VoIP Intrusion Detection Through Interacting Protocol State Machines

Hemant Sengarf

TCenter for Secure Information Systems

George Mason University
Fairfax, VA 22030, USA

{ hsengar,dwijesek,jajodia} @ gmu.edu

Abstract

Being a fast-growing Internet application, Voice over In-
ternet Protocol (VoIP) shares the network resources with
the regular Internet traffic, and is susceptible to the existing
security holes of the Internet. Moreover, given that voice
communication is time sensitive and uses a suite of inter-
acting protocols, VoIP exposes new forms of vulnerabilities
to malicious attacks. In this paper, we propose a highly-
needed VoIP intrusion detection system. Our approach is
novel in that, it utilizes not only the state machines of net-
work protocols but also the interaction among them for in-
trusion detection. This detection approach is particularly
suited for protecting VoIP applications, in which a melange
of protocols are involved to provide IP telephony services.
Based on tracking deviations from interacting protocol state
machines, our solution shows promising detection charac-
teristics and low runtime impact on the perceived quality of
voice streams.

1 Introduction

IP telephony, commonly known as Voice over IP (VoIP),
is emerging as a viable alternative to traditional telephone
systems. As the popularity of VoIP and its deployment
grows, it will become the target of hackers and crackers.
VoIP suffers threats from many different protocol layers.
Malicious attackers may exploit the misconfiguration of de-
vices, the vulnerability of the underlying operating systems,
and protocol implementation flaws to break in. Well-known
attacks of data networks such as worms, viruses, Trojan
horse, denial-of-service (DoS) attacks can also plague VoIP
network devices [16].

An Intrusion Detection System (IDS) helps adminis-
trators to monitor and defend against security breaches.
Intrusion detection techniques are generally divided into
two paradigms, anomaly detection and misuse detection.

Duminda Wijesekeraf

Haining Wang { Sushil Jajodiaf

{Department of Computer Science
College of William and Mary
Williamsburg, VA 23187, USA
hnw@cs.wm.edu

In anomaly detection techniques, the deviation from nor-
mal system behaviors is detected, whereas misuse detec-
tion is based on the matching of attack signatures. Un-
like signature-based intrusion detection, anomaly detection
has the advantage of detecting previously-unknown attacks
but at the cost of relatively high false alarm rate. Sekar et
al. [15] introduced a third category of specification-based
intrusion detection. Specification-based approach takes the
manual development of a specification that captures legit-
imate system behavior and detects any deviation thereof.
This approach can detect unseen attacks with low false
alarm rate. Based on the state transition analysis, Vigna
et al. proposed NetSTAT [18] and WebSTAT [19] intru-
sion detection systems. As a popular network-based intru-
sion detection system, Snort [11] monitors network traffic
between trusted devices and the untrusted Internet, and in-
spects packets by signature matching. However, these pre-
vious approaches fall short of defending VoIP applications,
because of the cross-protocol interaction and distributed na-
ture of VoIP.

VoIP systems use multiple protocols for call control and
data delivery. For example, in SIP-based IP telephony, Ses-
sion Initiation Protocol (SIP) [12] is used to control call
setup and teardown, while Real-time Transport Protocol
(RTP) [14] is for media delivery. A VoIP system is dis-
tributed in nature, consisting of IP phones, SIP proxies,
and many other servers. Defending against malicious at-
tacks on such a heterogeneous and distributed environment
is far from trivial. Recently, Wu et al. [20] proposed a state-
ful and cross-protocol intrusion detection architecture for
VoIP, in which protocol dependent information is assem-
bled from multiple packets and aggregated states are used in
the rule-matching engine. Different from their approach, in
this paper, we propose a VoIP IDS based on protocol state
machines. Specifically, instead of collecting and deriving
the call state and protocol dependent information from the
packets, our approach utilizes the state transitions made in
the protocol state machines for intrusion detection. These

transitions are triggered either by the arrival of packets or
the internal interaction between protocol state machines.
Our approach of incorporating the interaction between pro-
tocol state machines is particularly suited for intrusion de-
tection in VoIP. Call control and media delivery protocols
are synchronized by exchanging synchronization messages
for critical events throughout the established sessions.

A protocol state machine based IDS can be considered
as a variant of anomaly detection mechanism, which clas-
sifies a deviation from normal behavior as a suspicious at-
tack. The protocol state machine is built from specification,
and is used to derive legitimate states and transitions. Af-
ter the protocol state machine is constructed and the related
attribute features are identified, this protocol state machine
based approach not only lowers the number of false alarms
but also is capable of detecting previously unseen attacks.
To validate its effectiveness, we evaluate the proposed VoIP
Intrusion Detection System (vIDS) using our VoIP network
testbed and OPNET network simulator. Our experimental
results demonstrate that on average the online placement
of vIDS induces the additional delay of ~ 100 ms to call
setup time. The average increase of CPU overhead induced
by vIDS is only ~ 3.6%. Although the associated mem-
ory cost is proportional to the number of calls to be mon-
itored, as with each call, only one instance of a protocol
state machine is maintained at the memory. Once the calls
have successfully reached the final state, the corresponding
protocol state machines will be deleted from the memory.
More importantly, the memory cost per call is insignificant.
Therefore, vIDS can monitor thousands of calls at the same
time and its memory cost can be easily afforded by a mod-
ern computer.

The remainder of this paper is structured as follows. Sec-
tion 2 briefly describes SIP protocol and its usage in enter-
prise networks. Section 3 presents the threat models of SIP
and RTP. Section 4 presents the extended finite state ma-
chines and its application in developing vIDS. Section 5 de-
tails the architecture of vIDS. Section 6 describes how to
detect the SIP and RTP related attacks using protocol state
machines. Section 7 conducts the performance evaluation
of vIDS. Section 8 surveys related work. Finally, Section 9
concludes the paper.

