
Evasive Bots Masquerading as Human Beings on the Web

Jing Jin, Jeff Offutt

George Mason University

{jjin3, offutt}@gmu.edu

Nan Zheng

College of William and Mary

nzheng@cs.wm.edu

Feng Mao

Itron Inc

fengmao@acm.org

Aaron Koehl, Haining Wang

College of William and Mary

{amkoeh, hnw}@cs.wm.edu

Abstract—Web bots such as crawlers are widely used to
automate various online tasks over the Internet. In addition to
the conventional approach of human interactive proofs such as
CAPTCHAs, a more recent approach of human observational
proofs (HOP) has been developed to automatically distinguish
web bots from human users. Its design rationale is that
web bots behave intrinsically differently from human beings,
allowing them to be detected. This paper escalates the battle
against web bots by exploring the limits of current HOP-based
bot detection systems. We develop an evasive web bot system
based on human behavioral patterns. Then we prototype a
general web bot framework and a set of flexible de-classifier
plugins, primarily based on application-level event evasion. We
further abstract and define a set of benchmarks for measuring
our system’s evasion performance on contemporary web
applications, including social network sites. Our results show
that the proposed evasive system can effectively mimic human
behaviors and evade detectors by achieving high similarities
between human users and evasive bots.

Keywords-Web security, bot, machine learning, human ob-
servation proofs

I. INTRODUCTION

A web bot is a program that automatically and recursively

traverses web sites, fulfilling one of many possible online

tasks. Although automating online activity has improved the

intelligence, performance, and efficiency of online systems,

web bots also have significant negative impacts on Internet

service providers and users. For example, in August 2012 it

was reported that 80% of the clicks that a startup company

paid for came from Facebook bots [1]. These bots automat-

ically load pages and drive up advertisement costs, leading

to financial losses for the online vendors.

Human interactive proofs (HIPs) such as CAPTCHAs

are used in many web systems to distinguish bots from

humans. CAPTCHAs require a user to pass challenge-

response tests by either recognizing distorted characters

or selecting images. However, the interactive requirement

of CAPTCHAs makes them unsuitable for continuous and

passive monitoring, and its usage is mainly limited to one-

time authentication or registration. To make the bot detection

transparent to online users, human observational proofs

(HOPs) based approaches have also been developed [2], [3].

The design rationale behind HOP-based detection is that

human behavior is more complex than bot behavior, and their

interactions with the web application are also very different.

These HOP-based systems are able to accurately distinguish

bots from human users by identifying bot behaviors that dif-

fer intrinsically from human’s behaviors, such as keystrokes

and mouse movements.

From the perspective of web bot creators, some re-

searchers have proposed evasive bots [4], [5]. The goal of

evasive bots is to “poison” anomaly detectors and then evade

the bot detection systems. Given the aggressive nature of

web bots, we believe it is essential to understand the threat

of evasion against HOP-based defense. In particular, the web

bots that mimic human behavior patterns on the Web have

not yet been systematically studied. This paper explores

the limits of current HOP-based bot detection systems by

creating a new evasive bot system that masquerades as

human beings on the Web. Specifically, we characterize the

existing HOP-based web bot detectors and develop an eva-

sion framework based on human behavior patterns. Instead

of subverting a specific detection system, the major goal of

this study is to provide a systematic approach to evaluate and

explore the limits of current HOP-based detection systems,

and motivate online business to develop more advanced bot

detectors.

This paper makes three contributions. First, we charac-

terize web bot detection observation proofs that use web

application events, with the focus on the different events

and their statistics associated with the activities of bots and

human clients, such as timing and location. Second, we

propose a generative approach to build an evasive web bot

via adaptive human behavior learning. The proposed web

bot can mimic human behaviors to hide its activities within

legitimate user events; in other words, de-classifying bot-like

traffic. Third, we provide a practical framework for evasive

web bot design and implementation, which helps researchers

and engineers to explore the limitations of existing bot

detectors.

We have implemented a prototype of the proposed eva-

sive bots, and validated the power of our evasive bots by

measuring the similarity on various metrics from a set of

selected web representative applications. In our experiments,

we redefine the Kullback-Leibler (KL) distance formula

[6] to evaluate the effectiveness of the proposed evasive

model and algorithm. Our experimental results show that

the proposed evasive system can effectively mimic human

behaviors and achieve high similarities between human users



and evasive bots. Note that the purpose of our experimental

evaluation is not to show how successful our approach can

bypass a specific HOP-based detector, but to demonstrate

how close our proposed evasive bots are to normal human

users, which will ensure our approach to evade any existing

HOP-based detectors. To capture our proposed evasive bots,

future HOP-based detectors must introduce new features for

bot detection. Otherwise, even if future detectors further tune

up their classifiers, the detection of evasive bots will result

in many false positives, due to the very close behavioral

similarity between our evasive bots and human users, making

these fine-tuned detectors useless.

The remainder of this paper is organized as follows.

Section II characterizes bot detection, focusing on applica-

tion events. Section III proposes a generative approach for

evading bot detection. Section IV presents our framework to

develop evasive web bots. Section V evaluates the evasive

capability of the proposed evasive bots by testing them

in several detection benchmarks. Section VI reviews the

literature of bot detection and evasion, and finally Section

VII concludes the paper.

II. CHARACTERIZATION OF BEHAVIOR-BASED WEB

BOT DETECTION

Web browsers capture user action behaviors by generating

events on the web application such as keystrokes, mouse

motions, and clicks. The application events often trigger

traffic events that can be observed on the server. As Fig-

ure 1 shows, detectors can utilize both application events

and traffic events for anomaly detection by analyzing user

action events and classifying bot features in network traffic

characteristics. Since the traffic events are driven by the

application events, our goal is to study human input event

patterns and generalize behavior-based web bot detection

from the perspective of application events. We also discuss

traffic events but only for the purpose of filtering noise

during user action collection. We start with simple boolean

events, which identify bots by capturing certain unexpected

or expected human behaviors. Then, we examine a more

complicated scenario where bot detection relies on various

statistics of event metrics.

