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Exploiting the Data Sensitivity of Neurometric
Fidelity for Optimizing EEG Sensing
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Abstract—With newly developed wireless neuroheadsets, elec-
troencephalography (EEG) neurometrics can be incorporated
into in-situ and ubiquitous physiological monitoring for hu-
man mental health. As a resource constraint system providing
critical health services, the EEG headset design must consider
both high application fidelity and energy efficiency. However,
through empirical studies with an off-the-shelf Emotiv EPOC
Neuroheadset, we uncover a mismatch between lossy EEG
sensor communication and high neurometric application fidelity
requirements. To tackle this problem, we study how to learn the
sensitivity of neurometric application fidelity to EEG data. The
learned sensitivity is used to develop two algorithms: an energy
minimization algorithm minimizing the energy usage in EEG
sampling and networking while meeting applications’ fidelity
requirements; a fidelity maximization algorithm maximizing the
sum of all applications’ fidelities through the incorporation and
optimal utilization of a limited data buffer. The effectiveness
of our proposed solutions is validated through trace-driven
experiments.

Index Terms—EEG sensors, neurometric fidelity, energy effi-
ciency, data sensitivity analysis.

I. INTRODUCTION

THE electroencephalography (EEG) is able to record spon-
taneous neuro signals with multiple electrodes placed

along the scalp, which provides insights into the understanding
of human brain activities. In the clinical context, EEG has been
widely used to monitor and diagnose various diseases, such as
coma, stroke, and epileptic seizure. Psychological studies also
indicate that depression and aging-related cognitive changes
can be associated with EEG biomarks [1] [2]. With the mature
of EEG sensing techniques, new opportunities have been
emerging for developing effective monitoring and diagnosing
applications for physiological and mental health. Especially,
in-situ physiological monitoring with EEG neurometrics is
made possible by the recently developed low-cost wireless
EEG sensor devices. Such an EEG device can be as small
as a wireless headset or a headband, using battery as its
power supply. It removes the need for cleaning the scalp area
and hence requires minimum preparation for EEG collection.
Without the electrodes wires, it also frees patients from staying
in the clinical environment, enabling ubiquitous and less
invasive in-situ physiological monitoring.
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However, the new wireless EEG technology also brings new
research challenges. First, since a wireless device no longer
uses in-wall power supply but batteries, the energy usage of
EEG data sampling and networking should be minimized.
Second, even though the EEG data is transmitted through lossy
wireless connections, almost all neurometric applications de-
mand high application fidelity and tolerate little misdiagnosis.
In comparison with other body sensor network applications
like daily activity recognition [3], a high volume of data traffic
is usually collected through wireless in current EEG sensing
applications [1] [2]. Therefore, it is essential to optimize the
design of wireless EEG sensing for minimizing the impact of
lossy wireless communication on application fidelity.

There are some existing works that design neurometric
applications with a certain degree of fidelity. At the application
level, algorithms for emotion detection and epileptic seizure
detection are developed, and the application fidelity is evalu-
ated in terms of detection accuracy [4] [5]. To balance sensing
energy and application fidelities, a variety of approaches are
proposed [6] [7] [8] [9]. Some other works [10] [11] [12]
[13] trade application accuracy with energy efficiency through
algorithm improvements. The trade-off between energy con-
sumption and data quality has also been studied in body sensor
networks [14] [15] [16], but they only consider the distortion
of sampled sensor readings rather than the application fidelity
requirements. At a lower level, channel-aware QoS solutions
have been developed for wireless sensor networks. For ex-
ample, frequency adaptation [17] and encoding adaptation
[18] have been exploited for enhancing energy efficiency of
communication. But they do not associate the low level QoS
metrics with the application fidelity requirements. In addition
to communication solutions, other solutions are also proposed
to improve energy efficiency by reducing the data transmission
rate. For example, local processing is integrated in hardware
design in [19] and compressive sensing is used in [20].

This paper aims to improve the communication design of
EEG sensing applications while meeting applications’ fidelity
requirements. To this end, we investigate the sampling and
networking of an off-the-shelf Emotiv EPOC Model 1.0
Neuroheadset [21] for neurometric applications1. We have
studied several popular commercial wireless EEG headsets
and headbands on the market, and have chosen to use the
EPOC neuroheadset because of its high resolution and multiple

1Note that the headset uses private hardware and software design, and
it does not provide direct communication control to developers. However,
its manufacture encourages [21] researchers like us to give communication
improvement suggestions which they will incorporate in future EEG sensing
applications.
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EEG channels. As shown in Figure 1, the neural signals
sampled with 14 scalp sensors at the frequency of 128Hz
are most suitable for the medical applications, comparing
with its peer products. The EPOC neuroheadset communicates
directly with a nearby base station (a laptop is used in our
experiments) plugged with a USB dongle. We measure the
communication pattern between EEG sensors on the headset
and the base station in real scenarios. Then with the real
traces we collected from the experiments, we investigate how
the communication affects neurometric applications. We study
two important neurometric applications: the Mild Cognitive
Impairment (MCI) detection using Tsallis Entropy (qEEG)
Ratio, and the depression detection using cerebral asymmetry
score.

The MCI detection is based on the qEEG ratio. It is the
ratio of prefrontal qEEG to occipital qEEG values, which are
computed using averaged readings of electrodes in the two
regions (AF3/AF4 in prefrontal cortex; O1/O2 in occipital
lobe; see Figure 1). According to [2], the qEEG ratio metric
demonstrates statistically significant differences, and can be
used to differentiate MCI patients from normal people. The
depression detection is based on the cerebral asymmetry score,
which quantifies the difference of the α band powers be-
tween the left and right cerebral hemispheres. Two symmetric
electrodes, F3/F4, are used to compute the asymmetry score.
Studies in [1] propose an asymmetry score threshold for
depression detection. Our evaluation shows that the current
lossy communication has significant negative impact on the
fidelity of these two neurometric applications.

