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ABSTRACT
Domain names have been exploited for illicit online activities for
decades. In the past, miscreants mostly registered new domains
for their attacks. However, the domains registered for malicious
purposes can be deterred by existing reputation and blacklisting
systems. In response to the arms race, miscreants have recently
adopted a new strategy, called domain shadowing, to build their
attack infrastructures. Specifically, instead of registering new do-
mains, miscreants are beginning to compromise legitimate ones
and spawn malicious subdomains under them. This has rendered
almost all existing countermeasures ineffective and fragile because
subdomains inherit the trust of their apex domains, and attackers
can virtually spawn an infinite number of shadowed domains.

In this paper, we conduct the first study to understand and detect
this emerging threat. Bootstrappedwith a set ofmanually confirmed
shadowed domains, we identify a set of novel features that uniquely
characterize domain shadowing by analyzing the deviation from
their apex domains and the correlation among different apex do-
mains. Building upon these features, we train a classifier and apply
it to detect shadowed domains on the daily feeds of VirusTotal, a
large open security scanning service. Our study highlights domain
shadowing as an increasingly rampant threat. Moreover, while pre-
viously confirmed domain shadowing campaigns are exclusively
involved in exploit kits, we reveal that they are also widely exploited
for phishing attacks. Finally, we observe that instead of algorith-
mically generating subdomain names, several domain shadowing
cases exploit the wildcard DNS records.

1 INTRODUCTION
The domain name system (DNS) serves as one of the most funda-
mental Internet components and provides critical naming services
for mapping domain names to IP addresses. Unfortunately, it has
also been constantly abused bymiscreants for illicit online activities.
For instance, botnets exploit algorithmically generated domains to
circumvent the take-down efforts of authorities [11, 65, 86], and
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scammers set up phishing websites on domains resembling well-
known legitimate ones [38, 75]. In the past, Internet miscreants
mostly registered new domains to launch attacks. To mitigate the
threats, tremendous efforts [10, 14, 33, 41, 77] have been devoted
in the last decade to construct reputation and blacklisting systems
that can fend off malicious domains before visited by users. All of
these endeavors render it less effective to register new domains
for attacks. In response, miscreants have moved forward to more
sophisticated and stealthy strategies.

In fact, there is a newly emerging class of attacks adopted by
cybercriminals to build their infrastructure for illicit online activi-
ties, domain shadowing, where instead of registering new domains,
miscreants infiltrate the registrant accounts of legitimate domains
and spawn subdomains under them for malicious purposes. Domain
shadowing is becoming increasingly popular due to its superior
ability to evade detection. The shadowed domains naturally inherit
the trust of a legitimate parent zone, and miscreants can even set
up authentic HTTPS connections with Let’s Encrypt [59]. Even
worse, miscreants can create an infinite number of subdomains
under many hijacked legitimate domains and rapidly rotate among
them at no cost. This makes it quite challenging to keep blacklists
up-to-date and gather useful information for meaningful analysis.
While domain shadowing has been reported in public outlets like
blogs.cisco.com [8, 40], most previous studies only elaborate on
sporadic cases collected in a short time through manual analysis.
It is still unclear how serious the threat is and how to address this
domain shadowing problem on a larger scale.

In this paper, we conduct the first comprehensive study of do-
main shadowing in the wild, and we present a novel system to au-
tomatically detect shadowed domains by addressing the following
unique challenges. Shadowed domains by design do not present sus-
picious registration information, and thus all detectors leveraging
these data [30, 33, 34] can be easily bypassed. Blindly blacklisting
all sibling subdomains of shadowed domains is also infeasible in
practice, since it can cause large amounts of collateral damage. Last
but not least, most suspicious DNS patterns identified in previous
studies do not work well in domain shadowing. For instance, Kopis
[10] analyzes the collective features of all visitors to a domain. How-
ever, our study has seen many shadowed domains being visited
only once, rendering the collective features insignificant. Such col-
lective features can be applied to malicious apex domains1 because

1An apex domain is also known as a bare/base/naked/root domain that is separated
from the top level domain by a dot, e.g., foo.com, and needs to be purchased from
registrars.
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the domain registration cost will become unaffordable if an apex is
used only a few times.