A. Detection Abstraction

Advanced bot detectors use machine learning to identify

important features. Let R denote the set of bot actions, and

H denote the set of human actions. We define human input

X , traffic events Y , and the decision maker function F ,

also called the binary classifier. Detectors learn and build

the classifier function F : (X,Y ) → {0, 1} from a training

set of (Xh, Yh) from H , compared with (Xr, Yr) generated

from R. The classification process is formulated as Z =
F (X,Y ), where Z represents the output of the classifier,

Z ∈ {0, 1}.

Figure 1. The behavior-based detection process

We assume that X is a set of all actions of a web user.

We also assume the detector is able to collect user events in

a timely manner. From the detector’s perspective, the user

input is taken in two different scenarios as shown in Figure

1. The first scenario is when human input events generate

network traffic. In this case, X and Y are dependent, and we

define the formula to be F : Z = F (X,Y ). For example, a

click on a web link generates traffic by downloading a web

page. The second scenario is when a user action X ′ such as

a mouse movement without a click does not generate any

network traffic. We can simplify the formula to be F : Z =
F (X ′) in this scenario. In Figure 1, the user input of the

first scenario is shown with a solid line, while that of the

second scenario is presented as a dotted line.

B. Application Event-Driven Detection

A web browser on the client notifies web applications of

changes by generating user input events, such as keystrokes,

mouse movements, and clicks on buttons and links. These

application events are collected and sent to the server. The

detection engine on the server notifies the web application

administrator when detecting malicious web bot activities.

Boolean events: We summarize some common event-

driven detection features in Table I. The simplest events are

boolean events, as a special case of event statistics, which

represent expected or unexpected presence. These event-

driven detectors perform online detection on the server. Most

detectors try to identify bots in real time. This set of detec-

tion techniques is usually combined with specific web im-

plementation technologies such as client-side JavaScript and

form tracking. We formalize categories of keyboard/mouse,

random elements, and hidden elements as a 0 and 1 boolean

pattern, because the user input X to the classification

function F is also a boolean variable. The classification

function F is straightforward, either F : Z = X or

F : Z = ¬X . This kind of detection takes advantage of the

prior knowledge of differences between real human input

actions and bot input actions to the web interface.

Event Statistics: The application event-driven detection

also uses statistical features observed from human inputs

on the client side. These detection approaches are based on

the observation that bots’ behaviors vary less than humans’.

For example, a bot may periodically repeat one action or



App Event Variable X
Human Action Trigger Timing Location/Obj Detection Function F Semantic

mouseclick X - - Z = X movement
mouseover X - - Z = ¬X movement
keystroke - - X hidden form Z = ¬X abnormal
mouseclick - - X hidden link Z = ¬X abnormal
mouseclick - - X random element Z = X integrity

mouseclick - X - Z = Fdist(X) behavior
mouseclick X1 X2 - Z = Frate(X) behavior
mousemove - - X Z = Fdist(X) behavior

Table I
WEB APPLICATION EVENT-DRIVEN DETECTION

Metrics
Event count timing location

click x x
move x x
keystroke x x

Table II
METRICS SELECTED DETECTION/EVASION ANALYSIS

periodically trigger a sequence of actions, while human

actions follow a normal or Pareto distribution. These kinds

of detectors usually attempt to detect bots in real time with

simple implementations. In this scenario, widely used distri-

bution models like uniform, Pareto or Weibull distributions

[7] are assumed. More sophisticated detectors based on the

estimation of more complex model parameters learned from

human behaviors can distinguish bots from humans.

III. GENERATIVE EVASION

This section describes how bots masquerade as human

users. We select event-based metrics from the detector’s

perspective, and demonstrate how bots can mimic human

action events in timing and location. Further we define sim-

ilarity metrics according to revised symmetric KL distance

measurement, assuming the HOP detector would also use

KL distance [8] to distinguish bots and humans. We also

build a pool of candidate models to best fit human behaviors,

followed by an algorithm that selects the right model to fit

user actions to create evasive bot actions.

A. Target Behavior Metrics

We select a set of application independent events such

as keystrokes, mouse clicks and movement counts, and

measure timing and location, as listed in Table II. Timing

represents inter-event timing between two subsequent events,

while location demonstrates the mouse click positions and

movement angle information. These are used for statistical

behavior analysis. We also count how many times the move

and keystroke events appear.

Boolean Behavior: Note that boolean events can be

integrated into the statistics distribution-based detection as a

special case. For example, a click on a hidden link is a single

event. The distribution statistic is a simple 1/0 constant.

The statistic is obtained either from prior knowledge by

analyzing the code or by adversarial classification. The

boolean behavior events are usually constructed as a set.

Behavior Statistics: Besides boolean events, the events

that rely on statistical analysis are listed in Table II. The

idea behind statistical analysis is to find the distance between

two distributions that belong to human and bot. We map each

histogram of distribution into a point in a space and measure

the similarity of two distributions by computing the distance

in the space. While the distance can be measured in various

ways, we create a new distance measurement based on a

modified KL divergence, which is detailed in Section III-B.

Timing-based Events: Event timing is the time in-

terval between each pair of consecutive events. In our

work, the events could be clicks or keystrokes. Suppose

we have a sequence of click actions {x1, x2, ..., xn}, we

can easily build histograms from the time interarrivals

{x2 − x1, ..., xn − xn−1} for both human and bot. Existing

bots usually generate a large number of events almost

constantly, leaving clear timing patterns for detection. Our

bot framework allows bots to insert idle time to mimic

human behaviors.