Our design identifies three pitfalls that contribute to the
mismatch between the lossy communication pattern and the
neurometric application fidelity requirements. First, the current
EEG wireless headset design does not consider the lossy
communication patterns in reality, thus the application fidelity
sharply drops when the wireless link quality degrades. Second,
all electrodes of the EEG headset sample at the same speed
without considering the sensitivity of applications’ fidelity to
different data streams. Like an I-frame is more significant
than a B- or P-frame in an MPEG-4 video stream, different
EEG sensing channels also have different impacts on the
fidelity of different neurometric applications. But unlike the
existing standardized I-/B-/P-frames in the MPEG-4 standard,
there are no standardized data frames for different neurometric
applications, and it is also difficult to standardize them.
Therefore, a generic approach is needed to automatically learn
the sensitivity of different neurometric applications’ fidelities
to the EEG sensory data. Third, applications’ priorities are
neglected. For instance, to a 29 years old human subject with
tentative diagnosis of depression, the electrode readings used
for depression detection are more important than those used
for the detection of aging-related cognitive changes.

To eliminate above pitfalls, we propose to quantify the
sensitivity of neurometric application fidelity to the EEG data.
The quantification results are used to improve the energy
efficiency and neurometric fidelity of EEG sensor sampling
and networking. Our main contributions are:

• First, we uncover and analyze a mismatch between the
lossy EEG sensor communication pattern and the high

neurometric application fidelity requirements.
• More importantly, we propose to automatically learn

the sensitivity of application fidelity to sampled sensor
readings. While this learning technique itself can be
generic for other applications, in this paper, we focus on
neurometric applications.

• Third, with the learned sensitivity, we propose an energy
minimization algorithm that allows us to minimize the
energy usage in EEG sampling and MAC communication
with given application fidelity requirements.

• Fourth, with the learned sensitivity, we also propose a fi-
delity maximization algorithm that allows us to maximize
the sum of all applications’ fidelities with a given data
buffer on a wireless EEG headset.

The rest of the paper is organized as follows. Section II
discusses related works, and Section III presents our motiva-
tion. Section IV proposes to automatically learn the sensitivity
of application fidelity to sensory data. Then, with the learned
sensitivity, Section V minimizes energy consumption while
meeting user-specified application fidelity requirements, and
Section VI maximizes the sum of all applications’ fidelities
with a given data buffer on a wireless EEG headset. Sec-
tion VII presents performance evaluation results, and Sec-
tion VIII concludes the paper.

II. RELATED WORKS

Several existing works propose neurometric applications
with fidelity consideration. The emotion detection application
developed in [4] aims to find the features that are robust to
EEG signal noise and have strong discriminative capacity. In
[5], an onset epileptic seizure detection algorithm is designed.
It uses machine learning to extract spectral, spatial, and
temporal features from sampled EEG signals to achieve high
accuracy and short delay. However, to meet the application
fidelity requirements, these works only consider improving
the detection and classification algorithms, but do not take
lossy wireless communication into account. Moreover, at the
presence of data loss, how to maximize application fidelity is
not addressed.

At the application level, efforts have also been paid to trade
accuracy with energy efficiency. In [10], a synchronization
likelihood channel selection method is developed to reduce
the number of EEG data streams used in emotion assessment,
with only a slight loss of classification performance. In [11], a
screening detector is developed to help multi-feature detection
algorithms reduce energy consumption by processing much
fewer features. In [12], a machine learning technique is used
to construct an epilepsy detector with fewer channels. In [13],
lossless sensor data compression is proposed to reduce the
communication energy usage at the expense of the increased
computation complexity. However, different from our work,
none of these solutions proposes to automatically learn the
sensitivity of application fidelity to sensory data for mini-
mizing energy consumption as well as maximizing the total
application fidelity.

Sampling adaption methods that balance sensing energy and
application fidelity have also been proposed for other human-
centric applications. In [6], declarative rules are proposed to

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JIOT.2014.2322331

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



3

adapt sampling length of phone sensors. In [7], a context-aware
speaker identification method uses a low sampling rate to
detect whether a speaker exists. It switches to a high sampling
rate for speaker identification when a speaker is detected.
Similarly, SociableSense [8] lets the sensors operate at a high
sampling rate only when interesting events happen. If there are
no interesting events, the sensors are put to operate at a low
sampling rate. More generally, AdaSense [9] combines lower
power activity binary classification with higher power activity
multi-classification to save sensing energy. In AdaSense, a
sensor’s sampling rate adapts with respect to different user
activities. RadioSense [22] tunes packet sending rate to bal-
ance energy and accuracy for human activity recognition with
wireless communication patterns. But these works focus more
on energy cost, and do not consider communication issues.

The trade-off between energy and data quality has been
studied in body sensor networks. Barth et. al. [14] evaluate the
energy usage with respect to data distortion. Hanson et. al. [15]
explore energy-fidelity scalability to adjust compression ratios
while maintaining data quality. Au et. al. [16] provide real-
time energy profiling and management for achieving desired
sensing resolutions. However, these works quantify the fidelity
with “mean square error” or “data resolution”. These metrics
only measure how much the raw sensor data is distorted but
cannot quantify the distortion of the neurometric application
fidelity, in terms of diagnosing accuracy and false alarm that
we focus on.

At a lower level, channel-aware QoS solutions have been
developed for enhancing the system performance. MMSN [17]
provides frequency adaption to maximize parallel transmission
among neighboring nodes for energy efficiency. ACR [23]
proposes adaptive encoding scheme to enhance collision re-
covery and transmission efficiency. The work in [24] boosts the
wireless communication quality in body area network through
jointly considering the packet sizes in both WiFi and ZigBee
networks. However, these solutions do not associate the lower
level QoS with application fidelity.

Some other solutions are proposed to reduce the energy
usage by reducing the data transmission rate. In [19], on-chip
improvements have been proposed in EEG acquisition, digi-
tization, and feature extraction. In [20], compressive sensing
techniques are used to reduce the amount of sensing data to
be transmitted. In [25] [26], energy efficiency problems in
wireless sensor network are also taken care of. These are not
communication solutions like ours, but our proposed solution
can be easily combined with these solutions to further optimize
EEG sensing.

