
Automatic Cookie Usage Setting with CookiePicker

Chuan Yue Mengjun Xie Haining Wang
The College of William and Mary
{cyue,mjxie,hnw}@cs.wm.edu

Abstract

HTTP cookies have been widely used for maintaining
session states, personalizing, authenticating, and tracking
user behaviors. Despite their importance and usefulness,
cookies have raised public concerns on Internet privacy be-
cause they can be exploited by Web sites to track and build
user profiles. In addition, stolen cookies may also incur
security problems. However, current web browsers lack se-
cure and convenient mechanisms for cookie management. A
cookie management scheme, which is easy-to-use and has
minimal privacy risk, is in great demand; but designing
such a scheme is a challenge. In this paper, we introduce
CookiePicker, a system that can automatically validate the
usefulness of cookies from a Web site and set the cookie us-
age permission on behalf of users. CookiePicker helps users
achieve the maximum benefit brought by cookies, while min-
imizing the possible privacy and security risks. We imple-
ment CookiePicker as an extension to Firefox Web browser,
and obtain promising results in the experiments.

1. Introduction

HTTP Cookies, also known as Web cookies or just cook-
ies, are small parcels of text sent by a server to a web
browser and then sent back unchanged by the browser if
it accesses that server again [29]. Cookies are originally de-
signed to carry information between servers and browsers
so that a stateful session can be maintained within the state-
less HTTP protocol. For example, online shopping Web
sites use cookies to keep track of a user’s shopping bas-
ket. Cookies make Web applications much easier to write,
and thereby have gained a wide range of usage since debut
in 1995. In addition to maintaining session states, cookies
have also been widely used for personalizing, authenticat-
ing, and tracking user behaviors.

Despite their importance and usefulness, cookies have
been of major concern for privacy. As pointed out by Kristol
in [11], the ability to monitor browsing habits, and possibly
to associate what you’ve looked at with who you are, is the
heart of the privacy concern that cookies raise. For exam-

ple, a lawsuit alleged that DoubleClick Inc. used cookies to
collect Web users’ personal information without their con-
sent [3]. Moreover, vulnerabilities of Web applications or
Web browsers can be exploited by attackers to steal cook-
ies directly, leading to severe security and privacy problems
[7, 21, 22].

As the general public has become more aware of cookie
privacy issues, a few privacy options have been introduced
into Web browsers to allow users to define detailed poli-
cies for cookie usage either before or during visiting a Web
site. However, these privacy options are far from enough
for users to fully utilize the convenience brought by cookies
while limiting the possible privacy and security risks. What
makes it even worse is that most users do not have a good
understanding of cookies and often misuse or ignore these
privacy options [5].

Using cookies can be both beneficial and harmful. The
ideal cookie-usage decision for a user is to enable and store
useful cookies, but disable and delete harmful cookies. It
has long been a challenge to design effective cookie man-
agement schemes that can help users make the ideal cookie-
usage decision. On one hand, determining whether some
cookies are harmful is almost impossible, because very few
Web sites inform users how they use cookies. Platform for
Privacy Preferences Project (P3P) [30] enables Web sites
to express their privacy practices but its usage is too low
to be a feasible solution. On the other hand, determin-
ing whether some cookies are useful is possible, because
a user can perceive inconvenience or Web page differences
if some useful cookies are disabled. For instance, if some
cookies are disabled, online shopping may be blocked or
preference setting cannot take into effect. However, current
Web browsers only provide a method, which asks questions
and prompts options to users, for making decision on each
incoming cookie. Such a method is costly [13] and very
inconvenient to users.

In this paper, we present a system called CookiePicker
to automatically make cookie usage decisions on behalf of
a Web user. The distinct features of CookiePicker include
(1) fully automatic decision making, (2) high accuracy on
decision making, and (3) very low running overhead. Based

on the two complementary HTML page difference detection
algorithms, CookiePicker identifies those cookies that cause
perceivable changes on a Web page as useful, while simply
classifying the rest as useless. Then, CookiePicker enables
useful cookies but disables useless cookies. All the tasks are
performed without user involvement or even notice. We im-
plement CookiePicker as a Firefox Web browser extension,
and validate its efficacy through experiments over various
Web sites.

The remainder of this paper is structured as follows.
Section 2 gives the background of cookies and the focus
of CookiePicker. Section 3 describes the design of Cook-
iePicker. Section 4 details the two HTML page difference
detection algorithms, which are the core of CookiePicker.
Section 5 presents the implementation of CookiePicker and
its performance evaluation. Section 6 surveys related work,
and finally, Section 7 concludes the paper.

2. Background

In general, there are two different ways to classify cook-
ies. Based on the origin and destination, cookies can be
classified into first-party cookies, which are created by the
Web site we are currently visiting; and third-party cookies,
which are created by a Web site other than the one we are
currently visiting. Based on lifetime, cookies can also be
classified into session cookies, which are stored in memory
and deleted after the close of the Web browser; and per-
sistent cookies, which are stored on a hard disk until they
expire or are deleted by a user.

Third-party cookies bring almost no benefit to Web users
and have long been recognized as a major threat to user pri-
vacy since 1996 [10]. Therefore, almost all the popular Web
browsers, such as Microsoft Internet Explorer and Mozilla
Firefox, provide users with the privacy options to disable
third-party cookies. Although disabling third-party cookies
is a very good start to address privacy concerns, it only lim-
its the user profiling done by third parties [11], but cannot
prevent the profiling of users from first-party cookies.

First-party cookies can be either session cookies or per-
sistent cookies. First-party session cookies are widely used
for maintaining session states, and pose relatively low pri-
vacy or security threats to users due to their short lifetime.
Therefore, it is quite reasonable for a user to enable first-
party session cookies.

