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Blog bots are automated scripts or programs that post comments to blog sites, often includ-
ing spam or other malicious links. An effective defense against the automatic form filling
and posting from blog bots is to detect and validate the human presence. Conventional
detection methods usually require direct participation of human users, such as recognizing
a CAPTCHA image, which can be burdensome for users. In this paper, we present a new
detection approach by using behavioral biometrics, primarily mouse and keystroke
dynamics, to distinguish between human and bot. Based on passive monitoring, the pro-
posed approach does not require any direct user participation. We collect real user input
data from a very active online community and blog site, and use this data to characterize
behavioral differences between human and bot. The most useful features for classification
provide the basis for a detection system consisting of two main components: a webpage-
embedded logger and a server-side classifier. The webpage-embedded logger records
mouse movement and keystroke data while a user is filling out a form, and provides this
data in batches to a server-side detector, which classifies the poster as human or bot.
Our experimental results demonstrate an overall detection accuracy greater than 99%, with
negligible overhead.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction comments are injected by blog bots, indicating how ram-
Blogs (from weblog), are a popular application of Web
2.0. Internet users publish articles on blog sites, such as
personal online diaries or news on a particular subject. Like
normal web pages, blog pages are primarily textual com-
bined with images, videos, and links. The distinctive fea-
ture of blog is user interaction, which allows visitors to
leave comments to blog articles. A visitor fills in the com-
ment form and submits it, and his comment will display
below the article in reverse-chronological order. Unfortu-
nately, the increasing popularity of blogs and the simplic-
ity of posting comments have made it easy for blog bots
to automatically post comments with malicious intent.
According to the estimation of [1], about 83 percent of blog
. All rights reserved.
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pant blog bots are in the blogosphere. Most of these auto-
mated comments are associated with spam websites,
containing either traceback links to inflate search engine
rankings [2], or other content to lure visitors to these sites.

Since the majority of content generated by blog bots is
unwanted by blog owners and visitors, blogging software
has incorporated a variety of methods to discourage post-
ing from these sources. Fundamentally, detecting human
presence is an effective defense against blog bots. Conven-
tional detection methods based on Human Interactive
Proofs (HIPs) [3] usually require direct participation from
human users, such as CAPTCHA. As a reverse Turing test,
it challenges a user with an image carrying alphanumeric
text. The user must enter the exact text before the blog site
can accept the comment for submission. To cope with an
advanced bot’s capability for image recognition (namely,
De-CAPTCHA), CAPTCHA tools add image noise to the back-
ground canvas, and greatly distort characters [4]. However,
such a CAPTCHA validation also requires non-trivial effort
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from human users. In some cases, users have to try several
times to correctly recognize a CAPTCHA image because it
has become more and more difficult even for human to
read. Such a validation in place may effect a significant de-
crease in participation from human visitors.

In this paper, we present a new method based on pas-
sive monitoring for blog bot detection, as conventional
detection systems have become a nuisance for human
users. Our proposed approach employs behavioral biomet-
rics, including mouse and keystroke dynamics, to distin-
guish between human and bot. It has two major
advantages over existing solutions. First, it uses continuous
monitoring throughout the entire user session, and elimi-
nates single checkpoints. In contrast, blog sites deployed
with the conventional detection face the dilemma of
applying one-time test or multiple tests. On one hand, blog
bots can pass the one-time test, such as account login, with
the help of human. On the other hand, multiple tests, such
as recognizing a CAPTCHA image before each comment
posting, are too intrusive for human users. Our passive
continuous monitoring resolves the above dilemma. Sec-
ond, our method is non-interactive and completely trans-
parent to users. Moreover, no detection decision needs to
be made until the user submits the comment, which in
turn saves system resources. We develop a passive, web-
page-embedded logger to collect user input activities on
a real, active blog site. By measuring and characterizing
biometric features of user input data, we discover the fun-
damental differences between human and blog bot in how
they surf web pages and post comments. These results
greatly facilitate accurate detection of blog bots.

We build a prototype of an automatic classification sys-
tem that detects blog bots based on user input data. The
system consists of two components, a webpage-embedded
logger and a server-side detector. The logger is imple-
mented as a JavaScript snippet that runs in the webpage
on the client browser. It records a user’s input actions dur-
ing her stay at the site and streams the data to the server-
side detector. The detector processes raw user input (UI)
data, and extracts biometrics-related features. The core of
the detector is a machine-learning-based classifier which
is tuned with training data for the binary classification,
namely determining whether the user is human or bot. In-
formed with the classification result, the server decides
whether or not to accept the comment form submission.1

We evaluate the efficacy of the detection system by conduct-
ing a series of experiments over the user input dataset. The
experimental results demonstrate that the system can de-
tect 97.9% of current blog bots with extremely low false po-
sitive rate of 0.2%.

As defense against bots is a challenging task, we
acknowledge that our detection alone cannot eliminate
the problem. However, our approach is a significant com-
plement to conventional HIPs. We believe that, with the
inherent irregularity and complexity of human behavior,
it is extremely difficult if not impossible for a bot to
completely mimic human behavior. Our behavior-based
1 For instance, the server can be configured to accept the manual
submission from human, and reject the automated form completion from
bot.
detection raises the bar for bot participation during this
game of cat-and-mouse.

The remainder of the paper is organized as follows. Sec-
tion 2 covers related work on blog bot and behavioral bio-
metrics. Section 3 details our measurements and
characterization of user inputs from human visitors and
blog bots, respectively. Section 4 describes our automatic
classification system. Section 5 evaluates the system effi-
cacy for detecting blog bots. Section 6 discusses potential
evasion against our detection system. Finally, Section 7
concludes the paper.