III. MOTIVATION

We use a newly developed commercial wireless EEG head-
set, the Emotiv EPOC Neuroheadset, to collect EEG signals.
Whereas the device is not specially designed for the usage of
health care, it is the state-of-the-art high resolution wireless
neuro-signal acquisition device we can get from the market.
The neural signals are sampled by 14 scalp sensors, and
transmitted using a custom wireless chipset operating in the
2.4GHz band. A proprietary wireless connection is used to

deliver the sampled data to a USB dongle, which then sends
the data to a PC or a laptop base station through the USB
port, as shown in Figure 2. In this work, we focus on the
wireless communication link between the USB dongle and the
EEG headset. According to the information from the Emotiv
customer service, no packet retransmission scheme exists in its
design. The headset’s communication module does not open its
control to developers, so we have conducted experiments in the
home and office environments to observe its communication
patterns.

AF3 AF4

F3 F4F7 F8

FC5 FC6

T7 T8

CMS DRL

P7 P8
O1 O2

Fig. 1: Emotiv EPOC Neuro-
headset EEG Electrodes Posi-
tions

Fig. 2: Neuroheadset Working
with a Laptop as Base Station

3.
63

m
3.

78
 m

0.87m

5.410 m

Kitchen

Living Room

U p

fridge

Fig. 3: Home Environment for Wire-
less Neuroheadset Communication Trace
Collection

In our experiments, we first study the real communication
pattern of the headset. We observe that although the packet loss
rate is low when the headset is connected to the base station,
it can be easily disconnected. Then, we define the fidelities of
two applications using two common neurometric indices, the
Tsallis Entropy (qEEG) Ratio [2] and the Cerebral Asymmetry
Score [1]. Finally, based on our experiment results, we uncover
a mismatch between the current wireless communication pat-
tern and the applications’ fidelity requirements.

A. Communication Pattern

We collect 27 communication traces between the EEG
headset and the local base station in both office and home
environments. To ensure adequate environment diversity, we
collect traces in different locations around offices and hallways
in an academic building, and between the living room and the
kitchen in a residential apartment. The communication traces
are collected as the headset wearer performs various daily
activities, such as walking, working, and cooking. From the
traces, we have two observations:
Easily disconnected. We observe that the communication
between the EEG headset and the local base station is impacted
by distance, human mobility and environmental factors. The
EEG headset’s wireless communication range is very limited,
and the headset is easily disconnected beyond 4 ∼ 5 meters.
The trace in Figure 4 is collected in home environment (see
Figure 3 for the apartment floor print) when the headset wearer
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Fig. 4: Number of Packet Lost per Second - Communica-
tion Trace of Preparing Food in Kitchen

Fig. 5: CDF of Connection Length Fig. 6: CDF of Packet Loss Rate for the Bins
that Contain Packet Loss (Account for 93.90%
of all Bins) during Connection

Fig. 7: MCI Detection Accuracy Change with
Different Data Decimation Rate

Fig. 8: Depression Detection Accuracy Change with Dif-
ferent EEG Data Sampling Rate

Fig. 9: Total Detection Accuracy Change with
Different EEG Data Sampling Rate

was preparing food in the kitchen and moving around the
house from time to time, with the local base station set in the
middle of the living room. The Y axis is the number of lost
packets in each second. When the headset is disconnected, all
128 packets (the full sampling rate is 128 packets per second)
are lost in each second during disconnection. In this trace, the
headset is disconnected for about 2/3 of the time. The time
elapsed before disconnection is short, ranging from 16 seconds
to 21 minutes, with its cumulative distribution function (CDF)
plotted in Figure 5.
Low packet loss rate with connection. When the wireless
communication is not disconnected, we divide the collected
EEG data into bins of one second. Figure 6 plots the CDF
of the packet loss rate for the bins that contain packet losses,
which only account for 6.05% of all used bins. From Figure 6,
we can see that about 80% of these bins have less than 20%
packet lose. Considering that 93.95% of the bins do not even
have any packet loss, only 1.18% of the total transmitted
packets are lost. In other words, once the headset is connected,
the packet loss rate is very low.

B. EEG-based Neurometric Application and Fidelity Defini-
tion

Based on two widely used neurometric indices, the Tsallis
entropy ratio [2] and the cerebral asymmetry score [1], two
neurometric applications are studied, and we give the defini-
tion for their application fidelities.

varRapid ≡
∑

xi∈Intervalj

(xi − x̄j)
2

varSlow ≡
N∑
i=1

(xi − x̄)2

qEEG = 1−

∑
Intervalj

varRapid

varSlow

Rpo =
prefrontal qEEG
occipital qEEG

(1)

1) Mild Cognitive Impairment (MCI) Detection using Tsal-
lis Entropy (qEEG) Ratio: Equation 1 shows how to compute
qEEG ration metric. First, we compute the qEEG from pre-
frontal and occipital channels, respectively. The qEEG char-
acterizes the EEG signal variance in slow and rapid manners.
We divide time into epochs of 30 seconds, the same as used
in [2], and the local maxima and minima of the averaged
readings further divide each epoch into intervals. We compute
qEEG using the variance values in each epoch and interval.
Then the qEEG ratio equals the ratio of prefrontal qEEG to
occipital qEEG. Finally, according to [2], statistical hypothesis
tests (two tailed T-tests) are used to decide if the mean of the
subject’s Rpo is below or above the statistic threshold µ0 in
[2].

Now we define and quantify the application fidelity of
MCI detection. We define the application fidelity as the MCI
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detection accuracy. To quantify the application fidelity, we
use the result of classification with full information, i.e.,
EEG signals sampled with the full rate, as the ground truth.
Then, using partial information, i.e., EEG signals with reduced
sampling rate, we perform the MCI classification again. Here
we use the term Data Decimation to refer to retaining a lower
rate than the full rate for data sampling and transmission.
The data decimation rate is computed as the ratio of the
new sampling rate after decimation compared with the full
rate. For example, 10% data decimation means that the data
sampling and transmission rate is reduced to 10% of the full
rate. With the full-sampling-rate traces we collected, the data
decimation is performed by randomly keeping a portion of the
EEG readings and dropping the rest. Finally, we calculate the
percentage of the classification results that are identical to the
ground truth. This percentage is defined to be the application
fidelity of MCI detection.