First-party persistent cookies, however, are double-
edged swords. We have conducted a large scale measure-
ment study on the usage of cookies, with over five thou-
sands Web sites involved. Our measurement results show
that first-party persistent cookies are widely used and above
60% of them are set to expire after one year or even longer
[24]. Some cookies perform useful roles such as person-
alization and authentication. Some cookies, however, pro-

vide no benefit but pose serious privacy and security risks
to users. The major risks lie in two aspects. First, these
first-party persistent cookies can be used to track the user
activity over time by the original Web site; second, they
can be stolen or manipulated by two kinds of long-standing
attacks—cross-site scripting (XSS) attacks that exploit Web
applications vulnerabilities [27, 21] and various attacks that
exploit Web browser vulnerabilities [22], since those attacks
can bypass the same origin policy [31] enforced by all mod-
ern Web browsers. For example, recently a cookie-related
XSS vulnerability was even found in one of Google’s host-
ing services [28].

Disabling third-party cookies (both session and persis-
tent) and enabling first-party session cookies have been sup-
ported by most Web browsers. The hardest problem in
cookie management is how to handle first-party persistent
cookies. Currently Web browsers only have limited func-
tions such as manual deletion or blocking, which are very
cumbersome and impractical to use. Therefore, the focus
of this paper is on first-party persistent cookies and how
to automatically manage the usage of first-party persistent
cookies on behalf of a user. Instead of addressing XSS or
Web browser vulnerabilities, CookiePicker reduces cookie
privacy and security risks by removing useless first-party
cookies from a user’s hard disk. Here we assume that the
hosting Web site is legitimate, since it is worthless to pro-
tect the cookies of a malicious site.

3. CookiePicker Design

The design goal of CookiePicker is to effectively
identify the useful cookies of a Web site, and then disable
the return of those useless cookies back to the Web site
in the subsequent requests and finally remove them. A
Web page is automatically retrieved twice by enabling and
disabling some cookies. If there are obvious differences
between the two retrieved results, we classify the cookies
as useful; otherwise, we classify them as useless. Cook-
iePicker enhances the cookie management for a Web site
by two processes: forward cookie usefulness marking and
backward error recovery. We define these two processes
and detail the design of CookiePicker in the following.

Definition 1. FORward Cookie Usefulness Marking
(FORCUM) is a training process, in which CookiePicker
determines cookie usefulness and marks certain cookies as
useful for a Web site.

Definition 2. backward error recovery is a tuning pro-
cess, in which wrong decisions made by CookiePicker in the
FORCUM process may be adjusted automatically or man-
ually for a Web site.

3.1 Regular and Hidden Requests

A typical Web page consists of a container page that is
an HTML text file, and a set of associated objects such as
stylesheets, embedded images, scripts, and so on. When a
user browses a Web page, the HTTP request for the con-
tainer page is first sent to the Web server. Then, after re-
ceiving the corresponding HTTP response for the container
page, the Web browser will analyze the container page and
issue a series of HTTP requests to the Web server for down-
loading the objects associated with the container page. The
HTTP requests and responses associated with a single Web
page view are depicted by the solid lines (1) and (2) in Fig-
ure 1, respectively. Web page contents coming with the
HTTP responses will be passed into the Web browser layout
engine, which will parse the container page and built it into
a DOM (W3C Document Object Model) tree.

W eb S er v e rW e b Br o w s e r

(1) r Re q ue s ts

(2) r R es p o ns e s

(3) hR e q ue s t

(4) hR e s po n s e

Figure 1: HTTP requests/responses in a single Web page view.

In order to identify the cookie usefulness for a Web page,
CookiePicker compares two versions of the same Web page:
the first version is retrieved with cookies enabled and the
second version is retrieved with cookies disabled. The first
version is readily available to CookiePicker in the user’s
regular Web browsing window. CookiePicker only needs to
retrieve the second version of the container page. Similar to
Doppelganger [16], CookiePicker utilizes the ever increas-
ing client side spare bandwidth and computing power to run
the second version. However, unlike Doppelganger, Cook-
iePicker neither maintains a fork window nor mirrors the
whole user session. CookiePicker only retrieves the second
version of the container page by sending a single hidden
HTTP request. As shown in Figure 1, line (3) is the extra
hidden HTTP request sent by CookiePicker for the second
version of the container page, and line (4) represents the
corresponding HTTP response. In the rest of the paper, we
simply refer the requests and responses, represented by the
solid lines (1) and (2) of Figure 1, as regular requests and
responses; and refer the extra request and response, repre-
sented by the dashed lines (3) and (4) of Figure 1, as the
hidden request and response.

3.2 Forward Cookie Usefulness Marking

The FORCUM process consists of five steps: regular
request recording, hidden request sending, DOM tree ex-

traction, cookie usefulness identification, and cookie record
marking.

When visiting a Web page, a user issues regular requests
and then receives regular responses. At the first step, Cook-
iePicker identifies the regular request for the container page
and saves a copy of its URI and header information. Cook-
iePicker needs to filter out the temporary redirection or re-
placement pages and locate the real initial container docu-
ment page.

At the second step, CookiePicker takes advantage of
user’s think time [12] to retrieve the second copy of the con-
tainer page, without causing any delay to the user’s regular
browsing. Specifically, right after all the regular responses
are received and the Web page is rendered on the screen for
display, CookiePicker issues the single hidden request for
the second copy of the container page. In the hidden re-
quest, CookiePicker uses the same URI as the saved in the
first step. It only modifies the “Cookie” field of the request
header by removing a group of cookies, whose usefulness
will be tested. The hidden request can be transmitted in
an asynchronous mode so that it will not block any regular
browsing functions. Then, upon the arrival of the hidden re-
sponse, an event handler will be triggered to process it. Note
that the hidden request is only used to retrieve the container
page, and the received hidden response will not trigger any
further requests for downloading the associated objects. Re-
trieving the container page only induces very low overhead
to CookiePicker.