2. Background and related work

From the perspective of blog content creation, there are
two types of blog bots. The first type is the article posting
bot, which automatically publishes blog articles. For exam-
ple, it pipelines RSS feeds from other sites as articles into
the blog site, or posts preset content for a spam blog (also
known as a splog). Since the posting of articles usually re-
quires the elevated privilege of the webmaster, article post-
ing bots are not the focus of this study. The second type is
the comment posting bot, which posts comments or replies
to blog sites. Given a link to a blog site, this bot analyzes the
HTML structure of the blog article, especially the ‘‘leave a
comment’’ form, fills in input fields, and posts a comment
automatically. Most blog sites do not require visitors to reg-
ister to post comments, and thus give ample space for bots
to exploit. The focus of our work is on this bot type, and the
term ‘‘blog bot’’ in the remainder of the paper implicitly re-
fers to comment posting bots. Currently, blog bots are
mainly created to fulfill two tasks. First, the bot posts a
comment with a backlink directing to a specific website
(such as that of the bot owner).2 Posting backlinks to numer-
ous blog sites has the effect of increasing the search engine
traffic, in an attempt to boost search rankings for the origi-
nating site. The search industry has already employed some
mitigation measures, such as Google’s no-follow tag to pre-
vent spam from polluting on search rankings. However, bots
still massively generate inflation backlinks due to the ease
and low cost of posting. Second, bots post comments with
spam content (also known as spam comments) aiming to
lure visitors to spam-related or other malicious sites.3 Many
blog sites eliminate spam comments based on content filter-
ing, and Akismet [5] is such a distributed anti-spam web ser-
vice. Each time a new comment is posted to the blog, it is
submitted to Akismet, which checks content, runs other
tests, and returns the spam detection result to the blog.
Our work has the different research direction, and checks
posting behavior instead of content posted.

2.1. Existing web bot detection

There have been many previous works on web bot
detection. Stassopoulou et al. [6] introduced a probabilistic
Here is an example of backlink comment, ‘‘I don’t really think this is
right, but believe whatever you want. The real story can be found here on my
blog: http://myblog.com/blog/’’.

3 Here is an example of spam comment, ‘‘Thousands of cheap replica
watches and fashionable designer bands at www.hot-replica.com/’’.



4 Game bot operates on a map and fulfills a series of game-related
missions.
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modeling approach for web bot detection by analyzing ser-
ver access logs. They constructed a Bayesian network that
classifies log sessions as being crawler or human induced.
Their classifier uses some features to characterize crawler
and human behaviors, including maximum sustained click
rate, session duration, percentage of image requests, pdf/ps
requests, 4xx error responses, and robots.txt file requests.
Tan et al. [7] did a similar study by investigating naviga-
tional patterns of web bots. They extracted features from
server logs such as total number of pages requested, aver-
age time between two HTML requests, and percentage of
requests made with GET/POST methods, which are useful
for a machine learning algorithm to distinguish between
human and bot. Park et al. [8] took web bot detection as
a special form of the Turing test and defended the system
by inferring whether the traffic source is human or bot.
More specifically, their detection decision depends on evi-
dence of mouse movement or keyboard activity from the
client. If no human input activities are detected by a web
server, the user is classified as bot.

However, all these existing detection mechanisms are
only effective for detecting form-injection bots that do
not generate any human-like activities. They miss more
advanced bots such as human-mimic bots, which can nav-
igate web pages in the browser by generating simple user
input actions. A web server cannot easily detect this type of
bot by using navigational patterns or logs. Moreover, since
human-mimic bots send mouse and keystroke actions to
the browser, the detector in [8] is deceived by the exis-
tence of forged human activity. Different from the previous
detection research, our proposed approach does not
merely depend on the presence of mouse or keystroke ac-
tions to distinguish human from bot. Our solution extracts
features from UI actions that represent the inherent irreg-
ularity of human behaviors, and applies these features for
bot detection.

2.2. Behavioral biometrics

The fundamental idea of our approach is to exploit
behavioral biometrics for bot detection. Biometrics-based
authentication is defined as the automated use of a collec-
tion of factors describing human behavioral or physiologi-
cal characteristics to establish or verify a precise identity
[9]. It can be classified into two categories: physiological
biometrics and behavioral biometrics. Physiological bio-
metrics uses measurements from the human body, includ-
ing fingerprints, iris, retina, and facial scanning, and so on.
Behavioral biometrics uses measurements based on human
actions, such as signatures, voice and keystroke dynamics.
Compared with physiological biometrics, normally behav-
ioral biometrics do not require any special-purposed hard-
ware for data collection, and are easy to employ.

Among all behavioral biometrics, mouse and keystroke
dynamics are the most common metrics attempted for
on-line user authentication [10–12]. Keystroke dynamics
measures duration (the length of time a key is pressed
down) and inter-arrival time (the time from pressing one
key to another) for keystroke actions. In the previous
works [10,13,11], the way that a user types at the keyboard
is analyzed to identify its habitual typing rhythm and
patterns. Mouse dynamics measures the characteristics of
mouse actions of an individual user when it is interacting
with the graphical user interface (GUI). Raw events gener-
ated by the mouse input device include cursor movement,
mouse button press and release. In [12], high-level mouse
actions are defined as the four meaningful combinations of
raw events: Mouse-Move (i.e., general mouse movement),
Drag-and-Drop (i.e., the action starts with mouse button
down, movement, and then button released), Point-and-Click
(i.e., mouse movement followed by a click or a double
click), and Silence (i.e., no movement). Using neural net-
works, Ahmed et al. [12] modeled the mouse dynamics
characteristics from the captured user input data. They
implemented a detector that generates a signature for a
user. User identification is conducted by comparing two
signatures.

Our paper extends behavioral biometrics into blog bot
detection, mainly using keystroke and mouse dynamics.
In the context of blog user behavior characterization, key-
stroke and mouse dynamics are complementary to each
other. This is because human users move the mouse cursor
to surf blog pages, and strike the keyboard to post com-
ments. However, our work significantly differs from afore-
mentioned biometric detectors. Our work distinguishes
two classes of users, human and blog bot, instead of iden-
tifying individual users. Some previous work indicates that,
behavioral biometrics may generate non-negligible errors
in identifying individuals as one’s behavior may vary sig-
nificantly [14]. Our evaluation results demonstrate behav-
ioral biometrics works accurately for the problem of
classifying two classes: bot and human, instead of user
identification.