2 Background

We first present the SIP-based IP telephony. Then, we
describe its usage in enterprise networks and illustrate the
placement of vIDS in such a network.

2.1 SIP-based IP Telephony

SIP is a standard signaling protocol for VoIP, and is ap-
propriately coined as the “SS7 of future telephony” [6].

SIP is a text-based application level protocol to setup, mod-
ify, and teardown multimedia sessions between one or more
participants. SIP messages can be transmitted over UDP
or TCP, but UDP is preferred over TCP because of its
simplicity and lower transmission delays. SIP architecture
identifies two basic types of components, user agents (i.e.
phones) and SIP servers (i.e. Location, Redirect, Registrar
and Proxy servers). Each UA is a combination of two enti-
ties, the user agent client (UAC) and the user agent server
(UAS). The UA switches back and forth between being an
UAC and an UAS.

The SIP messages are classified into two groups: re-
quests and responses. The SIP requests are also called
methods, and there are six of them (INVITE, ACK,
BYE, CANCEL, REGISTER and OPTIONS) described
in [12]. Other methods are proposed as the extensions of
the original six methods. For each request of an UAC, UAS
or SIP server generates a SIP response. Each response mes-
sage is identified by a numeric status code (similar to HTTP
response messages).

Now, we use an example of a typical call setup flow to
highlight the usage of SIP request and response messages
between user agents UA-A and UA-B. Suppose that the two
UAs belong to different domains that have their own proxy
servers. UA-A calls UA-B using its SIP phone over the In-
ternet. The outbound proxy server uses the Domain Name
System (DNS) to locate the inbound proxy server at the
other domain. After obtaining the IP address of inbound
proxy server, the outbound proxy server of UA-A sends
the INVITE request to the domain of UA-B. The inbound
proxy server consults a location service database to find out
the current location of UA-B and forwards the INVITE re-
quest to UA-B’s SIP phone. Exchanging INVITE/200
OK/ACK messages completes the three-way handshake and
establishes a SIP session. A set of parameters are exchanged
via SIP messages (in the message body using Session De-
scription Protocol (SDP) [2]) between the two end points
before a RTP-based voice channel is established. In gen-
eral, the path of media packets is independent of that of
the SIP signaling messages. The signaling protocol remains
oblivious to the changes made to the media path during the
life span of the call, unless it is explicitly requested through
a re—INVITE message. At the end of the call, UA-B (or
UA-A) hangs up by sending a BYE message. Subsequently,
UA-A (or UA-B) terminates the session and sends back a
200 OK response. This example shows the basic function-
ality of SIP, detailed description of the SIP operations is in
RFC 3261 [12].

2.2 Enterprise IP Telephony

Figure 1 illustrates a SIP-based IP telephony enabled
enterprise network and the placement of vIDS inside the

Internal Network Firewall

4 4@
Softphone
viDS Router

Figure 1. Enterprise IP Telephony Network

network. The enterprise network consists of an internal
network and a de-militarized zone (DMZ). DMZ contains
many servers, including the SIP proxy server that is ac-
cessed by the internal network and the public Internet. Un-
der the assumption that most VoIP related security threats
are from the outside of the enterprise network, the online
vIDS is located strategically between the edge router and
the firewall, monitoring all traffic traveling to and from both
DMZ and the internal network to the Internet. Note that SIP
proxy server has no media capability and only facilitates the
two end points (i.e. IP telephones) to discover and contact
each other through SIP signaling. After the end points have
been located, the media is directly delivered from end-to-
end, without going through the proxy. Thus, it is necessary
for vIDS to see the signaling messages and the media flows
for all SIP clients. In Figure 1, the firewall and vIDS devices
are shown as separate components. In practical deployment,
vIDS can be installed at the firewall, and is capable of ana-
lyzing traffic streams at the application layer.

3 The Threat Model

In this section, we describe various malicious attacks tar-
geting at different protocol layers of IP telephony services.
Our focus is mainly in detecting SIP and RTP based attacks.

3.1 SIP-based attacks

SIP stacks can be found on desktops, laptops, VoIP
phones, mobile phones, and wireless devices. SIP is a sim-
ple but efficient call control protocol involving many inter-
mediaries and multi-faceted trust relationships among them.
Some devices trust each other, whereas others do not. At-
tackers have a range of target devices, starting from end
devices to Routers, Switches, Signaling Gateways, Media
Gateway Controllers, and SIP Proxies. Any device in the
path from caller to callee can be an attacker’s target. Sev-
eral DoS and fraud attacks against SIP-based VoIP systems
have been described in [1, 8, 13]. A great deal of the dis-
cussion of possible attacks centers around an assumption of
lack of proper authentication. However, many attacks are

still possible to be launched by an authenticated but mis-
behaving UA. In the following, we describe some of these
attacks, which require proper analysis of attack patterns for
detection.

CANCEL Denial of Service Attack: The CANCEL method
is used to terminate pending searches or call attempts.
Specifically, it asks the UAS to cease the request processing
and generate an error response to the request. A CANCEL is
for an outstanding INVITE, since INVITE is the only re-
quest taking some time (few seconds) to complete. All other
SIP requests are responded immediately. It can be generated
either by a UA or the proxy servers that have received 1xx
responses but still wait for the final 2xx responses. Note that
without proper authentication, the receiving UA cannot dif-
ferentiate the spoofed CANCEL message from the genuine
one, leading to the denial of the communication between
UAs.