At the third step, CookiePicker extracts the two DOM
trees from the two versions of the container page: one for
the regular response and the other for the hidden response.
We call these two DOM trees the regular DOM tree and
the hidden DOM tree, respectively. The regular DOM tree
has already been parsed by Web browser layout engine and
is ready for use by CookiePicker. The hidden DOM tree,
however, needs to be built by CookiePicker; and Cook-
iePicker should build the hidden DOM tree using the same
HTML parser of the Web browser. This is because in prac-
tice HTML pages are often malformed. Using the same
HTML parser guarantees that the malformed HTML pages
are treated as same as before, while the DOM tree is being
constructed.

At the fourth step, CookiePicker identifies cookie useful-
ness by comparing the differences between the two versions
of the container page, whose information are well repre-
sented in the two DOM trees. To make a right cookie useful-
ness decision, CookiePicker uses two complementary algo-
rithms by considering both the internal structural difference
and the external visual content difference between the two
versions. Only when obvious structural difference and vi-
sual content difference are detected, will CookiePicker de-
cide that the corresponding cookies that are disabled from
the hidden request are useful. The two algorithms are the

core of the CookiePicker and will be detailed in Section 4.
At the fifth step, CookiePicker will mark the cookies that

are classified as useful in the Web browser’s cookie jar. An
extra field “useful” is introduced to each cookie record. At
the beginning of the FORCUM process, a false value is as-
signed to the “useful” field of each cookie. In addition, any
newly-emerged cookies set by a Web site are also assigned
false values to their “useful” fields. During the FORCUM
process, the value of the field “useful” can only be changed
in one direction, that is, from “false” to “true” if some cook-
ies are classified as useful. Later on, when the values of the
“useful” field for the existing cookies are relatively stable
for the Web site, those cookies that still have “false” values
in their ‘useful” fields will be treated as useless and will no
longer be transmitted to the corresponding Web site. Then,
the FORCUM process can be turned off for a while; and it
will be turned on automatically if CookiePicker finds new
cookies appeared in the HTTP responses or manually by a
user if she wants to continue the training process.

3.3. Backward Error Recovery

In general, CookiePicker could make two kinds of errors
in the FORCUM process. The first kind of error is that use-
less cookies are mis-classified as useful, thereby being con-
tinuously sent out to a Web site. The second kind of error
is that useful cookies are never identified by CookiePicker
during the training process, thereby being blocked from a
Web site.

The first kind of error is solely due to the inaccuracy
of CookiePicker in usefulness identification. Such an er-
ror will not cause any immediate trouble to a user, but leave
useless cookies increasing privacy risks. CookiePicker is
required to make such errors as few as possible so that a
user’s privacy risk is lowered. CookiePicker meets this re-
quirement via accurate decision algorithms.

The second kind of error is caused by either a wrong
usefulness decision or the fact that some cookies are only
useful to certain Web pages but have not yet been visited
during the FORCUM process. This kind of error will cause
inconvenience to a user and must be fixed by marking the
corresponding cookies as useful. CookiePicker attempts to
achieve a very low rate on this kind of error, so that it does
not cause any inconvenience to users. This requirement is
achieved by two means. One one hand, for those visited
pages, the decision algorithms of CookiePicker attempt to
make sure that each useful persistent cookie can be identi-
fied and marked as useful. On the one hand, since Cook-
iePicker is designed with very low running cost, a longer
running period (or periodically running) of the FORCUM
process is affordable, thus training accuracy can be further
improved.

CookiePicker provides a simple recovery button for

backward error recovery in the tuning process. In case a
user notices some malfunctions or some strange behaviors
on a Web page, the cookies disabled by CookiePicker in
this particular Web page view can be re-marked as useful
via a simple button click. Note that once the cookie set of
a Web site becomes stable after the training and tuning pro-
cesses, those disabled useless cookies will be removed from
the Web browser’s cookie jar.

4. HTML Page Difference Detection

In this section, we present two complementary mecha-
nisms for online detecting the HTML Web page differences
between the enabled and disabled cookie usages. In the
first mechanism, we propose a restricted version of Sim-
ple Tree Matching algorithm [23] to detect the HTML doc-
ument structure difference. In the second mechanism, we
propose a context-aware visual content extraction algorithm
to detect the HTML page visual content difference. We call
these two mechanisms as Restricted Simple Tree Match-
ing (RSTM) and Context-aware Visual Content Extraction
(CVCE), respectively. Intuitively, RSTM focuses on detect-
ing the internal HTML document structure difference, while
CVCE focuses on detecting the external visual content dif-
ference perceived by a user. In the following, we present
these two mechanisms and explain how they are comple-
mentarily used.

4.1. Restricted Simple Tree Matching

As mentioned in Section 3, in a user’s Web browser, the
content of an HTML Web page is naturally parsed into a
DOM tree before it is rendered on the screen for display.
Therefore, we resort to the classical measure of tree edit
distance introduced by Tai [17] to quantify the difference
between two HTML Web pages. Since the DOM tree parsed
from the HTML Web page is rooted (document node is the
only root), labeled (each node has node name), and ordered
(the left-to-right order of sibling nodes is significant), we
only consider rooted labeled ordered tree. In the following,
we will first review the tree edit distance problem; then we
will explain why we choose top-down distance and detail
the RSTM algorithm; and finally we will use Jaccard simi-
larity coefficient to define the similarity metric of a normal-
ized DOM tree.

4.1.1. Tree Edit Distance

For two rooted labeled ordered trees T and T ′, let |T | and
|T ′| denote the numbers of nodes in trees T and T ′, and
let T [i] and T ′[j] denote the ith and jth preorder traversal
nodes in trees T and T ′, respectively. Tree edit distance is
defined as the minimum cost sequence of edit operations to

transform T into T ′ [17]. The three edit operations used in
transformation include: inserting a node into a tree, delet-
ing a node from a tree, and changing one node of a tree into
another node. Disregarding the order of the edit operations
being applied, the transformation from T to T ′ can be de-
scribed by a mapping as defined in [17].