The closest previous work to ours is [15], which also ap-
plies behavioral biometrics for detecting game bots in on-
line games. On one hand, blog bot detection is different
from game bot detection, due to different application envi-
ronments.4 In [15], the user input actions are collected by
the game client, while our work resorts to JavaScript in the
blog page for user input collection. Neural networks are used
in [15], while our work uses decision tree for classification.
Decision tree is more efficient than neural networks on our
dataset of user input activities, and the tree structure clearly
presents how features are weighted during the classification.
On the other hand, behavioral biometrics works well for
both cases, and user input behaviors remain consistent in
different online applications, either online blogging or online
gaming.
3. Behavior characterization

In this section, we analyze user behaviors, namely how
a user surfs blog pages and posts comments, based on data
collected from a large corpus of users. We first introduce
three types of blog bots, then describe how we collect user
input data from a blog site. Finally, we characterize the
behavioral differences between human and blog bot, in
terms of keystroke and mouse dynamics.
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3.1. Blog bots

Fundamentally, current blog bots can be categorized
into three different types based on their working mecha-
nisms: Form Injection Bot, Human Mimic Bot, and Replay
Bot. Form Injection Bots do not post comments via the
browser. Rather, it directly sends an HTTP request to the
server for the blog page where it plans to post comments.
After receiving the HTML content of the requested page, it
analyzes the HTML structure of the comment form. Then, it
injects content into form fields,5 constructs a syntactically
legal HTTP response with the HTML form data as the body,
and sends it to the submission URL at the server. To evade
the server’s check on the HTTP response, the bot often forges
certain fields in the response header, such as Referer, User
Agent, and Cookie. Furthermore, some bots are equipped
with CAPTCHA deciphering capability to crack the CAPTCHA
defense. However, they do not generate any mouse or key-
stroke events. Currently this type of bot is the most widely
used blog bot in cyberspace [16,17].

Contemporary detection methods have realized the
importance of detecting human activities during the form
filling procedure. A server only accepts a user as human
if mouse or keyboard events are detected. Thus, bot
authors are motivated to create a more advanced bot type,
namely the Human Mimic Bot. These bots open a blog page
in the browser, and use OS API calls to generate keystroke
and mouse events. In this manner, it mimics human
browsing behavior, fooling older detection methods. For
example, the bot strolls down the page to the bottom by
repetitively sending ‘‘Press down-key’’ commands. Then,
it moves the mouse cursor into each field of the comment
form, and types in prepared text content by sending a se-
quence of keystrokes. Finally, the bot posts the comment
by generating a mouse click on the submit button. The ser-
ver cannot distinguish whether the UI events are generated
via hardware (such as the mouse device and keyboard) or
via software (such as Human Mimic Bot) by merely check-
ing the received user input data. The server will be de-
ceived by Human Mimic Bot if it only relies on the
presence of UI events for bot detection.

Some research into behavioral biometrics has found out
that human behavior is more complex than bot behavior.
Compared with the inherent irregularity and burstiness
of human behavior, bots exhibit regular patterns of limited
variety [15]. For example, many bots move the mouse cur-
sor in straight lines at a constant speed, or strike keys with
even intervals. Such perfect regular actions cannot be
achieved by human. Thus, the server could detect Human
Mimic Bot by taking behavioral complexity into account.
With high fidelity of mimicry, Replay Bots are more ad-
vanced than Human Mimic Bots, and are probably the most
difficult to detect among contemporary blog bots. When a
human is filling a form, Replay Bot records her actions. La-
ter on, it impersonates the human by replaying recorded
traces on form submission pages. The standard interfaces
5 The form is usually well-structured, and the ID/name of each input field
remains constant. For example, <input type=‘‘text’’ name=‘‘email’’ /> is the
text field to enter email address. Thus, the bot author programs the bot to
recognize fields and fill in appropriate content.
utilized by popular blogs and message boards, such as
WordPress or vBulletin, make such replay attacks possible.

To characterize the bot behaviors, we use existing bot
tools or libraries to configure the three types of blog bots.
The Form Inject Bot is implemented as a PHP cURL script.
The comment form at our blog site is submitted via the
POST method. The cURL script assigns every input field
with an appropriate value, encapsulates the form data into
a string, and submits it to the PHP script at the server that
processes the form. We configure the Human Mimic Bot
based on the AutoHotkey script [18], which is an open-
source Windows program designed for automating the
Windows GUI and for general scripting.6 We customize
the script for our blog site, and thus it can generate actions
corresponding to the page layout.7 The script mimics all
kinds of normal human actions, such as moving and clicking
the mouse cursor, scrolling the page up and down, drag-and-
dropping an area, and typing keys. To simulate various ef-
fects, we assign action parameters with different constants
or random values. Taking mouse movement as an example,
we change endpoint coordinates and movement speed to
generate different traces. For keystrokes, we change the
duration (the length of time the key is held) and inter-arrival
time (the time from pressing one key to another) to generate
different typing rhythms. We choose the Global Mouse and
Keyboard Library for Windows [21] as the Replay Bot in
our experiments, which has both record and replay capabil-
ities. The record and replay are implemented using the
mouse and keyboard APIs in Windows. Specifically, for
recording, global hooks are created to capture keyboard
and mouse events; and for replaying, the keybd_event and
mouse_event APIs in Windows are used.
3.2. UI data collection

For client-side monitoring, we develop a logger written
in JavaScript, which is embedded in the header template of
every webpage, and in this way it records UI data during
the user’s entire visit at the site. The user behavior is in
constant monitoring, which prevents bots from bypassing
routing checkpoints (such as CAPTCHA recognition during
login). More specifically, five raw UI events generated by
the user in the browser are collected, including Key Press,
Key Release, Mouse Move, Mouse Button Press, and Mouse
Button Release. The logger streams the UI data to the ser-
ver for further processing and classification. More details
of the logger implementation are presented in Section
4.1. Note that no user sensitive data content (e.g., pass-
word) is recorded by our logger. Besides, user data is anon-
ymized by hashing user ids. In other words, we do not
track the UI data back to its generator. We have also ob-
tained the approval from the Institutional Review Board
(IRB) of our university, which ensures the appropriate
and ethical use of human input data in our work.
6 There are other similar bot tools that may generate simple human
behavior, such as AutoIt [19] and AutoMe [20].