Figure 7 presents the fidelity of MCI detection. Since for a
given total data decimation rate, different combinations of data
decimation rates (which we call data decimation assignments)
can be applied to the same four electrodes, we randomly
choose 30 of the possible data decimation assignments and
plot their fidelity results with box plot in Figure 7. This
box plot shows the median, 25th and 75th percentiles, upper
and lower adjacent values, and outliers. As the figure shows,
the application fidelity is low when the data decimation rate
is below 10%, and changes dramatically with the low data
decimation rate between 15% and 30%. This implies that the
samples delivered to the base station are not sufficient for the
MCI detection. Even with higher data decimation rate, the
decimation rate of each channel may not be the same. Given
some channels have too low data decimation rates and the
samplings are insufficient, the application fidelity still suffers
even if other channels have data decimation rates higher than
necessary, showing the large variation of application fidelity
even with relatively high total data decimation rates, like
45% ∼ 50%.

2) Depression Detection using Cerebral Asymmetry Score:
The cerebral asymmetry score is computed with the readings
from F3/F4. We divide time into chunks of 2.05s, with 75%
overlapping [1], and apply Fast Fourier Transform [27] to the
electrode readings in each chunk. The α band power (mea-
sured in µV 2/Hz) is computed by summing up activities across
all frequencies between 8Hz and 13Hz. Log-transformation is
applied for normalization. The asymmetry score equals the log
of the right hemisphere α band power minus the log of the
left hemisphere α band power (Log of the right α band power
- Log of the left α band power in µV 2/Hz). Using T-test, the
mean of asymmetry score is compared with the thresholds in
[1] to generate depression detection results.

Similar to the MCI detection, the fidelity of the depression
detection application is defined as the percentage of identical
event detection results between when the full-sampling-rate
data is used and when decimated data is used. Figure 8 plots
the fidelity of asymmetry score when different data decimation
rates are applied.

Assuming both applications are equally important, each with
0.5 priority weight, Figure 9 plots the total weighted fidelity

with data decimation rates on all 6 electrodes, using box plot.

C. Mismatch between the Communication Pattern and Appli-
cation Fidelity

The communication pattern analysis shows that the wireless
EEG headset is either well connected or disconnected with
the local base station most of the time. So, we discuss the
application fidelity under these two scenarios.
Well connected. We find that the current design uses a higher
sampling rate than necessary. As we apply data decimation
to the sampled data, the result shows that it is still possible
to maintain high fidelity for the two example applications.
For example, in Figure 8, the fidelity of depression detection
can still be as high as 94% when both F3 and F4 electrodes’
readings are applied with 15% data decimation rate. This
implies that the application does not need the full sampling
rate of 128Hz for all the electrodes on the neuroheadset.
Figures 7, 8 and 9 show that the application fidelity is
generally monotonous with the data decimation rate, but can be
degraded with inappropriate data decimation assignments. This
means that different data streams have different impacts on
specific application’s fidelity. For instance, when F4 electrode
maintains the full sampling rate and F3 only applies 20% data
decimation rate, the depression detection fidelity drops sharply
to 39%. The fidelity is much worse than what is given in our
previous example, although the total data decimation rate of
the two electrodes is much higher (a total data decimation rate
of 40% comparing with 15%). Figure 7 also shows that even
when the total data decimation rate is fixed, the fidelity may
still vary with different data decimation assignments, e.g., with
the total data decimation rate fixed as 45%, the application
fidelity can vary from zero to 100%.
Disconnected. We find that the current design overlooks appli-
cation fidelity requirements when the headset is disconnected.
The Emotiv neuroheadset does not have any data buffer. When
the headset is disconnected, the sampled data is completely
lost, and the application fidelity is not provided during the
disconnection period. As a result, the use of EEG headset will
be interrupted when the subject cannot remain close enough
to the local base station. For example, in the kitchen cooking
trace we collected, the subject needs to wear the headset for
more than 45 minutes to perform a 15 minutes effective EEG
monitoring.
Summary. Based on the measurement results and analysis,
we can see that the existing commercial neuroheadset does
not take the realistic communication patterns and application
fidelity requirements into its design consideration. The current
neural signal sampling design is inadequate for meeting the ap-
plication fidelity requirements and handling real-time commu-
nication scenarios. Thus, we propose a new approach, which
can automatically learn the sensitivity of application fidelity to
EEG data, and utilize the learned sensitivity to cope with the
mismatch between the neuroheadset’s wireless communication
pattern and the application fidelity requirements. Note that our
approach is not limited to the Emotiv EPOC Neuroheadset, as
it does not depend on any specific design of the wireless EEG
device.
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IV. LEARNING THE SENSITIVITY OF SINGLE
APPLICATION’S FIDELITY

With the two example applications, we further analyze the
sensitivity of specific application’s fidelity to the EEG data.
According to the preliminary observations in the previous
section, different data streams have different impacts on the
application fidelity. In other words, an application’s fidelity
may be more sensitive to the data decimation rate changes
of some streams than others. So, we propose to learn the
sensitivity of application fidelity, and also use it to optimize
resource allocation in EEG sensing. Table I lists the notations
used in this section.

TABLE I: Notations

Symbol Definition
ai The ith application in the system, i ∈ {1..N}.
wi The weight associated with ai. Larger weights

are given to more important applications.
sj The jth data stream in the system, j ∈ {1..M}.

All M data streams are assumed to have the same
full sampling rate.

Si The subset of data streams requested by ai.
Different applications may require different or the
same set of data streams.

tj The data decimation rate assigned to data stream
sj , j ∈ {1..M}.

Ti Ti = {ti1, ti2, . . .} denotes the data decima-
tion assignment of the data streams set Si =
{si1, si2, . . .}, which is requested by ai.

fi(Ti) The fidelity function for ai. The function input
is the data decimation assignment Ti to the data
streams set Si that is requested by ai. The
function output is the ai’s fidelity, which is in
the range of [0,1].

Fi The required fidelity threshold for ai.