Since the solution of the generic tree edit distance prob-
lem has high time complexity, researchers have investigated
the constrained versions of the problem. By imposing con-
ditions on the three edit operations mentioned above, a
few different tree distance measures have been proposed
and studied in the literature: alignment distance [8], iso-
lated subtree distance [18], top-down distance [15, 23], and
bottom-up distance [20]. The description and comparison
of these algorithms are beyond the scope of this paper, see
[2] and [20] for details.

4.1.2. Top-Down Distance

Because RSTM belongs to the top-down distance approach,
we review the definition of top-down distance and explain
why we choose this measure for our study.

Definition 3. A mapping (M, T, T ′) from T to T ′, is
top-down if it satisfies the condition that for all i, j such
that T [i] and T ′[j] are not the roots, respectively, of T and
T ′:

if pair (i, j) ∈ M then (parent(i), parent(j)) ∈ M .

The top-down distance problem was introduced by
Selkow [15]. In [23], Yang presented a O(|T | · |T ′|) time-
complexity top-down dynamic programming algorithm,
which is named as the Simple Tree Matching (STM) algo-
rithm.

As we mentioned earlier, our goal is to effectively detect
noticeable HTML Web page difference between the enabled
and disabled cookie usages. The measure of top-down dis-
tance captures the key structure difference between DOM
trees in an accurate and efficient manner, and fits well to
our requirement. In fact, top-down distance has been suc-
cessfully used in a few Web-related projects. For exam-
ple, Zhai and Liu [25] used it for extracting structured data
from Web pages; and Reis et al. [14] applied it for au-
tomatic Web news extraction. In contrast, bottom-up dis-
tance [20], although can be more efficient in time complex-
ity (O(|T | + |T ′|)), falls short of being an accurate met-
ric [19] and may produce a far from optimal result [1] for
HTML DOM tree comparison, in which most of the differ-
ences come from the leaf nodes.

4.1.3. Restricted Simple Tree Matching

Based on the original STM algorithm [23], Figure 2 il-
lustrates, RSTM, our restricted version of STM algorithm.

Algorithm: RSTM(A, B, level)
1. if the roots of the two trees A and B contain different symbols then
2. return(0);
3. endif
4. currentLevel = level + 1;
5. if A and B are leaf or non-visible nodes or
6. currentLevel > maxLevel then
7. return(0);
8. endif
9. m = the number of first-level subtrees of A;
10. n = the number of first-level subtrees of B;
11. Initialization, M [i, 0] = 0 for i = 0, ...,m;
12. M [0, j] = 0 for j = 0, ..., n;
13. for i = 1 to m do
14. for j = 1 to n do
15. M [i, j] = max(M [i, j − 1], M [i − 1, j],

M [i − 1, j − 1] + W [i, j]);
16. where W [i, j] = RSTM(Ai, Bj , currentLevel)
17. where Ai and Bj are the ith and jth

first-level subtrees of A and B, respectively
18. endfor
19. endfor
20. return (M [m, n] + 1);

Figure 2: The Restricted Simple Tree Matching Algorithm.

Other than lines 4 to 8 and one new parameter level, our
RSTM algorithm is similar to the original STM algorithm.
Like the original STM algorithm, we first compare the roots
of two trees A and B. If their roots contain different sym-
bols, then A and B do not match at all. If their roots con-
tain same symbols, we use dynamic programming to recur-
sively compute the number of pairs in a maximum match-
ing between trees A and B. Figure 3 gives two trees, in
which each node is represented as a circle with a single let-
ter inside. According to the preorder traversal, the four-
teen nodes in tree A are named from N1 to N14, and
the eight nodes in tree B are named from N15 to N22.
The final computed return result by using STM algorithm
or RSTM algorithm is the number of matching pairs for
a maximum matching. For example, STM algorithm will
return “7” for the two trees in Figure 3, and the seven
matching pairs are {N1, N15}, {N2, N16}, {N6, N18},
{N7, N19}, {N5, N17}, {N11, N20}, and {N12, N22}.

There are two reasons why a new parameter level is intro-
duced in RSTM. First, some Web pages are very dynamic.
From the same Web site, even if a Web page is retrieved
twice in a short time, there may exist some differences be-
tween the retrieved contents. For example, if we refresh
Yahoo home page twice in a short time, we can often see
some different advertisements. For CookiePicker, such dy-
namics on a Web page are just noises and should be differ-
entiated from the Web page changes caused by the enabled
and disabled cookie usages. This kind of noises, although
very annoying, has a distinct characteristic that they often
appear at the lower level of the DOM trees. In contrast,
the Web page changes caused by enabling/disabling cook-

N2

N6 N7 N8 N9 N10

N12 N14N13

N1 a

b c

d e f

b c

e d g

h i j

N4 N5

N11

N3

(a)

a

e

b c

d g f

h

N15

N17N16

N18 N19

N20

N21

N22
(b)

Figure 3: (a) Tree A, (b) Tree B.

ies are often so obvious that the structural dissimilarities are
clearly reflected at the upper level of the DOM trees. By us-
ing the new parameter level, the RSTM algorithm restricts
the top-down comparison between the two trees to a certain
maximum level. Therefore, equipped with the parameter
level, RSTM not only captures the key structure dissimilar-
ity between DOM trees, but also reduces leaf-level noises.

The second reason is that the O(|T | · |T ′|) time com-
plexity of STM is still too expensive to use online. Even
with C++ implementation, STM will spend more than one
second in difference detection for some large Web pages.
However, as shown in Section 5, the cost of the RSTM al-
gorithm is low enough for online detection.

The newly-added conditions at line 5 of the RSTM algo-
rithm restrict that the mapping counts only if the compared
nodes are not leaves and have visual effects. More specifi-
cally, all the comment nodes are excluded in that they have
no visual effect on the displayed Web page. Script nodes
are also ignored because normally they do not contain any
visual elements either. Text content nodes, although very
important, are also excluded due to the fact that they are
leaf nodes (i.e., having no more structural information). In-
stead, text content will be analyzed in our Context-aware
Visual Content Extraction (CVCE) mechanism.