BYE Denial of Service Attack: When a caller has received
the response message 200 OK, the session is considered
as established. An established media session is terminated
upon receiving a BYE message. It is an end-to-end message
sent by UAs participating in the session. The BYE attack
aborts an established call between UAs. For example, UA-
A and UA-B have established a call (i.e. 200 OK and ACK
messages are already exchanged), suddenly malicious UA-
C sends a BYE message to either UAs, A or B. The receiving
UA will prematurely teardown the established call assuming
that it is requested by the partner UA.

INVITE Request Flooding Attack: IP phones have the ca-
pability of generating multiple calls at the same time but can
only support a few. A number of IP phones together may
launch an INVITE flooding attack to overwhelm a single
telephone terminal within a short duration of time. Proxy
servers are also susceptible to INVITE flooding attacks.
There are various other attacks, which can also exploit
the SIP signaling messages. For example, in a call hijack-
ing attack, a new INVITE request could be send within a
pre-existing dialog. Billing and toll fraud can be realized if
one end sends a BYE message to stop billing but continues
sending RTP packets. Distributed Reflection DoS (DRDoS)
attack on a victim is also possible. If spoofed requests are
sent to a large number of SIP proxy servers (i.e. reflectors)
on the Internet with the victim’s IP address as the source of
the requester, the victim will be swamped with the subse-
quent response messages, thereby causing a DRDoS attack.

3.2 RTP-based attacks

The threats resulting from the vulnerabilities of the me-
dia path are described as follows:

Media spamming: A SDP description conveys media at-

tributes preferred by the caller for call setup. The caller
lists the preferred media capabilities in SDP and sends in
either INVITE or ACK messages. In response to INVITE,
the called party lists its own media capability in the 200
OK message. A third party knowing the SDP information
(i.e. IP address, port number, media type and its encoding
scheme etc.) and the RTP synchronization source (SSRC)
identifier could fabricate RTP packets. The SSRC identi-
fier is used to identify the corresponding participant within
an RTP session. By having the same SSRC identifier with
higher sequence number or timestamp in the spoofed RTP
packets, the third party can play unauthorized media.

RTP packets flooding: During the setup of a media ses-
sion, information such as media transport protocol, media
encoding, sampling rate, and port number are exchanged.
The calling party should transmit the media stream accord-
ing to the negotiated media encoding scheme. Changing
the encoding scheme or flooding with RTP packets not only
deteriorates the perceived quality of service (QoS) but also
may cause phones dysfunctional and reboot operations.

4 A Formal Model

A state machine provides a low level abstraction of a pro-
tocol. It can express the protocol design in terms of desir-
able or undesirable protocol states and state transitions. The
formal model of a communicating finite state machine plays
an important role in the formal validation of protocol, pro-
tocol synthesis, and its conformance testing [4]. In this sec-
tion, we present a formal definition of extended finite state
machine and its application for intrusion detection in VoIP
systems. We construct communicating finite state machines
by connecting the output of one machine to the input of an-
other machine. This presents a powerful representation for
describing various interacting protocols involved in IP tele-
phony services.

4.1 Extended Finite State Machine

A Mealy (finite state) machine extended with input and
output parameters, context variables, operations and pred-
icates!, is referred as an extended finite state machine
(EFSM) [10]. EFSMs are often used to model communi-
cation system behaviors. Parameters, variables, predicates
and operations are used to describe the data flow and the
context of the communication. The underlying FSM de-
scribes the control flow of the system. For detailed descrip-
tion of EFSM, see [7, 10, 15].

Definition 1. An extended finite state machine

IThe predicates are defined over context variables and input parame-
ters.

(EFSM) M is a quintuple M = (3, 5,7, D,T),
where:

e > is an event alphabet of the EFSM, each
event does have name and its argument.

e Sis a finite set of states, including start state
and final state.

e 7T is a vector of finite set of state variables,
T = (V1,02 ceey Vjy vy Vg).

e D is a set of domain values for state vari-

ables, D = (dy,da,...,d;,..dy), where d;

denotes the domain value for the variable v,.

T is a transition relation: S X D x ¥ —

(S, D).

Each transition ¢ in the transition relation set T (i.e. t € T) is
a tuple < s, event, Py, Ay, q; >, where s;,q; € S are the
beginning and ending states of the transition respectively,
event € Y is an event identifier (i.e. name) for the tran-
sition with input vector @ (i.e. arguments), P(T X)
is a predicate on the valuation of input vector and current
state variables, and A;(7") defines an action on state vari-
ables. Predicate P on the values of state variables o and
input parameter values 7, should return either FALSFE or
TRUE,ie. P(T x v) — {TRUE,FALSE}. A con-
text update function A(7’) is an assignment: T := A(7),
which changes the current state variable values of vector 7
before moving to a new state.

To distinguish between the input and output events of
the transitions, we use CSP notations [3]. For example,
c?event(T) denotes an input event with an identifier event
and T = (x1,22,...,2,) as event parameters. Simi-
larly, an output event is denoted by clevent(@). Here ¢
is a particular type of channel through which data values
are passed along. It may represent SIP or RTP channels,
where packet events are received and an internal buffer be-
tween protocol state machines (see Figure 2(b)), where syn-
chronization message events are queued. The transition
edges between the nodes of the EFSM directed graph can
be represented as < sy, c?event(T), P, Ay, q1) > or <
st, clevent(T), Py, At, ¢ >. Now suppose that all the tran-
sitions < s8¢, c?event(T), P, A¢,q¢ >, where 1 <t < r,
begin with the same start state and event, then nondetermin-
ism may arise. However, if we assume that the predicates
are mutually disjoint, i.e. P;(Z x)N Pj(ZT x T) =0,
1 < i # j < r, then it will be a deterministic EFSM. In a
deterministic EFSM, there is at most one transition to fol-
low at any moment.