First, we look into individual applications using multiple
data streams. If the application fidelity is more sensitive to
some data streams, then the sampling rates of these streams
should be reduced as less as possible. Given a total data
decimation rate, we formally define the problem of computing
the optimal data decimation assignment for a single application
as follows:

Definition 1 (Single-Application Decimation): Given the
total data decimation rate li=

1
|Si|

∑
∀tj∈Ti

tj , the problem is to
find the optimal data decimation assignment Ti={ti1, ti2, . . .}
for ai, so that its fidelity fi is maximized.

We notice that this problem is similar to the traditional
sensitivity analysis [28] [29], which tries to identify the relative
importance of each input (corresponding to each data stream in
our problem). So, a basic sensitivity analysis technique called
Local Method is used here to assign the data decimation rate
to different data streams of a single application. To decide the
importance of each data stream sj , the Local Method checks
the simple derivative of the fidelity function fi with respect to
sj’s data decimation rate change. While all other data streams
use the same sampling rate, sj is applied with data decimation

rate tj which is changed in K enumeration steps. We denote
the change between the kth and (k+1)th data decimation rates
as ∆tjk, and the corresponding application fidelity change
as ∆fik, k∈{1..K−1}. Then, the average derivative for data
stream sj is 1

K−1

∑K−1
k=1 |∆fik

∆tjk
|. Intuitively, with a larger value

of the average derivative, the data stream sj is more important
to the application. Thus the data decimation rate of data
streams j is computed as:

tj =

li × |Si| ×
K−1∑
k=1

|∆fik
∆tjk

|

∑
∀tj∈Ti

K−1∑
k=1

|∆fik
∆tjk

|
. (2)

With the learned data sensitivity, we further consider mul-
tiple applications in the EEG sensing system. Depending on
whether the wireless link is well connected or disconnected,
we address two optimization problems. (1) As we have il-
lustrated in the Motivation section, full data sampling rate
is usually not needed to produce the requested application
fidelity. So, we propose to optimize the total data decimation
rate of all data streams while meeting the user requested
application fidelity. Obviously, minimizing the total data dec-
imation rate lowers the total energy usage, which is essential
for the battery powered wireless EEG headset. (2) In the cases
when the wireless communication is disconnected, a local
buffer is incorporated to temporarily cache the data for later
delivery. Since the buffer space is limited, here we propose to
optimize the usage of the limited space by optimizing the data
decimation assignment among different data streams, so that
the weighted sum of all applications’ fidelities is maximized.

V. EXPLOITING DATA SENSITIVITY TO MINIMIZE ENERGY
CONSUMPTION

Since data communication and processing dominate the en-
ergy cost of a sensing system, we assume that the total energy
consumption is approximately proportional to the amount of
data the sensing system needs to communicate and process.
In this section, we define the energy minimization problem
when the wireless communication link is reliable, and propose
an energy minimization algorithm (mainly for the MAC layer)
by minimizing the total data decimation rate.

A. Problem Definition and Analysis

When the wireless link is well connected, we formally
define the energy minimization problem as follows:

Definition 2 (Energy Minimization Problem): For the pur-
pose of minimizing energy consumption, how to optimize the
data decimation assignment Ti to the data streams used by
application ai, so that each ai’s desired fidelity threshold
Fi is satisfied and the total decimation rate 1

M

∑M
j=1 tj is

minimized.
Note that a higher data decimation rate (or more data)

implies more communication and energy cost. Moreover, this
problem can be formalized as follows:
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min
{ 1

M

M∑
j=1

tj
}

s.t. ∀i, fi(Ti) ≥ Fi

In this case, the constraint functions are described by oracle
models.

In an oracle model, we do not know the fi functions
explicitly, but we can evaluate fi functions manually or by
computer programs. This is referred to as querying the oracle
[30]. In [30], it is also mentioned that some prior information
like an oracle model’s convexity is sometimes given or could
be assumed depending on the application context. Generally,
Figure 8 shows that a higher data decimation rate (more com-
munication energy) means higher application fidelity. Thus,
it is reasonable for us to assume that the fidelity function
is an approximately increasing function of the assigned data
decimation rates.

Algorithm 1 Energy Minimization

Input: fidelity functions {fi(Ti)}, fidelity thresholds {Fi},
the tolerance ϵ
Output: data decimation assignment to all data streams
{t1..tM}
∀j = 1..M, tj = 0
for i = 1 to N do

Initiate the decimation rate upper / lower bounds:
ui= 1; bi=0
Compute the initial decimation rate for ai: li = bi+ui

2 ;
repeat

/* Assign the total data decimation rate li of application
ai to all data streams that application ai requests,
according to Equation 2*/
for tj ∈ Ti do

if tj < the result of Equation 2 then
tj = the result of Equation 2

end if
end for
Compute fi(Ti)
if fi − Fi > 0 then

if fi − Fi < ϵ then
Break

end if
ui = li

else if fi − Fi < 0 then
bi = li

else
Break

end if
li =

bi+ui

2
until false

end for
Return (the total data decimation rate T = 1

M

∑M
j=1 tj)

B. Energy Minimization Algorithm

We propose Algorithm 1 to solve the energy minimization
problem. Considering all applications in the system, we pro-
pose to adjust the data decimation rates across data streams
used by different applications to minimize the total data
decimation rate while still meeting the desired application
fidelity thresholds. This algorithm uses the Local Method in
Section IV to learn the sensitivity of an application’s fidelity
and determine the optimal data decimation assignment for the
data streams required by this application.

From Figures 7 and 8, we find that the application fidelity
generally increases with the increase of data decimation rates.
Based on this monotonous property, we design the main
algorithm for multi-application data decimation assignment,
which is inspired by the bisection method for quasiconvex op-
timization [30]. This algorithm utilizes an approach similar to
the binary search, which repeatedly adjusts the data decimation
rate li for all data streams requested by each application ai.
This loop stops when all the resulting applications’ fidelities
{fi}s are above and close enough to the required thresholds
{Fi}s within a specified tolerance interval ϵ (ϵ>0). With each
possible li, the data decimation rate is assigned to the data
streams of ai according to Equation 2.