4.1.4. Normalized Top-Down Distance Metric

Since the return result of RSTM (or STM) is the number
of matching pairs for a maximum matching, based on the
Jaccard similarity coefficient that is given in Formula 1, we
define the normalized DOM tree similarity metric in For-
mula 2.

J(A, B) =
|A ∩ B|
|A ∪ B| (1)

NTreeSim(A, B, l) =
RSTM(A, B, l)

N(A, l) + N(B, l) − RSTM(A, B, l)
(2)

The Jaccard similarity coefficient J(A, B) is defined as
the ratio between the size of the intersection and the size
of the union of two sets. In the definition of our nor-
malized DOM tree similarity metric NTreeSim(A, B, l),
RSTM(A, B, l) is the returned number of matched pairs

Algorithm: contentExtract(T, context)
1. Initialization, S = ∅; node = T.root;
2. if node is a non-noise text node then
3. cText = context+SEPARATOR+node.value;
4. S = S ∪ {cText};
5. elseif node is an element node then
6. currentContext = context+“:”+node.name;
7. n = the number of first-level subtrees of T ;
8. for j = 1 to n do
9. S = S∪contentExtract(Ti , currentContext);

where Ti is the ith first-level subtrees of T ;
10. endfor
11. endif
12. return (S);

Figure 4: The Text Content Extraction Algorithm.

by calling RSTM on trees A and B for upper l levels.
N(A, l) and N(B, l) are the numbers of non-leaf visible
nodes at upper l levels of trees A and B, respectively.
Actually N(A, l) = RSTM(A, A, l) and N(B, l) =
RSTM(B, B, l), but N(A, l) and N(B, l) can be com-
puted in O(n) time by simply preorder traversing the upper
l levels of trees A and B, respectively.

4.2. Context-aware Visual Content Extrac-
tion

The visual contents on a Web page can be generally clas-
sified into two groups: text contents and image contents.
Text contents are often displayed as headings, paragraphs,
lists, table items, links, and so on. Image contents are of-
ten embedded in a Web page in the form of icons, buttons,
backgrounds, flashes, video clips, and so on. Our second
mechanism mainly uses text contents, instead of image con-
tents, to detect the visual content difference perceived by
users. Two reasons motivate us to use text contents rather
than image contents. First, text contents provide the most
important information on Web pages, while image contents
often serve as supplements to text contents. In practice,
users can block the loading of various images and browse
most of the Web page in text mode only. Second, the sim-
ilarity between images cannot be trivially compared, while
text contents can be extracted and compared easily as shown
below.

On a Web page, each text content exists in a special con-
text. Corresponding to the DOM tree, the text content is a
leaf node and its context is the path from the root to this
leaf node. For two Web pages, by extracting and comparing
their context-aware text contents that are essential to users,
we can effectively detect the noticeable HTML Web page
difference between the enabled and disabled cookie usages.
Figure 4 depicts the recursive algorithm to extract the text
content.

The contentExtract algorithm preorder traverses the

whole DOM tree in time O(n). During the preorder traver-
sal, each non-noise text node is associated with its context,
resulting in a context-content string; and then the context-
content string is added into set S. The final return result is
set S, which includes all the context-content strings. Note
that in lines 2 to 4, only those non-noise text nodes are qual-
ified for the addition to set S. Similar to [4], scripts, styles,
obvious advertisement text, date and time string, and op-
tion text in dropdown list (such as country list or language
list) are regarded as noises. Text nodes that contain no al-
phanumeric characters are also treated as noises. All these
checkings guarantee that we can extract a relatively concise
context-content string set from the DOM tree.

Assume S1 and S2 are two context-content string sets
extracted from two DOM trees A and B, respectively. To
compare the difference between S1 and S2, again based on
the Jaccard similarity coefficient, we define the normalized
context-content string set similarity metric in Formula 3:

NTextSim(S1, S2) =
|S1 ∩ S2| + s

|S1 ∪ S2| (3)

Formula 3 is a variation [9] of the original Jaccard simi-
larity coefficient. The extra added s on the numerator stands
for the number of those context-content strings that are not
exactly same, while having the same context prefix, in S1

and S2. Intuitively, between two sets S1 and S2, Formula 3
disregards the difference caused by text content replacement
occurred in the same context, it only considers the differ-
ence caused by text content appeared in each set’s unique
context. This minor modification is especially helpful in re-
ducing the noises caused by advertisement text content and
other dynamically changing text contents.

4.3. Making Decision

As discussed above, to accurately identify useful cook-
ies, CookiePicker has to differentiate the HTML Web page
differences caused by Web page dynamics from those
caused by disabling cookies. Assume that tree A is parsed
from a Web page retrieved with cookies enabled and tree
B is parsed from the same Web page with cookies dis-
abled. CookiePicker examines these two trees by using
both algorithms presented above. If the return results of
both NTreeSim and NTextSim are less than the two tun-
able thresholds, Thresh1 and Thresh2, respectively, Cook-
iePicker will make a decision that the difference is due to
cookie usage. Figure 5 depicts the final decision algorithm.

5. System Evaluation

In this section, we first briefly describe the implementa-
tion of CookiePicker, then we validate its efficacy through

Algorithm: decision(A, B, l)
1. if NTreeSim(A, B, l) ≤ Thresh1 and
2. NTextSim(S1, S2) ≤ Thresh2 then
3. return the difference is caused by cookies;
4. else
5. return the difference is caused by noises;
6. endif

Figure 5: CookiePicker Decision Algorithm.

two sets of live experiments, and finally we discuss the po-
tential evasion against CookiePicker.

5.1. Implementation

We implemented CookiePicker as a Firefox extension.
Being one of the most popular Web browsers, Firefox is
very extensible and allows programmers to add new fea-
tures or modify existing features. Our CookiePicker exten-
sion is implemented in about 200 lines of XML user inter-
face definition code, 1,600 lines of Javascript code, and 600
lines of C++ code. Javascript code is used for HTTP re-
quest/response monitoring and processing, as well as cook-
ies record management. The HTML page difference detec-
tion algorithms are implemented in C++, because Javascript
version runs very slow. C++ code is compiled into a shared
library in the form of an XPCOM (Cross-Platform Com-
ponent Object Mode) component, which is accessible to
Javascript code.

