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ABSTRACT
Applications in C/C++ are notoriously prone to memory corrup-

tions. With significant research efforts devoted to this area of study,

the security threats posed by previously popular vulnerabilities,

such as stack and heap overflows, are not as serious as before. In-

stead, we have seen the meteoric rise of attacks exploiting use-after-

free (UaF) vulnerabilities in recent years, which root in pointers

pointing to freed memory (i.e., dangling pointers). Although vari-

ous approaches have been proposed to harden software against UaF,

none of them can achieve robustness and efficiency at the same

time. In this paper, we present a novel defense called pSweeper

to robustly protect against UaF exploits with low overhead, and

pinpoint the root-causes of UaF vulnerabilities with one safe crash.

The success of pSweeper lies in its two unique and innovative de-

sign ideas, concurrent pointer sweeping (CPW) and object origin

tracking (OOT). CPW exploits the increasingly available multi-

cores on modern PCs and outsources the heavyweight security

checks and enforcement to dedicated threads that can run on spare

cores. Specifically, CPW iteratively sweeps all live pointers in a

concurrent thread to find dangling pointers. This design is quite

different from previous work that requires to track every pointer

propagation to maintain accurate point-to relationship between

pointers and objects. OOT can help to pinpoint the root-causes of

UaF by informing developers of how a dangling pointer is created.

We implement a prototype of pSweeper and validate its efficacy

in real scenarios. Our experimental results show that pSweeper is

effective in defeating real-world UaF exploits and efficient when

deployed in production runs.
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1 INTRODUCTION
Memory corruption vulnerabilities have plagued software written

in low-level languages like C/C++ for decades. On one hand, effec-

tive defenses against previously popular attacks, such as stack and

heap overflows [16, 20, 22, 23, 25, 33, 39, 42, 47, 50, 59], have been

developed and deployed in commodity systems, making the ex-

ploitation of such memory corruption bugs much harder in system

software (e.g., browser or operating system). On the other hand,

recent years have seen the meteoric rise of memory corruption

attacks exploiting use-after-free (UaF) vulnerabilities that root in

pointers pointing to deallocated memory (i.e., dangling pointers).

Actually, UaF vulnerability has become the largest and severest

on-going exploit vector in numerous popular applications [36].

Different approaches have been proposed to harden the memory

safety of software against UaF vulnerabilities. Most of the existing

solutions attempt to disrupt UaF exploits by making an explicit

[40, 43, 45, 51, 56] or implicit [26] safety check on every pointer

dereference. An alternative approach is to reshape memory allo-

cators to avoid unsafe memory reuse [14, 16, 47]. Conservative

garbage collection [6, 18] heads off UaF exploits through auto-

matic memorymanagement. Moreover, the Silicon SecuredMemory

(SSM), recently shipped in Sparc M7 processors, implements tagged

memory as a hardware UaF defense [5]. Recent works [19, 36, 58]

track pointer propagation and nullify dangling pointers at object

free.

Unfortunately, these solutions still suffer two main drawbacks.

First, robustness and efficiency cannot be achieved at the same time.

UaF exploits are guaranteed to be defeated but usually with unac-

ceptable or unpredictable overhead [6, 26, 36, 43, 56, 58]. Systems

like Cling and SSM incur trivial overhead but provide only partial

[14] or probabilistic [5, 16, 47] memory safety. Second, software

developers usually cannot obtain sufficient information about the

exploited UaF vulnerabilities during production runs, making it

difficult to debug and craft patches.

This paper presents pSweeper, a novel defense system that effec-

tively protects against UaF exploits and imposes low overhead for

deployment in production environments, as well as pinpoints the

root-causes of UaF vulnerabilities for easier and faster fixing. The

basic protection principle of pSweeper is to proactively neutralize

dangling pointers so as to disrupt potential UaF exploits, which is

similar to DANGNULL, DangSan, and FreeSentry [36, 54, 58]. How-

ever, very different from those previous solutions, pSweeper has

two unique and innovative features, concurrent pointer sweeping

and object origin tracking, to overcome the above shortcomings.

In order to find and neutralize dangling pointers, existing ap-

proaches [36, 54, 58] synchronously keep track of pointer propaga-

tion at runtime to maintain accurate point-to relationships between
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pointers and objects. This design can incur undue overhead, e.g.,

80% in DANGNULL [36]. Leveraging the increasingly available

multi-cores on PCs, pSweeper instead explores a very different

design, concurrent pointer sweeping (CPW), which iteratively
sweeps all live pointers in concurrent threads and neutralizes dan-

gling pointers. Compared to existing work, a major difference and

advantage of this design is that, we only need to check if a pointer

is dangling (i.e., pointing to freed memory) when pSweeper threads

sweep it. In particular, we do not need to know which object a

pointer is pointing to. Thus, there is no need for us to maintain

accurate point-to relationship anymore, which accounts for the

most overhead in previous approaches. In general, using a spare

CPU core, pSweeper can effectively reduce the latency induced by

security checks that are instrumented to applications.

The main challenge of implementing CPW lies in identifying and

efficiently handling entangled races among pSweeper and applica-

tion threads. For example, since pSweeper has to check live pointers

one by one, a dangling pointer may propagate to an already-checked

pointer before being neutralized. pSweeper would provide incom-

plete protection if such races were left unhandled. While most race

conditions can be addressed by using heavyweight synchroniza-

tion mechanisms like locks, it could cause unacceptable overhead

and thus offset the design benefits of CPW. To this end, we devise

several simple and efficient mechanisms to correctly handle these

race conditions, which represent our major technical contributions.

Our key design principle is to place heavyweight workload on

pSweeper threads and instrument as less code as possible to appli-

cation threads. In particular, we leverage hardware features and

lock-free algorithms to avoid stalling application threads whenever

possible.

Another desirable feature that pointer neutralization can pro-

vide is object origin tracking (OOT). When software crashes due

to dangling pointer dereference, OOT can inform us of how the

dangling pointer is caused, i.e., where the pointed object is allocated

and freed. This information can greatly help programmers pinpoint

the root-causes of UaF vulnerabilities. pSweeper achieves OOT by

encoding origin information into neutralized dangling pointers.

Like ASAN [51], pSweeper can pinpoint root-causes of UaF vulner-

abilities in one safe crash. However, pSweeper achieves this at a

trivial cost.

Finally, we implement a prototype of pSweeper and demonstrate

its effectiveness using real-world UaF vulnerabilities. Our evalua-

tion results on SPEC CPU2006 benchmarks show that the induced

overhead is quite low (12.5%∼17.2% compared to around 40% by

state-of-the-art). We demonstrate that pSweeper scales quite well

on multi-thread applications using PARSEC benchmarks. We fur-

ther conduct two case studies with Lighttpd web server and Firefox

browser.

The remainder of this paper is organized as follows. Section 2

introduces the background of UaF. Section 3 describes the overview

of pSweeper. Section 4 presents the detailed design of pSweeper.

Section 5 empirically evaluates the effectiveness and performance of

pSweeper. Section 6 discusses the limitations of pSweeper. Section

7 surveys related work, and finally, Section 8 concludes the paper.
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Figure 1: Comparison ofCPWwith existing solutions [36, 54,
58]. Previous approaches require to maintain complete point-to relationships
between pointers and objects. Whenever a pointer points to a different object,
the point-to relationship must be updated. Instead, CPW in pSweeper only
records live pointers and memory allocation status. In particular, CPW does not
need to know which object a pointer is pointing to or howmany different objects
a pointer has pointed to. CPW only needs to check if a pointer is dangling.