7 The page layout is different from page to page, and may affect how the
Human Mimic Bot works. For example, by moving down the same amount
of pixels, the mouse enters the comment form on one page, but falls out of
the form on another page.



Table 1
User input actions.

Action Description

Keystroke The press and release of the same key
Point A set of continuous mouse moves with no

mouse clicks, and the interval between two
consecutive moves is no more than 0.4 s

Click The press and release of the same mouse
button

Point-and-Click A point followed by a click within 0.4 s
Drag-and-Drop Mouse button down, movement, and then

mouse button up
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The collection of human UI data is described as follows.
We collected data from a busy blog site consisting of over
65,000 members. The site averages 800 simultaneous on-
line users, and in order to prevent spam, the site requires
visitors to register with real credentials and log in before
posting content. Content is manually reviewed by site
administrators, moderators, and a community of dedicated
users. Should an account post spam and be reported, the
associated content is quickly removed and the account gets
suspended. We collected data from 1078 distinct signed-in
site members during several two-hour monitoring sessions
on a single day. The data collection was completely trans-
parent to users, and the interactions consist of both read-
ing and posting of content. Our real-world data with the
large user population covers a wide range of human input
behavior. The data also presents an advantage over the lab
environment tests, where a user’s performance might be at
odds with her normal behavior. We maintain a high degree
of confidence that the users in this dataset are indeed hu-
man, as their registrations are manually screened by site
administrators, and posted content is screened by a com-
munity of users, resulting in a low overall observed inci-
dence of spam.

Correspondingly, we run three types of blog bots to col-
lect bot input data. By including username and password
to the POST data body, Form Inject Bots can post com-
ments. As it does not open a webpage in the browser to
generate any input events, the server does not receive
any UI data. Thus, Form Inject Bots can be easily detected.
We also run multiple instances of the Human Mimic Bot,
and each instance is assigned with different settings (such
as varied typing rhythms and mouse movement speeds) to
generate different behavior. We generate the traces of Hu-
man Mimic Bot for 30 h. We run the Replay Bot for six
rounds, which last for 2 h in total. In each round, a human
user fills in the comment form, and Replay Bot records the
human trace and replays it.

Lastly, we explain the reasons that we run customized
bots in the controlled ‘‘sand box’’ to generate bot input
data. First, ground truth creation and data collection is an
example of the chicken or the egg causality dilemma. We
must know the true identity of a user to label it as human
or bot in the ground truth set. In other words, we cannot
collect data in the wild and recognize what data are gener-
ated by bot or not. After being trained on the ground truth
set, the classifier can distinguish between human and bot.
Second, we do not create bots. Instead, we customize bots
based on existing tools and libraries without changing
their mechanisms. The authenticity of bot input data is re-
served. In addition, a bot needs to be customized to operate
on a specific blog site,8 and no existing tools can be gener-
ative to all blogs.

Raw UI events cannot efficiently describe user browsing
activities. We develop a parser to integrate raw events into
compound actions as shown in Table 1. For example, the
Key Press event and the following Key Release event of
the same key is integrated as a Keystroke action, and a
8 For example, the position of the submit button may vary in the
webpage layout. The bot must be customized to move to the button and
generate a click event on it.
set of continuous Mouse Move events are grouped as a
Point action.
3.3. UI data measurements

Based on the collected UI data from human and bot, we
analyze the keystroke and mouse dynamics and character-
ize different behavioral patterns for humans and bots,
respectively. For the profiling of bot behavior, we only
use the traces of Human Mimic Bot, and exclude those of
Form Inject Bot and Replay Bot.9

Figs. 1 and 2 illustrate two mouse kinematics features,
displacement and speed, for the Point-and-Click action,
respectively. In Fig. 1 with the bin resolution of 100 pixels,
we observe that human users generate far more displace-
ments with short length than with long length. About
60.64% of displacements are less than 400 pixels, while
only 8.52% are greater than 1000 pixels. In contrast, bots
tend to move the mouse at all displacements. Fig. 2 with
the bin resolution of 100 pixels per second shows the
movement speed of bot is faster than that of human. The
average speed of bot is 1520.83 pixels per second in our
observation, but the average speed of human is 427.43 pix-
els per second. Furthermore, human speed is limited with-
in 3500 pixels per second, due to the physical movement
constraints of human wrist and arm. Finally, we observe
that some bots move the mouse at fixed speeds.

Fig. 3 shows the mouse movement efficiency for the
Point-and-Click action, with the bin resolution of 0.02 sec-
ond. For a mouse movement from the starting point to the
end point, displacement is the segment length between the
two points, and distance is the actual length traversed.
Movement efficiency is defined as the ratio of displace-
ment over distance. Straight line movement has the high-
est efficiency at 1. The more curvy the movement is, the
lower its efficiency is. Our first observation is that bots
move the mouse cursor with much greater efficiency than
humans. About 59.23% of bot movements achieve effi-
ciency greater than 0.94, while only 28.60% of human
movements are equally efficient. As the Point action is
the integration of a set of continuous raw Mouse Move
events, we could have treated several segments of Move
event as the curve of Point action, which lowers the bot
9 Form Inject Bot generates no UI data. As Replay Bot replays traces
generated by human, it is inappropriate to include human traces to
characterize bot behavior.



Fig. 1. Displacement for Point-and-Click.

Fig. 2. Speed for Point-and-Click.

Fig. 3. Movement efficiency for Point-and-Click.
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Fig. 4. Inter-arrival time distribution for keystroke.

11 Take the following Mouse Move record as an example,
{‘‘time’’:1278555037098, ‘‘type’’:‘‘Mouse Move’’, ‘‘X’’:590, ‘‘Y’’:10, ‘‘tag-
Name’’:‘‘DIV’’, ‘‘tagID’’:‘‘footnote’’}. The ‘‘time’’ field contains the time
stamp of the event in the unit of millisecond. The two coordinates, X and
Y, denote the mouse cursor position. The last two fields describe the name
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efficiency during the calculation. Thus, there could have
been more bot movements with the efficiency of 1
(namely, straight movement). Our second observation is
that, the probability of human movement efficiency fol-
lows a lognormal (3P) distribution in our dataset,10 and
the bot probability does not fit any well-known distribu-
tions. For humans, most movements are curves, since it is
physically difficult to generate perfect straight lines over
certain length or time.