5.2. Evaluation

We installed CookiePicker on a Firefox version 1.5.0.8
Web browser and designed two sets of experiments to val-
idate the effectiveness of CookiePicker in identifying the
useful first-party persistent cookies. The first set of ex-
periments is to measure the overall effectiveness of Cook-
iePicker and its running time in a generic environment;
while the second set of experiments focuses on the Web
sites whose persistent cookies are useful only, and exam-
ines the identification accuracy of CookiePicker upon use-
ful persistent cookies. For all the experiments, the regu-
lar browsing window enables the use of persistent cookies,
while the hidden request disables the use of persistent cook-
ies by filtering them out from HTTP request header. The
two thresholds used in CookiePicker Decision algorithm are
all set to 0.85, i.e., Thresh1=Thresh2=0.85. The parameter
l for NTreeSim algorithm is set to 5, i.e, the top five level
of DOM tree starting from the body HTML node will be
compared by NTreeSim algorithm.

5.2.1. First Set of Experiments

From each of the 15 categories we measured [24] in direc-
tory.google.com, we randomly choose two Web sites that
use persistent cookies. Thus, in total there are 30 Web sites
in the first set of experiments. As listed in the first column
of Table 1, these 30 Web sites are represented as S1 to S30
for privacy concerns.

Inside each Web site, we first visit over 25 Web pages
to stabilize its persistent cookies and the “useful” values of
the persistence cookies, i.e, no more persistent cookies of
the Web site are marked as “useful” by CookiePicker af-
terwards. Then, we count the number of persistent cookies
set by the Web site and the number of persistent cookies
marked as useful by CookiePicker. These two numbers are
shown in the second and third columns of Table 1, respec-
tively. Among the total 30 Web sites, the persistent cook-
ies from five Web sites (S1,S6,S10,S16,S27) are marked as
“useful” by CookiePicker, and the persistent cookies from
the rest of 30 Web sites are identified as “useless”. In other
words, CookiePicker indicates that we can disable the per-
sistent cookies in about 83.3% (25 out of 30) of testing
Web sites. To further validate the testing result above, we
check the uselessness of the persistent cookies for those 25
Web sites through careful manual verification. We find that
blocking the persistent cookies of those 25 Web sites does
not cause any problem to a user. Therefore, none of the clas-
sified “useless” persistent cookies is useful, and no back-
ward error recovery is needed.

For those five Web sites that have some persistent cook-
ies marked as “useful”, we verify the real usefulness of
these cookies by blocking the use of them and then com-
paring the disabled version with a regular browsing window
over 25 Web pages in each Web site. The result is shown in
the fourth column of Table 1. We observe that three cookies
from two Web sites (S6,S16) are indeed useful. However,
for the other three Web sites (S1,S10,S27), their persistent
cookies are useless but are wrongly marked as “useful” by
CookiePicker. This is mainly due to the conservative thresh-
old setting. Currently the values of both thresholds are set to
0.85, i.e., Thresh1=Thresh2=0.85. The rationale behind the
conservative threshold setting is that we prefer to have all
useful persistent cookies be correctly identified, even at the
cost of some useless cookies being mis-classified as “use-
ful”. Thus, the number of backward error recovery is mini-
mized.

In Table 1, the fifth and sixth columns show the average
running time of the detection algorithms and the entire du-
ration of CookiePicker, respectively. It is clear that the run-
ning time of the page difference detection is very short with
an average of 14.6 ms over the 30 Web sites. The average
identification duration is 2,683.3 ms, which is reasonable
short considering the fact that the average think time of a
user is more than 10 seconds [12]. Note that Web sites S4,

Web Site Persistent Marked Real Detection CookiePicker
Useful Useful Time(ms) Duration (ms)

S1 2 2 0 8.3 1,821.6
S2 4 0 0 9.3 5,020.2
S3 5 0 0 14.8 1,427.5
S4 4 0 0 36.1 9,066.2
S5 4 0 0 5.4 698.9
S6 2 2 2 5.7 1,437.5
S7 1 0 0 17.0 3,373.2
S8 3 0 0 7.4 2,624.4
S9 1 0 0 13.2 1,415.4
S10 1 1 0 5.7 1,141.2
S11 2 0 0 2.7 941.3
S12 4 0 0 21.7 2,309.9
S13 1 0 0 8.0 614.9
S14 9 0 0 11.9 1,122.4
S15 2 0 0 8.5 948.0
S16 25 1 1 5.8 455.9
S17 4 0 0 7.5 11,426.3
S18 1 0 0 23.1 4,056.9
S19 3 0 0 18.0 3,860.5
S20 6 0 0 8.9 3,841.6
S21 3 0 0 14.4 936.1
S22 1 0 0 13.1 993.3
S23 4 0 0 28.8 2,430.1
S24 1 0 0 23.6 2,381.1
S25 3 0 0 30.7 550.1
S26 1 0 0 5.03 611.6
S27 1 1 0 8.7 597.5
S28 1 0 0 10.7 10,104.1
S29 2 0 0 7.7 1,387.1
S30 2 0 0 57.6 2,905.6
Total 103 7 3 - -

Average - - - 14.6 2,683.3

Table 1: Online testing results for thirty Web sites (S1 to S30).

S17, and S28 have abnormally high identification duration
at about 10 seconds, which is mainly caused by the very
slow responses from those three Web sites.