Location-based Events: The two movement events are

mouse clicks and movement, as they carry the basic infor-

mation about human actions. Suppose we have a sequence of

click actions on locations (x1, y1), (x2, y2), ..., (xn, yn). The

movement can be characterized as a movement vector be-

tween two locations. The vectors are defined as (x1, y1) →
(x2, y2), (x2, y2) → (x3, y3), ..., (xn−1, yn−1) → (xn, yn).
The correlation between the movements are the angles of

two contiguous vectors. The angles are defined by consecu-

tive pairs of vectors: θ = arctan((y2 − y1)/(x2 − x1)). We

map the angle from the range [−π, π] to [0, 360] to get a

more intuitive explanation.

B. Similarity Measurement

Formally, we treat a contiguous distribution as a discrete

histogram calculated from the observation data, which is

normalized into n buckets. We then map each histogram

into a point in an n-dimensional space. The similarity of two

distributions is measured by the distance between two points

in an n-dimensional space. The KL formula in equation



(1) can quantitatively compare different distributions or

histograms. H1 and H2 stand for two normalized histograms.

H(i) means the normalized ith bucket value in the histogram

H , where
∑

i
H(i) = 1.

DKL(H1, H2) =

n
∑

i=1

H1(i) log
H1(i)

H2(i)
(1)

Intuitively, KL divergence turns the difference in each

bucket into a real number with two directions, negative and

positive, depending on their relative values, and then weights

real numbers with H1. However, this is not a distance metric

on the space of a probability distribution, because it is not

symmetric; that is D(H1, H2) 6= D(H2, H1). We define

a new distance measurement based on the KL formula

equation (2). The new definition is a distance metric, and

is symmetric, that is D(H1, H2) = D(H2, H1). It removes

the direction on the original definition in each bucket and

averages the bi-directional differences. The bigger the value

of the distance is, the larger the difference there is between

the behaviors. Practically, the different distributions detected

on the server generate larger KL distance values for the

classifier to identify the bots.

DSKL(H1, H2) =
1

2
(

n
∑

i=1

H1(i) log
min(H1(i), H2(i))

max(H1(i), H2(i))

+
n
∑

i=1

H2(i) log
min(H1(i), H2(i))

max(H1(i), H2(i))
)

=

n
∑

i=1

1

2
(H1(i) +H2(i))

∣

∣

∣

∣

log
H1(i)

H2(i)

∣

∣

∣

∣

(2)

Behavior Consistency Degree: The behavior consistency

degree (CD) can quantitatively evaluate how a particular

behavior varies across users of a web application. It indicates

how hard it is to capture the user behavior for our evasive

model.

Formally, assume we have a set of user behavior his-

tograms U = {u1, u2, ..., un} such that:

CD(U) =
minDSKL(c, U)

maxDSKL(c, U)
×mean(U, c) (3)

where c = mean(U).

Intuitively, if we treat each user histogram vector as a

point in the space, CD represents how the points are spread

in that space. A large CD means irregular behavior that is

difficult to capture. The first factor represents how points

are spread in [0, 1]; the second part is the average distance

between the center and user points in the range of [0,∞].

Algorithm 1: Model selection algorithm

Data: A sequence of human user data

U =< u1, u2, ... >, buffer size W , retired data

size α
Result: A sequence of the best model and its

parameter estimation < M,P >
1 W = {u1, u2, ..., uW } ;

2 while U 6= ∅ do

3 buffer the user data into set W ;

4 if reach the buffer size W then

5 C = (C − {c1, c2, ..., cα}) ∪W ;

6 calculate the center of the user data c;
7 distance = ∞ ;

8 for m ∈ ModelPool do

9 fit c with m ;

10 generate cm;

11 if DSKL(cm, c) < distance then

12 M = m;

13 P = estimated parameters;

14 distance = DSKL(cm, c) ;

15 end

16 end

17 U = U −W ;

18 end

19 end

C. Evasion Model Fit and Selection

Model selection is the problem of choosing among dif-

ferent mathematical models that all try to describe the same

data set. Since no single model can fit all user behaviors,

we build a pool of candidate models and choose the best

matching model dynamically. The model can be chosen

in several ways, including optimizing some measure of

goodness of fit, model averaging, and cross validating. Our

goal is to optimize DSKL, the measurement of goodness

distribution fit. Instead of statically selecting the best model,

our generative approach selects the model dynamically by

evaluating different models simultaneously. We design an al-

gorithm that looks for the best distribution fit for a sequence

of time windows. We smooth the model selection with a

mixture of old and new data to fit the models. Algorithm 1

shows the procedure.

Although we could use a history of human events to build

a prediction model for each particular input event X , we

decide to reuse existing models to build a model pool for

easy and efficient implementation. Previous studies indicate

that well studied models like the Fitts’ law equation [9],

[10] could fit the human behavior well. Our model pool has

seven models.

We use the common method of maximum likelihood to

find the local optimized fit. For example, given the Pareto

model selected from the model pool, we use its likelihood



function to estimate the parameters α and tm. Given an n-

history sample of event timing intervals {t1, t2, ...tn}, the

logarithmic likelihood function is:

log(L(α, tm)) = n log(α)+nα log(tm)−(α+1)

n
∑

i=1

log(ti)

(4)

To maximize the likelihood function, we use the estima-

tion tm = min(t1, t2, ...tn). When

d

dα
log(L(α, tm)) = 0 (5)

and

α =
n

∑n

i=1
(log(ti)− log(tm))

(6)

the maximum likelihood function can reach its maximum

value.

In addition, the selection algorithm continuously re-

estimates the parameters when the bot receives event timing

patterns from the users. Thus, our evasive bot can gain

knowledge from history and integrate it into future data. This

has two advantages. First, this design can adapt to the target

server automatically when there are changes on the server

that could cause the timing pattern to change. Second, the

adaptive algorithm can adjust parameters of a model and

continue to deceive the detector.