Fig. 4 shows the distribution of inter-arrival times for
the Keystroke action, with a bin resolution of 0.05 second.
We make two observations from the figure. First, bots
strike keys obviously faster than humans. About 21.49%
of bot keystrokes are less than 0.05 second, and only
5.82% of human keystrokes are issued within that range.
A human user has to look up keys on the keyboard, and
moves her fingers to hit keys. Physical movements cannot
compete with keystroke events generated by software.
Second, for bots, the probabilities of intervals at 0.05 and
0.25 seconds are greatly higher than other values. This im-
plies that some bots may use periodic timers to issue key-
strokes at fixed intervals.

We also observe similar distribution patterns of Key-
stroke duration between human and bot. The keystroke
duration is the elapsed time between a key press and its
corresponding release. The distribution patterns are simi-
lar with those in Fig. 4. Bots hold keys much shorter than
humans. While 45.42% of bot keystrokes are held less than
0.3 second, only 23.11% of human keystrokes are within
that range. A human needs time to move his finger up to
release the key after he presses it down. In addition, for
bots, the probability of intervals between 0.05 and 0.15
seconds are greatly higher than other values. The periodic
timer may set fixed intervals between consecutive key
press and release events. Due to the space limit, the related
figures are not included in the paper.
10 Kolmogorov–Smirnov test presents P-value of the distribution fitting at
0.882 with a 99% confidence level.
4. System design

Our detection system is mainly composed of the web-
page-embedded logger and the server-side detector. The
logger collects UI activities in the client browser and sends
data to the server. The detector analyzes the UI data of a
user and decides whether it is human or bot. The high-level
system architecture is shown in Fig. 5.
4.1. Webpage-embedded logger

As mentioned in Section 3.2, the logger is implemented
as JavaScript code, and embedded in every webpage of the
blog site. As a result, JavaScript is required by the blog site
and non-JavaScript clients are blocked from posting or
must pass a conventional HIP, such as a CAPTCHA. When
a user visits the blog, the logger runs silently inside the cli-
ent browser. It is totally transparent to the user, and no
extensions need to be installed. The logger collects five
raw UI events generated by the user inside the browser,
including Key Press, Key Release, Mouse Move, Mouse But-
ton Press, and Mouse Button Release. Each event is associ-
ated with a JavaScript listener. After an event happens, the
listener is triggered to generate a record in the JSON format
[22]. Every record has several fields to describe the event
attributes.11 The polling rate of the logger is decided by
the client operating system, and is generally high enough
to capture UI events. For example, in Windows 7, the polling
rate is 125Hz, namely polling every 8 milliseconds. The log-
ger buffers the collected events within a small time window,
and ID of the DOM element where the event happens, such as <div
ID=‘‘footnote’’>. In a record of Mouse Press, {‘‘time’’:1278555074750,
‘‘type’’:‘‘Mouse Press’’, ‘‘virtualKey’’:0x01, ‘‘tagName’’:‘‘HTML’’}, The ‘‘virtu-
alKey’’ field denotes the virtual-key code of 0x01 in hexadecimal value,
which corresponds to the left mouse button here.



Fig. 5. Detection system architecture.

Z. Chu et al. / Computer Networks 57 (2013) 634–646 641
and then sends the data in a batch to the server via Ajax
(Asynchronous JavaScript and XML). The asynchronous com-
munication mechanism helps save network traffic between
server and client, as no additional traffic occurs when no
events happen within the window. Besides, according to
Section 5.2, only a certain number of user actions are needed
to correctly classify a user. It also helps reduce network
traffic.

As our detection method is generic to other types of
form bots, such as those automatically perform massive ac-
count registration and online voting, we need to address
the privacy and security concerns of using the logger to
collect user input data. First, we discuss the user privacy
protection. As the logger is implemented as JavaScript code
running in web pages of the blog site, it is strictly con-
strained by the same-origin policy [23] enforced by the
browser, and thus cannot access content of other sites or
programs. This makes it very different from the OS-level
keyloggers. In other words, our logger can only access the
data that a user generates on the blog, which will be sub-
mitted to the blog site anyway. Thus, the logger does not
endanger user privacy. Second, we consider the confidenti-
ality of user input content transferred over the Internet.
When a user types in content on the webpage, the key val-
ues of strokes are recorded in the format of virtual-key
codes [24]. The link between the logger and the server is
not encrypted. To prevent an eavesdropper from intercept-
ing data packages in plain text and recovering the user in-
put content, the logger replaces each key value of strokes
with a wildcard character. This wildcard replacement en-
forces the confidentiality of user input content, and avoids
the additional overhead by encryption.
4.2. Server-side detector

The detector consists of three components: the log pro-
cessor, the classifier, and the decision maker. The UI data of
each user is processed by the log processor, which converts
raw events into high-level actions and encapsulates an
adjustable number of consecutive actions to form action
groups. The classifier processes each action group in the
user log and assigns it with a classification score, indicating
how likely the action group is generated by human or bot.
Finally, the decision maker determines the class of the user
based on the classification results of action groups. Each of
the components is explained as follows.

4.2.1. Log processor
When the UI data arrives at the server, it is in the format

of raw events, such as Mouse Move and Key Press. The raw
data is stored at the back-end MySQL database, and can be
easily grouped per user who generates the data. Before
classifying a user, the log processor processes the user
log by converting raw events into high-level UI actions de-
fined in Table 1. Furthermore, the log processor calculates
the timing entropy of intervals of the whole raw event se-
quence in the user log, which detects periodic or regular
timing of the entire user behavior.

The human behavior is often more complicated than
that of bot [25,26], which can be measured by entropy rate.
It is a measure of the complexity of a process [27]. A high
entropy rate indicates a random process, whereas a low
indicates a regular process. The entropy rate is defined as
the conditional entropy of an infinite sequence. As our real
dataset is finite, the conditional entropy of finite sequences
is used to estimate the entropy rate. For estimation, we use
the corrected conditional entropy [28], which is defined as
follows.

