
Computer Communications 34 (2011) 577–590
Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier .com/locate /comcom
An investigation of hotlinking and its countermeasures

Zi Chu *, Haining Wang
Department of Computer Science, The College of William and Mary, Williamsburg, VA 23187, USA

a r t i c l e i n f o
Article history:
Available online 25 May 2010

Keywords:
Hotlinking
Resource hosting
Web measurement
Web security
0140-3664/$ - see front matter � 2010 Elsevier B.V. A
doi:10.1016/j.comcom.2010.05.007

* Corresponding author. Tel.: +1 917 698 5015.
E-mail addresses: zichu@cs.wm.edu (Z. Chu), hnw@

1 Usually the webpage contains a JavaScript snippe
during the execution, JavaScript embeds ad links from
a b s t r a c t

Hotlinking is a web behavior that links web resources on a hosting site into a webpage belonging to
another site. However, unauthorized hotlinking is unethical, because it not only violates the interests
of hosting sites by consuming bandwidth and detracting site visiting traffic but also violates the copy-
rights of protected materials. To fully understand the nature of hotlinking, we conduct a large-scale mea-
surement study and observe that hotlinking widely exists over the Internet and is severe in certain
categories of websites. Moreover, we perform a detailed postmortem analysis on a real hotlink–victim
site. After analyzing a group of commonly used hotlinking attacks and the weakness of current defense
methods, we present an anti-hotlinking framework for protecting materials on hosting servers based on
existing network security techniques. The framework can be easily deployed at the server-side with mod-
erate modifications, and is highly customizable with different granularities of protection. We implement
a prototype of the framework and evaluate its effectiveness against hotlinking attacks.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

With the rapid advance of web technologies, websites not only
display text-based information, but also host various types of mate-
rials including images, media clips, software installation files, and so
on. Those hosted materials of great interest and high value help web-
sites attract users and increase site traffic. To date, more and more
websites link web elements provided by third parties. Hotlinking,
as a web phenomenon, can be defined as including a linked object
(often in the form of an image or document) from one site that actu-
ally hosts it into a webpage belonging to another site. A hotlinking
site has no need to host linked objects itself. In the context of social
engineering, hotlinking is a double edged sword. The ethical bound-
ary between benign and malicious hotlinking is whether the linking
behavior is authorized by the hosting site or not.

Authorized hotlinking is beneficial to site interaction. For exam-
ple, a site may include some ad images provided by an advertisement
syndicator to make advertising revenue. It does not need to host any
ad images by itself, but link them from the syndicator’s server.1 In
this way, the syndicator can dynamically change ad contents and ob-
tain the first-hand trace of ad display. Since the above interaction is
approved by both parties, it is a benign hotlinking behavior.

By contrast, unauthorized hotlinking is often harmful to hosting
sites. There are some common reasons for unauthorized hotlinking
listed as follows. First, some web developers are unprofessional.
ll rights reserved.

cs.wm.edu (H. Wang).
t provided by the syndicator;
the syndicator.
Their laziness makes them to directly link web objects hosted
somewhere else. Second, the hotlinking site may not have enough
online storage space to host all the materials it wants to display or
accommodate bandwidth demands by frequent visits. Third, the
hotlinking site attempts to display some ‘‘grey materials” such as
pirated media. Hotlinking instead of hosting such materials may
dodge legal prosecution.

Considering the simplified website operation model from the
economical perspective, the site hosting cost is attributed to pay-
ing the hosting service provider for storage space and bandwidth
quota, while the gain includes website brand effect and online
advertisement revenue. As far as the gain outweighs the cost, this
economically sustainable model drives the prosperity of the Inter-
net community. However, the rampant unauthorized hotlinking
has recently disturbed the harmonious development of websites,
because this unethical behavior violates the interests of hosting
sites in terms of the following aspects.

� Bandwidth theft. Most websites hosted on third-party hosting
servers have to pay for a limited amount of traffic delivery. If
the bandwidth consumption exceeds the prepaid quota, the web-
site may be charged more or, in the worst-case scenario, shut
down temporarily. It is evident that stealing bandwidth increases
the site hosting cost. From this perspective, unauthorized hot-
linking is also known as leeching or bandwidth theft [1].
� Visitor traffic loss. Many websites hosting free materials rely

on online advertising revenue. They display ads assigned by
syndicators (like Google AdSense [2] and Yahoo! Advertising
[3]) on webpages, and are paid for ad impressions or clicks. If
the hosted materials are hotlinked, visitors are directly brought

http://dx.doi.org/10.1016/j.comcom.2010.05.007
mailto:zichu@cs.wm.edu
mailto:hnw@cs.wm.edu
http://www.sciencedirect.com/science/journal/01403664
http://www.elsevier.com/locate/comcom

Fig. 1. Basic forms of linking web objects.

Fig. 2. Fabricating HTTP_REFERER via PHP.

578 Z. Chu, H. Wang / Computer Communications 34 (2011) 577–590
to hotlinking pages. Since legal hosting pages are bypassed, no
advertising revenue is generated. Visitor traffic loss could also
reduce the site brand effect. Users view or download popular
hotlinked materials through hotlinking sites without knowing
the existence of the hosting site.
� Copyright infringement. Many web objects (such as photo-

graphs and software programs) are copyrighted or licensed.
Owners have exclusive rights to display their works publicly
Strickland [4]. Hotlinking, even in the form of inline linking or
framing, such objects in the commercial environment may
infringe copyright, and is not justified by fair use [5].

The paper focuses on the malicious (i.e., unauthorized) hotlink-
ing. In the context of a hotlinking attack, we call the site that actu-
ally hosts the object the hosting site or victim site, and the site that
hotlinks the object the hotlinking site throughout the paper. To fully
understand the nature of hotlinking, we conduct a large-scale mea-
surement study over the Internet, targeting two popular types of
web materials, images and software packages. In the image-centric
measurement, we choose 1453 popular websites and check for
images hotlinked in their homepages. We find out that about
75.0% of sites hotlink images. To decide whether such hotlinking
behaviors are authorized or not, we further analyze the nature of
images and their hosting sites. A great amount of images are
hosted on special-purposed sites (such as ad syndicators and traffic
monitoring sites) and thus should be considered as hotlinked with
authorization. However, we also observe that unauthorized hot-
linking widely exists in certain categories of websites like blogging.
In the software-centric measurements, we select 100 popular soft-
ware packages as the targets. We search the Internet for websites
linking those software binaries, and find out that most hosting sites
are hotlinking victims. Since the download link appears in the hot-
linking page, the visitor can directly download the software pack-
age without visiting the hosting site.

It is a cat-and-mouse game between hotlinking attack and anti-
hotlinking defense. The paper analyzes a series of commonly used
hotlinking attacks and corresponding defense methods. Integrating
with the existing anti-hotlinking techniques, we present an anti-
hotlinking framework for protecting hosting sites. We also imple-
ment a prototype of the proposed framework to demonstrate its
feasibility, and evaluate its effectiveness against hotlinking attacks
in terms of security and usability. The framework can be easily de-
ployed at the server-side with moderate modifications. Moreover,
it is highly customizable with different granularities of protection,
with which a webmaster can define the different requirements
that visitors must complete to qualify for downloading resources.

The remainder of the paper is organized as follows. We present
the threat model along with some common hotlinking attacks in Sec-
tion 2. We describe the large-scale measurement-based study of hot-
linking over the Internet in Section 3. We detail our anti-hotlinking
framework design in Section 4. The framework implementation
and evaluation are given in Sections 5 and 6, respectively. Section
7 surveys some related work. The paper concludes in Section 8.
2 Tampering with HTTP request header can also be achieved using other scripts or
tools.
2. Problem statement

Hotlinking generally involves two parties: hotlinking sites and
victim sites (namely original sites or hosting sites). The HTML snip-
pet shown in Fig. 1 gives an example of hotlinking with four types
of regular web objects. Suppose the example page URL of the hot-
linking site is www.H.com/h.htm. All of the linked objects are
hosted by the victim site, V.com. Linking another webpage (shown
as L1) is not considered as the hotlinking behavior since visitors
will be directly brought to that page. L2–L4 show how to hotlink
an image, flash clip and file, respectively.
We assume that the hotlinker owns an independent domain
name (such as H.com), and fully operates a web server that hosts
his site. We further assume that the hotlinking attack is con-
strained by the same-origin policy enforced by browsers, since
the same-origin policy has been widely-used in modern browsers.
The policy isolates web contents from different schemes, hosts or
ports Jackson et al. [6]. For example, the scripts from http://
H.com cannot access or modify the content of http://V.com on
the same page.