IV. AN EVASIVE FRAMEWORK

We implemented a prototype of the evasive bot system

that supports multiple web agents. Conceptually, the frame-

work is a continuous learning system. Human actions trigger

events that train a generative engine, so the web bots can

later mimic the human behaviors. The system design is

summarized in Figure 2. The human data flow is shown with

dashed arrows and the web bot data flow is shown with solid

arrows.

Human data flow represents human data being collected

and pre-processed. Information is retrieved from human

generated events and traffic, and then saved in logs. This

framework records human data with a recorder on the client

and an HTTP proxy, and then the human data collected

becomes history data for the bot engine to learn human-like

behavior. As shown in human data flow in Figure 2, human

events and traffic behaviors are first recorded in logs on the

client and through HTTP proxies. As logs get pre-processed,

the generative engine studies the human behavior from the

log and then supports later use by the event generator.

Bot data flow starts with a bot action specification whose

most important component is the event generator. The bot ac-

tion spec defines all types of actions, including mouse clicks

and keystrokes. The event generator selects specifications

from a set of bot actions, and then makes decisions about

how to generate the bot events. The event generator applies

the Selenium web driver API, which has full control of web

browsers. This allows it to take advantage of any facilities

offered by the native platform. Since the platform supports

native events in Windows or Linux, we can easily send a

mouse click event with the element’s coordinates relative to

the border of the screen at the OS level. Both keystrokes

and mouse events use the native OS API. We implemented

the event generator as a 3, 000 line Java program that sends

events to web applications.

Web Agent: The web agent runs the web application

with JavaScript. It captures application events and passes

them to the event logger. We use web browser plugins to

monitor and control web application events in JavaScript.

HTTP proxy: The HTTP proxy captures detailed infor-

mation about HTTP transactions and passes the information

to the event logger. As any web event can trigger an

HTTP request, it contains more detailed information such as

timing information and element XPaths. We did not capture

application semantics embedded in the payload, leaving

them to other data capture methods.

Event Logger: This component obtains human behav-

ior data from different data sources and performs a pre-

processing step on the raw data before feeding it to the

generative engine. The client-side web browser, OS, and

HTTP Proxy capture different aspects of user behavior data.

The JavaScript running inside the web browser can capture

application specific events. We take advantage of tools like

Record User Interaction (RUI) [11] at the OS level to help

capture device events such as mouse clicks and movements.

The HTTP proxy captures and records more detailed infor-

mation about HTTP transactions that are associated with the

human. Before the event logger stores the human behavior

data into the log database, it performs a pre-processing step

on the three data sources. Our implementation aligns the data

according to timing and filters out unnecessary data before

compression.

Generative Engine: The generative engine queries the

log database for the user behavior data. It analyzes the

collected human behavior data and generates a suitable

behavior model, then passes it to the event generator. For

the boolean function, the generative engine adds a rule

for each boolean fact observer from the human, such as

a requirement to send a mouse movement event. For the

behavior statistics, the generative engine extracts the human

behavior and outputs a generative model by selecting the

best fit. For example, it passes a timing model to perform

bot actions, which specifies the delay time among bot actions

that trigger events.

Event Generator: The event generator generates events

according the bot action specification and resolves the con-

straints by querying the generative engine for information

such as timing and location. The event generator first builds

a data structure for elements from Table III using the web

driver’s API. The web driver identifies the web element



Figure 2. Bot system framework

Input Events Web Element XPath (or ID) Command calls

click //a[text()=’some url’/@href navigate()

mouseover //div[@id=’dropdownlist]/ hover()

select //a[text()=’ second’] setSelected()

type /html/body/div/table/input sendKeys()

click //button@value=’submit’ submit()

Table III
ACTION SPECS EXAMPLE

according to the unique XPath of the web element. Table III

shows mappings between events and Java calls. In addition,

the event log contains an event timing log and an event

sequence log. For example, the event module determines

a time sequence from the human event timing log. The

action interarrival times, t = (t1, t2, ..., ti), by default are

constant as a bot. But our goal is to create user events that

follow human-like events, so we define several models using

distributions such as normal and Pareto. Finally, the event

generator component generates a web bot action sequence

and sends commands to the web agents.

Bot Action Spec: The bot action spec defines a se-

quence of event commands and evasions. These actions

are mapped to several Java calls in the event generator.

Each event command is a triple <action, element ID,

bot command>. Table III describes the primary elements

in the specification. The timing and movement patterns are

encoded in the sequence as “nop” actions. Those behavior

events are generated during runtime according to the model

from the generative engine.

V. EVALUATION

This section empirically evaluates the evasive capability

of our evasive bot framework. We first clarify the challenges

of selecting benchmarks and creating workloads. Then we

present the results of testing evasive bots under different

detection behaviors. As mentioned before, the objective of

our evaluation is not to demonstrate how successful our

framework can bypass a specific HOP-based detector, but to

quantify the similarities between the behaviors of our evasive

bots and those of normal human users. The behavioral

closeness between our proposed bots and human users will

enable our approach to evade existing HOP-based detectors.

A. Benchmark Set Definition

Evading all possible behavior metrics that detection mech-

anisms could use is quite challenging. First, it is difficult

to fully understand all the detection implementations and

models deployed on commercial web servers, because the

source code is usually not available and specifications are

not public. Second, detectors usually rely on one or several

metrics that are specific to web applications, possibly both

signature-based metrics and anomaly-based metrics. It is

hard to know what behavior metrics are used by the pro-

duction bot detectors, and different companies might use

different metrics. Finally, even if we ambitiously implement

a long vector of metrics for evasion, the complexity of the

detection mechanisms still make it difficult to evaluate the

bots’ ability to evade them.

Our strategy is to select some typical metrics from a wide

range of commonly used web applications. We measured

the event timing in each session for five widely used web

applications. The web applications were chosen to cover

most typical web uses. We logged and measured four types

of web applications: (1) a web email application, which

included logging in, and composing, sending and retrieving

emails; (2) two social networking sites to update status

messages, communicate with friends, etc; (3) a web news

system; and (4) a blog application, which has one update

and multiple read patterns.