2 BACKGROUND AND THREAT MODEL
Dangling Pointer. A pointer variable p is dangling iff an object O
with address range ∀ m, size : [m, m+size-1] has been freed and

p∈[m, m+size-1].
In practice, UaF exploits commonly reuse freed memory and fill

it with specially crafted contents which are then accessed through

dangling pointers. Therefore, it is insufficient to check whether a

pointer points to freed memory. Instead, it is imperative to enforce

that dangling pointers never point to memory that can be arbitrarily

manipulated by attackers.

Threat Model. This paper focuses on UaF vulnerabilities rooted

in dangling pointers which can point to any memory region in-

cluding heap, stack, code and data. The attacker can crash applica-

tions but cannot cause any other consequences. Spatial attacks that

exploit out-of-bound writes like buffer overflows, and temporal

attacks that exploit uninitialized reads, are out of our scope. There-

fore, similar to related works [36, 54, 58], we do not protect our

system from these vulnerabilities and it should be used along with

orthogonal protectors. We also assume applications do not have

concurrency bugs. Finally, we do not deal with undefined behaviors,

such as delete objects created using new[].

3 OVERVIEW
3.1 High-Level Approach of pSweeper
pSweeper aims to robustly protect against UaF exploits with low

overhead and pinpoint the root-causes of UaF vulnerabilities being

exploited in the wild. To accomplish these, pSweeper proposes

Concurrent Pointer Sweeping (CPW) and Object Origin Tracking

(OOT). pSweeper follows a similar protection principle to pointer

nullification in DANGNULL [36], FreeSentry [58] and DangSan

[54]. In particular, when an object is freed, all dangling pointers

are neutralized to disrupt UaF exploits. However, pSweeper differs

significantly in two key design aspects:

1. How to find dangling pointers; and

2. What value is used to neutralize dangling pointers.



Finding Dangling Pointers. Previous approaches [36, 54, 58]
synchronously maintain accurate point-to relationships between

pointers and objects at runtime, so that when an object is freed,

they can locate the set of pointers that are still pointing to the

freed object and nullify them. In such a design, for each pointer

propagation instruction, they need to track (1) in which object this

pointer is located and (2) which object this pointer is pointing to.

Since a pointer can point to the middle of an object, both operations

require range-based searches that are notoriously expensive. Even

worse, synchronization mechanisms like locks should be used in

several places to avoid races among application threads [36].

We propose CPW, a totally different design. The key feature of

CPW is to decouple the search for dangling pointers from applica-

tion code. Specifically, CPW iteratively sweeps all live pointers at

runtime in concurrent threads to neutralize the dangling pointers.

Since pSweeper scans every pointer at runtime to find dangling

pointers, there is no need to maintain complete point-to relation-

ships anymore. Figure 1 illustrates the differences between CPW

and previous solutions [36, 54, 58]. Note that, in principle, pSweeper

does not improve the performance of individual security checks.

Instead, pSweeper leverages spare CPU cores to reduce the latency

of security checks that are instrumented into applications, and it

may consume more CPU resources than DANGNULL, FreeSentry,

and DangSan.

Since pSweeper works in a concurrent manner, a freed mem-

ory block may get re-allocated before pSweeper has eliminated

current dangling pointers. This may cause two problems. First,

UaF vulnerability exists in the time window between memory free

and pSweeper’s dangling point neutralization, which could be ex-

ploited by attackers to hijack control flow or escalate privileges

after gaining the control of the re-allocated memory block. Sec-

ond, once a memory block is reused, it becomes impossible for

pSweeper to precisely find all dangling pointers. To prevent the

occurrence of UaF vulnerable windows and avoid missing dangling

pointers, CPW defers object frees to the end of every round of

sweeping. Therefore, for each object, CPW introduces a grace pe-

riod Tдrace = [Tissue ,Tr elease ], where Tissue is when application

code issues a free request and Tr elease is the actual time when

CPW releases the memory back to OS.

Choosing Value for Pointer Neutralization. Previous works
[36, 54, 58] simply set dangling pointers to NULL or kernel space.

This guarantees that applications crash safely when dangling point-

ers are accessed.

pSweeper instead specially crafts the values to neutralize dan-

gling pointers. Our key insight is that the crucial information to pin-

point root-causes of UaF vulnerabilities is how a dangling pointer is

caused, i.e., how the pointed object is allocated and freed. Therefore,

besides enforcing safe crash upon dangling pointer dereference,

pSweeper also encodes object origin information into dangling

pointers to achieve OOT. Compared with other tools that provide a

similar feature to OOT [48, 51], pSweeper is more efficient.

Enforced Protection Protocol. Building upon CPW and OOT,

pSweeper will enforce the runtime protection protocol as follows.

Given a dangling pointer p:

• If p is accessed before being neutralized, applications con-

tinue to execute correctly similar to conservative garbage

free(q)

free(p)
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Figure 2: Illustration of pSweeper in time line.

collection [31], because memory free requests are deferred

by pSweeper.

• If p is accessed after being neutralized, applications abort

safely with object origin information dumped.

3.2 An Illustration Example
Figure 2 illustrates pSweeper with an example in time line. All

malloc(), free(), and assignment instructions are executed in

application threads. Ri and ∆Ri denote the start and end of the ith
sweeping round of pSweeper threads, respectively.

Assume the application executes three malloc() and one pointer
assignment before ∆Ri−1. From these instructions, pSweeper iden-

tifies four live pointers, p, r, q, and s at runtime.

During the interval of sweeping rounds, i.e., between ∆Ri−1
and Ri , an application thread invokes free(q). However, this free
request will be hooked by pSweeper and delayed to the end of ith
sweeping round. During the ith sweeping round, pSweeper checks

all four pointers to find and neutralize the dangling one q. At ∆Ri ,
the delayed free(q) gets executed. If another memory block p is

freed during the ith round, it will be delayed to ∆Ri+1.
While the overall approach sounds simple, it is non-trivial to

efficiently handle the entangled races among pSweeper and applica-

tion threads. For instance, during the ith sweeping round, assume

pSweeper has checked p and r but has not neutralized q. It is possi-
ble that an application thread propagates the dangling pointer to a

swept one, e.g., executing r = q. pSweeper must efficiently handle

such cases.

3.3 Architecture of pSweeper
To implement CPW and OOT, pSweeper combines compile-time

instrumentation and a runtime library, as shown in Figure 3. There

are three components in pSweeper:

Pointer address identification. pSweeper first statically iden-

tifies pointer variables so that pointer addresses can be located at

runtime (§4.2). It achieves this by analyzing the types of local/global

variables. For pointers in dynamically allocated objects (on heap),

we adopt the same strategy as previous work [36, 54, 58]. Specifi-

cally, we rely on the types of operands in store instructions. For
each pointer store instruction, a snippet of code is instrumented

into applications, which will bookmark live pointers at runtime.

Concurrent pointer sweeping thread. At runtime, dedicated

pSweeper threads iteratively sweep all live pointers and neutralize
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Figure 3: The architecture of pSweeper.

API Parameter Description
setFreed(addr ) A virtual address Set the freed flag for addr .
clearFreed(addr ) A virtual address Clear the freed flag for addr .
isFreed(addr ) A virtual address Return TRUE if addr is not allocated.

setPointer(addr ) A virtual address Set pointer flag for addr .
clearPointer(addr ) A virtual address Clear pointer flag for addr .
isPointer(addr ) A virtual address Return TRUE if addr is a pointer.