The objectives of a hotlinker include: (1) hotlinking web objects
hosted on other servers into webpages of his own, and (2) ensuring
hotlinked objects to be normally displayed or accessed on the cli-
ent-side. The first goal is easy to achieve by using similar codes
shown in Fig. 1. The second goal is more challenging to reach, since
the hotlinker has to detect and bypass the anti-hotlinking mecha-
nisms enforced by hosting sites. In the following, we list some
common hotlinking techniques, and analyze how they evade the
corresponding defense countermeasures.
2.1. Exsiting hotlinking techniques

Directly hotlinking web objects into hotlinkers’ webpages
(known as Direct Hotlinking) is the basic form of hotlinking attacks.
It can simply use HTML codes displayed in Fig. 1. As a counterat-
tack against Direct Hotlinking, many hosting sites currently use a
straightforward Referer-based technique. It judges the Referer field
in the incoming HTTP request header. If the Referer does not be-
long to its own domain, the hosting site determines that the re-
quested material is linked from another domain (namely
hotlinked) and thus refuses to respond. According to the HTTP pro-
tocol specification [7], the Referer field allows the client to identify
the URI of the resource from which the Request-URI was obtained.
Therefore, checking the Referer field is an effective way to prevent
hotlinking as long as the integrity of Referer can be guaranteed.

Hotlinking sites can fabricate the Referer field to bypass the
widely used Referer-based defense. Fig. 2 shows an example of
using PHP code to fake HTTP_REFERER for outgoing HTTP request
headers2. An arbitrary fake Referer could be injected at the state-
ment $Referer=‘www.Any.com/’. When a user clicks on the hotlinked
download link, the browser generates an HTTP request for that file
(www.V.com/files/install.rpm), and HTTP_REFERER is changed into
‘V.com/’, instead of the real one (H.com/h.htm). Because the victim

http://www.H.com/h.htm
http://H.com
http://H.com
http://V.com
http://www.Any.com/
http://www.V.com/files/install.rpm
http://V.com/
http://H.com
http://h.htm

Fig. 4. HTML snippet exploiting session vulnerability.

Z. Chu, H. Wang / Computer Communications 34 (2011) 577–590 579
server always allows webpages in its own domain to link hosted
materials, this type of attacks evades the Referer-based defense.
Chen and Henry [40] and Chou et al. [41] confirm in their research
of web-based identification theft again that, the Referer field is easy
to fabricate.

Many websites have realized the vulnerability of HTTP Referer,
and have improved anti-hotlinking methods with the help of coo-
kie and session mechanisms. Cookie is a piece of data that a server
stores on the browser to maintain the HTTP communication state
between the client and server-sides, since the HTTP protocol itself
is stateless [7]. If the server receives the cookie issued by itself, it
can tell that the user has already visited the site before and thus
grants the file download.

Different from cookie, the session mechanism stores informa-
tion on the server-side except a session ID on the client-side [8].
To implement the session tracking, there are two methods to store
session id on the browser: (1) using cookie to record session ID, or
(2) URL Rewriting. Since the former method works similarly with
the cookie mechanism, we use the latter one as an example to de-
scribe how the session mechanism work. When the browser visits
www.V.com/v.htm, the server creates a session with a unique ID.
Suppose that the server implements URL Rewriting via PHP [9].
The session ID will be automatically appended to the links towards
the same domain as a URL parameter (such as www.V.com/
v.htm?PHPSESSID=5k32d0). When the server receives the request,
it authenticates the session ID and returns the file if the id is valid.

However, the defense framework purely based on cookie or ses-
sion mechanism can still be evaded by more sophisticated hotlink-
ing attacks, which are described as follows. In the hotlinking attack
against cookie protection as shown in Fig. 3, the hotlinker can in-
clude a hidden iFrame on the hotlinking page to bypass the cookie
check. When the browser parses the HTML document of h.htm, the
iFrame will load the page v.htm from V.com. V.com then stores a
cookie in the browser. When a user clicks the download link, an
HTTP request (GET /files/install.rpm HTTP/1.1) is sent to V.com,
and the cookie issued by V.com is also included in the request
header. After V.com receives its cookie, it returns an HTTP response
containing the file install.rpm to the browser. Note that the file
should be considered as hotlinked in h.htm because the legal page
v.htm is hidden in the iFrame and never displayed to the user. Park
and Sandhu [42] and Li et al. [44] furthermore discuss securing and
extending cookie with security properties.

Simple HTML tricks can also be used to bypass the session-
based defense (namely Hotlinking against Session Protection).
Fig. 4 shows such an instance. We assume that a session ID is
passed to the browser via URL Rewriting. After the browser parses
the HTML document of the page h.htm, it sends an HTTP request
(GET www.V.com/v.htm HTTP/1.1) attempting to obtain the ficti-
tious image via the URL specified by the href attribute of the
 tag. When V.com establishes the session with the browser
and assigns a session ID, the malicious JavaScript code, append_-
sid(), can be triggered to retrieve the session ID and then append
it to the href attribute of the file download link with the JavaScript
functions getAttribute() and setAttribute(). Thus, the request URL
for the file will be artificially rewritten with the legal session ID.
Once V.com receives the HTTP request and validates the session
ID, it grants the file request and the anti-hotlinking defense be-
comes void. The legal page v.htm is not displayed because it is in-
cluded in an tag, and of course fails to render. The naughty
Fig. 3. HTML snippet exploiting cookie vulnerability.
script exists in the hotlinking page, and it is beyond the ability of
script purifying techniques deployed by benign servers (Ter Louw
and Venkatakrishnan [10]). Noiumkar and Chomsiri [43] listed
some more complicated session hijacking cases as the authors
evaluated the security level of some popular free web-mail.

2.2. Defense against hotlinking

There are two places to enforce anti-hotlinking, the client-side
and server-side. Since end users do not have direct motivation to
defend against hotlinking, the client-side is not the ideal place
for anti-hotlinking. First, hotlinking is transparent to end users.
Very few users would even notice or care whether embedded
web materials are from other domains or not. Second, anti-hotlink-
ing may deteriorate user-perceived performance and even inter-
fere with users’ browsing activities. For example, some defense
methods simply refuse HTTP requests for hotlinked objects, and
thus involved web contents fail to load on the browser. By contrast,
unauthorized hotlinking steals server resources and costs revenue
loss to victim sites. Thus, we believe that the server-side is the
appropriate place to deploy the anti-hotlinking framework, and it
is the responsibility of hosting sites to protect their materials from
being hotlinked. Our proposed anti-hotlinking framework adopts
this design principle (see more details in Section 4).

3. Hotlinking measurement

In this section we first conduct a large-scale measurement
study to understand the nature of hotlinking in a quantitative
way. Among the regular types of hotlinked web objects, we choose
image and software installation packages (a typical representative
of large-sized files) as the measurement targets. Then we observe a
hotlinking attack on a web server and perform a detailed analysis
based on the logs of the hotlinking victim. Our analysis is focused
on the negative effect on the hotlinking victim in terms of compu-
tation and communication costs.

3.1. Measurement of hotlinked images

With the development of web 2.0, web sites interact with each
other much closer than ever before. Webpages of a site may link a
variety of materials hosted on third-party sites, such as scripts and
ad contents. Among them, images are the most hotlinked. In this
part of image-centric measurements, we choose some representa-
tive sites, and record images hotlinked in site homepages.

Hotlinking is a simple web technique. Whether it is ethical or not
to hotlink depends on how it is used. Hotlinking an image with the
authorization from its hosting site is benign and acceptable. For
example, the site homepage links an image hosted by a traffic mon-
itor site. Each request for the homepage triggers a request for the
hotlinked image. In this way, the monitor site traces visitor traffic
for the client site. On the other hand, intentional hotlinking without

http://www.V.com/v.htm
http://www.V.com/v.htm?PHPSESSID=5k32d0
http://www.V.com/v.htm?PHPSESSID=5k32d0
http://www.V.com/v.htm

Table 1
Category breakdown by top-level domain.

Category com net org gov edu cc Other Total

Arts 85 3 4 0 0 7 1 100
Business 90 2 0 1 0 7 0 100
Computers 91 1 6 0 0 2 0 100
Games 96 2 2 0 0 0 0 100
Health 61 2 15 14 2 5 1 100
Home 89 1 3 5 0 2 0 100
News 85 0 2 0 0 13 0 100
Recreation 88 2 3 3 0 3 1 100
Reference 37 0 10 6 38 8 1 100
Regional 64 0 2 3 0 31 0 100
Science 49 1 15 19 6 10 0 100
Shopping 95 0 1 0 0 4 0 100
Society 68 1 11 10 1 7 2 100
Sports 86 0 2 0 0 12 0 100
World 38 4 4 0 0 53 1 100
Blogging 319 17 11 9 1 47 5 400

Total 1441 36 91 61 48 211 12 1900

Unique 1115 (76.7%) 34 (2.3%) 72 (5.0%) 28 (1.9%) 43 (3.0%) 151 (10.4%) 10 (0.7%) 1453 (100%)

580 Z. Chu, H. Wang / Computer Communications 34 (2011) 577–590
authorization is unethical. For instance, a blog hotlinks a copyrighted
photograph from the official site of a celebrity to attract click traffic.
In this case, displaying the image is against the owner’s will, and in-
curs additional transfer traffic for the hosting site.