4.2 VoIP IDS Specification

Protocol processes can often be modeled as a collection
of communicating finite state machines. In order to main-
tain the temporal order of the events, the protocol entities

180 TN
Sent 4 N\
W i
call T
Est.

/ / SIP STATE MACHINE

// 85|PﬂRTP

RTP }A\
C/Rcva
\ ‘ji
RTP STATE MACHINE

(a) Interaction between SIP and RTP (Call setup request)

’—b Analysis Engine

=

Global aueue 31
Shared O sip
Variables Local le

queue 213 | variables A Packet

A events

Protocol Entity 1

queue 12,

RTP

N Local Packet
aueue 32| | variables 5.

events
* Protocol Entity 2

queue 23
o RTCP
1 oca Packet
queue 13)| | Variables c

Protocol Entity 3 events

Communication

Channels

Communication -

Medium

L Event Distributor
(b) Communicating EFSM (per call basis)

Figure 2. VoIP IDS Specification

must exchange some data values and synchronization mes-
sages [21]. To model security violations, out of all available
attributes, only a fraction of attributes are needed to repre-
sent state transitions. The selection of attributes not only de-
pends upon the protocol entities but also the security viola-
tion we want to capture. In this paper, the selected attributes
are represented as a vector @', For an EFSM M, a state s;
and a valuation of the state variable vector ¥ constitute a
so called configuration of the EFSM. Assume that the corre-
sponding vector values are implicitly defined, without loss
of generality, the configurations can be viewed as states. We
are interested in the configurations that are reachable from
the initial or intermediate configuration to the attack config-
uration through zero or more intermediate states. The paths
along the transitions from s; t0 Sqstack CONStitute attack pat-
terns. The memory cost of characterizing an instance of a
protocol state machine for a particular call depends upon
configuration (i.e. (s;, ¥’)). In the following, we describe
the relevant features of EFSM and its application to vIDS.

A transition relation ¢ (i.e ¢ € T') between states s; and
s; is annotated as an attack signature, if s; corresponds to
Sattack- The predicate P, operates over current state vari-
ables and input parameters, which are carried in the mes-
sage header or body, and consequently returns a boolean
value. In vIDS, P, describes some security aspects of a call,
e.g. the identification of communicating users (7o:, From.),
their locations (source IP, destination IP), and the traffic
characteristics (encoding scheme, call ID, sequence num-
bers). P, captures the security aspects by putting constraints
on the allowed event parameter values (7)) and comparing
them with corresponding state variable values (7’). The
event is either an arrival of a data packet or a synchroniza-
tion message from co-operating protocol entities. Update
function A; modifies the current values of state variables
before moving to the next state s;.

Each protocol entity maintains a vector @ of locally and
globally accessible variables. Local variables are related to
one particular protocol state machine, whereas global vari-
ables contain the values that are relevant to other protocol
machines as well. For example, Figure 2(a) shows how SIP
and RTP protocol state machines undergo through normal
transitions, after receiving an INVITE request for the call
setup from a remote end. At the (INIT) state, the arrival
of an INVITE message brings input vector @', composed
of relevant header fields and message body values. The
SIP protocol state machine, after receiving the INVITE re-
quest, parses the SIP header and SDP message body. The
header field values, such as Call-ID and branch parame-
ters in the Via header field and fag parameter values in the
From and To fields are stored in the local state variables
indicated by v.l_variable_.name. The media information
contained in the SDP message body, such as IP address,
port number of the source, and offered media encoding
schemes, are available to RTP protocol machine by writing
them into the global shared variables that are represented as
v.g_variable_name.

The (INIT) state of a SIP protocol state machine
makes a transition ¢, (INIT,SIP_Packet,true, A,
INVITE Rcvd) to the (INVITE Revd) state, and sends a
synchronization message (i.e. c!ds;p—grrp) to the RTP
state machine. The transition’s update function A; initial-
izes vector T (both local and global state variables) with the
corresponding values of input vector 7. The synchroniza-
tion messages are transmitted through the communication
channels between protocol entities (see Figure 2(b)). We
assume that these communication channels are reliable and
function as FIFO queues. The FIFO queue associated with
the communication channel between protocol entity 1 and
protocol entity 2 is represented as queue;s. The synchro-
nization events waiting in a FIFO queue have higher priority

Administrator

Attack Scenario

Call State Fact Base Response
4 HE
Analysis
T Engine

- S
Distributor VolP

+4 DS
|

Network Driver

' Network

Packet
Classifier

Figure 3. VoIP IDS Architecture

than the data packet events.

On receiving a synchronization event from the commu-
nication channel, the RTP machine makes a transition from
the (INIT) state to the (RTP Open) state. At this state, the
RTP state variables are initialized with the media informa-
tion contained in the INVITE message of SDP. Figure 2(b)
illustrates the communication channels between the proto-
col entities and the associated queues. Without loss of gen-
erality, we only present the states and transitions of both
SIP and RTP protocol state machines after receiving an
INVITE message from the remote caller’s end. For other
SIP messages or RTP packets involved during the call setup
phase, the dynamics of protocol state machines are similar
to those shown in Figure 2(a).

5 vIDS Architecture

VoIP services involve many different protocols. There-
fore, to achieve a holistic view of an ongoing session, it is
important to pay special attention to the cross-protocol in-
teractions among protocol state machines. Figure 3 shows
the proposed vIDS architecture and its components.