Blogger Facebook Gmail GoogleNews Twitter
0

20

40

60

80

100

120

140
Ti

m
e 

In
te

rv
al

Figure 3. Inter-click timing in seconds for human and proposed evasive
bots. From left to right in each group, they are human data, a normal
distribution model, and a uniform distribution model.

Blogger Facebook Gmail GoogleNews Twitter
0

20

40

60

80

100

120

Ti
m

e 
In

te
rv

al

Figure 4. Inter-keystroke timing in seconds for human and proposed
evasive bots. From left to right in each group, they are human data, a
normal distribution model, and a uniform distribution model.

B. Data Collection

We selected five web applications: Gmail, Facebook,

Twitter, Google News, and Blogger. We collected human

data by inviting 35 people to participate in 50 experiments

to capture their real-time behaviors. The users’ ages range

from 18 to 50 and they are located in different regions in

US; 15 on the west coast and 20 on the east coast. We

anonymized all users’ personal information to protect their

privacy. Our framework captured both application events and

traffic events including keyboard, mouse movements, and

mouse clicks.

C. Experimental Setup

We built our evasive web bot framework on a mainstream

desktop configured with an Intel core Dual CPU 2.40 GHz

and 4GB RAM. The operating system was Windows 2008.

We used Mozilla Firefox 3.5.X as our primary agent. It can

be configured to represent three common agents, and can be

extended to mobile web agents.

We implemented the bot event generator in Java 1.6. The

event generator controls the web agent or browser through

a plugin. Our experiments were conducted in a high speed

Internet service environment, sending traffic to a variety of

web servers. There are no special network restrictions for

our framework, and it can be scaled to a large number of

virtual machines running on clusters or a cloud to gain extra

computation power.

We also built an Ubuntu 9.10 Virtual Machine running an

Apache 6.0 HTTP server to construct a synthetic web site

to evaluate boolean events.

D. Evaluation of Evasion Capabilities

This section presents data from an experimental demon-

stration of how our framework can prevent web bots from

being detected by masquerading as humans. The features

used are common to web bot detectors.

1) Evaluation Approach: One approach to measuring the

evasive capability of our bots framework is to test bot

detection in the presence of our evasive attacks. If we treat

bot detection as a special case of an intrusion detection

system, it is easier to understand the challenges of creating

an appropriate workload for testing. First, most anomaly

detectors require a large amount of training data to build the

classification criteria. This leaves the question of how much

data is enough. Second, there are no clear guidelines for how

to select representative human user inputs. Web applications

have become more complex over time, so historical data may

not always be applicable. Third, randomness is introduced

into the execution environment by the server workload,

network traffic, the security protocol, asynchronous com-

munication from Ajax, and user preferences. The Web also

introduces new dynamic functionalities that increase the

challenge of quantifying the workload [12]. Finally, no

standard test methodology is available [13].

These challenges make it difficult to develop a general

evaluation method for detectors that is repeatable and com-

parable across many web applications. Furthermore, the

measurement metrics could be tightly coupled with the

implementation of certain specific detectors that are not

publicly available to us.

We avoid the problems above by taking different ap-

proach. In particular, we quantify and compare the similari-

ties between human and evasive bot behaviors. The evasive

bot behavior is generated according to real human behavior.

It is reasonable to quantify the similarity by calculating

the distance between two vectors of behavior features. The

more similar to human behavior, the more evasive our

bot is considered to be. For boolean events, we evaluated

the evasion detection results, as we have full control and

understanding of the detection systems in the synthetic web

sites.

2) Web Application Boolean Events: Our boolean events

are automatically generated according to the logged human



0

0.1

0.2

0.3

0.4

0.5

Facebook
Blogger

Twitter
Gmail

GoogleNews

Average

S
K

L 
D

is
ta

nc
e

 

 

Min Mean Max Norm Uni Wld Gam Gp Logn Beta

Figure 5. DSKL for inter-events timing of click actions across different
models. From left to right in each group, the first three are min, max and
mean of all distances, and collectively work as a baseline. The other seven
are distance fittings from normal, uniform, Weibull, gamma, Gp, Logn and
beta distributions.

0

0.5

1

1.5

2

Facebook
Blogger

Twitter
Gmail

GoogleNews

Average

S
K

L 
D

is
ta

nc
e

 

 
Min Mean Max Norm Uni Wld Gam Gp Logn Beta

Figure 6. DSKL for inter-events timing of keystroke actions across
different models as in Figure 5.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Facebook
Blogger

Twitter
Gmail

GoogleNews
Average

S
K

L 
D

is
ta

nc
e

 

 

Max Norm Uni Wld Gam Gp Logn Beta

Figure 7. DSKL for angles of mouse movement for different models.
From left to right in each group, the first is the max of all distances, and
collectively work as a baseline. The other seven are distance fittings from
normal, uniform, Weibull, gamma, Gp, Logn and beta distributions.

events. We mark “Pass” if the bot was not detected and

“Fail” if the detection module raised an alarm. Table IV

summarizes the detection and evasive results. Mouse move-

ments and keyboard native I/O events are easy to evade. One

limitation of the evasive bot is that it has limited coverage

for web testing as it only follows human’s footprints.

3) Web Application Event Timing: Event timing is de-

fined as time intervals between events that are triggered by

actions. Actions are those common tasks that both humans

and bots need to perform, such as mouse clicks and key

User Actions Results

Mouse over/movement Pass

Key Strokes Pass

Random Element Pass

Table IV
EVASIVE CAPABILITY FOR BOOLEAN EVENTS

strokes. We are particularly interested in the inter-events time

of various web applications with different usage patterns,

as presented in Figure 3. For each timing sequence action

record, we fit the distribution model via our candidate mod-

els to find the best fit. Then, our generative engine generates

a timing interval sequence according to the selected model

to evade the events triggered by bot actions.