We cannot determine hotlinking is authorized or not merely
based on the URL of the hotlinked image. We analyze the charac-
teristics of images and their hosting sites to classify authorized
and unauthorized hotlinking with the help of a set of pre-defined
rules. We focus more on unauthorized hotlinking.
3.1.1. Chosen websites
The target websites for measurement are chosen as follows. We

select 15 categories listed by Alexa [11], and take the top 100 sites
from each category. These categories are mainly divided based on
site content. Alexa is a well-known web archiving site that consis-
tently monitors web traffic and site popularity ranking. We also
add a 16th category — blogging. From ranking lists published by
[12,13], we include the top 400 blog sites, as many of such sites
greatly hotlink images because of their shortages in hosting stor-
age space and bandwidth quota.

Table 1 lists the breakdown summary of all the 16 categories by
DNS Top-Level Domain (TLD) for comparison. Note that some sites
are listed in multiple categories. For example, www.google.com
appears in both the Computers and World categories. Besides,
some sites have multiple domain (or sub-domain) names listed
(i.e., news.bbc.co.uk and bbc.co.uk). We run the analysis toolkit
to eliminate the duplicates to have the unique site numbers listed
at the bottom of Table 1. We can see that 1115 (77%) unique sites
belong to the .com TLD, which is the dominant domain in our cho-
sen sites, followed by the country code (denoted as cc) TLD that
contributes 151 (10%) unique sites. The rest of TLDs takes up 13%
of the chosen sites.
3 We measure the load time of 100 sample site homepages. Most of them do not
exceed 20 s. Thus, we set a safe threshold value here, 45 s, which is long enough for
fully displaying a page.
3.1.2. Data collection
We develop a Firefox extension along with some script com-

mands to automatically visit the homepages of target sites one
by one. Displaying a webpage on a browser generally involves
the following two steps: (1) after the browser loads the page, it
parses the HTML document; and then (2) the browser performs a
series of actions to display the page on a best-effort basis, including
executing dynamic codes (like JavaScript), downloading embedded
images, and so on. After the browser loads and parses the page, our
Firefox extension logs all the outgoing requests for web objects
(like images, JavaScript snippets, .css files, etc.) made by the brow-
ser in real-time. We believe that this dynamic logging mechanism
is more accurate than the traditional static content check over web
objects pre-included in the HTML document, since many contents
are dynamically generated such as ads inserted by third-party
JavaScript. The extension stays at each site homepage for 45 s be-
fore switching to next site.3 After collecting all the homepage logs,
we run a toolkit mainly written in Java to retrieve image object
information from each log based on extension type and to decide
whether an image object is hosted locally or hotlinked from other
sites based on URI.

3.1.3. Data analysis
We first describe the analysis and processing of image measure-

ment results, which are summarized in Table 2. For the homepage
of each website, it may include two types of images: those hosted
by the site itself and those hotlinked from other sites. We can dis-
tinguish these two types of images by comparing URIs of the site
and images. If the homepage of a site links any images hosted by
other sites, the site is categorized as Site with Hotlinking Behavior
(Column 2 in Table 2). There is nothing wrong with using hotlink-
ing. However, the key issue here is to differentiate between autho-
rized and unauthorized hotlinking. Our large-scale measurement
involves 1453 sites, and the majority of these sites link images
from many other sites. It is very time-consuming to manually
check whether a site obtains the authorization from another to
hotlink an image. Based on our observations, we apply the follow-
ing three rules for processing the measurement results.

� Rule 1. If the page of site A contains any iFrames or scripts from
site B, and B includes images in iFrames or dynamically inserts
via scripts, it is considered that A is authorized to hotlink those
images from B. This fact implies the cooperation relationship
between the two sites. In this case, B plays the role of content
(image) provider. Take online ad assignment as an example. A
includes an iFrame from syndicator B, and B puts links of ad
images in the iFrame, and dynamically changes them to update
ad content. This rule also applies to many other web applica-
tions, such as site traffic monitoring, and webpage tagging.
� Rule 2. A white list is created to cover the popular sites in the

categories which generally authorize hotlinking from them-
selves. The representative categories include advertising syndi-

http://www.google.com

Table 2
Image hotlinking distribution per site home.

Category Sites w/HL behavior Sites w/unauthorized HL Unauth-hotlinked image ave. Sites w/authorized HL Auth-hotlinked image ave.

Arts 70 19 (27.1%) 2.79 69 (98.6%) 10.55
Business 36 5 (13.9%) 1.60 34 (94.4%) 14.41
Computers 40 7 (17.5%) 2.29 39 (97.5%) 16.15
Games 57 11 (19.3%) 3.00 56 (98.2%) 11.45
Health 50 6 (12.0%) 2.00 49 (98.0%) 10.47
Home 64 18 (28.1%) 1.78 61 (95.3%) 11.10
News 78 16 (20.5%) 1.88 78 (100%) 13.22
Recreation 39 8 (20.5%) 3.38 39 (100%) 9.54
Reference 35 6 (17.1%) 3.17 34 (97.1%) 11.74
Regional 26 8 (30.8%) 1.50 25 (96.2%) 19.32
Science 29 13 (44.8%) 2.15 26 (89.7%) 7.19
Shopping 56 23 (41.1%) 3.22 52 (92.9%) 11.96
Society 35 13 (37.1%) 3.46 28 (80.0%) 13.82
Sports 41 18 (43.9%) 3.72 36 (87.8%) 8.31
World 39 12 (30.8%) 2.50 31 (79.5%) 10.48
Blogging 395 273 (69.1%) 9.00 360 (91.1%) 32.35

Total w/o blogging 695 183 (26.3%) 2.55 (avg) 657 (94.5%) 11.98 (avg)

Total 1090 456 (41.8%) 2.96 (avg) 1017 (93.3%) 13.25 (avg)

Z. Chu, H. Wang / Computer Communications 34 (2011) 577–590 581
cators (such as Google Syndication [14], 2mdn [15] and Double-
Click [16]), web performance accelerators (such as Akamai and
Speedera [17]4), and image hosting/cloud service (such as Flickr
[18] and CacheFly [19]5). Moreover, the white list includes a
few partnerships between specific sites, such as yahoo.com and
yimg.com, where the latter hosts images for the former. This part-
nership suggests authorized hotlinking.
� Rule 3. Webpages often include a large amount of very small

images mostly in the format of GIF and PNG. These small images
are mainly used as tags of social networks (such as Facebook,
Dig and Twitter), toolbar logos, face expression symbols, and
so on. Generally hosting sites of such small images authorize
and solicit hotlinking to spread their brand names. In our mea-
surement, we set the threshold as 10 KB.6 Any images whose
sizes are less than the threshold are classified as authorized
hotlinking.

A program equipped with the above rules is used to automati-
cally distinguish unauthorized hotlinking behaviors from autho-
rized ones. If an image follows any of the rules, it is labeled as an
authorized hotlinked image. Otherwise, it is labeled as an unautho-
rized hotlinked image. The automatic determination saves us from
burdensome manual check over hotlinked images. However, the
side-effect is the possible false negatives (unauthorized hotlinking
misjudged as authorized hotlinking) and false positives (autho-
rized hotlinking misjudged as unauthorized hotlinking). We ran-
domly select 20% of the sites with hotlinking behavior to perform
the manual check. For each hotlinked image, we examine the char-
acteristics of hotlinking and victim sites, their relationship, and the
content and size of the image. Then we determine whether hot-
linking the image is authorized or not, and compare with the deci-
sion made by the program. The false negative ratio is 0.1%. Very
few images should have been judged as unauthorized hotlinking
based on their contents. However, due to their sizes smaller than
the threshold value in Rule 3 (namely 10 KB), they are misjudged
as authorized hotlinking by the program. The false positive ratio
is 3.7%, which is caused by the following two reasons.
4 These sites let normal sites to hotlink special-purposed images, and trace image
requests to gather statistical information about normal sites.

5 These sites provide online storage services most of which are free, and their
policies explicitly allow hotlinking.

6 According to the measurement results in our crawl experiment, the majority of
this type of images are smaller than 10 KB.
� The incompleteness of the white list in Rule 2. For example, it
does not contain a site (imagevenue.com) providing free image
hosting. Hotlinking images from this site should be considered
as authorized. Besides, the list misses specific relationships
between some sites. For example, our manual check discovers
the redirection from bdd.com to randomhouse.com, which sug-
gests the site partnership. Thus hotlinking is authorized
between the two sites.
� The setting of image size threshold in Rule 3. Our manual check

observes that some images whose sizes are greater than the
10 KB threshold. However, their contents of ads strongly sug-
gest the authorized hotlinking.