Table 1: Auxiliary APIs used in pSweeper.

the dangling ones. The asynchronous nature of CPW requires ob-

ject frees to be deferred (§4.3). Otherwise, when a memory block

is freed, it may get reused before CPW threads can neutralize all

dangling pointers. The main challenge of CPW lies in efficiently

handling races among pSweeper and application threads. In partic-

ular, dangling pointers can propagate during concurrent sweeping.

To this end, we devise a simple and efficient mechanism to prevent

dangling pointer propagation (§4.5) so that dangling pointers are

guaranteed to be neutralized in one single round of sweeping.

Object origin tracking (OOT). Finally, pSweeper encodes ob-
ject origin information into dangling pointers so that once they are

dereferenced, pSweeper can inform developers how corresponding

objects are allocated and freed (§4.7).

4 SYSTEM DESIGN AND IMPLEMENTATION
In this section, we detail the design of pSweeper. Due to the asyn-

chronous design, we need to efficiently handle the entangled races

between application and pSweeper threads. In particular, we aim

to address these races with lock-free algorithms, which can highly

correlate with the memory model of multicore processors. Our cur-

rent design is built upon the memory model of x86 [7], AMD64,

and SPARC
1
.

4.1 Memory Allocation Status Table
To clearly describe the design of pSweeper’s core components, we

first define a list of APIs in Table 1. The first set of three APIs track

the allocation status of a virtual address. The other set of three APIs

can facilitate pSweeper to efficiently determine if a virtual address

contains a pointer.

1
The default mode of SPARC is Total Store Order (TSO).

Since several components of pSweeper rely on the APIs in Table

1, the efficiency of these APIs is critical to the performance of

pSweeper. We now describe how these APIs are implemented. A

straightforward way is to check against the list of live objects

and pointers. However, for isFreed(), this simple implementation

runs in time complexity of O(P ∗M) for isFreed() and O(P) for
isPointer(), where P andM denote the number of live pointers

and the number of freed objects, respectively. Obviously, this naive

implementation does not scale well.

To this end, we design a memory allocation status (MAS) table,

which is a shadow heap similar to the design philosophy in previous

work [34, 39, 42, 54, 55]. The MAS table is built on the fact that

pSweeper only needs to know if a memory address is allocated or

freed, and it does not need to know where the object boundaries are.

Every byte in the MAS table records whether the corresponding

byte on heap is allocated. As a result, pSweeper can achieve a fast

check with one single memory read.

However, this implementation is still inefficient. First, it incurs

high overhead to set and clear shadow heap in setFreed() and

clearFreed(). Second, it doubles memory consumption. To opti-

mize, we leverage the observation that pragmatic memory alloca-

tors usually enforce object size and alignment. For example, the

base and size of small and large objects (based on a predefined size

threshold) are usually aligned to multiples of the pointer and page

size, respectively. Therefore, the MAS table only requires 1-byte for

every page or 8-byte on x64 (4-byte on x86).

For isPointer(), setPointer(), and clearPointer(), we im-

plement a pointer location mark (PLM) table similar to the MAS

table. PLM represents every 8-byte on x64 and 4-byte on x86 to

1-byte, but PLM cannot compress a memory page to 1-byte.

4.2 Locating Live Pointers
pSweeper first statically identifies pointer variables at compile time,

and instrument code to bookmark live pointers at runtime. Pointers

can be on stack, data, and heap segments. Dangling pointers on all

three regions can be exploited.

4.2.1 Pointers on Data Segment.
Pointers can reside in data segments, including global and static

variables
2
. These pointers can generally be identified at compile

time. For each global pointer variable, we instrument a store instruc-

tion to log its address to a buffer denoted as globalptr. globalptr
is library-specific, i.e., every library as well as the executable has a

dedicated buffer. pSweeper instruments .init and .fini sections

to every executable and library so that globalptr is (de)allocated
upon (un)loading.

4.2.2 Pointers on Stack.
pSweeper handles the pointers in function parameters and local

variables in a similar way as global variables. However, due to

the asynchronous design of pSweeper, pointers on stack need to

be specially handled. Consider the dangling pointer p in Figure 4,

before pSweeper neutralizes p, function f unc1 returns and f unc2
is subsequently invoked. Previously storing pointer p, the stack slot
now contains a non-pointer variable i . If i by chance has a value

2
We use “global variables” for short in the remainder of the paper.
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call func1(*p){ free(p); } 
call func2(i){}
                                          OOT(&p)
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Figure 4: Race conditions of pointers on stack.

Algorithm 1 Compile-time store instruction instrumentation for

pointer address identification.

1: function Bookmark_Heap_Pointer( )

2: for each storeinst do
3: if onDataOrStack(storeinst.dest) then
4: continue
5: Instrument Bookmark_Ptr() after storeinst.

equal to the address of a freed memory slot, pSweeper can falsely

neutralize it and thus corrupt application data.

To efficiently handle this race, pSweeper relocates all pointers on

stack to a dedicated stack denoted as stackptr. In this way, every

variable in stackptr is of pointer type. Thus, pSweeper can safely

sweep and neutralize them. However, pointers in complex data

types like struct and class cannot be easily moved to stackptr
without losing compatibility. We therefore simply allocate all such

variables on the heap.

4.2.3 Pointers on Heap.
Similar to previous works [36, 54, 58], we also rely on the types

of operands in store instructions to track pointer addresses at

runtime. The main difference lies in what task is performed at

each pointer store instruction. All previous systems require to

synchronously track (1) in which object a pointer is located and (2)

which object a pointer is pointing to. This inevitably incurs high

overhead due to the expensive range-based searches. In contrast,

pSweeper simply bookmarks the addresses of live pointers. This,

however, is still non-trivial to implement efficiently.

An assignment operation LHS=RHS is usually transformed to

a compiler intermediate representation (IR) store <ty> <val>,
<ty>* <ptr>, where val is the value in RHS and ptr is the memory

address of LHS. If the type <ty> of val is a pointer, LHS is a pointer.
However, its address should not be naively bookmarked for three

considerations. First, we must ensure the pointer is not on data or

stack segments. Second, we should ignore duplicate bookmarks for

the same pointer. Finally, the pointer might be in a freed object.

Algorithm 1 and 2 show how pSweeper bookmarks live pointers.

Excluding global/local pointers. Weexclude global/local point-

ers in two steps. First, we identify store instructions for non-heap

pointers at compile time and do not instrument them (Algorithm 1).

Second, at runtime, we check if the address of a pointer is indeed

in range of heap (Line 2 Algorithm 2).

Skipping duplicate bookmarks. Once a new pointer is en-

countered, we set the pointer flag using the API setPointer(&ptr).
In this way, when the pointer is encountered again, we can simply

omit it.

Validity of pointer address. We next use the API isFreed()
to check if the object where the pointer is contained has been freed

(Line 7 Algorithm 2). Note that, there is a potential race that the

object where ptr is contained gets freed and reused by another

Algorithm 2 Bookmark live pointer addresses.