As shown in Figure 3, vIDS sits on top of Packet Clas-
sifier. VoIP intrusion detection is performed through state
transition analysis of the state machines. It can detect both
known and unknown attacks. The protocol specification-
based state machines allow us to detect any deviation from
normal system behaviors, and hence, capture unknown at-
tacks. The vIDS component, Call State Fact Base, stores
the control state and its state variables and keeps track of the
progress of state machines for each ongoing call. The state
information is updated by the arrival of packets from the
Event Distributor component. The Attack Scenario com-
ponent is a collection of known attack patterns, including
the intermediate states and transitions that lead to attack
states. vIDS conducts the state transition analysis of packet
streams on call by call basis. All the packets belonging to

one particular call are assigned to one group. In the group,
packets are further classified into subgroups based on the
specific protocols. While RTP packets trigger the transi-
tions in RTP state machine, SIP state machine transitions
are caused by the arrival of SIP packets. Although both state
machines run in parallel, they are synchronized through the
shared global variables and the internal synchronizing mes-
sage events between protocol state machines. The Event
Distributor component further classifies the received pack-
ets into the session and protocol dependent groups with the
help of Call State Fact Base, and then distributes to the
corresponding protocol state machine. The Analysis En-
gine component receives packets from Event Distributor
and state information from Call State Fact Base or Attack
Scenario. When protocol misbehavior (e.g. deviation from
protocol specification based state machines) or attack sce-
nario match (i.e. a transition leading to an attack state) hap-
pens, vIDS raises an alert flag and notifies administrators
for further analysis.

6 Attack Detection Patterns

People may have a concern that the development of de-
tailed protocol state machines could be a complex and time
consuming process, therefore the proposed approach may
not be a practical solution for intrusion detection. Fortu-
nately, SIP-based call setup and teardown process can be
easily captured in a protocol state machine. Even if it is not
trivial to derive a protocol state machine, it is straightfor-
ward to develop attack scenarios for known attacks. In this
section, we are particularly interested in developing attack
patterns (or signatures) for some VoIP attacks discussed in
Section 3.

current_state INIT

input SIP_Packet current_state Packet Rcvd

predicate x.message_type == INVITE input SIP_Packet

predicate Piand (pck_counter > N)
and (x.message_type == INVITE)

action initialize (v) state variables
(pck_counter = 1, start Timer T1) action
next_state Packet Rcvd

&)

current_state Packet Rcvd ,
input SIP_Packet <’
predicate P1and (pck_counter < N)

and (x.message_type == INVITE)
action pck_counter = pck_counter + 1
next_state Packet Rcvd

next_stat Attack

Packet
Rcvd
T1Expires~
Predicate P1 :

value for state variable
dest_ip assigned in INIT
action matches with
received SIP packets

Figure 4. INVITE flooding attack

INVITE Request Flooding Attack: Figure 4 shows the
state transition diagram for the detection of INVITE re-
quest flooding attacks. At the (INIT) state, the predicate
checks the message_type of the received message. Each
SIP message brings along with an input vector of values

current_state Call Est.

input SIP_Packet

predicate x.message_type == BYE
action

SIP state machine

next_state Call tear-down begins

Call
tear-down
begins

Call
Established

» tear-down

RTP state machine

current_state RTP Close
input RTP_Packet
predicate true

action

current_state RTP Rcvd
input sync.message5
predicate true

action starttimer T
next_state RTP rcvd after BYE

next_state Attack

Figure 5. BYE DoS attack

7. On sniffing the first INVITE request received from
x.src_ip (S) and destined for x.dest_ip (D), the state machine
makes a transition from the (INIT) state to the interme-
diate state (Packet Rcvd). During this transition, state
variable vector T = (vq, v, ..., V;, .., Uk) is initialized and
assigned by update function A; to the corresponding values
of input vector T, i.e. A:(v;) = v; := x;. It also starts a
counter (pck_counter) to count the received INVITE mes-
sages for the same destination within a certain amount of
time (77). Timer T} sets the time window, under which N
received INVITE requests are considered as normal. The
setting of threshold N depends upon the up-limit that a par-
ticular type of a phone can handle. If there is a sudden surge
of INVITE requests that exceeds the threshold N, it is a
strong indication of a flooding attack.

BYE Denial of Service Attack: The proposed vIDS can
detect this kind of attacks by checking cross-protocol in-
teraction between SIP and RTP. Figure 5 shows the partial
SIP and RTP state machines and their cross-protocol inter-
actions. At the (Call Established) state after receiv-
ing a BYE message, SIP state machine makes a transition to
(Call tear-down begins) state. Before this transi-
tion occurs, a synchronization message ds;p—. g p iS sent
to RTP state machine. On receiving d synchronization mes-
sage, (RTP Rcvd) state makes a transition to the interme-
diate (RTP rcvd after BYE) state. At this state, timer
T is also started for all in-flight RTP packets to arrive. The
value of 7" should be small enough, since the genuine UA
will stop sending RTP packets as soon as the BYE request
is passed to the client transaction. After the expiration of
T, (RTP rcvd after BYE) state makes a transition to
(RTP Close) state. At this state, if there are still incoming
RTP packets, it is an indication of a BYE DoS attack.

current_state Packet Rcvd
input RTP_Packet
predicate Piand (
(x.time_stampi+1 — v.time_stampi > At)
or (x.sequence_noi+1 — v.sequence_noi > An))

current_state INIT
input RTP_Packet
predicate true _
action initialize (v) state action

variable vector next_stat Attack

Packet
Rcvd
current_state Packet Rcvd Q
input RTP_Packet

predicate Piand (x.time_stampi+1 — v.time_stampi < At)
and (x.sequence_noi+1 — v.sequence_noi < An)
action v.time_stampi = x.time_stam pis1
v.sequence_noi = x.sequence_noi+1
next_state PacketRcvd

next_state Packet Rcvd

©

Predicate P1:

value for state variables v.dest_ip
assigned in INIT action matches
with incoming RTP packet field's
destination ip address