Our manual check confirms the accuracy of the automatic clas-
sification of authorized and unauthorized hotlinking. Now we ana-
lyze the statistical data listed in Table 2. A site containing such
images is categorized as a site with authorized hotlinking behavior
(Column 5 in Table 2). We divide the sum of authorized hotlinked
images by the number of sites with authorized hotlinking behavior
to obtain the average of authorized hotlinked images per site (Col-
umn 6 in Table 2). Similarly, we count the sites with unauthorized
hotlinking behavior (Column 3 in Table 2) and compute the average
of unauthorized hotlinked images per site (Column 4 in Table 2),
respectively. If a site hotlinks both types of images, it is counted
in both Column 3 and Column 5. In the first 15 categories without
blogging, 46.3% of the sites (namely, 695 out of 1500) hotlink
images. In other words, more than half of the sites (53.7%) host
all the images by themselves and do not hotlink. Among the hot-
linking sites, most sites (94.5%) manifest authorized hotlinking
behaviors, and the average of authorized hotlinked images per site
is 11.98. Only a minority of sites (26.3%) have unauthorized hot-
linking behaviors, and the average of unauthorized hotlinked
images per site is 2.55. Such measurement results are expected.
Those top sites from the 15 categories are mostly owned by large
organizations. They have adequate online storage space and traffic
quota, and can host any images by themselves. They do not have
strong motivations to ‘‘steal” images from others. They perform
hotlinking mainly for site interaction. We manually check the nat-
ure of authorized hotlinked images, and find out that most of them
are for online advertising, webpage tagging, and site partnership
displaying.

However, the blogging category is an exception. Most blogging
sites (395 out of 400) hotlink images. Among them, 273 blogging
sites have unauthorized hotlinking behaviors. The unauthorized

100 101 102 1030

0.2

0.4

0.6

0.8

1

Hotlinked Images per Homepage

Fr
ac

tio
n

of
 H

ot
lin

ki
ng

 W
eb

si
te

s

Unauthorized Hotlinking
Authorized Hotlinking

Fig. 5. CDF of the number of hotlinked images per homepage.

Top-Level Domain No. of Unique Victim Sites
com 2,453 (78.8%)
cc 343 (11.0%)
net 161 (5.2%)
org 118 (3.8%)
gov 6 (0.2%)
misc 31 (0.9%)
Total 3,112 (100%)

Fig. 6. Unique victim site distribution by TLD (16 categories).

7 We believe that the 3-depth-level is a good balance between site coverage and
measurement time. A larger depth will incur much greater running time in a nearly
exponential way and also generate more duplicate pages.

582 Z. Chu, H. Wang / Computer Communications 34 (2011) 577–590
ratio of 69.1% is much higher than the average ratio (26.3%) of the
other 15 categories. The average of unauthorized hotlinked images
per site is 9.00, much higher than the average (2.55) of the other 15
categories. It is not surprising to observe that hotlinking is severe
in the blogging category. The reasons are: (1) many blog sites are
operated by individuals who are not professional web developers.
They tend to use search engines to look for pictures and then di-
rectly link them instead of hosting them. Besides laziness, they
do not have the clear conscience on copyright infringement their
(unauthorized) behaviors have done. (2) many blog sites do not
have enough online storage and traffic quota, and have to inten-
tionally hotlink from other sites. On the other hand, the proportion
of blogging sites that have authorized hotlinking behavior is 91.1%,
which is very close to the average (94.5%) of the other 15 catego-
ries. This is because blog sites also have needs of regular site inter-
action, such as online advertising and traffic monitoring. However,
the average of authorized hotlinked images per site is 32.35, much
higher than the average (11.98) of the other 15 categories. Blog
sites link a large amount of small images for user avatars and face
expressions. Furthermore, blog pages display more ad images than
regular webpages.

For those sites with unauthorized hotlinking behaviors (456 in
our measurements), Fig. 5 shows the cumulative distribution func-
tion (CDF) of the number of unauthorized images hotlinked per
homepage. Around 81.2% of the site homepages hotlink at least
10 images. While the maximum value of outdegree is 221, the
mean is 6.52, and the standard deviation is 13.36. The fact suggests
that, if a site conducts unauthorized hotlinking, the behavior may
be regular instead of occasional. The corresponding CDF curve of
authorized hotlinking is also shown in Fig. 5 as a reference. The
maximum value of outdegree in the authorized curve is 469, the
mean is 18.63, and the standard deviation is 31.90.

Since a great amount of images are hotlinked all over the Inter-
net, besides ‘‘hotlinking culprit”, we also want to know the general
distribution of victim sites. For images hotlinked without authori-
zation in our measurement, we get URLs of their hosting sites.
Fig. 6 shows Top-Level Domain (TLD) distribution of victim sites.
The majority of victims belong to the .com domain (78.8%). The
second largest victim domain is the .cc domain (11.0%). The
remaining domains account for a small portion (10.2%).

Since image hotlinking is severe in the blogging category, we con-
duct a deep measurement which targets images hotlinked by the
site, not merely by the homepage. More specifically, we pick up
top 10% sites (namely, 40 out of 400) in the blogging category based
on the number of hotlinked images per homepage. We modify wget
[20] to crawl these top 40 sites. For each site, starting from the home-
page, the crawler visits the internal pages linked in the homepage in
a recursive way, with the recursive depth set as three7. After acquir-
ing an (incomplete) internal page list of a site, we still use our Firefox
extension to visit all these pages to accumulatively log images hot-
linked by the site. Fig. 7 shows the total number of hotlinked images
for the top 40 blogging sites we measured. A site surprisingly hotlinks
222 images. Averagely speaking, each of these 40 blog sites hotlinks
about 25 images. It confirms again that these target blog sites do hot-
link a large amount of images without authorization.

Based on the above measurement results, we can draw the fol-
lowing conclusions. (1) The behavior of hotlinking images is very
common over the Internet. (2) For the majority of top sites in the
first 15 categories except blogging measured by us, they have their
own servers for image storage. Linking images hosted by other
sites is usually for web interaction (such as advertising and traffic
tracing). Such behaviors are authorized by hosting sites. (3) A small
proportion of sites (such as blog sites measured above) hotlink a
large amount of images without authorization. This unethical
behavior infringes the interest and rights of hosting sites.

3.2. Measurement of hotlinked software packages

Among the various types of files hotlinked over the Internet, the
software installation packages (such as .exe and .rpm) are more
prone to becoming hotlinked. Due to the large file size, hotlinking
may cause significant resource consumption to hosting sites.
Therefore, software package is selected as the measurement target
in the file category of hotlinking. In the previous image-centric
measurements, we start from hotlinking sites and trace back to vic-
tim sites. In this part, we reverse the order and trace from victims
to hotlinkers. The measurement procedure is explained as follows.

Based on download times and popularity, we choose 100 top
free software packages as suggested by [21,22]. Our software set

Table 3
TLD distribution of unique sites that hotlinking software packages.

Top-level domain No of unique hotlinking sites

com 1859 (61.6%)
cc 481 (15.9%)
net 372 (12.3%)
org 202 (6.7%)
info 42 (1.4%)
misc 63 (2.1%)

Total 3020 (100%)

Fig. 7. Count of hotlinked image without authorization for top 40 blog sites.

Z. Chu, H. Wang / Computer Communications 34 (2011) 577–590 583
covers various categories ranging from security software to devel-
oper tools. For each software package, we manually obtain its offi-
cial download URL that usually belongs to its author/publisher site.
We use a PHP-written script to search webpages that contain offi-
cial download URLs via the standard query API provided by Google.
We argue that, including the official download URL on a third-
party page is a kind of hotlinking, because the visitor can directly
download the software by clicking on the hotlinked URL without
visiting the official download page. In most cases, such hotlinking
behaviors are not authorized or expected by software owners. Soft-
ware owners may use CDN (content delivery network) sites to
spread files for faster download. However, this case is not hotlink-
ing at all, since CDN sites do host software packages by themselves.

For each package, we generate a log including the first 100 results
(namely, URLs of hotlinking pages) returned by Google. The result
ranking is decided by search relevance and popularity. Thus, we be-
lieve that the top 100 results are appropriate for the measurement
sampling purpose. If the number of the results returned is less than
100, we take the actual number. After collecting logs of these 100
software packages, we use our Java-written toolkit to process them
and do a comprehensive analysis presented as follows.

In our measurement result set, the 100 software packages are
hotlinked by 3020 sites in 7539 unique webpages. For the above
hotlinking sites, Fig. 8 shows the CDF of the number of hotlinked
software packages per site. Around 33.8% of the sites hotlink two
or more software packages (may in different pages). The maximum
0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

No. of Pages that Hotlink Software per Site

Fr
ac

tio
n

of
 W

eb
si

te
s

H
ot

lin
ki

ng
 S

of
tw

ar
e

Fig. 8. CDF of the number of hotlinked software packages per site.
value of the CDF curve is 128. It is a forum-style site where ‘‘warm-
hearted” users publish 128 hotlinking download URLs (including
duplicates) in multiple posts. The curve mean is 2.50 with the stan-
dard deviation of 5.79.

Moreover, Table 3 lists the distribution of the 3020 hotlinking
sites by Top-Level Domain. The majority are from the .com domain
(61.6%). Subsequently, the .cc and .net domains contribute 15.9%
and 12.3%, respectively. The remaining domains account for 10.2%.