PtrList: live pointer list

1: function Bookmark_Ptr( &ptr )

2: if notOnHeap(&ptr) then
3: return
4: if isPointer(&ptr) then
5: return
6: setPointer(&ptr)

7: if isFreed(&ptr) then
8: clearPointer(&ptr)

9: return
10: appendToList(&ptr, PtrList)

1 struct LiveObjNode{

2 obj_addr; // object address

3 freeflag; // Section §4.3

4 scanflag; // Section §4.4

5 slotid; // Section §4.7

6 struct LiveObjNode *prev , *next;

7 };

Figure 5: Metadata of live objects.

application thread after the check but before Line 10 Algorithm 2.

We discuss this race further in §4.4.

Live pointer list. We simply use a double-linked list (PtrList)
to maintain all live pointers. As a result, appendToList() is quite
efficient. Further, in order to avoid races among application threads

which can concurrently operate on PtrList, we use a separate list
for each thread. Note that, since we assume no concurrency bugs

in applications, it’s impossible that different application threads

concurrently invoke appendToList() for the same pointer. Therefore,

a thread-local PtrList is safe.
Removing stale pointers. Here we have described how to

bookmark live pointers. When an object is freed, all pointers con-

tained in it should be removed from PtrList. This is achieved in

CPW (§4.4).

4.3 Deferred Free
pSweeper requires object frees to be deferred to the end of a sweep-

ing round. To this end, pSweeper maintains live objects in a double-

linked list (ObjList) and adds metadata freeflag for each object

(Figure 5). In the hooked malloc(), pSweeper first sets freeflag
to zero (Line 5 Algorithm 3) and then appends the new object to

ObjList (Line 6 Algorithm 3). When free() is invoked in applica-

tions, we simply set freeflag as in Algorithm 4. Similar to PtrList,
each application thread uses a thread-local list to maintain objects

and nodes in ObjList are removed by CPW (§4.4).

4.4 Concurrent Pointer Sweeping (CPW)
CPW consists of two components, dedicated CPW threads and

dangling pointer propagation instrumentation. Dedicated CPW

threads are the core of CPW and they iteratively sweep live pointers

to find and neutralize dangling ones. One challenge here is that

application threads can propagate dangling pointers to the pointers

that have been neutralized by CPW threads. We devise a simple and

efficient mechanism (§4.5) to prevent dangling pointer propagation



Algorithm 3 Hooked malloc().

1: function malloc( size )

2: obj ← real_malloc(size)
3: clearFreed(obj)
4: obj .scanf laд← 0

5: obj . f ree f laд← 0

6: appendToObjList(obj,ObjList)
7: mfence ◃ Memory barrier

Algorithm 4 Deferred free() invoked in applications.

1: function free( obj )

2: assertDoubleFree(obj) ◃ Abort upon double free.

3: setFreed(obj)
4: obj . f ree f laд← 1

in application threads. Next, we describe each component in details.

We first assume one CPW thread is spawned for a multi-threaded

application and extend to multiple CPW threads in §4.6.

Algorithm 5 presents the pseudocode of CPW thread whose body

is an infinite loop (Line 2) implementing iterative sweeping. CPW

takes a list of live objects and pointers as input. In every round of

sweeping, CPW threads execute in three steps.

• Step 1 (Lines 4 ∼ 9)

This step traverses live object list and if an object’s freeflag is set,
another field of metadata scanflag is set. scanflag is initialized
as 0 in malloc() (Line 4 Algorithm 3). fillWithSlotIndex() is
used by OOT which will be described in §4.7. Step 1 is required

to guarantee that an object whose freeflag is set during pointer
sweeping is not prematurely freed.

• Step 2 (Lines 11 ∼ 18)

This step sweeps all live pointers and checks if a pointer is dangling

(Line 15). Dangling pointers are then neutralized with a value con-

taining object origin information (Line 16). However, this step has a

time of check to time of neutralization race as illustrated in Figure 6.

To be specific, the value of p can be modified by application threads

after the isDangling() check.
To address this, we observe that if a dangling pointer is modi-

fied by application threads between isDangling() and OOT(), we
should preserve the value written by application threads and the

neutralization by pSweeper can fail safely. On the one hand, if the

new value written by application threads points to a live object, the

dangling pointer is eliminated by application threads and we must

preserve the value for correct execution. On the other hand, if the

new value points to a freed object, this propagation will be han-

dled by our mechanism that prevents dangling pointer propagation

(§4.5). Fortunately, modern processors provide efficient hardware

instructions such as lock cmpxchg that exactly meet our needs.

In addition, CPW threads skip stale pointers, i.e., whose contain-

ing objects have been freed, and remove them from PtrList (Lines
12∼14). To demonstrate that the race mentioned in §4.2.3 does not

cause failures in CPW, we consider two cases.

Case 1: Line 7 in Algorithm 2 returns true. In this case, pSweeper

always correctly skips stale pointers. In particular, no live pointer is

App Thread

           if( isDangling(p) )
p = obj2
                           OOT(&p)

pSweeper

Figure 6: Time of check to time of neutralization race.

App Thread

free(p) 
q = p   // q has been swept.
                          OOT(&p)

pSweeper

Figure 7: Dangling pointers can propagate to swept ones in
application threads.

missed when objFreed() returns true but the memory has been al-

located in a different application thread (due to inconsistency MAS

table seen by different cores). This is because the store instruction
must be executed after the hooked malloc() has returned. Other-
wise, there is a concurrency bug in applications, which violates our

assumptions in §2. Line 7 Algorithm 3 enforces that objFreed()
must return false when the hooked malloc() returns.

Case 2: Line 7 in Algorithm 2 returns false. The only problem

here lies in the possibility that the object where ptr is contained
can get freed and reused before Line 10 Algorithm 2. In this case,

the stale pointer will be appended to PtrList. However, this can
happen only if there is a concurrency bug in applications, which

violates our assumptions in §2.

• Step 3 (Lines 19 ∼ 25)

CPW threads now traverse object list again to free objects whose

scanflag is set and remove them from the list. In order to avoid

locks between insertion by applications and deletion by CPW, the

tail node in ObjList is delayed until more nodes have been ap-

pended.

Avoiding endless sweeping rounds. Since new objects and

pointers are created continuously by application threads, the while-
loops in the above three steps may not terminate if they are not

handled specially. To this end, CPW threads enforce that every

round of sweeping terminates at the tail nodes of the lists (Lines 8,

17, and 25) that are recorded at the beginning of the loops (Lines

3 and 10). For Step 1 and 3, this enforcement is required because

only objects that have been checked against every live pointer can

be safely freed. For Step 2, this strategy is correct and safe because

pSweeper prevents dangling pointer propagation (§4.5) and thus

newly added pointers can be deemed as already swept.

4.5 Preventing Dangling Pointer Propagation
As shown in Algorithm 5, CPW threads sweep every live pointer

only once in each round. Unfortunately, dangling pointers can

propagate to the swept ones in application threads, as illustrated in

Figure 7. Basically, pointers can propagate in three ways, assign-

ment (e.g., q = p), function arguments (e.g., func(p)), and returns

(e.g., p = getPtr()). In this section, we only describe how pointer

assignment is handled because the other two ways are essentially

also assignments.

Figure 8 presents how pSweeper handles pointer assignments. A

pointer assignment q = p is usually compiled to two instructions,

one load of p’s value and one store to q. To handle this case, we



Algorithm 5 Concurrent Pointer Sweeping (CPW) threads.