The convergence speed of the algorithm depends on the
datasets it runs on. For the datasets we use in the evaluation,
the algorithm does converge after running for several minutes.
Additionally, we can also set a termination condition, such as
the number of total iterations, into the algorithm to control its
complexity.

VI. EXPLOITING DATA SENSITIVITY TO MAXIMIZE
APPLICATION FIDELITY

When the data with the full sampling rate cannot be all
immediately delivered due to network disconnections, the
MAC layer uses a local buffer to cache data for later delivery
when the network is reconnected. In this section, we define
the application fidelity maximization problem, and propose a
novel algorithm to optimize the usage of the limited buffer to
maximize the total weighted application fidelity.

A. Problem Definition and Analysis

When the wireless communication is disconnected, we
define the application fidelity maximization problem:

Definition 3 (Fidelity Maximization Problem): Given a
data buffer size, which determines the upper threshold for
1
M

∑M
j=1 tj , how to optimize the data decimation assignment

{t1..tM} to data streams, so that the sum of all applications’
weighted fidelity

∑N
i=1 wi·fi(Ti) is maximized.

Based on the definition, we find that it is a variant of
the Resource Allocation Problem (RAP). RAP aims to assign
available resources to all agents in an economic way. Many
algorithms exist for solving RAP. One class of resource
allocation algorithms among them is the weighted majority
[31] whose basic skeleton is described in Algorithm 2.

In Algorithm 2, the weight vector represents how many
resources should be allocated to each agent (application), and
all resources are initially evenly allocated. After initialization,
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Algorithm 2 Weighted Majority Algorithm Skeleton

1: Input: β ∈ [0, 1], the initial weight vector u1 ∈ [0, 1]N

with
∑N

i=1 u
1
i = 1, the number of trials T

2: Output: the allocation vector pt

3: for t = 1 to T do
4: Choose allocation pt = ut∑N

i=1 ut
i

5: Receive the loss vector lt ∈ [0, 1]N from environment
6: Set the new weights vector ut+1

i = ut
iβ

lti

7: end for

the algorithm goes into the allocation loop. In each round of
the loop, losses from all agents are put to form a loss vector.
With the loss vector, the algorithm adjusts each agent’s weight
according to the following rule: allocating more resources to
the agent who makes profits, and reducing resources to those
agents who do not. The parameter β is used to control how
fast the algorithm converges. When the next round of the
loop begins, the resources are reallocated according to the
new weight vector. The algorithm terminates after a certain
number of rounds and the final weight vector represents the
final decision on how to allocate resources to the agents.

Since the weighted majority algorithm has promising and
solid convergence analysis result, we design an algorithm
based on it to solve the fidelity maximization problem.

B. Fidelity Maximization Algorithm

We propose Algorithm 3 to solve the fidelity maximization
problem. Given the total possible data decimation rate T ,
which is decided by the available buffer size, our algorithm
iteratively adjusts the data decimation assignment among
applications. From each iteration, the trends of changes are
learned for both the total weighted fidelity and individual
applications’ fidelities. Then, the algorithm increases the data
decimation rate of those applications that negatively impact the
total weighted fidelity. It also follows Equation 2 to compute
the data decimation assignment to data streams requested by
each application.

As the algorithm iteratively computes the data decimation
assignment {t1, .., tM}, we denote the index of the current
iteration step as q. The results of the qth iteration are denoted
with superscript q. The complexities of Algorithms 1 and
3 rely on the convergence speed, which depends on the
datasets they run on. Thus, we have configurations such as
the iteration bound Q in Algorithm 3 in order to control
the algorithm complexities. The algorithm terminates iteration
after a specified number of rounds Q. So, q ∈ {1..Q}.

Like many other algorithms for solving complicated opti-
mization problems, our proposed algorithm may end at a local
minimum. We could design an algorithm that can achieve
a global minimum when we know whether the problem is
convex or not. However, as we mentioned before, we do
not have explicitly mathematical equations for describing the
optimization objectives. Thus, it is hard for us to determine
the convexity of the problem. Therefore, we evaluate the func-
tions in the optimization objectives for solving the problems
numerically [30].

Algorithm 3 Fidelity Maximization

Input: fidelity functions {fi(Ti)}, the total decimation rate
T , the iteration bound Q, β ∈ [0, 1] (β controls the
algorithm’s converging speed)
Output: data decimation assignment to all data streams
{t1..tM}
/*∀i, initiate {f0

i }, {li}, and the fidelity change ∆fi*/
∀i, f0

i = 1, li = T , ∆fi = 0
/* Initially, assume ∀j, tj = T*/
∀j, t1j = T
Initiate the iteration step index q = 1
repeat
∀i, compute fq

i with {tqj}
/* If the total weighted fidelity decreases, recompute
∆fi*/
if
∑N

i=1 f
q−1
i · wi −

∑N
i=1 f

q
i · wi > 0 then

∀i, compute ∆fi = (fq−1
i − fq

i ) ·wi for application ai
end if
/* Adjust li for each application ai, according to ∆fi*/
for i = 1 to N do

if ∆fi > 0 then
li = li ∗ β−∆fi

end if
/* Compute the qth data decimation assignment for
application ai with the adjusted li, according to Equa-
tion 2*/
for j = i1, i2, .. do

if tqj is NULL OR tqj < the result of Equation 2
then

tqj = the result of Equation 2
end if

end for
end for
/* Normalize {tqj}*/

∀j, tqj =
T ·M ·tqj∑M

j=1 tqj
q = q + 1

until q > Q
Return (the data decimation assignment {t1, .., tM})

VII. EVALUATION

We evaluate the above two proposed solutions with trace-
driven experiments, using 20 EEG data traces collected from
a human subject in the same office environment, where we
collected the traces for the communication patten analysis in
Section III. Each trace contains non-loss EEG data generated
by six EEG electrodes. We apply data decimation to the traces
with the data decimation assignments computed from our two
algorithms. Then the application fidelity is calculated with
decimated traces, and compared with the current solutions that
are implemented in the EEG headset, i.e., the default full data
rate sampling and even data decimation assignments.