The above analysis manifests that hotlinking software packages
is a common problem over the Internet. It also happens to other
types of file resources, such as documents and audio/video clips. Be-
cause of the large file size, frequent hotlinking incurs significant con-
sumption in network bandwidth and computing resources. It is
essential to deploy anti-hotlinking methods to protect hosting sites.

3.3. Postmortem analysis of a hotlinking attack

To fully understand the damages caused by hotlinking towards
hosting sites, such as system burden and traffic theft, we collected
raw traces from a victim server and performed a forensic-style
postmortem analysis on a real hotlinking attack.

The hotlinking attack is briefly described as follows. One user of
the victim server hosted a folder of many images of a popular com-
mercial product under his web directory. He posted a lot of articles
containing some of the above images at a few third-party sites. Due
to the attractive contents and images, those articles were fre-
quently referred by others. Eventually they drew a large amount
of click traffic. Since the images were hosted at the victim server,
numerous image requests were redirected to it, consuming many
computing and network resources. Finally, the victim server was
overwhelmed and crashed. The user was not conscious of his hot-
linking behavior and the serious damages induced to the server. It
is the system administrator who noticed the crash of the victim
server and blocked the public Internet access to that user’s direc-
tory, which ends the hotlinking event lasting in a continuous per-
iod of 40 days from the first week December, 2008 to the early
January, 2009.

The victim server is installed with Apache 2.2.4 running on an
Intel Xeon 64-bit workstation, which is equipped with quad-pro-
cessors of 3 GHz, 12 MB L2 cache, 16 GB memory, 300 GB hard disk
and 1 Gbps LAN connection. The victim server grants the direct
HTTP access to any files in a user’s web directory if the file path
is given correctly. Namely, hotlinking is allowed, and no anti-hot-
linking defense is deployed. The image folder contains around
1000 images in the format of JPEG. The size of a single image varies
from 50 to 300 KB, and the total size of the image folder is about
130 MB. Each entry in the raw server log records the response to
an HTTP request, including fields like the client IP address, time-
stamp, the file path of the requested object at the server, and the
Referer of the HTTP request. The total size of the 40-days logs is
400 MB. After removing those entries irrelevant to image hotlink-
ing, we reduce the total log size to around 200 MB.

With the help of the Referer field, we trace back to the hotlink-
ing source. A set of articles were posted at some third-party sites,

Fig. 9. Daily traffic in terms of image requests. Fig. 10. Daily data transmission (in MB) caused by hotlinking.

Fig. 11. Daily traffic in terms of client IP addresses.

584 Z. Chu, H. Wang / Computer Communications 34 (2011) 577–590
more specifically, nine BBS-style forums and one EBay-style shop-
ping site. The article pages included images hosted on the victim
server in the form of . In this
way the hotlinking relationship forms between those third-party
sites and the victim server. Most of those sites have a large user
population, and generate a large trace of user requests. The number
of images embedded in the article pages ranges from 5 to 80. One
page hotlinks 80 images with the total size of 12 MB. When the
browser displays the page, it sends an HTTP request for each
embedded image to the victim server. The server returns the
image.

Fig. 9 shows the number of daily requests for hosted images.
The average number of daily requests over the 40-day window is
11,872. The daily number gradually increases, and reaches the
summit of 165,430 on the last day when the victim server was
crashed. The curve development can be plausibly explained as fol-
lows. With the increase of user views and replies, the rank of the
article boosts. As a case of Matthew Effect (i.e., the rich get richer
and the poor get poorer), it draws more users, bringing more click
traffic. There are three spikes over the last 10 days. We manually
checked the posts during that period, and found the obvious evi-
dence of scripts8 that automatically post replies to articles to keep
them staying in the first few pages of the forums, thus attracting
many more viewers.

Fig. 10 shows the daily data transmission caused by hotlinking.
We first compute the data transmission, Ti, caused by a single file,
as Ti = Fi*Ri, where Fi is the size of the file i, and Ri is the number of
requests for the file i. The daily data transmission is calculated as
the sum of that of all the files requested that day, i.e., Td ¼

P
iTi.

The curve in Fig. 10 is similar to that in Fig. 9. The data transmis-
sion increases gradually over the first 30 days, and surges drasti-
cally over the last 10 days. The average daily data transmission
caused by image hotlinking is around 1.7 GB. The maximum occurs
on Day 40 at 22.7 GB, followed by Day 35 at 12.3 GB.

Fig. 11 illustrates the number of daily client IP addresses, which
can be used to roughly estimate the number of daily visitors. The
average of daily IP addresses is 490, while the maximum of 2215
appears on Day 35 followed by the second highest of 1950 on
Day 40. Over the 40 days, on average, each IP address requested
24 hotlinked images.
Fig. 12. The hourly traffic distribution of four selected days.

8 For example, the reply interval is short and almost fixed. Furthermore, many
recently registered accounts are used.

Z. Chu, H. Wang / Computer Communications 34 (2011) 577–590 585
Among the 40-day logs, we choose 4 days for more detailed
analysis. The result is presented in Fig. 12. Days 30, 35, and 40
are selected due to their top data transmissions. The number of
the daily IP addresses of Day 24 (497) is the closest to the average
(490), and thus that day is used as the average case. The curve
shapes of the first 3 days are similar. The peak appears from 9:00
to 15:00, followed by another wave from 17:00 to 21:00. This
matches the regular timetable of human visitors, since more peo-
ple tend to surf the Internet during working hours and in the even-
ing. Day 40 is a special case, where starting from 8:00, the hourly
traffic reaches 18,000 requests with the summit at 20,000 (namely
5.6 requests per second). The victim server is overwhelmed by the
large amount of incoming HTTP requests. In the following period,
its performance drops sharply and the response becomes extre-
mely slow. The server crashes around 16:00. The system adminis-
trator restarts the server manually and blocks the public access to
the user image folder afterwards.
4. Framework design

Based on the existing network security techniques, we present
an anti-hotlinking web framework for hosting sites. Our design
goal is to greatly increase the hotlinking difficulty and to defeat
most common forms of hotlinking with easy deployment. In real-
ity, webmasters can control the granularity of anti-hotlinking by
defining different protection policies and applying them to the
framework based on the requirements of their sites. Currently,
the framework provides two policies, Strict Policy and Loose Policy,
for the demonstration purpose. In this section, we first describe the
design details of the framework and then present the two protec-
tion policies.

4.1. Design details and modules

Fig. 13 illustrates the anti-hotlinking framework that consists of
three major modules. The HTTP Request Filtering Module filters
incoming HTTP requests and blocks direct access to hosted re-
sources. The file entrance page contains the other two modules.
The Session Creation/Authentication Module creates and manages
sessions to maintain the HTTP communication status between
the server and client. Different protection policies may require dif-
ferent steps, and the user must complete them to become eligible
for downloading. The Download Authorization Module checks the
download authorization log and determines whether the down-
load request can be granted. If so, the server will return the file
to the client. The intra-page communication of the file entrance
page is supported by the AJAX techniques. The page address in
Fig. 13. Anti-hotlinking f
the browser does not change, and only the page content in the in-
ner window updates smoothly. The detailed description of these
modules are given as follows.

4.1.1. HTTP request filtering module
The main function of this module is to transform the incoming

HTTP request into the legal form required by the framework and to
block the direct access to hosted resources. The module uses the
following three functional blocks.

4.1.1.1. Unique file ID and entrance page. The site assigns each of its
hosting files a unique file ID, and this solves the problem of dupli-
cate file names. Currently, our framework uses three types of infor-
mation to generate the unique file ID: original file name, file upload
timestamp and user ID (either the user account name or the IP ad-
dress) where appropriate. The site then hashes the above informa-
tion into the file ID and maintains a file storage structure table as
shown in Fig. 14. A unique entrance page can be created for each
file based on its file ID.

4.1.1.2. Limiting HTTP requests. Most sites without anti-hotlinking
defense directly grant HTTP requests for hosted resources as long
as the resource path is given correctly. Limiting HTTP requests helps
the site block the direct access to hosted materials. As an option, the
site can use URL Rewriting of HTTP requests to achieve it. Suppose
now the framework only directly grants HTTP requests for webpages
(whose extensions are .htm and .php in our prototype) and some
accessory web objects required for normal page display (such as
background images), while requests for all other types of objects
are redirected to corresponding entrance pages based on unique file
ID. For example, the direct HTTP request for the file install.rpm in the
form of www.site.com/files/install.rpm is prohibited and rewritten
into www.site.com/download.php?fid=T85X4PNS.

