedings of USENIX
OSDI’99, New Orleans, LA, February 1999.

[4] S. M. Bellovin. ICMP traceback messages. InInternet Draft: draft-
bellovin-itrace-00.txt (work in progress), March 2000.

[5] D. J. Bernstein and Eric Schenk. Linux kernel SYN cookiesfirewall
project. Available: http://www.bronzesoft.org/projects/scfw.

[6] N. Bhatti and R. Friedrich. Web server support for tieredservices.IEEE
Network, 13(5), September/October 1999.

[7] CERT Advisory CA-96.21. TCP SYN flooding and IP spoofing, November
2000. Available: http://www.cert.org/advisories/CA-96-21.html.

[8] CERT Advisory CA-98.01. smurf IP denial-of-service attacks, January
1998. Available: http://www.cert.org/advisories/CA-98-01.html.

[9] B. Cheswick, H. Burch, and S. Branigan. Mapping and visualizing the
internet. InProceedings of USENIX Annual Technical Conference ’2000,
San Diego, CA, June 2000.

[10] K. Claffy, T. E. Monk, and D. McRobb. Internet tomography. In Nature,
January 1999. Available: http://www.caida.org/Tools/Skitter/.

[11] E. Cronin, S. Jamin, C. Jin, T. Kurc, D. Raz, and Y. Shavitt. Constrained
mirror placement on the internet.IEEE Journal on Selected Areas in Com-
munications, 36(2), September 2002.

[12] S. Dietrich, N. Long, and D. Dittrich. Analyzing distributed denial of ser-
vice tools: The shaft case. InProceedings of USENIX LISA’2000, New
Orleans, LA, December 2000.

[13] D. Dittrich. Distributed Denial of Service (DDoS) attacks/tools page.
Available: http://staff.washington.edu/dittrich/misc/ddos/.

[14] The Swiss Education and Research Network. De-
fault TTL values in TCP/IP, 2002. Available:
http://secfr.nerim.net/docs/fingerprint/en/ttldefault.html.

[15] P. Ferguson and D. Senie. Network ingress filtering: Defeating denial of
service attacks which employ IP source address spoofing. InRFC 2267,
January 1998.

[16] National Laboratory for Applied Network Research. Active measurement
project (amp), 1998-. Available: http://watt.nlanr.net/.

[17] M. Fullmer and S. Romig. The OSU flow-tools package and cisco netflow
logs, December 2000.

[18] S. Gibson. Distributed reflection denial of service. InTechni-
cal Report, Gibson Research Corporation, February 2002. Available:
http://grc.com/dos/drdos.htm.

[19] T. M. Gil and M. Poletter. MULTOPS: a data-structure forbandwidth
attack detection. InProceedings of USENIX Security Symposium’2001,
Washington D.C, August 2001.

[20] R. Govinda and H. Tangmunarunkit. Heuristics for internet map discovery.
In Proceedings of IEEE INFOCOM ’2000, Tel Aviv, Israel, March 2000.

[21] A. Hussain, J. Heidemann, and C. Papadopoulos. A framework for classi-
fying denial of service attacks. InProceedings of ACM SIGCOMM ’2003,
Karlsruhe, Germany, August 2003.

[22] Arbor Networks Inc. Peakflow DoS, 2002. Available:
http://arbornetworks.com/standard?tid=34&cid=14.

[23] J. Ioannidis and S. M. Bellovin. Implementing pushback: Router-based
defense against DDoS attacks. InProceedings of NDSS’2002, San Diego,
CA, February 2002.

[24] A. Juels and J. Brainard. Client puzzle: A cryptographic defense against
connection depletion attacks. InProceedings of NDSS’99, February 1999.

[25] A. D. Keromytis, V. Misra, and D. Rubenstein. SOS: Secure overlay ser-
vices. InProceedings of ACM SIGCOMM ’2002, Pittsburgh, PA, August
2002.

[26] B. Krishnamurthy and J. Wang. On network-aware clustering of web
clients. InProceedings of ACM SIGCOMM ’2000, Stockholm, Sweden,
August 2000.

[27] A. Kuzmanovic and E. W. Knightly. Low-rate TCP-targeted denial of ser-
vice attacks (the shrew vis themice and elephants. InProceedings of ACM
SIGCOMM ’2003, Karlsruhe, Germany, August 2003.