Figure 6. Media Spamming Attack

Media spamming: Figure 6 shows the state transition di-
agram for a media spamming attack. On receiving the
first RTP packet (with packet field vector) from source
X.src_ip(S) and destination x.dest.ip(D), the state ma-
chine makes a transition ¢, (INIT,RTP_Packet,true,
A, Packet Rcvd) from the initial state (INIT) to the in-
termediate state (Packet Rcvd). During this transition,
state variable vector 7 is initialized and assigned by update
function A, to the corresponding values of input vector 7,
ie. Ai(v;)) = v; = x. Atthe (Packet Rcvd) state,
each incoming RTP packet for the same destination D in
the enterprise network is allowed to make a transition ei-
ther to itself or to the (At tack) state depending upon the
predicate outcome. During the transition to itself, function
A(v;) updates state variable vector T with the recent values
of the (i 4+ 1)** incoming packet (e.g. v.time_stamp; :=
z.time_stamp;1). Media spamming attack is detected by
observing the sequence number and timestamp of the in-
coming RTP packets. If the timestamp or the sequence num-
ber of the incoming packet has a sudden gap larger than
At or An respectively, compared to the earlier received
packet, then the fabricated message being injected into the
media stream is detected. These rules are expressed as a
part of predicates in (Packet Rcwvd) state. The more for-
mal definition of the rule for attack detection is given as
follows: ((z.time_stamp;+1 — v.time_stamp; > At) or
(z.sequence_number;1—v.sequence_number; > An)),
where At and An are adjustable threshold variables.

7 Performance Evaluation

In this section, we evaluate the performance of vIDS in
terms of additional delay induced to call setup time, CPU
cost, and memory consumption. Since VoIP is a time-
sensitive service, the effect of online placement of vIDS
upon the QoS of voice stream is also studied. Finally, we
assess the detection accuracy and sensitivity of vIDS.

7.1 VoIP Network Testbed

The topology of our VoIP network testbed is shown in
Figure 7. The VoIP system consists of SIP proxy servers,
IP softphones, routers and other data networking elements
available in the network simulator OPNET [9]. Each enter-
prise network (A and B) is simulated by 10 generic Win-
dows PCs (733 MHz Pentium III with 128 Mbytes RAM)
acting as SIP UAs and one Sun Ultra 10 (333 MHz with 128
Mbytes RAM) machine acting as a SIP proxy server. vIDS
is implemented on the Sun Ultra 10 machine and strategi-
cally located between the edge router and the hub of net-
work B, allowing the visibility of all traffic. The VoIP sys-
tem emulates the scenario of many UAs of network A mak-
ing calls to UAs of network B. We assume that enterprise
networks are based on 100BaseT’ Ethernet links and are
connected to Internet clouds by DS1 link. The Internet de-
lay between A and B is assumed to be 50 ms with 0.42%
packet loss rate. The voice codec algorithm used is G.729
with the setting of (Frame Size = 10 ms, Lookahead Size
= 5 ms, DSP Processing Ratio = 1, Coding Rate = 8Kbps,
Speech Activity Detection = Enabled). The average SIP
message size is assumed to be constant and is set to 500
bytes.

50 millisec Latency
0.42% Loss

SIP Proxy
Server

Enterprise Network A Enterprise Network

Figure 7. Simulated Network Topology

To emulate the realistic call behaviors, in our experi-
ments, the UAs of network A generate call requests ran-
domly and independently of each other. The call duration
and calling interval between calls are also assumed to be
randomly distributed. The experiment runs for 120 minutes.
Figure 8 plots number of calls arrival and duration observed
at enterprise network B’s SIP proxy server.

7.2 Call Setup Delay

In the telephony world, performance requirements are
generally expressed as cross-switching or message transfer
times but not as call setup delays. Nevertheless, since IP
telephony is used by Internet users, if they encounter long
connection delays, the proposed security mechanism may
not be adopted by the Internet service providers. Therefore,
the extra delays induced to call setup times by vIDS is an
important metric. In general, call setup delay is defined as

6
k) 5 % & R ¢
]
E PSRBT % 20 AR AT SRS SRR . RO
<
g 3 Los QG LOREASATATAS R Q (DWW P Lo LRI R AR AT 202 ¢ @ 3%
>
é— 2001 Q| & || 0O & 0P &8 & [\ G || &0 df-|[SD|[10! || b dPODW || -
§ 1-0- ¥ o O O Vi Q0 - OB AVaRVR V] < O O® @ <o
0 I I I I I I I
0 1000 2000 3000 4000 5000 6000 7000
P
350 8|
é 3001 o 8|
T 2505 8|
£ 200F o o S v o o
Y [} o
5 15019 . 006 9 O % & Wos 0 4
= °© 8.9 @@ ° 00 B0 0% 00 °
g 100ro g o 8006’ e %()300 .8 9 9&0° J
SR T R AR T a8
2 RS 5 B o0 P 20, 5
1000 2000 3000 4000 5000 7000

time (seconds)

Figure 8. Call arrivals and duration

the interval between entering the last dialed digit and receiv-
ing ringback. In SIP-based VoIP systems, the call setup time
can be defined as the time interval between a caller sending
an INVITE message and receivinga 180 ringing mes-
sage back from the callee. Out of all 20 UAs available in
network A, we have shown the call setup delays with and
without vIDS for two representative UAs 3 and 4 in Fig-
ure 9. As it is evident from Figure 9, the average delay
induced by vIDS to call setup is ~ 100 ms. Such an ad-
ditional delay of 100 ms will be hardly noticeable by VoIP
service subscribers (i.e. UAs).