Algorithms 1 and 3 are evaluated using the 20 traces, which
are separated into a training set and an evaluation set. Each
algorithm first runs on the training set to compute the data
decimation assignment. Then, the computed data decimation
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Fig. 10: Data Decimation Rates Computed
with Energy Minimization Algorithm

Fig. 11: Fidelity Achieved with Energy Mini-
mization Algorithm

Fig. 12: Data Decimation Assignment Computed with
Fidelity Maximization Algorithm

assignment is applied to the evaluation set. On both sets, the
fidelity is computed as defined in Section III. The evaluation
is repeated following a 5-fold cross-validation style, i.e., the
20 are divided into five groups with four traces in each group;
each of the five groups is used in turn as the evaluation set,
and the other four groups are used as the training set so that
the data for evaluating the algorithms is different from the
data for training the algorithms. In total, each experiment runs
5 rounds, and the fidelities achieved in these five rounds are
averaged.

A. Evaluation of the Energy Minimization Algorithm

Figures 10 and 11 show the results of the Algorithm 1,
which achieves large energy savings comparing with the
original design of using the full sampling rate for all electrodes
at all times. The x-axis of the two figures shows that the user-
specified application fidelity requirement increases from 60%
to 100%. Figure 10 shows the total data decimation rate for all
electrodes (2 for depression detection; 4 for MCI detection)
used by each application with required fidelity thresholds.
Figure 11 shows the achieved application fidelity when the
data decimation assignment computed by Algorithm 1 is
applied to the evaluation set. We observe that both applications
approximately achieve the required neurometric fidelities with
the computed data decimation assignment, which is lower than
the full sampling rate. So, energy can be saved by sampling
and sending the decimated data only. We observe that when
the required threshold is around 90%, only less than 25% and
10% data decimation rates are needed for the two applications,
respectively. This means, 75% and 90% of the sampling and
communication energy can be saved by our solution for each
application.

Figure 10 also shows the effectiveness of utilizing different
sensitivities of different applications’ fidelities to EEG data.
The computed data decimation rate increases as the required
fidelity threshold increases, and the data decimation rate for
depression detection needs to be largely increased to achieve
a fidelity higher than 85%. This implies that the fidelity
of depression detection is more sensitive to EEG data than
the MCI detection. So when a higher application fidelity is
required, a higher data decimation rate should be assigned to
the data that is requested by depression detection.

Figure 11 shows the fidelity achieved by the data decimation
assignment computed by Algorithm 1. Most of the achieved
fidelity is higher than or close to the required threshold for both
applications. For MCI detection, the achieved fidelity is always
slightly higher than or roughly equal to the required fidelity.
For depression detection, the achieved fidelity is higher than
the required fidelity when the requested threshold is less than
92%, after which the requested high threshold is not met. One
possible reason is that the learned sensitivity of fidelity is only
an approximate, but not a strict, increasing function of the data
decimation rates (See Figure 8).

B. Evaluation of the Fidelity Maximization Algorithm

We compare our fidelity maximization algorithm with the
default even data decimation assignment algorithm, which
assigns the total data decimation rate evenly to the six needed
electrodes. When the wireless communication is reliable, we
use the energy minimization algorithm to achieve perfect
application fidelity with the minimum energy consumption.
When the wireless communication is disconnected, we in-
corporate a limited data buffer into the EEG headset to
save sampled data temporarily for later delivery. During the
disconnection period, the fidelity maximization algorithm is
also called to maximize the total weighted application fidelity
according to the limited buffer size. As demonstrated in
Figure 10, only a small data decimation rate is needed in order
to achieve the perfect application fidelity. This suggests that
we need a smart way to allow us to focus on a small range of
low data decimation rate in order to effectively evaluate our
fidelity maximization algorithm. Therefore, in this experiment,
we first apply our energy minimization algorithm to get the
minimally needed data decimation rate. Then, we further apply
a second round of decimation with given data decimation
rates. The given data decimation rate is decided by the fixed
buffer size and the length of the disconnection period. As
Figure 4 shows, the disconnection periods varies. The longer
the disconnection period, the lower the data decimation rate
is given. We present the results for six test cases with six
different data decimation rates given, including 12.5%, 18%,
25%, 35%, 50%, and 90%, which correspond to the differ-
ent disconnection periods, respectively. Different application
weights are also allowed for the two applications. For example,
a weight vector W1 = {.2, .8} means that the depression
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Fig. 13: Fidelity Achieved with Fidelity Maximization Algorithm

detection application and the MCI detection application have
priority weights of 0.2 and 0.8, respectively. Figure 12 plots
the computed data decimation assignments, and Figure 13
plots the achieved application fidelity.

In Figure 12, the three bars in each of the six test cases show
the data decimation assignments computed with one of the six
given total data decimation rates as well as the three different
combinations of the application weights. The figure shows that
the fidelity maximization algorithm is able to adapt the data
decimation assignment to meet different application fidelity
and data decimation rate requirements. In the first three test
cases, we find that similar data decimation assignments are
computed for the MCI detection application. This suggests
that with a very low total data decimation rate (<= 25%), the
application’s fidelity cannot be largely improved with a small
data decimation rate increase. So, the algorithm assigns higher
data decimation rates to the application when it becomes more
important. This is shown in the first bar of each test case that
corresponds to the weight vector W1 = {.2, .8}. When the
depression detection application becomes more important, as
shown in the third bar of each test case that corresponds to
the weight vector W3 = {.8, .2}, the algorithm assigns higher
data decimation rates to the depression detection application.

From Figure 13, when the buffer size is very small, as shown
in the first three test cases of each subfigure, we observe
that the default even data decimation assignment algorithm
achieves a very low fidelity and is always largely outperformed
by our proposed algorithm. This is because, as demonstrated
in Figure 10, the MCI detection application can easily achieve
a very high fidelity with a very low data decimation rate com-
pared with the depression detection application. Our proposed
algorithm is able to automatically learn the sensitivities of
different applications’ fidelities to the EEG data. Then, based
on the learned sensitivity, our algorithm chooses to first satisfy
the application that requires lower data decimation rates to
achieve a high application fidelity. On the other hand, the
default algorithm assigns the same data decimation rates to
all data streams, ignoring the sensitivity difference between
different applications’ fidelities. Thus, data decimation rates

higher than necessary are assigned to the data streams of
one application, but the other application’s fidelity is harmed
because of inadequate data decimation rates assigned.