[28] C. Labovitz, A. Ahuja, and F. Jahanian. Experimental study of internet
stability and backbone failures. InProccedings of the 29th International
Symposium on Fault-Tolerant Computing, Madison, WI, June 1999.

[29] J. Li, J. Mirkovic, M. Wang, P. Reiher, and L. Zhang. SAVE: Source ad-
dress validity enforcement protocol. InProceedings of IEEE INFOCOM
’2002, New York City, NY, June 2002.

[30] J. Li, M. Sung, J. Xu, and L. Li. Large-scale ip tracebackin high-speed
internet: Practical techniques and theoretical foundation. In Proceedings
of IEEE Symposium on Security and Privacy, Oakland, CA, May 2004.

[31] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, and
S. Shenker. Controlling high bandwidth aggregates in the network. ACM
Computer Communication Review, 32(3), July 2002.

[32] D. Moore, G. Voelker, and S. Savage. Inferring internetdenial of service
activity. InProceedings of USENIX Security Symposium’2001, Washington
D.C., August 2001.

[33] Robert T. Morris. A weakness in the 4.2bsd unix TCP/IP software. In
Computing Science Technical Report 117, AT&T Bell Laboratories, Mur-
ray Hill, NJ, February 1985.

[34] Mazu Networks. Enforcer, 2002. [Online]. Available:
http://www.mazunetworks.com/products/.

14

[35] P. G. Neumann and P. A. Porras. Experience with EMERALD to DATE. In
Proceedings of 1st USENIX Workshop on Intrusion Detection and Network
Monitoring, April 1999.

[36] K. Park and H. Lee. On the effectiveness of route-based packet filtering for
distributed DoS attack prevention in power-law internets.In Proceedings
of ACM SIGCOMM ’2001, San Diego, CA, August 2001.

[37] V. Paxson. End-to-end routing behavior in the internet. IEEE/ACM Trans-
actions on Networking, 5(5), October 1997.

[38] V. Paxson. An analysis of using reflectors for distributed Denial-of-Service
Attacks. ACM Computer Communication Review, 31(3), July 2001.

[39] M. Poletto. Practical approaches to dealing with ddos attacks. In
NANOG 22 Agenda, May 2001. Available: http://www.nanog.org/mtg-
0105/poletto.html.

[40] X. Qie, R. Pang, and L. Peterson. Defensive programming: Using an an-
notation toolkit to build dos-resistant software. InProceedings of USENIX
OSDI’2002, Boston, MA, December 2002.

[41] J. Rexford, J. Wang, Z. Xiao, and Y. Zhang. BGP routing stability of
popular destinations. InProceedings of ACM Internet Measurement Work-
shop’2002, Marseille, France, November 2002.

[42] J. H. Salim, R. Olsson, and A. Kuznetsov. Beyond softnet. In Proceeding
of 5th Annual Linux Showcase & Conference, pages 165–172, November
2001.

[43] S. Savage, D. Wetherall, A. Karlin, and T. Anderson. Practical network
support for IP traceback. InProceedings of ACM SIGCOMM ’2000, Stock-
holm, Sweden, August 2000.

[44] A. Shaikh, C. Isett, A. Greenberg, M. Roughan, and J. Gottlieb. A case
study of OSPF behavior in a large enterprise network. InProceedings of
ACM Internet Measurement Workshop’2002, Marseille, France, November
2002.

[45] A. C. Snoren, C. Partridge, L. A. Sanchez, C. E. Jones, F.Tchakountio,
S. T. Kent, and W. T. Strayer. Hash-based IP traceback. InProceedings of
ACM SIGCOMM ’2001, San Diego, CA, August 2001.

[46] D. Song and A. Perrig. Advanced and authenticated marking schemes
for IP traceback. InProceedings of IEEE INFOCOM ’2001, Anchorage,
Alaska, March 2001.

[47] O. Spatscheck and L. Peterson. Defending against denial of service attacks
in Scout. InProceedings of USENIX OSDI’99, New Orleans, LA, February
1999.

[48] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP topologies with
rocketfuel. InProceedings of ACM SIGCOMM ’2002, Pittsburgh, PA, Au-
gust 2002.