4.1.1.3. Handling different HTTP requests. The module may receive
three types of HTTP requests for a file, and finally it transforms them
into Legal Request, the only request type accepted by the framework.
The three types of HTTP requests are listed as follows. (1) Legal Re-
quest (in the form of www.site.com/download.php?fid=T85X4PNS,
with a valid fid) is directly brought into the file entrance page. This
format is always used by all internal pages of the hosting site. (2) Hot-
linking Request (in the form of www.site.com/files/install.rpm, with-
out a fid) that directly requests files is rewritten into Legal Request
based on the unique file ID mapping and then redirected to the file
entrance page. (3) Invalid Request (in the form of www.site.com/
download.php?fid=S85X4PNS, with an invalid fid) is redirected to
a file-list page that shows legal download links of hosted files on
ramework overview.

http://www.site.com/files/install.rpm
http://www.site.com/download.php?fid=T85X4PNS
http://www.site.com/download.php?fid=T85X4PNS
http://www.site.com/files/install.rpm
http://www.site.com/download.php?fid=S85X4PNS
http://www.site.com/download.php?fid=S85X4PNS

Fig. 15. Session creation and authentication.

9 Using CAPTCHA is an option of distinguishing human users from machines. Its
effectiveness against automated clicks is out of the scope of the paper.

Unique File ID File Name Storage Path
T85X4PNS install.rpm root/files/

Fig. 14. File storage log.

586 Z. Chu, H. Wang / Computer Communications 34 (2011) 577–590
the server. When a user clicks on a legal download link, it generates a
Legal Request and the user can continue to download.

4.1.2. Session creation/authentication module
The anti-hotlinking framework needs to maintain the interac-

tion status between the client and server to determine whether
the client becomes qualified to download the requested file. Both
cookie and session mechanisms can be used to maintain HTTP
communication states. Our framework chooses to use the session
mechanism. The main reason is that, the session mechanism only
has to store session ID on the client-side, and maintains most ses-
sion information on the server-side. It greatly reduces the risk of
the client-side forging and hacking. Session ID can be stored on
the client-side in the form of cookie or URL parameter. In either
way, the server must authenticate the received session ID to make
sure it is not only valid, but also originally assigned to the client.
Because HTTP sessions build upon TCP connections, this module
uses the essential information extracted from the underlying TCP
connection along with browser signature to perform session ID
authentication. The TCP information mainly includes the IP ad-
dresses and port numbers of source and destination. For every ses-
sion it initiates, the server creates an entry in the form of [session
ID, TCP info, client browser signature] in the Session Info Log.

When the HTTP request arrives at the file entrance page, the
module determines whether the client has an existing valid session
by authenticating the session ID. The authentication procedure is
shown as Fig. 15. If the authentication succeeds, the module cre-
ates an entry in the Download Authorization Log and the client
can start to execute the required download steps. Requirements
specified by different protection policies may vary. We give an
example set of steps in Section 4.2. After the steps are fulfilled,
Download Authorization Module decides whether the download re-
quest will be granted or not.

4.1.3. Download authorization module
The Download Authorization Log is a core log that stores infor-

mation used by the site to decide whether the file request can be
granted or not. Table 4 lists a simplified log entry. Session_ID is
associated with the client-side information (mainly about TCP con-
nection and browser signature), and File_ID is unique to each file.
The first two fields together show a specific client requests to
download a specific file. The Step_i field is set as true after the cor-
responding step is completed. After all the required steps are fin-
ished, the last three fields are set as follows. The Authorization
field is turn into true, the Authorization Code field is filled with a
random string, and the Expire Timestamp field carries a timestamp
that specifies when the Authorization Code expires. The Download
Authorization Log uses Session_ID and File_ID to locate the corre-
sponding entry in the Download Authorization Log. If (1) the Autho-
rization field is true, (2) the Authorization Code field is valid, and (3)
the Expire Timestamp field is greater than the current timestamp,
then the module authorizes the download request.

The module uses File_ID to locate the associated file entry in the
File Storage Log, and reads the file via the full file path. The site con-
structs an HTTP response containing the requested file and returns
to the client. The framework provides the following two options to
handle the Authorization Code field after the file request is granted.
The first is the One-time Code Use option. Namely the code may
only be used once and expires after then. If the same user wants
to download the same file again, he will be redirected to Step_1
to start over even though the session is still alive. The second is
the Repeated Code Use option. The code can be repeatedly used un-
till it expires. This option enables the user to download the same
file multiple times during a certain time window. To prevent the
code from being abused, the web server can limit both the maxi-
mum number of simultaneous download connections per IP ad-
dress and the download speed per process.
4.2. Strict policy

Hosting sites often accommodate high-importance and large-
size resources, such as software packages and documents. Hotlink-
ing such resources may cause serious damages to hosting sites. We
introduce Strict Policy to protect this type of resources as follows.

The HTTP Request Filtering Module filters the incoming resource
request into the form of Legal Request. When the request is direc-
ted to the File Entrance Page, the Session Creation/Authentication
Module guarantees an authentic session between the server and
client.

The key feature of Strict Policy is that, it specifies a set of steps
the user must fulfill to become eligible for downloading. We
emphasize that, the policy can generate as many steps as needed
and customize requirements for each step. These steps can serve
different goals for hosting sites in reality, like distinguishing hu-
man users from machines, displaying sponsors ads, and encourag-
ing users to buy premium download accounts, etc. We leave up to
the webmaster the details of designing steps. Our framework
implements a combination of three simple steps as shown as
Fig. 16 purely for the demonstration purpose. The user must (1)
correctly recognize a CAPTCHA image, which distinguishes human
users from machines,9 (2) check the Terms of Service checkbox,
and (3) wait a short time to activate the download link. The Strict
Policy sets the download authorization code to be one-time use.
If the user wants to download the same file again, it has to repeat
the steps to generate another authorization code.

Fig. 16. User download procedure.

Table 4
Download authorization log.

SID FID Step_1 Step_i Step_N Auth Auth_code Expire_TS

5k0642 T85X4PNS True True True True d383e3 1227213501

Z. Chu, H. Wang / Computer Communications 34 (2011) 577–590 587
4.3. Loose policy

While the Strict Policy is stringent and suitable for protecting
the resources of great importance, it is too cumbersome for users
to download these widely-used web objects such as images. As
an alternative, we present a light-weight policy, Loose Policy, for
protecting common web objects of less importance. Its design prin-
ciple is to strike a good balance between resource protection and
anti-hotlinking cost.

Suppose hosted objects (such as images) are included in some
webpages of the hosting site. After a browser loads and parses the
webpage, it sends a request for the embedded object to the hosting
site. According to Fig. 13, the server rewrites the incoming HTTP re-
quest into Legal Request (like www.site.com/loose_down-
load.php?fid=57OUK14N). The download control page (loose_
download.php) calls the Session Creation/Authentication Module to
judge whether the browser has an active session with the server or
not. If so, the Download Authorization Module will return the object
to the browser. Note that the process of executing steps is turn off
in the Loose Policy. The whole download control procedure does
not involve any user interaction, and is totally transparent to users.
This is a big difference from the Strict Policy. Furthermore, the Down-
load Authorization Module takes the option of Repeated Code Use. This
allows the browser for multiple downloads towards the same object
during the session lifetime.

If there is no active session between the browser and hosting
site, it is very likely the direct object request is triggered by a hot-
linking webpage.10 The control page will redirect the browser to a
default page that builds an active session and displays some noti-
fication information like the requested object is originally hosted at
www.site.com (click here to visit the genuine hosting site). The page
stays for a short time period (like 3 s) customizable by the site.
10 It is almost impossible for a user to know the object URL that is long and contains
random strings without visiting the hosting page. There is a slim chance that the user
enters the object URL on the browser to directly visit it. In this situation, we think that
the user intends to visit the hosting site. The redirection action will happen, but it
does not hinder the user’s browsing experience.
After that, the request will be granted and object will be sent to
the browser to appear in the page.
5. Prototype implementation

In this section, we describe the implementation details of our
anti-hotlinking framework prototype. It is deployed on the ser-
ver-side and does not require modifications on the client-side. It
only requires browsers to run a small amount of assistant Java-
Script codes that are supported by modern out-of-box browsers.

5.1. Web server setup

We choose Apache (version 2.2.8) [23] as the web server based
on which our anti-hotlinking prototype is deployed. It runs at a
workstation with Intel dual-processor 2.2 GHz and 2 GB of RAM.
Three additional modules, mod_limitipconn, mod_bandwidth and
mod_rewrite, are added to the server. The mod_limitipconn mod-
ule [24] limits the maximum number of simultaneous download
connections per IP address. Similarly, the mod_bandwidth module
[25] limits the download speed of a single connection. The mod_re-
write module [9] rewrites the requested URL on-the-fly based on
configuration rules with the style of Perl formal expressions. In
our framework, rewriting HTTP requests is achieved by modifying
.htaccess file and putting it into proper directories.