From Figure 13, when the buffer size is not very small,
as shown in the last three test cases of each subfigure, we
observe that our design is still better than the default solution
most of the time. In these three test cases, both algorithms
assign high data decimation rates to both applications because
the total allowed data decimation rate is high. With the high
data decimation rates assigned, the MCI detection application’s
fidelities achieved by both solutions are close to 100%, and
the depression detection’s fidelities achieved by these two
solutions do not have obvious difference. This is because, as
shown in Figure 10, when the data decimation rate is higher
than or equal to 20%, a small increase of the data decimation
rate does not lead to a large improvement of the depression
detection application’s fidelity.

VIII. CONCLUSIONS AND FUTURE WORK

Meeting applications’ fidelity requirements as well as saving
energy are two central issues of incorporating EEG neuro-
metrics into in-situ and ubiquitous physiological monitoring.
In this paper, we measure the realistic neuroheadset com-
munication with an off-the-shelf Emotiv EPOC Neurohead-
set, and reveal a mismatch between the lossy EEG sensor
communication pattern and the high neurometric application
fidelity requirements. Then, taking the MCI detection and the
depression detection as two example neurometric applications,
we propose a generic approach to automatically learn the sen-
sitivity of application fidelity to the EEG data. With the learned
sensitivity, we propose an energy minimization algorithm for
reliable wireless communication. We also propose a fidelity
maximization algorithm for poor wireless communication.
Through trace-driven experiments, our solutions are demon-
strated to outperform existing ones. When the communication
is reliable, the energy minimization algorithm is used to save
energy. When the communication is poor, the fidelity maxi-
mization algorithm is used to maximize application fidelity.
In the future work, we will investigate more on the joint use
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of the two algorithms. We will devise a new communication
indicator, and use it to guide dynamic switches between these
two algorithms. Also, we will further analyze the performance
of our algorithms. Since both algorithms’ convergence speeds
depend heavily on the input EEG data, we will evaluate our
solutions with a larger set of EEG data from multiple subjects
to figure out the proper configurations, such as the iteration
bound Q, for our proposed algorithms.
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[13] K. C. Barr and K. Asanović, “Energy-Aware Lossless Data Compres-
sion,” in ACM TOCS, 2006.

[14] A. T. Barth, M. A. Hanson, H. C. P. Jr, and J. Lach, “Online Data and
Execution Profiling for Dynamic Energy-Fidelity Optimization in Body
Sensor Networks,” in IEEE BSN, 2010.

[15] M. Hanson, H. Powell, A. Barth, and J. Lach, “Enabling data-Centric
Energy-Fidelity Scalability in Wireless Body Area Sensor Networks,” in
BodyNets, 2009.

[16] L. K. Au, W. H. Wu, M. A. Batalin, D. H. Mclntire, and W. J. Kaiser,
“Microleap: Energy-Aware Wireless Sensor Platform for Biomedical
Sensing Applications,” in IEEE BIOCAS, 2007.

[17] G. Zhou, C. Huang, T. Yan, T. He, J. A. Stankovic, and T. F. Abdelzaher,
“MMSN: Multi-frequency media access control for wireless sensor
networks,” in IEEE INFOCOM, 2006.

[18] C.-J. Liang, N. Priyantha, J. Liu, and A. Terzis, “Surviving Wi-Fi
Interference in Low Power ZigBee Networks,” in ACM SenSys, 2010.

[19] N. Verma, A. Shoeb, J. V. Guttag, and A. P. Chandrakasan, “A
Micro-power EEG Acquisition SoC with Integrated Seizure Detection
Processor for Continuous Patient Monitoring,” in IEEE Symposium on
VLSI Circuits, 2009.

[20] Z. Charbiwala, V. Karkare, S. Gibson, D. Markovic, and M. B. Srivas-
tava, “Compressive sensing of neural action potentials using a learned
union of supports,” in IEEE BSN, 2011.

[21] “Emotiv EPOC Neuroheadset,” http://www.emotiv.com/.
[22] X. Qi, G. Zhou, Y. Li, and G. Peng, “Radiosense: Exploiting wireless

communication patterns for body sensor network activity recognition,”
in IEEE RTSS, 2012.

[23] Y. Wu, G. Zhou, and J. A. Stankovic, “ACR: Active Collision Recovery
in Dense Wireless Sensor Networks,” in IEEE INFOCOM, 2010.

[24] Y. Li, X. Qi, M. Keally, Z. Ren, G. Zhou, D. Xiao, and S. Deng,
“Communication energy modeling and optimization through joint packet
size analysis of bsn and wifi networks,” IEEE Trans Parallel Distrib.
Syst., 2013.

[25] J. Duan, D. Gao, D. Yang, C. Foh, and H.-H. Chen, “An energy-aware
trust derivation scheme with game theoretic approach in wireless sensor
networks for iot applications,” IEEE IoT Journal, 2014.

[26] F. Han, Y.-H. Yang, H. Ma, Y. Han, C. Jiang, H.-Q. Lai, D. Claffey,
Z. Safar, and K. Liu, “Time-reversal wireless paradigm for green internet
of things: An overview,” IEEE IoT Journal, 2014.

[27] V. K. Ingle and J. G. Proakis, Digital Signal Processing using MATLAB.
Cengage Learning, 2011.

[28] D. G. Cacuci, Sensitivity and Uncertainty Analysis: Theory, Volume I.
CRC, 2003.

[29] D. G. Cacuci, M. Ionescu-Bujor, and I. M. Navon, Sensitivity and
Uncertainty Analysis: Applications to Large-Scale Systems, Volume I.
CRC, 2005.

[30] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[31] N. Littlestone and M. K. Warmuth, “The Weighted Majority Algorithm,”
in IEEE FOCS, 2002.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JIOT.2014.2322331

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.