A random process X ¼ fXig is defined as a sequence of
random variables. The entropy of such a sequence is de-
fined as:

EðX1; . . . ;XnÞ ¼ �
Xn

i¼1

Pðx1; . . . ; xnÞ log Pðx1; . . . ; xnÞ; ð1Þ

where Pðx1; . . . ; xnÞ is the joint probability PðX1 ¼ x1; . . . ;

Xn ¼ xnÞ.
Thus, the conditional entropy of a random variable is:



Table 2
Classification features of user actions.

Feature Description

Duration Mouse/keystroke actions
Distance Mouse actions
Displacement Mouse actions
Displacement angle Mouse actions
Average speed Mouse actions
Move efficiency Mouse actions
Virtual key value Left/middle/right button for mouse

actions, and a wildcard character for
keystrokes

Timing entropy Event interval sequence of the target user
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EðXnjX1; . . . ;Xn�1Þ ¼ EðX1; . . . ;XnÞ � EðX1; . . . ;Xn�1Þ: ð2Þ

Then the entropy rate of a random process is defined as:

EðXÞ ¼ lim
n!1

EðXnjX1; . . . ;Xn�1Þ: ð3Þ

The corrected conditional entropy is computed as a
modification of Eq. (3). First, the joint probabilities,
PðX1 ¼ x1; . . . ;Xn ¼ xnÞ are replaced with empirically-de-
rived probabilities. The data is binned into Q bins, i.e., val-
ues are converted to bin numbers from 1 to Q. The
probabilities are then determined by the proportions of
bin number sequences in the data. The entropy estimate
and conditional entropy estimate, based on empirically-
derived probabilities, are denoted as EN and CE, respec-
tively. Second, a corrective term, percðXnÞ � ENðX1Þ, is added
to adjust for the limited number of sequences for increas-
ing values of n[28]. The corrected conditional entropy, de-
noted as CCE, is computed as:

CCEðXnjX1; . . . ;Xn�1Þ ¼ CEðXnjX1; . . . ;Xn�1ÞþpercðXnÞ �ENðX1Þ
ð4Þ

Based on Eq. (4), we calculate the CCE of intervals of the
raw event sequence for a user as the timing entropy.

Finally, a set of classification features are generated for
every action, which are listed in Table 2. They are used by
the machine-learning based classifier for bot detection.
More specifically, we group raw UI events into an action
record as shown in Table 1. For example, a ‘‘Point’’ action
contains a set of mouse move events. The value of duration
feature is the timestamp difference between the last and
first mouse move events. Similarly, the value of distance
feature is the actual length traversed by all the mouse
move events. The former seven features are directly re-
trieved from the action itself. In particular, the first four
features are the basic ones, while average speed and move
efficiency are derived from them.12 These two derived fea-
tures reveal the inherent correlation among features and
accelerate the tree building. The last feature is the timing en-
tropy of the whole event interval sequence of a user, not of a
single action. An action only consists of several events,
which are too few to extract timing regularity. It is statisti-
cally meaningful to calculate entropy at the user level. We
include the entropy feature in the action record to inform
12 Average speed is distance over duration, and move efficiency is
displacement over distance.
the classifier the behavioral timing pattern of the user who
generates the action.

4.2.2. Classifier
Our classifier is based on the C4.5 algorithm [29] that

builds a decision tree for classification. The decision tree
predicts the class of an unknown sample based on the ob-
served attributes. There are two types of nodes in the deci-
sion tree, the leaf node labeled with the class value (such as
human or bot), and the interior node that corresponds to
an attribute and links to a subtree. The tree is constructed
by dividing the training dataset into subsets based on the
attribute value test. This partitioning process is executed
on each derived subset in a recursive manner. The funda-
mental ideas behind C4.5 are briefly described as follows.
The tree is built from the root downward to leaves. During
the construction path, each interior node must be associ-
ated with the attribute that is most informative among
the attributes not yet included in the path. C4.5 uses entro-
py to measure how informative an attribute is. Given a
probability distribution P ¼ fp1; p2; . . . ; png, the entropy of
P is defined as

EðPÞ ¼ �
Xn

i¼1

pi log pi; ð5Þ

We denote D as the dataset of labeled samples, and C as the
class with k values, C ¼ fC1;C2; . . . ;Ckg. The information
required to identify the class of a sample in D is denoted
as Info(D) = E(P), where P, as the probability distribution
of C, is

P ¼ jC1j
jDj ;

jC2j
jDj ; . . . ;

jCkj
jDj

� �
: ð6Þ

If we partition D based on the value of an attribute A into
subsets fD1;D2; . . . ;Dmg,

InfoðA;DÞ ¼
Xm

i¼1

jDij
jDj InfoðDiÞ: ð7Þ

After the value of attribute A is obtained, the corresponding
gain in information due to A is denoted as

GainðA;DÞ ¼ InfoðDÞ � InfoðA;DÞ; ð8Þ

As Gain favors attributes that have a large number of val-
ues, to compensate for this the C4.5 algorithm uses Gain
Ratio as

GainRatioðA;DÞ ¼ GainðA;DÞ
SplitInfoðA;DÞ ð9Þ

where SplitInfo(A,D) is the information due to the splitting
of D based on the value of attribute A. Thus,

SplitInfoðA;DÞ ¼ E
jD1j
jDj ;

jD2j
jDj ; . . . ;

jDnj
jDj

� �
ð10Þ

The gain ratio is used to rank how informative attributes
are and to construct the decision tree, where each node
is associated with an attribute having the greatest gain ra-
tio among the attributes not yet included in the path from
the root. In other words, C4.5 applies a greedy search by
selecting the candidate test that maximizes the heuristic
splitting criterion.



Table 3
True positive and negative rates vs no. of actions per group.