We group each application into “violin plots” in Figures

3 and 4. A violin plot is a combination of a box plot

and a kernel density plot. It summarizes the data distri-

butions in five numbers: the smallest sample observation,

the lower quartile, the median, the upper quartile, and the

largest sample maximum. As our generative approach tries

to maximize the distribution similarity, the violin plot is

an intuitive way to graphically depict groups of numerical

statistic data similarity. For each application in the figures,

from left to right, the plots represent the human data and

then the two generative data from the fitting models. The first

fitting model is a normal distribution, which largely captures

random human activity. The other is a uniform distribution.

We map the similarity of two distributions from intuitive

pictures to a number, the DSKL. A summary of the inter-

event timing interval DSKL across all candidate models is

illustrated in Figures 5 and 6.

To estimate the consistent degree of human behavior, we

use the statistics represented by the first three bars of min,

max, and mean from Figures 5 and 6 for each application.

We first locate the center point from the distribution of all

the human data across all users, and then locate the central

point from each human user data. Finally, we calculate the

distance between the overall center point and the central

point of each individual user data. These three distances of

min, max, and mean will be also useful for further detectors

to define their own detection thresholds.

Then we measure distance fittings from normal, uniform,

Weibull, gamma, Gp, Logn and beta distributions. We ob-

serve that the different distributions perform significantly

differently, no single model dominates, and each model

displays different performances across different applications.

We confirm that our generative engine needs to select the

models dynamically. Current web bots usually use the best

effort model or simple uniform behavior statistics.

4) Web Movement Events: We further compare the eva-

sive fitting models to human movement models. The event

movement is defined as the angle and distance between

two continuous actions. Because distance correlates with the



 

 

Human Norm Logn

0.11 0.17 0.22
0−45

0.29

0.12

0.17

0.23
90−135

135−180

0.0560.110.170.22

180−225 0.056

0.11

0.17

0.22

0.056

0.11

0.17

0.22

270−315

0.11

0.17

0.22

45−90

 

 

Figure 8. Facebook mouse clicks and movement angles

 

 

Human Norm Logn

0.052 0.1 0.16 0.21
0−45

0.14

0.21

0.27

0.11

0.17

0.23
90−135

0.16

0.21135−180

0.0520.10.21
180−225

0.052

0.1

0.21

0.21

225−270

0.052

0.1

0.16

0.21
270−315

0.14

0.21

0.27

 

 

Figure 9. Blogger mouse clicks and movement angles

timing behavior, here we only focus on the angles.

We measure the mouse movement in each session for

the five web application benchmarks used in Section V-D3.

Because the distribution is in a closed area, we map the value

from [−π, π] to [0, 360] to display the distribution similarity

intuitively. We evaluate the similarity between human and

different generated movement behavior in spider graphs, as

shown in Figures 8 through 12. Each graph has one line for

the human behavior and contains up to seven lines for each

generative model. To display the similarity clearly, we only

draw the two models with the largest and smallest distances.

The next step is to compare the bots’ behaviors with the

humans’. First we convert the closed paths in the spider

graphs to a number defined by the DSKL. For each web

application, we calculate the DSKL between human data

and bot generated data via different fitting models. Because

the user distance is relatively small compared to the fitting

model distances, we only show the maximum user distance

to the human behavior distribution.

A summary of the inter-event movement’s DSKL across

all candidate models is displayed in Figure 7. Unlike the

timing, the user movement behaviors are very consistent and

the threshold can be very strict. From these data, it appears

that no bot generative fitting model can consistently avoid

triggering an alarm. But in some cases, such as the Facebook

and Blogger applications, the generative model can hide the

bot behavior quite well.

5) Fitting and Model Selection for Individual Users:

Recall that our framework has a generative engine that mod-

els human behaviors from a group of users and then evade

those behavior-based bot detectors. In practice, our evasive

model fitting and selection procedures are also capable of

mimicking individual human users to seek the best model

for the shortest distance. We use the Gmail web application

as an example to demonstrate our dynamic model selection

procedure to identify the best model to mimic individual

humans. Figure 13 shows data from the procedure to mimic

the human timing. With the human data, the framework

takes the behavior data and fits it with the seven models

in our model pool. Based on the distance measurement, the

framework selects the best model for each individual user.

The upper subgraph tracks the best models on mouse inter-

click timing and the lower subgraph shows the minimum

distance across the fitting results using the seven models.

We plot a similar graph for demonstrating model selection

on mouse movement angle and the corresponding shortest

distances in Figure 14. Interestingly, we can see that the

best model does change among different users, primarily

because individual human behaviors sometimes are quite

different. Different web application’s functionalities can also

cause subtle differences. In general, our framework is able

to capture and characterize human behaviors, and it is also

able to adjust its model to mimic diverse individual human

behavioral patterns to evade bot detectors.



 

 

Human Norm Logn

0.056 0.11 0.17 0.22
0−45

0.056

0.11

0.17

0.22

45−90

0.059

0.12

0.18

0.24
90−135

0.068

0.14

0.2

0.27135−180

0.0560.110.170.22
180−225

0.056

0.11

0.17

0.22

225−270

0.056

0.11

0.17

0.22
270−315

0.056

0.11

0.17

0.22 315−360

 

 

Figure 10. Twitter mouse clicks and movement angles

 

 

Human Gph Logn

0.097 0.15 0.19
0−45

0.13

0.2

0.27

45−90

0.097

0.15

0.19
90−135

0.12

0.17

0.23135−180

0.0490.150.19
180−225

0.049

0.097

0.15

0.19

225−270

0.097

0.15

0.19
270−315

0.11

0.16

0.21 315−360

 

 

Figure 11. Gmail mouse clicks and movement angles

E. Defense Against Evasive Bots

Although we have proposed an evasive bot and provided a

systematic approach to exploit the limitations of HOP-based

detectors, our ultimate goal is to improve the security of

online business by developing more advanced bot detectors.