5.2.2. Second Set of Experiments

Since only two Web sites in the first set of experiments have
useful persistent cookies, we attempt to further examine if
CookiePicker can correctly identify each useful persistent
cookie in the second set of experiments. Because the list
of Web sites whose persistent cookies are really useful to
users does not exist, we have to locate such Web sites man-
ually. Again, we randomly choose 200 Web sites that use
persistent cookies from the 15 categories we measured [24]
in directory.google.com. Note that the 30 Web sites chosen
in the first set of experiments are not included in these 200
Web sites. We manually scrutinize these 200 Web sites, and
finally find six Web sites whose persistent cookies are really
useful to users, i.e., without cookies, users would encounter
some problems. Because the manual scrutiny is tedious, we
cannot afford more effort to locate more such Web sites.
The six Web sites are listed in the first column of Table 2
and represented as P1 to P6 for privacy concerns.

In Table 2, the second column shows the number of
the cookies marked as “useful” by CookiePicker and the
third column shows the number of the real useful cookies
via manual verification. We observe that for the six Web
sites, all of their useful persistent cookies are marked as

Web Site Marked Real NTreeSim NTextSim Usage
Useful Useful (A, B, 5) (S1, S2)

P1 1 1 0.311 0.609 Preference
P2 1 1 0.459 0.765 Performance
P3 1 1 0.667 0.623 Sign Up
P4 1 1 0.250 0.158 Preference
P5 9 1 0.226 0.253 Sign Up
P6 5 2 0.593 0.719 Preference

Average - - 0.418 0.521 -

Table 2: Online testing results for 6 Web sites (P1 to P6) that have
useful persistent cookies.

“useful” by CookiePicker. This result indicates that Cook-
iePicker seldom misses the identification of a real useful
cookie. On the other hand, for Web sites P5 and P6, some
useless persistent cookies are also marked as “useful” be-
cause they are sent out in the same regular request with
the real useful cookies. The fourth and fifth columns show
the similarity score computed by NTreeSim(A, B, 5) and
NTextSim(S1, S2), respectively, on the Web pages that per-
sistent cookies are useful. These similarity scores are far
below 0.85, which is the current value used for the two
thresholds Thresh1 and Thresh2 in Figure 5. The usage of
these useful persistent cookies on each Web site is given at
the sixth column. Web sites P1, P4, and P6 use persistent
cookies for user’s preference setting. Web sites P3 and P5
use persistent cookies to properly create and sign up a new
user. Web site P2 uses persistent cookie in a very unique
way. Each user’s persistent cookie corresponds to a spe-
cific sub-directory on the Web server, and the sub-directory
stores the user’s recent query results. Thus, if the user visits
the Web site again with the persistent cookie, recent query
results can be reused to improve query performance.

In summary, the above two sets of experiments show
that by conservatively setting Thresh1 and Thresh2 to
0.85, CookiePicker can safely disable and remove persis-
tent cookies from the majority of Web sites (25 out of the
30 Web sites that we intensively tested). Meanwhile, all
the useful persistent cookies can be correctly identified by
CookiePicker and no backward error recovery is needed for
all the 8 Web sites (S6,S16,P1,P2,P3,P4,P5,P6) that have
useful persistent cookies. About 10% Web sites (3 out of
30), in which persistent cookies are useless, are wrongly
identified by CookiePicker as “useful”. However, the num-
ber may be further reduced if we fine-tune the two thresh-
olds and the implementation of the two algorithms, which
we leave as our future work.

5.3. Evasion against CookiePicker

In CookiePicker, the identification of useful cookies are
based on perceivable changes on a Web page. Once the
identification metric becomes known, CookiePicker may be
circumvented. The evasion of CookiePicker will most likely
come from two sources: Web site operators who want to

track user activities, and attackers who want to steal cook-
ies.

As stated in Section 2, we assume that the hosting Web
site is legitimate, since it is pointless to discuss cookie se-
curity and privacy issues within a malicious Web site. For
legitimate Web sites, if some operators strongly insist to use
first-party persistent cookies for tracking long-term user be-
haviors, they can evade CookiePicker by detecting the hid-
den HTTP request and manipulating the hidden HTTP re-
sponse. However, we argue that most Web site operators
will not pay the effort and time to do so, either because of
the lack of interest to track long-term user behaviors, or be-
cause of inaccuracy in cookie-based user behavior tracking,
which has long been recognized [26].

For third-party attackers, unless they compromise a legit-
imate Web site, it is very difficult for them to manipulate the
Web pages sending back to a user’s browser and circumvent
CookiePicker.

6. Related Work

RFC 2109 [10] is the first document that raises the gen-
eral public’s awareness of cookie privacy problems. Later
on, the same origin policy was introduced in Netscape Navi-
gator 2.0 to prevent cookies and Javascripts of different sites
from interfering with each other. The successful fulfillment
of the same origin policy on cookies and Javascripts further
encourages the enforcement of this policy on browser cache
and visited links [6].

Modern Web browsers have provided users with refined
cookie privacy options. A user can define detailed cookie
policies for Web sites either before or during visiting these
sites. Commercial cookie management softwares such as
Cookie Crusher [32] and CookiePal [33] mainly rely on
pop-ups to notify incoming cookies. However, the studies in
[5] show that such cookie privacy options and cookie man-
agement policies fail to be used in practice, due mainly to
the following two reasons: (1) these options are very con-
fusing and cumbersome, and (2) most users have no true
understanding of the advantages and disadvantages of using
cookies.

Recently, the most noticeable research work in cookie
management is Doppelganger [16]. Doppelganger is a
system for creating and enforcing fine-grained privacy-
preserving cookie policies. Doppelganger leverages client-
side parallelism and uses a twin window to mirror a user’s
Web session. If any difference is detected, Doppelganger
will ask the user to compare the main window and the fork
window, and then, make a cookie policy decision. Although
taking a big step towards automatic cookie management,
Doppelganger still has a few obvious drawbacks such as
high overhead and the need for human involvement. Al-
though CookiePicker follows Doppelganger’s basic princi-

ple of comparing Web page differences to identify useful
cookies, it works in a fully automatic way and has much
lower overhead.