5.2. Technical details

We use PHP 5.2.5 [26] as the back-end programming language.
Most webpages in our framework are written in PHP. Our frame-
work uses PHP functions to implement session communication,
and to store related variables in the $_SESSION array. Session_ID
can store on the browser in the form of cookie. If the browser dis-
ables cookies, PHP can detect it and transfer Session_ID to the
browser as a query parameter of URIs. The webmaster can enable
the PHP Transparent Session Support function by turning on the
statement session.use_tran_sid=1 in the php.ini configuration file.

http://www.site.com/loose_download.php?fid=57OUK14N
http://www.site.com/loose_download.php?fid=57OUK14N
http://www.site.com

588 Z. Chu, H. Wang / Computer Communications 34 (2011) 577–590
In the current PHP page, Session_ID will automatically append to
all the internal URIs of the hosting domain. Another important
function module, CAPTCHA [27], is also implemented in PHP. We
use a pseudo-random algorithm to generate a string consisting of
a fixed number of random characters. They are drawn on the image
in a random font with the help of the GD library [28]. Some random
background noise is also added to thwart character recognition
algorithms.

Our framework uses a small amount of JavaScript codes that are
embedded in webpages and run at the client-side. It provides a few
additional functions to enhance the user experience, and does not
affect the core download control procedure of the framework at all.
If the browser disables running JavaScript, a client can still finish
the download procedure. The framework provides Ajax-style
(Asynchronous JavaScript and Xml) [29] intra-page communica-
tion based on prototype.js [30]. The advantage brought by Ajax is
that, it retrieves data from the server asynchronously in the back-
ground without interfering with the display of the current page.
6. Evaluation

In this section, we present the system evaluation of the pro-
posed framework in terms of security and usability, with the focus
on the Strict Policy.
6.1. Security analysis

From the security perspective, the Strict Policy provides a much
stronger defense against hotlinking attacks than the Loose Policy.
We use the Strict Policy to demonstrate the effectiveness of our
anti-hotlinking framework against the four different types of hot-
linking attacks presented in Section 2.1, respectively.
6.1.1. Effectiveness against Direct Hotlinking
Since the site applies URL Rewriting towards incoming HTTP re-

quests, the request for a file will be redirected to the download en-
trance page. The server does not directly return the file in response
to the HTTP request. Therefore, the attack of Direct Hotlinking will
be defeated.
6.1.2. Effectiveness against hotlinking via referer fabrication
The site does not use the HTTP_REFERER field in the received

HTTP request header to determine whether it should return the file
or not. Instead, it uses the control procedure shown in Fig. 13 to
make the decision. Thus, fabricating an HTTP_REFERER by using
the domain of the hosting server does not help hotlinking at all.
11 The third step requires the user to wait 10 s, which can be skipped by the
webmaster in reality.
6.1.3. Effectiveness against hotlinking via cookie vulnerabilities
To demonstrate the effectiveness against a hotlinking attack

that explores cookie vulnerabilities, we suppose Session_ID is
stored on the browser in the form of cookie. The hotlinking page,
H.com/h.htm, can contain an iFrame from the victim site V.com
to make the browser establish a session with V.com. When the
browser requests a file that is hotlinked in h.htm and hosted by
V.com, V.com will call the Session Creation/Authentication Module
to validate the current session. The session validation will pass.
However, the hotlinking will fail to execute the required steps
(shown in Fig. 13). The reason is that, the same-origin policy pre-
vents the malicious code on h.htm to access the iFrame of V.com.
Therefore, the malicious code cannot complete the required steps,
such as CAPTCHA image recognition, even if it has the ability of
automated scripting. Since the hotlinking page disables the user
to view the legal page by setting the iFrame hidden, the user will
not help finish the required steps either.
6.1.4. Effectiveness against hotlinking via session vulnerabilities
Suppose the malicious code shown in Fig. 4 manages to steal the

session ID, and append it to the file download hotlink. The last two
HTML statements in Fig. 4 can be modified as Fig. 17 shows. Now
the legal file request along with the valid session ID and file ID is
sent to the web server. It can pass the check of Session Creation/
Authentication Module. However, the File Entrance Page (namely,
download.php) cannot be displayed on the client-side. It is dis-
carded by the browser because the returned file type is HTML doc-
ument rather than image expected by the tag. The download
steps on this page cannot be completed by the user. Thus, this type
of hotlinking attacks will also be defeated.
6.2. Usability analysis

After the Strict Policy is enforced on the hosting site, the down-
load request for the hotlinked file will be redirected to the specific
entrance webpage. First, the site creates a session with the browser
or validates the existing session. This procedure is totally transpar-
ent to the user, and the induced time delay is hardly to be noticed.
Second, the user needs to fulfill some steps required by the hosting
site before he becomes qualified for downloading. The time con-
sumption of this procedure is determined by the details of the
requirements. In our prototype, the three example steps take
around 20 s to complete.11 On one hand, this is unavoidable
trade-off a hosting site has to make; on the other hand, the hosting
site must design the download steps carefully to maintain the
users’ interests of the site.

The Loose Policy is responsible of delivering the requested object
(often images) to the client browser. It does not involve any user
interaction. When the server receives an object request, the Loose
Policy performs additional steps listed as follows. In comparison
with the direct HTTP response, it causes some minor delays.

� If there is no active session, the server needs to create a session
for the client, and logs related information to the session file.
The time consumption is labeled as Delay_1.
� If the session ID rendered by the client does not match the ser-

ver log (i.e., it is stolen from others), the server will delete the
current session and create a new one. The time consumption
is labeled as Delay_2.
� If the session ID is legal, it will pass the server authentication.

The time consumption is labeled as Delay_3.

To measure the delay in each of the above cases, we use a Fire-
fox browser to visit a Apache server protected by the Loose Policy.
We conduct 50 visits for each case. The server records the time-
stamps (in millisecond) of the event start and end, and calculates
the delay. On average, Delay_1 is 10.0 ms, Delay_2 is 7.3 ms, and
Delay_3 is 11.1 ms. Overall, the additional delays induced by the
Loose Policy are minor and hard to be noticed by the client.
7. Related work

We have already discussed several common hotlinking attacks
in Section 2, and in this section we survey related work in a boar-
der scope.

Hotlinking against session protection shares much in common
with web session hijacking. Session hijacking [31] is an attack of
taking over a user session by stealing the session ID and imperson-
ating the authorized user. After that, the attacker gains access to
the sensitive information stored in the session. The main counter-

Fig. 17. Modified snippet exploring session vulnerability.

Z. Chu, H. Wang / Computer Communications 34 (2011) 577–590 589
measure is improving session management on both server-side
and client-side to protect session ID. End-to-end secure channels
like SSL can prevent session ID from being intercepted by passive
eavesdroppers. The drawback of SSL is that, it brings much addi-
tional cost to the communication [32]. As a result, many sites only
use SSL to protect the initial login page, and the following commu-
nication is conducted over plain HTTP. The session ID may be ex-
posed in the insecure network again.

Sessionlock [33] provides a light-weighted approach to securing
web sessions against eavesdropping. After the server sets up the
session with the client, it stores the session ID in the client browser
as the form of fragment identifier. The browser signs outgoing
HTTP requests with the fragment identifier via HMAC to present
its identity to the server. Since the browser never sends fragment
identifier over the Internet, the eavesdropper cannot intercept
the session ID. However, this method is not appropriate for fighting
against hotlinking that explores session vulnerability. The hotlink-
ing site can set up a legal session with the hosting site, and embeds
the assigned session ID into hotlinking pages for the user to share.
In other words, the user can send requests signed by the legal ses-
sion ID without visiting the hosting site.

Cookie vulnerabilities exploited by hotlinking is in the field of
cookie security. HTTP cookies have serious security and privacy
concerns [34]. Cookie theft is the act of intercepting cookies by
an unauthorized party. Cookies may be stolen via packet sniffing
over the Internet. This scenario is similar to session hijacking.
Cross-site scripting attack is another way to steal cookies Wasser-
mann et al. [35], Jim et al. [36]. Usually the attacker posts malicious
code into a webpage, and by running it, the browser itself will send
cookies to the attacker. HttpOnly flag is the countermeasure that
protects cookies from cross-site scripting, and it makes cookies
inaccessible to client-side programs (such as JavaScript). It was
first introduced by Microsoft [37] and supported in PHP since ver-
sion 5.2.0. However, it has not become the industry standard.

Currently, there are some web sites that provide online storage
and file delivery service, such as [38,39]. They have also deployed
anti-hotlinking measures. However, their implementation details
remains sealed.
8. Conclusion

In this paper we investigate the hotlinking phenomenon with
the focus on unauthorized hotlinking. We perform a series of
large-scale measurements targeting two types of hotlinked objects,
images and software packages. Our measurement results show
that hotlinking widely exists over the Internet and is severe in
some categories of websites like blogging. We also conduct a de-
tailed postmortem analysis on a real hotlink–victim site, which
shows that unexpected large amount of hotlinking traffics can eas-
ily overwhelm the victim server. Moreover, we analyze a set of reg-
ular hotlinking attacks that explore the weakness of current
defense methods. To defend against hotlinking attacks, we present
an anti-hotlinking framework based on the existing network secu-
rity techniques. The framework is highly customizable with differ-
ent granularities of protection that webmasters can specify. A
prototype of the framework is implemented with the support of
the two download policies, Strict Policy and Loose Policy. Its effec-
tiveness against hotlinking attacks is evaluated in terms of security
and usability.
References

[1] Inline linking (leeching, bandwidth theft), Wikipedia. Available from: <http://
en.wikipedia.org/wiki/Inline_linking>.