To defend against evasive bots, future detectors could take

application context and user intent into account for bot

detection. In the context of online applications, human users

can easily perceive the application feedback and interact

with the applications in a logical and sensible manner.

But for bots, it will be challenging and computationally

expensive to continually analyze the application context and

then adjust their behaviors with the changing context in a

timely manner. Moreover, the intent of a human user is

very different from that of a bot. For example, in a web

browsing scenario, a human user clicks on several links to

read multiple web pages, while bots may click on the same

link several times to abuse pay per click. The evasive bot

can inject mouse movement actions and idle time between

clicks to mimic a human, but it cannot fully hide the final

results and its intent. Finally, the user behavior consistency

degree we defined before could also be used to detect evasive

bots, because evasive bots usually have a higher consistency

degree than human users.

VI. RELATED WORK

Web bots automate various online tasks, serving good [14]

or innocuous purposes (e.g., search engine bots), as well

as malicious purposes (spam bots, vote bots, and game

bots) To tackle the ever increasing threats from malicious

bots, several serious research projects have tried to dif-

ferentiate human users from bots. Traditional approaches

such as CAPTCHAs (Completely Automated Public Turing

test to tell Computers and Humans Apart) [15] differentiate

humans and bots based on active user interactions (users

are prompted explicitly for a test), and are generally known

as human interactive proofs (HIPs). CAPTCHAs have been

found to be an effective challenge response Turing test,

and are deployed in many online services (including online

account registration, online voting, and message posting).

However, it is not suitable for continuous monitoring, as

users must wait additional time (∼10 seconds) to be ver-

ified [16]. Such frequent interruptions can cause an in-

tolerable usability burden on users. But if users are not

continuously monitored, human attackers can pass the one-

time test and then let web bots take over. Recent studies

have found that web bots often solve CAPTCHAs by using

powerful optical character recognition techniques or cheap

human labor [17], further lowering barriers for attackers to



 

 

Human Logn Beta

0.046 0.092 0.14 0.18
0−45

0.072

0.14

0.21

0.29

45−90

0.12

0.19

0.25
90−135

0.052

0.1

0.16

0.21135−180

0.0460.0920.140.18
180−225

0.092

0.14

0.18

0.092

0.14

0.18
270−315

0.097

0.15

0.19

 

 

Figure 12. GoogleNews mouse clicks and movement angles

evade detection.

Unlike HIPs, human observational proofs (HOPs) take

a non-interactive approach, passively monitoring input be-

haviors. Thus it is suitable for continuous bot detection.

Measurements have found strong evidence for complexity

and irregularity of human behaviors that are rarely found

in existing web bots. Gianvecchio et al. exploited these

intrinsic differences to accurately detect chat bots (in online

chatting) [2], as well as game bots (in online games) [3].

Critical behavioral differences from humans are also found

in twitter and blog bots [18], [19], allowing detectors to use

advanced machine learning techniques to detect malicious

bots in Twitter and blogs.

Spam posting behaviors also differ from legitimate post-

ings, and can be leveraged to detect those bots. Thomas et

al. [20] presented Monarch, which can crawl and analyze

URLs submitted to servers in real time, and determines

which URLs lead to spams. Gao et al. [21] proposed an

effective technique to filter out spam campaigns in online

social networks (OSNs). In their approach, OSN spam mes-

sages are reconstructed into campaigns, and can be detected

in real time with high accuracy and efficiency. Jacob et

al. [22] presented PUBCRAWL to detect web crawlers based

on the observation that the traffic generated by crawlers is

very different from the normal user traffic.

There were various evasive approaches against web bot

detectors. Spam filters can be evaded by poisoning training

data with spam messages [4]. Bots can also use anonymous

networks [23] to hide their identity so that it is less likely

for the detectors to trace the source of web bots. In con-

trast, our attack focuses on web bots that mimic human

behavior in a variety of ways, and applies to many more

web applications. Additionally, in our attacks, compromised

routers are not needed, as in Google Clickbot.A [5]. Evasion

attack also occurs in evading biometrics-based authentication

systems. Ballard et al. [24] presented a generative attack

model by synthesizing handwriting automatically, which has

been effective in evading existing handwriting based user

authentication.

The technique of automatically mimicking human interac-

tions with Ajax-based applications has been proposed in the

AjaxTracker tool [25]. However, the goal of AjaxTracker is

to generate workload and monitor network behaviors, instead

of launching an evasive attack as in our work. Moreover, we

provide a more flexible and extensible bot framework that

directly controls a web browser.

VII. CONCLUSIONS

Web bots have been widely deployed to perform tasks on

the Web in an automatic fashion. However, the behaviors of

existing web bots are intrinsically different from those of

human beings, which allow them to be detected by HOP-

based bot detectors. This paper proposes a generative ap-

proach to build an evasive web bot. Based on the generative

evasion, we have prototyped a generic web bot framework

that mimics human behaviors on the Web. The framework

enables bots to generate events at the application level for

evading bot detectors. We have abstracted and defined a set

of benchmarks and metrics to measure our system’s evasion

performance. Our experimental results demonstrate that our

evasive bots can achieve high human likelihood against bot

detection. This evasive bot framework can now be used to

evaluate existing bot detection algorithms and help develop

more advanced bot detectors.

ACKNOWLEDGMENTS

We would like to thank the anonymous referees for their

insightful feedback. This work was partially supported by

ARO grant W911NF-11-1-0149 and NSF grant 0901537.

REFERENCES

[1] rt.com, “Startup dumps Facebook, alleging 80% of clicks
came from bots,” http://rt.com/news/facebook-social-media-
startup-scam-ads-554/.