7. Conclusions

In this paper, we have presented a system, called Cook-
iePicker, to automatically manage cookie usage setting on
behalf of a user. Only one additional HTTP request for
the container page of a Web site, the hidden request, is
generated for CookiePicker to identify the usefulness of
a cookie set. The core of CookiePicker are two comple-
mentary detection algorithms, which accurately detect the
HTML page differences caused by enabling and disabling
cookies. CookiePicker classifies those cookies that cause
perceivable changes on a Web page as useful, and disable
the rest as useless. We have implemented CookiePicker as
an extension to Firefox and evaluated its efficacy through
live experiments over various Web sites. By automatically
manage the usage of cookies, CookiePicker helps a user
to strike an appropriate balance between easy usage and
privacy risks. We believe CookiePicker has the potential
to be widely used, for its fully automatic nature, its high
accuracy, and its low overhead.

Acknowledgments: This work was partially supported by
NSF grants CNS-0627339 and CNS-0627340.

References

[1] R. Al-Ekram, A. Adma, and O. Baysal. diffx: an algorithm
to detect changes in multi-version xml documents. In Pro-
ceedings of the CASCON’05, pages 1–11, 2005.

[2] P. Bille. A survey on tree edit distance and related problems.
Theor. Comput. Sci., 337(1-3):217–239, 2005.

[3] S. Chapman and G. Dhillon. Privacy and the internet: the
case of doubleclick, inc, 2002.

[4] S. Gupta, G. Kaiser, D. Neistadt, and P. Grimm. Dom-based
content extraction of html documents. In Proceedings of the
WWW’03, pages 207–214, 2003.

[5] V. Ha, K. Inkpen, F. A. Shaar, and L. Hdeib. An examination
of user perception and misconception of internet cookies. In
CHI’06 extended abstracts on Human factors in computing
systems, pages 833–838, 2006.

[6] C. Jackson, A. Bortz, D. Boneh, and J. C. Mitchell. Protect-
ing browser state from web privacy attacks. In Proceedings
of the WWW’06, pages 737–744, 2006.

[7] M. Jakobsson and S. Stamm. Invasive browser sniffing and
countermeasures. In Proceedings of the WWW’06, pages
523–532, 2006.

[8] T. Jiang, L. Wang, and K. Zhang. Alignment of trees - an
alternative to tree edit. Theor. Comput. Sci., 143(1):137–
148, 1995.

[9] S. Joshi, N. Agrawal, R. Krishnapuram, and S. Negi. A bag
of paths model for measuring structural similarity in web

documents. In Proceedings of the KDD’03, pages 577–582,
2003.

[10] D. Kristol and L. Montulli. Http state management mecha-
nism, RFC 2109, 1997.

[11] D. M. Kristol. Http cookies: Standards, privacy, and politics.
ACM Trans. Inter. Tech., 1(2):151–198, 2001.

[12] B. A. Mah. An empirical model of http network traffic. In
Proceedings of the INFOCOM’97, pages 592–600, 1997.

[13] L. I. Millett, B. Friedman, and E. Felten. Cookies and web
browser design: toward realizing informed consent online.
In Proceedings of the CHI’01, pages 46–52, 2001.

[14] D. C. Reis, P. B. Golgher, A. S. Silva, and A. F. Laender.
Automatic web news extraction using tree edit distance. In
Proceedings of the WWW’04, pages 502–511, 2004.

[15] S. M. Selkow. The tree-to-tree editing problem. Inf. Process.
Lett., 6(6):184–186, 1977.

[16] U. Shankar and C. Karlof. Doppelganger: Better browser
privacy without the bother. In Proceedings of the ACM
CCS’06, 2006.

[17] K.-C. Tai. The tree-to-tree correction problem. J. ACM,
26(3):422–433, 1979.

[18] E. Tanaka and K. Tanaka. The tree-to-tree editing problem.
International journal Pattern Recognition And Atificial In-
telligency, 2(2):221–240, 1988.

[19] A. Torsello and D. Hidovic-Rowe. Polynomial-time metrics
for attributed trees. IEEE Trans. Pattern Anal. Mach. Intell.,
27(7):1087–1099, 2005.

[20] G. Valiente. An efficient bottom-up distance between trees.
In Proceedings of the SPIRE’01, pages 212–219, 2001.

[21] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel,
and G. Vigna. Cross site scripting prevention with dy-
namic data tainting and static analysis. In Proceedings of
the NDSS’07, 2007.

[22] Y.-M. Wang, D. Beck, X. Jiang, R. Roussev, C. Verbowski,
S. Chen, and S. T. King. Automated web patrol with strider
honeymonkeys: Finding web sites that exploit browser vul-
nerabilities. In Proceedings of the NDSS’06, 2006.

[23] W. Yang. Identifying syntactic differences between two pro-
grams. Softw. Pract. Exper., 21(7):739–755, 1991.

[24] C. Yue, M. Xie, and H. Wang. Cookie measurement and
design of CookiePicker. Technical Report WM-CS-2007-
03, The College of William & Mary, 2007.

[25] Y. Zhai and B. Liu. Web data extraction based on partial
tree alignment. In Proceedings of the WWW’05, pages 76–
85, 2005.

[26] Accurate web site visitor measurement crippled by cookie
blocking and deletion, jupiterresearch finds, 2007.
http://www.jupitermedia.com/corporate/releases/05.03.14-
newjupresearch.html.

[27] CERT Advisory CA-2000-02 Malicious HTML tags embed-
ded in client web requests.
http://www.cert.org/advisories/CA-2000-02.html.

[28] Google slams the door on XSS flaw ’Stop cookie thief!’.
http://software.silicon.com/security/, January 17th, 2007.

[29] Http cookie, 2006. http://en.wikipedia.org/wiki/HTTP cookie.
[30] Platform for privacy preferences (P3P) project, 2006.

http://www.w3.org/P3P/.
[31] Same origin policy, 2007.

http://en.wikipedia.org/wiki/Same origin policy.
[32] Cookie crusher, 2006. http://www.pcworld.com/downloads.
[33] Cookie pal, 2006. http://www.kburra.com/cpal.html.