[2] Google AdSense. Available from: <www.google.com/adsense>.
[3] Yahoo! Advertising. Available from: <http://advertising.yahoo.com/>.
[4] Lee S. Strickland, Copyright’s Digital Dilemma Today: Fair Use or Unfair

Constraints? Part 2: The DMCA, the TEACH Act and Other E-Copying
Considerations. Available from: <http://www.asis.org/Bulletin/Dec-03/
strickland.html>.

[5] The Digital Millennium Copyright Act of 1998. Available from:
<www.copyright.gov/legislation/dmca.pdf>.

[6] Collin Jackson, Andrew Bortz, Dan Boneh, John C. Mitchell, Protecting browser
state from web privacy attacks, in: WWW ’06: Proceedings of the 15th
International Conference on World Wide Web, 2006, pp. 737–744.

[7] The Hypertext Transfer Protocol (HTTP), RFC2616. Available from:
<www.w3.org/Protocols/rfc2616/rfc2616.html>.

[8] HTTP State Management Mechanism, RFC2109. Available from:
<www.ietf.org/rfc/rfc2109.txt>.

[9] The Apache Module mod_rewrite URL Rewriting Engine. Available from:
<httpd.apache.org/docs/1.3/mod/mod_rewrite.html>.

[10] Mike Ter Louw, V.N. Venkatakrishnan, Blueprint: precise browser-neutral
prevention of cross-site scripting attacks, in: 30th IEEE Symposium on Security
and Privacy, Oakland, CA, USA, 2009.

[11] Alexa. Available from: <www.alexa.com/>.
[12] Blog Top Sites Ranking. Available from: <http://www.blogtopsites.com/>.
[13] BlogFlux Top Blog Sites Overall Statistics. Available from: <http://

topsites.blogflux.com/stats.php>.
[14] Google Syndication. Available from: <http://googlesyndication.com/>.
[15] 2mdn. Available from: <http://2mdn.net/>.
[16] DoubleClick. Available from: <www.doubleclick.com/>.
[17] Akamai, Web application acceleration and performance management.

Available from: <www.akamai.com/>.
[18] Flickr. Available from: <http://www.flickr.com/>.
[19] CacheFly, Content delivering. Available from: <www.cachefly.com>.
[20] GNU Wget. Available from: <www.gnu.org/software/wget/>.
[21] Free Software Downloads and Reviews by Download.com. Available from:

<http://download.cnet.com/Best-Free-Software/1200-20-5154518.html>.
[22] The Best Free Software of 2009, Features by PC Magazine. Available from:

<www.pcmag.com/article2/0,2817,2338803,00.asp>.
[23] The Apache HTTP Server Project. Available from: <httpd.apache.org/>.
[24] The Apache module mod_limitipconn.c. Available from: <http://dominia.org/

djao/limitipconn.html>.
[25] The Apache module mod_bandwidth. Available from: <www.cohprog.com/

mod_bandwidth.html>.
[26] PHP, Hypertext preprocessor. Available from: <www.php.net/>.
[27] CAPTCHA: Telling Humans and Computers Apart Automatically. Available

from: <www.captcha.net/>.
[28] GD Graphics Library. Available from: <www.boutell.com/gd/>.
[29] AJAX, Asynchronous JavaScript and Xml. Available from: <https://

developer.mozilla.org/en/AJAX>.
[30] Prototype JavaScript framework. Available from: <www.prototypejs.org/>.
[31] Robert C. Newman, Cybercrime, identity theft, and fraud: practicing safe

internet - network security threats and vulnerabilities, in: InfoSecCD ’06:
Proceedings of the 3rd Annual Conference on Information Security Curriculum
Development, 2006, pp. 68–78.

[32] Homin K. Lee, Tal Malkin, Erich Nahum, Cryptographic strength of ssl/tls
servers: current and recent practices, in: IMC ’07: Proceedings of the 7th ACM
SIGCOMM Conference on Internet Measurement, 2007, pp. 83–92.

[33] Ben Adida, Sessionlock: securing web sessions against eavesdropping, in:
WWW ’08: Proceeding of the 17th International Conference on World Wide
Web, 2008, pp. 517–524.

[34] Hal Berghel, Hijacking the web, Commun. ACM 45 (4) (2002) 23–27.
[35] Gary Wassermann, Zhendong Su, Static detection of cross-site scripting

vulnerabilities, in: ICSE ’08: Proceedings of the 30th International
Conference on Software Engineering, 2008, pp. 171–180.

[36] Jim Trevor, Swamy Nikhil, Hicks Michael, Defeating script injection attacks
with browser-enforced embedded policies, in: WWW’07: Proceedings of the
16th International Conference on World Wide Web, 2007, pp. 601–610.

[37] Mitigating Cross-site Scripting With HTTP-only Cookies. Available from:
<http://msdn.microsoft.com/en-us/library/ms533046.aspx>.

http://en.wikipedia.org/wiki/Inline_linking
http://en.wikipedia.org/wiki/Inline_linking
http://www.google.com/adsense
http://advertising.yahoo.com/
http://www.asis.org/Bulletin/Dec-03/strickland.html
http://www.asis.org/Bulletin/Dec-03/strickland.html
http://www.copyright.gov/legislation/dmca.pdf
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.ietf.org/rfc/rfc2109.txt
http://httpd.apache.org/docs/1.3/mod/mod_rewrite.html
http://www.alexa.com/
http://www.blogtopsites.com/
http://topsites.blogflux.com/stats.php
http://topsites.blogflux.com/stats.php
http://googlesyndication.com/
http://2mdn.net/
http://www.doubleclick.com/
http://www.akamai.com/
http://www.flickr.com/
http://www.cachefly.com
http://www.gnu.org/software/wget/
http://download.cnet.com/Best-Free-Software/1200-20-5154518.html
http://www.pcmag.com/article2/02817233880300.asp
http://httpd.apache.org/
http://dominia.org/djao/limitipconn.html
http://dominia.org/djao/limitipconn.html
http://www.cohprog.com/mod_bandwidth.html
http://www.cohprog.com/mod_bandwidth.html
http://www.php.net/
http://www.captcha.net/
http://www.boutell.com/gd/
http://https://developer.mozilla.org/en/AJAX
http://https://developer.mozilla.org/en/AJAX
http://www.prototypejs.org/
http://msdn.microsoft.com/en-us/library/ms533046.aspx

590 Z. Chu, H. Wang / Computer Communications 34 (2011) 577–590
[38] RapidShare: 1-click Web hosting – Easy Filehosting. Available from:
<www.rapidshare.com/>.

[39] Megaupload: the leading online storage and file delivery service. Available
from: <www.megaupload.com/>.

[40] Thomas Chen, Peter Henry, Phishing and countermeasures: understanding the
increasing problem of electronic identity theft, in: Journal of Digital Forensic
Practice, vol. 1, issue 2, 2006, pp. 147–149.

[41] N. Chou, R. Ledesma, Y. Teraguchi, D. Boneh, J.C. Mitchell, Client-side defense
against web-based identity theft, in: 11th Annual Network and Distributed
System Security Symposium, 2004.
[42] Joon S. Park, Ravi Sandhu, Secure cookies on the Web, in: IEEE Internet
Computing, vol. 4, issue 4, 2000, pp 36–44.

[43] Preecha Noiumkar, Thawatchai Chomsiri, Top 10 free web-mail security test
using session Hijacking, in: 3rd International Conference on Convergence and
Hybrid Information Technology, 2008.

[44] F. Li, W. Wang, J. Ma, H. Su, Action-based access control for Web services, in:
Proceedings of the 2009 5th International Conference on Information
Assurance and Security, vol. 2, 2009, pp 637–642.

http://www.rapidshare.com/
http://www.megaupload.com/

	An investigation of hotlinking and its countermeasures
	Introduction
	Problem statement
	Exsiting hotlinking techniques
	Defense against hotlinking

	Hotlinking measurement
	Measurement of hotlinked images
	Chosen websites
	Data collection
	Data analysis

	Measurement of hotlinked software packages
	Postmortem analysis of a hotlinking attack

	Framework design
	Design details and modules
	HTTP request filtering module
	Unique file ID and entrance page
	Limiting HTTP requests
	Handling different HTTP requests

	Session creation/authentication module
	Download authorization module

	Strict policy
	Loose policy

	Prototype implementation
	Web server setup
	Technical details

	Evaluation
	Security analysis
	Effectiveness against Direct Hotlinking
	Effectiveness against hotlinking via referer fabrication
	Effectiveness against hotlinking via cookie vulnerabilities
	Effectiveness against hotlinking via session vulnerabilities

	Usability analysis

	Related work
	Conclusion
	References