[2] S. Gianvecchio, M. Xie, Z. Wu, and H. Wang, “Measurement
and classification of humans and bots in internet chat,” in
Proceedings of the 17th USENIX Symposium on Security,
2008.

[3] S. Gianvecchio, Z. Wu, M. Xie, and H. Wang, “Battle of
botcraft: Fighting bots in online games with human observa-
tional proofs,” in Proceedings of the 16th ACM Conference
on Computer and Communications Security, 2009.

[4] B. Rubinstein, B. Nelson, L. Huang, and A. J. etc, “AN-
TIDOTE: Understanding and defending against poisoning of
anomaly detectors,” in Proceedings of Internet Measurement
Conference, 2009.



1 2 3 4 5 6 7

Norm
Uni
Wld

Gam
Gp

Logn
Beta

M
od

el
 P

oo
l

1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

User ID

S
K

L 
D

is
ta

nc
e

Figure 13. Model selection for a set of Gmail mouse click inter-events
timing

1 2 3 4 5 6 7

Norm
Uni
Wld

Gam
Gp

Logn
Beta

M
od

el
 P

oo
l

1 2 3 4 5 6 7
0.12

0.14

0.16

0.18

UserID

S
K

L 
D

is
ta

nc
e

Figure 14. Model selection for a set of Gmail mouse angle

[5] N. Daswani and M. Stoppelman, “The anatomy of click-
bot.A.” in Proceedings of the First USENIX Workshop on
Hot Topics in Understanding Botnets, 2007.

[6] S. Kullback, “The Kullback-Leibler distance,” The American
Statistician, vol. 41, no. 4, pp. 340–341, 1987.

[7] P. Barford and M. Crovella, “Generating representative web
workloads for network and server performance evaluation,”
in Proceedings of ACM International Conference on Mea-
surement and Modeling of Computer Science (SIGMETRICS),
1998, pp. 151–160.

[8] F. Yu, Y. Xie, and Q. Ke, “Sbotminer: Large scale search bot
detection,” in Proceedings of ACM International Conference
on Web Search and Data Mining, 2010.

[9] P. M. Fitts and J. R. Peterson, “Information capacity of dis-
crete motor responses,” Journal of Experimental Psychology,
vol. 67, no. 2, pp. 103–112, 1964.

[10] I. S. MacKenzie, “Fitts’ law as a research and design tool in
human-computer interaction,” Human-Computer Interaction,
vol. 7, pp. 91–139, 1992.

[11] U. Kukreja, W. E. Stevenson, and F. E. Ritter, “RUI: Record-
ing user input from interfaces under Windows and Mac OS
X,” Behavior Research Methods, vol. 38, no. 4, pp. 656–659,
2006.

[12] J. Offutt and Y. Wu, “Modeling presentation layers of web
applications for testing,” Software and Systems Modeling,
vol. 9, no. 2, pp. 257–280, April 2010.

[13] P. Ammann and J. Offutt, Introduction to Software Testing.
Cambridge, UK: Cambridge University Press, 2008, ISBN 0-
52188-038-1.

[14] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and
D. Song, “A symbolic execution framework for Javascript,”
in Proceedings of the 31th IEEE Symposium on Security and
Privacy, 2010.

[15] L. von Ahn, M. Blum, N. J. Hopper, and J. Langford,
“CAPTCHA: Using hard AI problems for security,” in In-
ternational Conference on the Theory and Applications of
Cryptographic Techniques, 2003, pp. 294–311.

[16] L. von Ahn, B. Maurer, C. McMillen, D. Abraham, and
M. Blum, “reCAPTCHA: Human-Based Character Recogni-
tion via Web Security Measures,” Science, vol. 321, no. 12,
pp. 1465–1468, 2008.

[17] M. Motoyama, K. Levchenko, C. Kanich, D. Mccoy, G. M.
Voelker, and S. Savage, “Re: Captchas – understanding
captcha-solving services in an economic context,” in Proceed-
ings of the 19th USENIX conference on Security, 2010.

[18] Z. Chu, S. Gianvecchio, and H. Wang, “Who is tweeting on
twitter: Human, bot, or cyborg?” in Proceedings of the 26th
Annual Computer Security Applications Conference, 2010.

[19] Z. Chu, S. Gianvecchio, A. Koehl, H. Wang, and S. Jajodia,
“Blog or block: Detecting blog bots through behavioral bio-
metrics,” Computer Networks, vol. 57, no. 3, pp. 634–646,
February 2013.

[20] K. Thomas, C. Grier, J. Ma, V. Paxson, and D. Song, “Design
and evaluation of a real-time URL spam filtering service,” in
Proceedings of the 32nd IEEE Symposium on Security and
Privacy, 2011, pp. 447–462.

[21] H. Gao, Y. Chen, K. Lee, D. Palsetia, and A. Choudhary,
“Towards online spam filtering in social networks,” in Pro-
ceedings of 19th Network and Distributed System Security
Symposium (NDSS), 2012.

[22] G. Jacob, E. Kirda, C. Kruegel, and G. Vigna, “Pubcrawl:
protecting users and businesses from crawlers,” in Proceed-
ings of the 21st USENIX Symposium on Security, 2012.

[23] J. Jin and X. Wang, “On the effectiveness of low latency
anonymous networks in the presence of timing attacks,”
in Proceedings of the 41st Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, July 2009,
pp. 429–438.

[24] L. Ballard, F. Monrose, and D. Lopresti, “Biometric au-
thentication revisited: understanding the impact of wolves
in sheep’s clothing,” in Proceedings of the 15th USENIX
Symposium on Security, 2006.

[25] M. Lee, R. R. Kompella, and S. Singh, “Ajaxtracker: active
measurement system for high-fidelity characterization of Ajax
applications,” in Proceedings of the 2010 USENIX conference
on Web application development (WebApps’10), 2010.