[49] R. Stone. Centertrack: An IP overlay network for tracking DoS floods. In
Proceedings of USENIX Security Symposium’2000, Denver, CO, August
2000.

[50] M. Sung and J. Xu. IP traceback-based intelligent packet filtering: A novel
technique for defending against internet DDoS attacks. InProceedings of
of IEEE ICNP ’2002, Paris, France, November 2002.

[51] S. Templeton and K. Levitt. Detecting spoofed packets.In Proceedings
of The Third DARPA Information Survivability Conference and Exposition
(DISCEX III)’2003, Washington, D.C., April 2003.

[52] H. Wang, D. Zhang, and K. G. Shin. Detecting SYN flooding attacks. In
Proceedings of IEEE INFOCOM ’2002, New York City, NY, June 2002.

[53] X. Wang and M. Reiter. Defending against denial-of-service attacks with
puzzle auctions. InProceedings of IEEE Symposium on Security and Pri-
vacy, Oakland, CA, May 2003.

[54] G. R. Wright and W. R. Stevens.TCP/IP Illustrated, Volume 2. Addison-
Wesley Publishing Company, 1994.

[55] A. Yaar, A. Perrig, and D. Song. Pi: A path identificationmechanism
to defend against DDoS attacks. InProceedings of IEEE Symposium on
Security and Privacy, Oakland, CA, May 2003.

[56] D. Yau, J. Lui, F. Liang, and Y. Yam. Defending against distributed
denial-of-service attacks with max-min fair server-centric router throttles.
IEEE/ACM Transactions on Networking, 13(1), February 2005.

APPENDIX

I. A NALYSIS OF RANDOMIZED TTL ATTACKS AGAINST HCF

An attacker may somehow modify the initial TTL values, hoping that the
forged packets may carry matching hop-count values when they reach the victim.
Assuming that the attacker knows the range of valid hop-count

�
1�hM � to a given

victim server, an attacker may use initial TTLs in the range
�
Id � hz � hM � Id �

hz � 1�, wherehz is the hop-count from the flooding source to the victim andId
is the default initial TTL value at the flooding source. Thus,the randomization
of initial TTL values is the same as subtracting the right constant between 1 and
hM from Id � hz to give a matching IP2HC pair that HCF cannot detect.

Here, we study the scenario where for any given IP address, anattacker is only
able to select at random a hop-count value from the range

�
1�hM �. Without loss

of generality, we use the random variableX as the hop-count value the attacker
draws from a distributionPX �k��k � 1�2� ����hM .

The ability of an attacker to evade HCF can be measured by the probability
that the hop-count valueX embedded in a spoofed IP packet would match the
correct hop-count valueY, or P

�
X � Y�, using Bayes’ formula as follows:

P
�
X � Y� �

hM

∑
k	1

P
�
X � Y
Y � k� �P�

Y � k� �

whereP
�
Y � k� � PY �k��k � 1�2� ����hM , is the distribution of hop-count values

to the victim server.�X � k and �Y � k are two independent events. Thus,
P
�
X � Y
Y � k� � P

�
X � k� � PX �k�. We thus reduce the above equation to:

P
�
X � Y� �

hM

∑
k	1

PX �k� �PY �k��

The attacker would want to to maximize the summation over allpossiblePXs,
or equivalently, use the “best” distributionPX of hop-count values to fool HCF.

max
PX

hM

∑
k	1

PX �k� �PY �k��

This is a special case of a standard Linear Programming problem, but with
a very simple solution. We observe that there exists akM , for which PX �k� �
PX �kM � for all k. Therefore, we can provide an upper-bound for the maximization
as follows:

hM

∑
k	1

PX �k� �PY �k� �
hM

∑
k	1

PX �k� �PY �kM � � PY �kM �
hM

∑
k	1

PX �k� �

Since the sum∑hM
k	1 PX �k� � 1, it follows that the maximization is bounded

by PY �kM �:
hM

∑
k	1

PX �k� �PY �k� � PY �kM ��

One way to achieve this upper-bound is to draw from a distribution, where
PX �k� � 0 for all k �� kM , and PX �kM � � 1. We have shown that the mode
(PY �kM �) in our data collection is generally around 10%, so on average, only
10% of spoofed IP addresses can evade HCF.