Actions per group TPR TNR

2 0.974 0.9993
4 0.9945 0.9996
6 0.9865 0.9989
8 0.9879 0.9989
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We choose the C4.5 algorithm for the classification due
to the following four reasons. First, it builds the decision
tree in an efficient manner by processing a large amount
of training data in a short time. Furthermore, the tree is ro-
bust even if assumptions, to some extent, are violated by
the real data model. Second, it uses the white box model,
which is easy to understand and interpret by boolean logic.
Third, C4.5 is capable of processing both continuous and
discrete values (such as numerical and categorical data),
which is an improvement from the earlier ID3 algorithm
[30]. Last, after the tree creation, C4.5 prunes the tree from
top down with attempts to constrain the tree height and
avoid overfitting.

We use J48 as implementation, which is an open source
Java program of the C4.5 algorithm in the Weka data
mining tool [31]. Each action record is in such a format
of feature vector as <duration, distance, displacement, dis-
placement angle, average speed, move efficiency, virtual key
value, timing entropy>, listed in Table 2. The J48 classifier
takes input from all actions in an action group,13 and out-
puts the classification result indicating whether the action
group is generated by human or bot.

4.2.3. Decision maker
The user log contains multiple action groups, and each

group is determined by the classifier as generated by either
human or bot. The decision maker presents the summary
of the classifications of UI actions over a period of time
by employing the majority voting rule. More specifically,
if the majority14 of action groups are classified as human,
then the user is classified as human, and vice versa. Since
classification on individual actions cannot always be accu-
rate, the more actions are included, the more confident the
final decision is.

5. Evaluation

In this section we evaluate the efficacy of our detection
system in terms of detection accuracy, detection time, and
induced system overhead.

5.1. Experimental setup

Our experiments are based on 239 h of user traces,
including 207 h of human and 32 h of bot.15 The traces
are collected from more than 1000 human users and two
types of blog bots (namely Human Mimic Bot and Replay
Bot). The details about user composition are described in
Section 3.2. In summary, the user input dataset consists of
4,520,165 raw events, which are further converted into
190,677 compound actions.

We use cross validation with ten folds [33] to train and
test the classifier on our UI dataset. The dataset is ran-
domly partitioned into 10 complementary subsets. In each
round, one of the ten subsets is retained to validate the
13 Input is converted the ARFF format required by Weka [32].
14 As our classification only involves two categories, human and bot, a

majority means more than half of the votes.
15 The idle time is not included in the traces. The bot trace consists of 30 h

of Human Mimic Bot data and 2 h of Replay Bot data.
classifier (as the test set), while the remaining nine subsets
are used to train the classifier (as the training set). Every
round is an independent procedure, as the classifier is reset
at the beginning of the round and then re-trained. The test
results from ten rounds are averaged to generate the final
estimation. The advantage of cross validation is that, all the
samples in the dataset are used for both training and vali-
dation and each sample is validated exactly once.
5.2. System performance

Our detection system has two adjustable parameters
that affect the system performance: (1) the number of ac-
tions per group and (2) the total number of actions re-
quired to correctly classify a user. We describe the
configuration procedure of each parameter as follows.

We set different values for the number of actions per
group, run cross validation tests, and then calculate the
true positive rate (TPR)16 and true negative rate (TNR)17

for each value. The results are listed in Table 3. During the
classification, the classifier treats a group of actions as one
entity,18 and produces the classification result for the group,
not for individual actions. In our experiment, the setting of
four generates the highest TPR and TNR among all the val-
ues. Therefore, we set the number of actions per group as
four.

The second parameter, the total number of actions re-
quired to correctly classify a user, directly affects the sys-
tem performance in terms of detection accuracy and
detection time. Generally speaking, the more actions ob-
served from the user, the more accurate the classification
result will be. On the other hand, processing more actions
costs more time and increases the detection time. Given
the number of actions per group is four, we run experi-
ments with cross validation on the whole ground truth to
determine how many actions are required to achieve a
high accuracy. The results are summarized in the column
labeled as ‘‘Both Bots’’ in Table 4. Since each action group
is configured to contain four actions, the total number of
actions required equals the group number multiplied by
four. The last row in Table 4 labeled as ‘‘Entire’’ corre-
sponds to the baseline case, in which the classifier takes
all the actions in the user log as input. It is used as
upper-limit for accuracy comparison. We can see that the
detection accuracy in terms of TPR and TNR increases as
the total number of actions processed by the classifier in-
16 The true positive rate is the ratio of the number of bots which are
correctly classified to the number of all the bots.

17 The true negative rate is the ratio of the number of humans which are
correctly classified to the number of all the humans.

18 A series of consecutive actions represent continuous behavior well.



Table 4
True positive and negative rates vs number of groups.

Group no. Both bots Human mimic bot Replay bot

TPR TNR TPR TNR TPR TNR

4 0.6975 0.9972 0.7016 0.998 0.6359 0.9992
8 0.7673 0.9956 0.7710 0.9982 0.7117 0.9974
12 0.8172 0.9973 0.8198 0.9991 0.7781 0.9982
16 0.8788 0.9978 0.8802 0.9992 0.8578 0.9986
20 0.917 0.9982 0.9208 0.9994 0.8599 0.9988
24 0.9794 0.9983 0.9817 0.9996 0.9448 0.9987
Entire 0.9945 0.9996 0.9964 0.9999 0.9660 0.9997
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creases. With the group number as 24 (namely 24 � 4 = 96
actions in total), TPR and TNR are very close to those of the
entire log. Besides, the accuracy gain increases very slowly
after the group number exceeds 24. Thus, the system is
configured to process 24 action groups while each group
includes 4 actions. Each group is labeled as either human
or bot, and the user is eventually classified as the category
with more labels using the majority voting rule. For exam-
ple, if the action group sequence is labeled as <human, hu-
man, bot, human, � � �, human>, then the user is classified as
human. The C4.5 algorithm generates a decision tree based
on our dataset and prunes it afterwards. The construction
procedure costs 4.96 seconds, and returns a tree with 57
nodes. The tree consists of 29 leaves and 28 interior nodes
including the root. The overall detection accuracy is 0.9972
with the root mean squared error at 0.0244.

The detection time is mainly decided by the total num-
ber of actions processed by the classifier. The average time
per action is less than one millisecond. The overall time
cost per user, including log processing and classification,
is averagely 3.2 s.