ObjList: live object list
PtrList: live pointer list

1: function isDangling(p)

2: if p is neutralized then
3: return FALSE

4: if isFreed(p) then
5: return TRUE

6: else
7: return FALSE

8: function CPW_Thread( )

9: while True do
10: objEnd← getObjectListTail(ObjList)
11: while obj← getNextObj(ObjList) do
12: if obj . f ree f laд then
13: obj .scanf laд← 1

14: fillWithSlotIndex(obj,obj .slotid)
15: if obj == objEnd then
16: break
17: ptrEnd← getPtrListTail(PtrList)
18: while ptr← getNextPtr(PtrList) do
19: if objFreed(&ptr ) then
20: removePtr(&ptr , PtrList)
21: continue
22: if isDangling(ptr) then
23: OOT(&ptr)
24: if ptr == ptrEnd then
25: break
26: while obj← getNextObj(ObjList) do
27: if obj .scanf laд then
28: real_free(obj)
29: removeObj(ObjList, obj)
30: clearPLMTable(obj)
31: if obj == objEnd then
32: break
33: Sleep(t) ◃ Decide sweeping rate

1 %1 =load p
2 store %1, q

3 %2 = volatile load q

4 if(isDangling (%2)):

5 OOT(&q)

6 else:

7 %3 = volatile load p

8 store %3, q

q = p

Figure 8: Prevent dangling pointer propagation. Code snip-
pets with a dark background are instrumented by pSweeper.

instrument one check after the store instruction. In particular,

we check whether q is dangling. If so, we nullify it.
3
This check

is critical to prevent dangling pointer propagation. The reason is

that although q has been swept before, p might have not been

neutralized and the pointer assignment q = p could propagate the

dangling pointer from p toq. At first glance, the volatile load in

3
Note that isDangling() checks if the pointer has already been neutralized.

Line 3 seems unnecessary and we can use %1 directly. However, we

must add this load instruction to prevent compiler and CPU from

reordering the isDangling() check with the store instruction in

Line 2. In other words, we must ensure that isDanling(q) check
comes after the store instruction, so that the propagated dangling

pointer q will be caught by the inlined isDanling() check. Note
that this double-load strategy is not the only solution, and we can

also intentionally introduce other data dependencies to prevent the

reordering.

Then, if the isDangling() check in Line 4 fails, we reload the

value of p and store it to q. There are two scenarios where the

check in Line 4 can fail: (1) pointer p was not dangling (i.e., no

risk of dangling pointer propagation at all) or (2) dangling pointer

p has been neutralized and the freed memory is re-allocated. In

the first scenario, the store in Line 8 is redundant but correct and

safe. In the second scenario, %3 must be different from %1 and the

dangling pointer propagation is successfully prevented. Note that,

on multiprocessor systems, pSweeper uses CPU memory barriers

like mfence to guarantee that the neutralized p is globally visible

before the isDangling() check returns false.
We also need to insert __asm__ __volatile__("":::"memory")

between the load instructions to prevent reordering by compilers.

However, there is no need to insert memory barriers before %3=load
p. This is because we only need to ensure that this load happens
after the one in isDangling(%2), regardless if store instructions

have been globally visible before %3=load p.
Finally, we prove the correctness of this mechanism as follows:

• Precondition. Since we assume no concurrency bug, no

one else except CPW thread will modify p or q during the

code sequence in Figure 8.

• Fact. The race is harmful iff q is swept before p.
• Completeness. To prove the completeness of this mecha-

nism, we only need to prove that, if both checks fail, q must

NOT be dangling. We use proof by contradiction. Proof: As-
sume (q is dangling) =⇒ (p has not been neutralized before

%3=load p) =⇒ (the pointed memory is still freed before

%3=load p) =⇒ (isDangling(%2) must return true) =⇒

(q is set to NULL and q is not dangling). This contradicts the

initial assumption.

• Soundness.We need to prove that, if either check succeeds,

q must be dangling. The proof is straightforward based on

the two preconditions.

4.6 More pSweeper Threads
pSweeper currently uses only one thread, which is sufficient in our

evaluations. However, it can be extended to use multiple threads.

The live pointers can be partitioned to segments, with each one

being handled by one pSweeper thread during every round of sweep-

ing. In this extension scheme, there is no race among pSweeper

threads, and thus, no synchronization is required, making pSweeper

quite scalable.

4.7 Object Origin Tracking (OOT)
It is notoriously difficult to analyze and locate bugs triggered in

production runs [32, 37, 38, 53]. In order to facilitate the root-cause

diagnosis of UaF vulnerabilities, pSweeper aims to provide not only
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reserved for pointer arithmetic
1218

32-bit

Figure 9: Use of pointer bits by OOT.

where dangling pointers are dereferenced (which can be obtained

in core dumps) but also how objects are allocated and freed, i.e.,

object origin tracking (OOT). Unfortunately, it is non-trivial to link

a dangling pointer access to the corresponding improper memory

(de)allocation. Existing approaches like AddressSanitizer [51] and

Exterminator [48] bind origin information with objects. However,

this can cause inaccurate OOT when memory is reused, which is

common in UaF exploits. Therefore, they are primarily suitable for

in-house debugging but not for in-production diagnosis.

pSweeper instead encodes object origin information into dan-

gling pointers. Such information is independent to memory reuse

and can be propagated at no extra cost. The most significant two

bits are set to 01 as in Figure 9 to ensure that applications crash

safely upon dangling pointer dereference. Then, the origin informa-

tion can be obtained in signal handlers. However, we must reserve

sufficient least-significant bits to support pointer arithmetics. In

our current implementation, we empirically reserve 12 bits.

OOT records the call stacks of malloc() and free() in a buffer

slot that is assigned an index. The index is encoded into the mid-

dle 50 or 18 bits (with respect to 64-bit or 32-bit systems) during

pointer neutralization, as shown in Figure 9. To reduce the mem-

ory overhead, the call stack information is compressed. In order

to retrieve the slot index in OOT, pSweeper fills freed objects with

corresponding slot indexes (Line 7 in Algorithm 5). In this way,

given an in-bounds dangling pointer p to an object, pSweeper can

easily construct the value to neutralize p.
When applications crash due to dangling pointer dereference,

pSweeper extracts OOT information in signal handlers. However,

Linux always returns zero, instead of the tagged pointer in Figure

9, as the illegal address in signal handlers. We address this by first

obtaining the faulty instruction, e.g., 4008fe: movl %edx, (%rax),
through EIP/RIP in signal handlers. This instruction informs that

register rax contains the pointer value. Then, we can obtain the

encoded origin information by reading that register.

Finally, the current design of OOT has two limitations. First,

the encoded information may still be corrupted due to pointer

arithmetics, even though 12 bits have been reserved. Fortunately,

the reserved bits can handle most cases in practice. Second, in

our current implementation, OOT is limited to record 2
50

and 2
18

objects that are live at the same time for 64-bit and 32-bit systems,

respectively. However, such a recording capacity is sufficient for

most software in practice. In particular, 64-bit systems have become

prevalent nowadays and it is rare to create 2
50

live objects at the

same time.

5 EVALUATION
We implement a pSweeper prototype for x86-64, on top of LLVM

3.7 compiler infrastructure [10, 35], and use LLVM’s link-time opti-

mization support (LTO) for the whole program analysis. The static

analysis and instrumentation pass in pSweeper operates on LLVM

intermediate representation (IR). Our current prototype employs

some preliminary optimizations, e.g., inlining operations in Algo-

rithm 2 and Figure 8 when instrumenting store instructions to

avoid function calls.