7.3 Overhead Introduced by vIDS

During the call monitoring process, with the arrival of
an INVITE request message, one instance of each protocol
state machine is initiated starting from (INIT) state. As
the call progresses, states make transitions to other states.
At the end of the call, the associated instances of proto-
col machines are removed from the memory. The mem-
ory cost of maintaining the attack patterns is in the order
of few KBytes. SIP messages are text based with var-
ied length header fields. All mandatory fields, including
source, destination, port numbers, and media information,
consume about 450 bytes. Similarly, the RTP state infor-
mation such as source, destination, ports, sequence num-
ber, timestamp, synchronization source (SSRC) identifier,
and other relevant variable values, requires only 40 bytes of
memory space. Although the memory requirement grows
linearly with the number of calls, the very low memory cost
per call allows us to easily monitor thousands of calls at the
same time. In the absence of vIDS, the vIDS host (e.g. see
Figure 7) simply forwards the received packets, whereas in
the presence of vIDS, packets are logged at the granular-

0.45 T

Caller 3 — with vIDS
0.4+ —— without vIDS

0.3 1

0.25

0.2 I I I I I I I
0 1000 2000 3000 4000 5000 6000 7000

0.45 T T
Caller 4 — with vIDS
0.4 —— without vIDS

0.35F

Call set up time (sec.)

0.3 1

0.25F————— i

0.2

I I I I I I I
0 1000 2000 3000 4000 5000 6000 7000
time (seconds)

Figure 9. Call Setup Delay

ity of a millisecond. The increase of CPU overhead due to
running vIDS is ~ 3.6%.

7.4 Impact on QoS of RTP streams

IP telephony places stringent requirements on RTP
streams to meet the specified QoS. The latency upper-bound
is 150 ms for one way traffic, and jitter should be bounded
as well. In our experiments, we study the effect of online
placement of vIDS upon the QoS of voice streams. We eval-
uate the impact of vIDS with respect to two metrics : (1)
end-to-end delay of RTP packets and (2) RTP jitter behav-
iors. Figure 10 shows the impact of vIDS on the QoS of
RTP streams. On average, vIDS adds ~ 1.5 ms of addi-
tional delay to RTP based voice streams, while the delay
variations are 0.3 x 10~? seconds higher than those without
the vIDS. Therefore, vIDS has a negligible effect upon RTP
delay and jitter, which will not be perceived by VoIP service
subscribers.

7.5 Detection Accuracy and Sensitivity

Note that vIDS is based on protocol state machines
and the attack signatures of the known attacks. In our
preliminary experiments with a few known attack scenar-
ios, vIDS successfully detects these attacks without false
alarms. For those attacks which have already been identi-
fied and recorded with attack patterns in the attack signature
database, vIDS demonstrates 100% detection accuracy with
zero false positive. However, the detection of unknown at-
tacks (i.e., the attacks which do not have the corresponding
signatures in the database) is largely dependent upon the de-
velopment of protocol state machines. We postulate that the
detailed and accurate representation of protocol state ma-
chines should be capable of detecting unknown attacks. The

— with vIDS
— without vIDS

~ 0.1245F

RTP Delay (sec
o
o
N
W
a
T
i

I I I I I I I
0 1000 2000 3000 4000 5000 6000 7000

— with vIDS
2 — without vIDS

Avg. Delay Variation (sec.)

I I I I I I I
0 1000 2000 3000 4000 5000 6000 7000
time (seconds)

Figure 10. Impact on RTP streams

effectiveness of vIDS in detecting unknown attacks will be
our future work.

The detection sensitivity of vIDS is defined as the earli-
est possible time to detect an intrusion since its commence-
ment. The major strength of specification-based intrusion
detection lies in its accurate and early detection capability,
provided that the protocol state machine is detailed enough.
The intrusion detection delay is mainly determined by the
various timer in attack patterns, for example, timer 7} in
INVITE flooding detection and timer 7" in BYE DoS at-
tack detection. Tj depends upon the required detection
granularity and the computational resources available at
vIDS, whereas timer 1" depends upon the network condi-
tions. After receiving a BYE message, setting timer 7' to
one round trip time (RTT) should be long enough to receive
all in-flight RTP packets, consequently, there would be less
chance of false alarms. Seeking the optimized values of
timers and their relationship with the probability of false
alarms is our ongoing work.

8 Related Work

The work done by Sekar et al. [15] and Vigna et al. [17,
18, 19] are the closest to our work, in which state transition
analysis tool (STAT) is used for intrusion detection. Sekar’s
specification based anomaly detection method [15] utilizes
extended finite state automata to model network protocols.
Vigna et al. proposed NetSTAT tool [18], an approach
extending the STAT to network based intrusion detection,
and WebSTAT tool [19] for detecting web-based attacks.
WebSTAT operates on multiple event streams and correlates
both network and operating system level events with the en-
tries contained in the server log. Porras et al. [5] employed
the similar technique to model computer penetrations as a

series of state changes from an initial secure state to a target
compromised state. AODVSTAT [17] is also a STAT based
tool for network-based real-time intrusion detection in the
context of wireless networks, which are based on Ad hoc
On-Demand Distance Vector (AODV) routing protocol.