We speculate whether one bot type is more difficult to
detect than the other. Thus, we separate the evaluation on
Human Mimic Bot and Replay Bot to see how accurately
our system can detect the two types of blog bots. More
specifically, we derive two subsets of the ground truth:
one with the entire trace of human and Human Mimic
Bot, and the other with that of human and Replay Bot.
The results are displayed in the last two columns in Table
4. We have two observations. Firstly, for each row, the TPR
of Human Mimic Bot is greater than that of Replay Bot. It is
easier to detect Human Mimic Bot thanks to the simplicity
and regularity of its behavior. Due to certain implementa-
tion deficiencies of the Replay Bot tools,19 our system also
effectively detects Replay Bot with the TPR greater than
0.966. Secondly, the TNR is greater than the corresponding
TPR for every bot type. In other words, the FNR is greater
than the FPR. It reflects our design philosophy that, the
system may miss capturing some bots, but it seldom mis-
classifies human as bot to upset legitimate users.

5.3. System overhead

As the detector is employed on the server side, it must be
light-weight and scalable enough to accommodate
19 More explanations are made in Section 6.
numerous concurrent user classifications. We estimate
the additional overhead induced by the detector for the
case, in which 10,000 users access the server
simultaneously.

In terms of network bandwidth consumption, the logger
streams the user input data in the JSON format to the ser-
ver. An average user generates a trace at a size around
200 Kbytes. Then, the aggregated network bandwidth con-
sumed at the server-side for receiving UI data is about
4.2 Mbps. Considering the wide deployment of Gigabit
Ethernet, this network bandwidth requirement can be eas-
ily met.

The main memory cost at the server side is to accom-
modate user input actions and the decision tree outputs
for each user. An input action contains eight features, and
each feature occupies 5 bytes, except the virtual key value
with 2 bytes. Thus, a single action consumes 37 bytes. Each
action group contains four actions, and is assigned with a
result that occupies 1 byte. The detector only needs 24 ac-
tion groups from the user log for classification, and thus
classifying a single user consumes up to 3.49 Kbytes of
memory. Scaled to 10,000 online users, the memory cost
of the server will be 34.1 Mbytes, which is very affordable
for a modern server.

The computational overhead is also very minor. We run
J48 in the Weka, a Java implementation of the C4.5 algo-
rithm, on a workstation with an Inter Core 2 Duo 2.4 GHz
CPU. The classification time is 10.85;s for the traces of
239 h.
6. Discussion

Once attackers know the existence of our detection
system, they will attempt to evade it. An adversary could
directly send synthetic traces to the server, trying to de-
ceive the detector. We discuss the trace forging in three as-
pects. First, the adversary records the trace when a human
fills in the form, and replays it. Some current record-and-
replay tools, such as the Global Mouse and Keyboard Li-
brary for Windows [21], cannot restore human trace with
high fidelity and thus create detectable artifacts. For exam-
ple, the timing of events is more regular in the replayed
trace than the original human trace, which can be detected
based on its regular and low entropy pattern. The differ-
ence can be identified by our detector.

Second, suppose the bot tool would perfectly replay hu-
man trace. Then, the adversary has to record a different



Z. Chu et al. / Computer Networks 57 (2013) 634–646 645
trace in real-time (typing them out by a person) for each
different spam message it wants to post. Therefore, our
detection system will at least significantly raise the bar
against blog bots and their spamming cost. Third, as an
alternative of replay, the adversary might be motivated
to develop a complete generative model of human user-in-
put dynamics, and send the bogus trace to the server
bypassing the client-side logger. However, the inherent
complexity and uncertainty of human behavior makes it
a very difficult modeling problem, because no such a mod-
el exists yet according to our best knowledge.

Now we discuss the limitation that enabling JavaScript
in a browser is required for the blog sites protected by
our system. With many popular sites, such as Twitter,
Facebook, and Digger, being entirely dependent on Java-
Script for key tasks [34] such as posting, we do not feel this
requirement will cause any problem for most human users.
According to a study of Internet user browser settings [35],
only a tiny proportion (around 0.56%) of human users turn
off JavaScript in practice. In other words, most human
users will successfully generate UI data to the logger and
pass our behavior detection even without noticing it. Bots
could disable JavaScript to prevent the logger from obtain-
ing their genuine traces. However, the disabled JavaScript
will reveal the high likelihood of a bot being behind the
browser. Meanwhile, to cope with this situation, a server
can take one step back and resume the use of the conven-
tional HIP methods, such as CAPTCHA, to defend against
bots.

Lastly, we discuss the feasibility of applying our work to
other interactive web applications. The core idea of this pa-
per is detecting human participation by analyzing the user
input data, and it can be applied to those web applications
that require human participation, such as forums and on-
line social networks. However, developers need to fulfill
some tasks during transplantation. They need to collect
the ground truth data for their own applications, as user
behavior (both of human and bot) may be application spe-
cific. Some features may also have to be replaced for accu-
rate classification.
7. Conclusion

This paper presents a blog bot detection system, which
leverages the behavioral differences between human users
and bots in their mouse and keystroke activities. Compared
to conventional detection methods based on Human Inter-
active Proofs, such as CAPTCHA, our detection system does
not require additional user participation, and is thus both
transparent and unobtrusive to users. We have collected
real user input traces of 239 h from a busy blog site. Based
on these real UI traces, we have discovered different user
behavioral characteristics, and further developed useful
features for classification. Our detection system consists
of a webpage-embedded logger and server-side detector.
The logger passively collects user activities and streams
this data to the server. The detector processes the log
and identifies whether it is generated by human or bot.
The core of our detection system is the C4.5 algorithm that
builds a decision tree. It takes the action stream as input,
and classifies a user by the majority voting rule.

We have performed a set of experiments to tune the
system parameters and evaluate the system’s performance.
The experimental results show that the overall detection
accuracy is over 99%. The additional overhead induced by
the detection is minor in terms of CPU and memory costs.
Since the detection only requires user input traces, our
method can be applied to detecting other types of form
bots, such has account registration and online voting.
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