We evaluate pSweeper by answering four questions:

• Is pSweeper effective to mitigate real UaF vulnerabilities?

• What is the performance overhead of pSweeper?

• How scalable is pSweeper for multi-threaded applications?

• Can pSweeper efficiently work on complex software?

All experiments are conducted on 64-bit Ubuntu-16.04 with a

2-core 2-thread (i.e., 4 threads in total) Intel(R) Core(TM) i5-4300U

at 1.9GHz with 12GB RAM.

5.1 Effectiveness of pSweeper
To evaluate the effectiveness of pSweeper, we apply it to four real-

world UaF vulnerabilities in three applications, as listed in Table

2. pSweeper successfully neutralizes the unsafe dangling pointers

and pinpoints the root-causes in all four cases. Due to space limit,

we next describe CVE-2016-6309 only in details.

CVE/Bug ID Application Protected
CVE-2016-6309 [4] OpenSSL 1.1.0a ✔

CVE-2014-3505 [3] OpenSSL <1.01i ✔

Bug 12840 [13] Wireshark ✔

Bug 2440 [9] Lighttpd 1.4.32 ✔

Table 2: Real-world UaF vulnerabilities used for evaluation.

CVE-2016-6309 in OpenSSL is caused by memory reallocation

in statem.c:548. OpenSSL initially allocates a buffer of 16KB to

receive messages. When a larger message is received, the buffer is

reallocated using CRYPTO_clear_realloc(), which essentially al-

locates a new buffer and frees the old one. Therefore, the underlying

location of the buffer is changed. However, a pointer s→init_msg
is not updated and still refers to the old location.

When this vulnerability is exploited, there can be two cases. First,

due to deferred free and asynchronous neutralization, if the dan-

gling is accessed before being neutralized, the openSSL server can

always execute normally. On the other hand, if it is exploited after

neutralization, the openSSL server crashes safely and pSweeper

successfully pinpoints OPENSSL_clear_realloc() in
BUF_MEM_grow_clean() (buffer.c:109) as root cause.

5.2 Performance on SPEC CPU2006
We next evaluate the performance overhead of pSweeper on SPEC

CPU2006 benchmarks. Table 3 presents the statistical results of

SPEC CPU2006 benchmarks when pSweeper runs at a sweeping

rate of one second.

As can be seen, pSweeper finds similar number of pointers (Col-

umn 5 in Table 3) as DangSan, which is far more than DANGNULL.

This demonstrates that pSweeper has comparative coverage to

the state-of-the-art defense systems. We also find that pSweeper

neutralizes fewer pointers (Column 7 in Table 3) than DangSan,

although more than DANGNULL. This is because pSweeper con-

currently sweeps dangling pointers in a dedicated thread and does

not stall applications. As a result, although a pointer is dangling
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Figure 10: pSweeper’s performance on SPEC CPU2006.

at free(), it probably has been overwritten by applications with

non-dangling values when pSweeper checks it. In particular, the ma-

jority of dangling pointers identified in DangSan are on stack [54],

which become invalid after function returns. Also, it is possible that

the objects containing dangling pointers have been freed before

pSweeper starts to sweep. Most of these invalid dangling pointers

are ignored by pSweeper. We emphasize that neutralizing these

stale dangling pointers does not increase the security guarantee

and pSweeper provides the same protection as previous systems.

5.2.1 Runtime Overhead.
Figure 10 presents the performance overhead of pSweeper at differ-

ent sweeping rates, i.e., no sleep, 500ms sleep, and 1s sleep between

sweeping rounds. The overhead is normalized over the baseline

and all the results are averaged over three consecutive runs. The av-

erage overheads of pSweeper at different sweeping rates are 12.5%

(no sleep), 13.9% (500ms), and 17.2% (1s).

Effect of sweeping rate. Generally, sweeping rates do not sig-

nificantly affect the performance of applications as pSweeper con-

currently runs on spare cores. Therefore, we an see that all three

configurations (1s, 500ms, and nosleep) induce similar and trivial

overhead on most benchmark. However, we find that the bench-

marks like perlbench, gcc, omnetpp, and xalancbmk still suffer

high overhead. In particular, the overhead of these benchmarks ba-

sically positively correlates with sweeping intervals, i.e., the larger

the interval, the larger the overhead. There are mainly two reasons.

On the one hand, these benchmarks are memory allocation inten-

sive. Simply intercepting and maintaining metadata in pSweeper

can incur a large overhead. On the other hand, when pSweeper

runs at a larger interval, memory free requests are deferred for a

longer time. An allocation-intensive application like gcc may not

be able to immediately reuse the freed memory. As a result, much

more time is spent in kernel mode when memory allocators try to

allocate new objects.

Static instrumentation overhead. We now break down the

overhead caused by static code instrumentation. The overhead

mainly comes from the hooked malloc() family of functions, which

set up object metadata, maintain live objects and MAS table. They

introduce a bunch of extra memory writes for each allocated ob-

ject. We find that they account for about 5.6% of the average over-

head. Especially, in the case of allocation-intensive applications,
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Figure 11: Dynamic instruction overhead and L1 data cache
misses on SPEC CPU2006.

the accumulated overhead is high, e.g., ∼15% for gcc. Finally, the
instrumented store instruction, which is the main performance

bottleneck in previous works [36, 54, 58], causes low overhead in

pSweeper, about 1.8%.

Dynamic instruction count and data cache overhead. We

use hardware performance counters to measure the dynamic in-

struction counts and cache misses of the 32KB L1 data cache. We are

only interested in the overhead caused by the instrumented code.

Thus, we do not spawn the pSweeper thread and disable deferred

free. The results are plotted in Figure 11, showing that dynamic

instruction counts highly correlate with the runtime overhead and

are the main source of overheads for most benchmarks. A notice-

able negative impact of MAS and PLM tables is the additional data

cache misses, resulting in a large portion of performance overhead.

5.2.2 Memory Overhead.
Figure 12 shows that pSweeper moderately increases memory foot-

print in terms of maximum resident set size, with average overheads

112.5% (no sleep), 169.7% (500ms), and 247.3% (1s).

Generally, faster sweeping rates result in lower memory over-

head. This is because free requests are deferred shorter, and thus

memory can be freed faster. A faster sweeping rate is especially im-

portant to allocation-intensive applications. For instance, sweeping

at 500ms, compared to 1s, reduces the memory overhead of gcc by

an order of magnitude. Other sources of memory overhead include

MAS table, ObjList, PtrList and PLM table. We can see that these

metadata consumes acceptable amount of memory. In particular,

since several benchmarks allocate a small number of large objects

(Column 4 Table 3), the compression strategy used in MAS table

can greatly reduce memory overhead.

We also find that a large portion of memory overhead can be

attributed to a single benchmark dealII, which incurs about 1150%

memory overhead. The exceptionally high overhead is caused by

two factors. On the one hand, the baseline of dealII has a small

memory footprint and thus the relative memory consumption of

pSweeper’s metadata becomes high. On the other hand, the deferred

frees make pSweeper have a even larger overhead relative to the

baseline. Excluding dealII, the memory overhead can drop to

54.9% for pSweeper-nosleep, 81% for pSweeper-500ms, and 144.3%

for pSweeper-1s.