Wu et al. [20] proposed SCIDIVE, a stateful cross-
protocol intrusion detection architecture for VoIP. The ar-
chitecture of SCIDIVE translates all incoming network
packets into protocol dependent information. Packets are
grouped according to sessions. The aggregated state from
the multiple packets of a session are matched by the Rule
Matching Engine against the ruleset. This approach has
the same disadvantages as that of misuse intrusion detec-
tion system. Our proposed scheme is based on these pre-
vious approaches with significant enhancements via com-
municating extended finite state machines. Our approach
is particularly suitable for VoIP applications because of its
multi-protocol awareness.

9 Conclusions

In this paper, we formally described the extended finite
state machine and utilized it for VoIP intrusion detection.
We presented the potential security threats to the emerging
SIP-based VoIP services, and detailed the stateful intrusion
detection mechanism that is based on the communicating
extended finite state machines. The proposed vIDS is par-
ticularly suitable for defending VoIP applications, because
of its holistic consideration of multi-protocols and cross-
protocol interactions. We have evaluated the performance
of vIDS through our VoIP network testbed. Our experimen-
tal results show that the online placement of vIDS induces
~ 100 ms delay to call setup and an additional ~ 3.6%
overhead to CPU cost. Due to the low memory cost per
call, vIDS can easily monitor thousands of calls at the same
time. Moreover, vIDS has negligible impact upon the per-
ceived quality of voice streams. Finally, we demonstrated
the high detection accuracy of vIDS and discussed its de-
tection sensitivity.

References

[1] O. Arkin. Why E.T. Can’t Phone Home? - Security Risk
Factors with IP Telephony. Presentation, AusCERT Aus-
tralia, 2004.

[2] M. Handley and V. Jacobson. SDP: Session Description Pro-
tocol. RFC 2327, IETF Network Working Group, 1998.

[3] C. Hoare. Communicating Sequential Processes. In Com-
munications of the ACM, 21(8), pages 666—-677, 1978.

[4] G. Holzmann. Design and Validation of Computer Proto-
cols. Prentice Hall, 1st edition, 1991.

[5] K. Ilgun, R. A. Kemmerer, and P. A. Porras. State tran-
sition analysis: A rule-based intrusion detection approach.

(6]
(7]

(8]
(9]

(10]

(1]

[12]

(13]

(14]

[15]

[16]

(17]

(18]

[19]

(20]

[21]

IEEE Transactions on Software Engineering, 21(3):181—
199, March 1995.

A. Johnston. SIP Understanding the Session Initiation Pro-
tocol. Artech House, 2nd edition, 2004.

D. Lee and M. Yannakakis. Principles and methods of test-
ing finite state machines - A survey. In Proceedings of the
IEEE, Vol 84, pages 1089-1123, August 1996.

A. Niemi. Authentication of SIP calls. In 7ik-110.501 Sem-
inar on Network Security, 2000.

OPNET. Optimum Network Performance, Mod-
eler Tool Version 9.1. Network Simulation Tool,
http://www.opnet.com/, 2003.

A. Petrenko, S. Boroday, and R. Groz. Confirming Configu-
rations in EFSM Testing. In IEEE Transactions on Software
Engineering (TSE), January 2004.

M. Roesch. Snort: Lightweight intrusion detection for net-
works. In Proceedings of the 13" System Administration
Conference (LISA), USENIX Association, pages 229-238,
November 1999.

J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston,
J. Peterson, R. Sparks, M. Handley, and E. Schooler. SIP:
Session Initiation Protocol. RFC 3261, IETF Network
Working Group, 2002.

S. Salsano, L. Veltri, and D. Papalilo. SIP Security Issues:
The SIP Authentication Procedure and its Processing Load.
In IEEE Networks, pages 38—44, November 2002.

H. Schulzrinne, S. Casner, R. Frederick, and V. Jacob-
son. RTP: A Transport Protocol for Real-Time Applications.
RFC 1889, IETF Network Working Group, 1996.

R. Sekar, A. Gupta, J. Frullo, T. Shanbhag, A. Tiwari,
H. Yang, and S. Zhou. Specification-based anomaly de-
tection : A new approach for detecting network intrusions.
In ACM Computer and Communication Security Conference
(CCS), Washington DC, November 2002.

Tipping Point. Intrusion Prevention : The
Future of VoIP Security. White paper,
http://www.tippingpoint.com/solutions_voip.html, 2005.

G. Vigna, S. Gwalani, K. Srinivasan, E. Belding-Royer, and
R. Kemmerer. An Intrusion Detection Tool for AODV-based
Ad Hoc Wireless Networks. In Proceedings of the An-
nual Computer Security Applications Conference (ACSAC),
pages 16-27, Tucson, AZ, December 2004.

G. Vigna and R. Kemmerer. NetSTAT: A Network-based
Intrusion Detection Approach. In Proceedings of the 14"
Annual Computer Security Application Conference (ACSAC
1998), Scottsdale, Arizona, December 1998.

G. Vigna, W. Robertson, V. Kher, and R. Kemmerer. A
Stateful Intrusion Detection System for World-Wide Web
Servers. In Proceedings of the Annual Computer Security
Applications Conference (ACSAC 2003), pages 3443, Las
Vegas, NV, December 2003.

Y. Wu, S. Bagchi, S. Garg, N. Singh, and T. Tsai. SCIDIVE:
A Stateful and Cross Protocol Intrusion Detection Architec-
ture for Voice-over-IP Environments. In IEEE Dependable
Systems and Networks Conference (DSN 2004), June 2004.
H. Yamaguchi, K. Okano, T. Higashino, and K. Taniguchi.
Synthesis of Protocol Entities Specifications from Service
Specifications in a Petri Net Model with Registers. In 15th
International Conference on Distributed Computing Sys-
tems (ICDCS’95), May 1995.