Benchmark # of
Allocations # of Frees Avg. Object

Size (Bytes)
Total # of
Pointers

Peak # of
Pointers

# of Pointers
Neutralized

perlbench (C) 358M† 356M 514 40,490M 971,353 421,352

bzip2 (C) 7,182 4,440 1.6M 2.2M 1,184 0

gcc (C) 28M 28M 26,088 7,170M 438,016 186,451

mcf (C) 1,174 721 1.4M 7,658M 173,625 0

milc (C) 7,686 7,184 11M 2,585M 76,254 0

namd (C++) 2,493 2,038 19,582 2.9M 1,746 0

gobmk (C) 663,879 658,695 1,707 607M 28,841 86

dealII (C++) 151M 151M 82 117M 329,194 7,293

soplex (C++) 312,951 310,613 189,852 836M 76,278 553

povray (C++) 2.4M 2.4M 56 4,679M 128,525 7,428

hmmer (C) 2.4M 2.4M 1,048 3.8M 2,237 0

sjeng (C) 1,174 717 154,809 3 0 0

libquantum (C) 1,348 895 1.1M 186 8 0

h264ref (C) 182,784 181,283 7,735 11M 3,674 961

omnetpp (C++) 267M 266M 174 13,099M 589,145 13,152

lbm (C) 1,173 720 367,047 5,949 28 0

astar (C++) 4.8M 4.8M 922 1,235M 34,519 104

xalancbmk (C++) 135M 135M 466 2,387M 418,924 78,618

sphinx3 (C) 14M 14M 1,136 302M 24,923 762

Table 3: Detailed results on SPEC CPU2006 benchmarks. pSweeper runs at 1s sweeping rate. †M for million.
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Figure 12: Memory overhead on SPEC CPU2006.

5.2.3 Comparison to DangSan and Oscar.
We compare pSweeper with DangSan [54] and Oscar [24], two

state-of-the-art UaF defense systems with best performance. We

use two sweeping rates of pSweeper, 1s and nosleep. The geomet-

ric mean of DangSan is a 41% slowdown and Oscar is 40%, while

pSweeper-nosleep is 12.5% and pSweeper-1s is 17.2%. Figure 13

compares the eleven benchmarks on which pSweeper obviously

outperforms DangSan and Oscar. There is no remarkable differ-

ence on other benchmarks. In terms of memory overhead, DangSan

imposes an average overhead of 210%, while pSweeper-nosleep is

112.5% and pSweeper-1s is 247.3%. Oscar has 52%memory overhead,

which is more efficient than both DangSan and pSweeper. Since

the memory overhead of pSpweer is mainly due to deferred free,

our future direction is to design a memory efficient allocator for
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Figure 13: Overhead comparison with DangSan and Oscar.

deferred free. pSweeper achieves much lower slowdown in applica-

tion performance mainly because the heavyweight security check

and enforcement have been outsourced to dedicated threads that

can leverage the spare cores in modern systems. In particular, the

workload induced to application threads is quite light.

5.3 Scalability on Multi-threaded Applications
We use PARSEC 3.0 [17] to evaluate the scalability of pSweeper

with respect to an increasing number of application threads. Our

baseline LLVM fails to compile four benchmarks and Figure 14

shows the results for nine succeeded ones. As we can see, pSweeper

scales nearly as well as the baseline on all benchmarks. This is

mainly because lock-free algorithms are devised to address almost

all races between pSweeper and application threads. As a result, the

incurred overhead does not increase significantly when systems be-

come more contended. For pSweeper-nosleep, the core running the
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Figure 14: Scalability of pSweeper on PARSEC 3.0. The num-
ber of threads must be a power of two for fluidanimate.

pSweeper thread always has a utilization of 100%. For most bench-

marks, pSweeper consumes about 20% and less than 1% CPU under

500ms and 1s sweeping rates, respectively. The CPU utilization

increases to 90% (500ms) and 10∼30% (1s) for memory-allocation

intensive benchmarks, such as gcc, perlbench, and xalancbmk. We

also observe that the runtime of benchmarks does not decrease any-

more after the number of application threads reaches four. This is

because our CPU has only two cores with 2-thread hyperthreading

on each core (i.e., providing 4-thread hyperthreading in total). The

geometric means of overhead over all nine benchmarks range from

7.5% to 18.1% for all three configurations of pSweeper. We find that,

when the number of application threads grows larger than the num-

ber of CPU threads (four in our case), pSweeper-nosleep incurs rela-

tively larger overhead than pSweeper-1s because pSweeper-nosleep

exacerbates the CPU contention, while pSweeper-1s consumes rel-

atively lower CPU resources. The memory overhead basically does

not highly correlate with the number of application threads and

the geometric means of overheads are 1600% (1s), 840% (500ms),

and 49% (no sleep), respectively. The high overhead is mostly due

to swaptions that consumes 144x memory for pSweeper (1s). The

reason is that the memory footprint of baseline swaptions is quite

small. As a result, the memory consumption caused by pSweeper

becomes exceptionally large relative to the baseline. Excluding

swaptions which is not evaluated by DangSan, the memory over-

heads of pSweeper become 27% (1s), 22% (500ms), and 18% (no

sleep), respectively.

5.4 Macro Benchmarks
We now demonstrate that pSweeper works efficiently on modern

applications with two case studies, Lighttpd web server and Firefox

browser.
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Figure 15: pSweeper overhead on Lighttpd.

5.4.1 Lighttpd.
We first conduct experiments on Lighttpd 1.4.40. To generate client

requests, we run the ApacheBench [1] tool on a second desktop.

The tool makes 100,000 requests with 128 concurrent connections

to transfer a 50-byte file. We use a very small file to minimize the

potential variance caused by network and disk I/O. The results are

averaged over five runs.

Figure 15 shows the throughput of Lighttpd with respect to the

different number of worker processes. We can see that pSweeper

scales well on Lighttpd with overheads in ranges of 3.4%∼17.8%.

The highest overhead occurs when the number of worker processes

reach four which occupy all four hyperthreading in two cores.

When the number of worker processes become larger than four, the

baseline throughput also decreases because application processes

now contend with each other. This result is consistent with those in

§5.3. The memory overheads are about 158.7% (1s), 42.2% (500ms),

and 38.7% (no sleep) in all cases.

5.4.2 Mozilla Firefox.
We choose Firefox 47.0 as our second case study. Table 4 presents

the evaluation results on three popular browser benchmarks, Mo-

tionMark [11] assessing a browser’s capability to animate complex

scenes at a target frame rate, Speedometer [12] measuring simu-

lated user interactions in web applications, and JetStream 1.1 [8]

covering a variety of advanced Javascript workloads. In all three

benchmarks, larger scores indicate higher performance. We can see

that the induced runtime overhead is quite low, ranging from 2.3%

to 8.1%. The geometric means of memory overhead are 863%, 374%,

and 117%, for pSweeper-1s, -500ms, and -nosleep, respectively.

We further evaluate pSweeper by visiting Alexa Top 50 websites.

We encounter no error during the test of accessing the websites.

Table 5 lists the page load time (using app.telemetry [2]) when visit-

ing five popular websites. On average, the page load time increases

by 3.7%.

Benchmarks MotionMark Speedometer JetStream 1.1
Score Runs /minute Score

Baseline 145.24 48.5 160.63

1s 133.98 (7.7%) 44.4 (6.2%) 156.9 (2.3%)

500ms 133.49 (8.1%) 45.12 (6.9%) 156.6 (2.5%)

nosleep 134.13 (7.6%) 44.7 (7.8%) 156.1 (2.8%)

Table 4: Overhead of pSweeper(-1s, -500ms, -nosleep) on
three browser benchmarks. The percentage in parentheses
is the slowdown.



Websites Baseline pSweeper
1s 500ms nosleep

google.com 0.55 0.57 0.56 0.58

youtube.com 1.95 1.99 2.02 2.01

facebook.com 0.64 0.66 0.66 0.67

amazon.com 2.42 2.51 2.52 2.50

yahoo.com 3.51 3.61 3.63 3.59

Table 5: Page load time (in seconds) of pSweeper on five pop-
ular websites.

5.5 Summary
In summary, faster sweeping rates can generally have lower runtime

and memory overheads. However, pSweeper with faster sweeping

rates will consume more energy and CPU resources. While this is

appropriate when there are idle cores, it may seriously affect the

performance of CPU-bound multi-threaded applications. Therefore,

if an application is not memory-allocation-intensive, pSweeper

should be usually configured to run at a lower sweeping rate.

6 DISCUSSION & LIMITATIONS
Comparison to garbage collection (GC). GC [6, 18] not only

heads off exploits but also prevents program crashes due to UaF

vulnerabilities. However, most GC algorithms consume more mem-

ory because they defer free until there is insufficient memory or

applications explicitly ask for. Even worse, some dangling pointers

can remain alive for a long time, thus preventing conservative GC

reclaiming freed memory. By contrast, pSweeper frees memory

after one round of pointer sweeping and can proactively eliminate

dangling pointers. Moreover, stop-the-world GC can cause unpre-

dictable interference to application performance. pSweeper instead

does not stall application threads. Finally, although pSweeper can

only probabilistically mask program crashes, it guarantees to pin-

point the root-causes of UaF vulnerabilities when programs crash.

pSweeper metadata protection. pSweeper does not specially
protect its metadata like theMAS and PLM table. However, this does

not degrade our security guarantee. By design, all UaF exploits are

disrupted. Thus, attackers can leak and tamper with metadata only

through non-UaF vulnerabilities. As discussed in §2, orthogonal

defenses should be used to protect against these vulnerabilities.

Accessing freed memory due to deferred free. Since pSweeper
defers object free until the end of a sweeping round, applications

are able to access the memory that should have been freed. This

design resembles garbage collection. Therefore, we believe this is

not a critical concern in practice.

Energy consumption. Since pSweeper continuously scans for

dangling pointers in a concurrent thread, it will consume more

power and energy. As a result, it may not be suitable for deployment

on battery-backed mobile devices. Instead, we envision pSweeper

to be mainly deployed on desktops.

False positives. Basically, false positives can occur in two cases.

First, a pointer may be type-casted to and used as an integer. For

instance, a program might depend on the difference of two pointers

p,q. If p or q is neutralized by pSweeper, the value (p − q) will be
changed. Second, applications may intentionally use the values in

dangling pointers. Since these false positives are rare in practice, we

believe they will not seriously affect the practicality of pSweeper.

Actually, all other three comparable approaches [36, 54, 58] suffer

the same false positives.

False negatives. pSweeper relies on the types of global/local vari-

ables and operands in store instructions to identify live pointers.

However, an integer is type-casted to a pointer at runtime. Also,

pSweeper currently conservatively ignores unions if one of their

fields are non-pointers. In these cases, pSweeper will suffer false

negatives if the missed pointers become dangling.

Another possible cause of false negatives lies in the fact that

pSweeper does not proactively neutralize dangling pointers in reg-

isters. It will induce undue overhead if pSweeper peeks into and

tampers with the registers used by application threads. While these

dangling pointers are theoretically false negatives, they can hardly

be exploited in practice. Therefore, currently we do not tackle them.

Instead, we guarantee that they never propagate to memory (§4.5).

Again, all existing approaches [36, 54, 58] do no handle dangling

pointer in registers.

7 RELATEDWORK
We have compared pSweeper with DANGNULL [36], FreeSentry

[58] and DangSan [54], the works closest to ours above (§3.1). Here

we discuss the remaining related works.

Dangling pointer detection. Tools like Valgrind [45] and Ad-

dressSanitizer [51] track the (de)allocation status of each memory

location. As long as a freed memory block is not reallocated, these

tools can detect all dangling pointers. However, they can miss

those pointing to a reallocated memory, which is common in UaF

exploits. Another set of approaches extend each pointer with a

unique identifier and check the validity on every pointer derefer-

ence [15, 43, 56, 57]. Unfortunately, software-only explicit pointer

checks can slow applications by an order of magnitude. Recently,

Nagarakatte et al. [40, 41] proposed a hardware-assisted approach

that can provide full memory safety at low overheads. Undangle

[19] detects dangling pointers by using dynamic taint analysis to

track pointer propagations at runtime. It can serve as an in-house

testing tool but not a runtime defense system.

Safe memory allocators. Cling [14] is a safe memory allocator

that avoids memory reuse among objects of different types. It can

thwart many, but not all, UaF exploits. DieHard [16] and DieHarder

[47] are based on the idea of “infinite" heaps. Unfortunately, an

infinite-heap is idealized but infeasible, and thus it can only provide

probabilistic memory safety. Exterminator [48] extends DieHard

to automatically fix dangling pointers by delaying object frees.

Dhurjati and Adve [26] used a new virtual page for each memory

allocation and relied on page protection to detect dangling pointer

accesses. Inspired by Dhurjati and Adve’s work, Oscar [24] develops

a page-permission-based protection scheme to ensure pointer safety.

By contrast, pSweeper proactively neutralizes all dangling pointers.

Safe C languages. Fail-safe C [49] implements a completely

memory-safe compiler that is fully compatible with ANSI C. It uses

garbage collection to protect against dangling pointers. There are

also safe C dialects, such as Cyclone [28, 30] and CCured [21, 44]. Al-

though they attempt to keep compatible with C/C++ specifications,

non-trivial efforts are still needed to retrofit legacy programs.

Parallelizing security checks. Concurrent security checks as

in pSweeper have also been adopted in several previous works.



Speck [46] decouples security checks from applications and exe-

cutes them in parallel on multiple cores. Unlike Speck, pSweeper

does not use speculative execution. Cruiser [59] and Kruiser [52]

use concurrent threads to detect buffer overflows in user appli-

cations and kernels, respectively. ShadowReplica [29] accelerates

dynamic data flow tracking by running analysis on spare cores.

However, pSweeper tackles a different problem and faces unique

challenges. Finally, RCORE [27] detects program state invariant

violations on idle cores. Although RCORE can also detect dangling

pointers, it does not consider the race conditions (e.g., dangling

pointer propagation §4.5 and no deferred free in RCORE). RCORE

also relies on static type analysis to identify pointers, which is

quite challenging to be complete in real-world software. Therefore,

pSweeper is more robust than RCORE.

8 CONCLUSION
This paper presents pSweeper, a system that effectively protects

applications from UaF vulnerabilities at low overhead. The key

feature of pSweeper is to iteratively sweep live pointers to neutral-

ize dangling ones in concurrent threads. To accomplish this, we

devise lock-free algorithms to address the entangled races among

pSweeper and application threads, without using any heavyweight

synchronization mechanism that can stall application threads. We

also propose to encode object origin information into dangling

pointers to achieve object origin tracking, which helps to pinpoint

the root-causes of UaF vulnerabilities. We implement a prototype of

pSweeper and validate its effectiveness and efficiency in production

environments.
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