To bootstrap the design of our detector, we collect a set of 26,132
confirmed shadowed domains under 4,862 distinct zones through
manually searching and reviewing technical reports by security pro-
fessionals. Comparing them with legitimate subdomains, we find
that the shadowed ones can be characterized and distinguished by
two dimensions. On one hand, shadowed domains usually exhibit
deviant behaviors and are more isolated from those known-good
subdomains under the same parent zone. For instance, most le-
gitimate domains are hosted on reputable servers, which usually
strictly restrict illicit content. Due to the nature of their criminal ac-
tivity and their demand to evade detection and possible take-down,
shadowed domains have to be hosted on cheap and cybercriminal-
friendly servers. This deviation serves as a prominent indicator
of potential shadowed domains. On the other hand, miscreants
tend to exploit a set of shadowed domains under different parent
zones within the same campaign. This can greatly increase the
resilience and stealthiness of their infrastructure. However, such
correlation also presents suspicious synchronous characteristics.
For instance, shadowed domains in the same campaign usually
appear and disappear at the same time.

Based on these observations, we develop a novel system, called
Woodpecker, to automatically detect shadowed domains by inspect-
ing the deviation of subdomains to their parent zones and the cor-
relation of shadowed domains among different zones. In particular,
we compose 17 features characterizing the usage, hosting, activity,
and name patterns of subdomains, based on the passive DNS data.
Five classifiers (Support Vector Machine, RandomForest, Logistic
Regression, Naive Bayes, and Neural Network) are then trained
using these features. We achieve a 98.5% detection rate with an ap-
proximately 0.1% false positive rate with a 10-fold cross-validation
when using RandomForest.

Woodpecker is envisioned to be deployed in several scenarios,
e.g., domain registrars and upper DNS hierarchy as a complement to
Kopis [10], generating more accurate indicators about the ongoing
cybercrimes. In this paper, we demonstrate a use case in which
Woodpecker is deployed on the open security service VirusTotal
(VT) [82]. Specifically, we run our trained classifier over a large-
scale dataset built using all subdomains submitted to VirusTotal
[82] during February∼April 2017 as seeds. The dataset contains
22,481,892 unique subdomains under 2,573,196 parent zones. These
domains are hosted on 4,809,728 IP addresses.
Our findings. Applying Woodpecker to the daily feeds of Virus-
Total, we obtain 287,780 reports, of which 127,561 are confirmed
as shadowed domains with a set of heuristics (most of the remain-
ing ones are about malicious apex domains). Our measurement
of the characteristics of these shadowed domains indicates that
they exhibit quite different properties from conventional malicious
domains, and thus existing systems can hardly detect the shadowed
domains. Our manual assessment of the security measures of do-
main registrars shows that their current practices cannot effectively
protect the users. We also observe two interesting cases in our re-
sults. First, shadowed domains currently exposed in the technical
blogs are exclusively involved in exploit kits. However, our detec-
tion results show that shadowed domains are also widely exploited

in phishing attacks. Another interesting finding is that miscreants
also exploit the wildcard DNS records to spawn shadowed domains.
Roadmap. The remainder of this paper is organized as follows.
Section 2 introduces the background of DNS and shadowed domains.
Section 3 presents the design and extracted features of our detector.
In Section 4, we validate the efficacy of our detector using labeled
datasets. We then conduct a large-scale analysis of the shadowed
domains in Section 5. Section 6 discusses the limitations of our
detection approach. Finally, we survey related work in Section 7
and conclude in Section 8.

2 BACKGROUND
We give a brief overview of the domain system in the beginning
of this section. Then, we describe the schema regarding domain
shadowing attacks and use one real-world case identified by our
detection system to walk through the attack flow.

2.1 Basics of Domain Names
Domain name structure. A domain name is presented in the
structure of hierarchical tree (e.g., a.example.com), with each level
(e.g., example.com) associated with a DNS zone. For one DNS zone,
there is a single manager that oversees the changes of domains
within its territory and provides authoritative name-to-address
resolution services through the DNS server. The top of the domain
hierarchy is the root zone, which is usually represented as a dot. So
far, the root zone is managed by ICANN, and there are 13 logical
root servers operated by 12 organizations. Below the root level is
the top-level domain (TLD), a label after the rightmost dot in the
domain name. The commonly used TLDs are divided into three
groups, including generic TLDs (gTLDs) like .com, country-code
TLDs (ccTLDs) like .uk, and sponsored TLDs (sTLDs) like .jobs.
Next to TLD is the second-level domain (2LD) (e.g., .example.com),
which can be directly registered from registrars (like GoDaddy)
if not yet occupied, in most cases. One exception occurs when
both ccTLD and gTLD appear in the domain name, like .co.uk,
and the registrants must choose a 3rd-level domain (3LD), like
example.co.uk. In this work, we use effective TLDs (eTLDs) or
public suffix to refer to the TLDs directly operated by registrars
(like .com and .co.uk), and apex domains (or apex in short) to
refer to domains that can be obtained under eTLDs. The registrant
that owns the apex domain is allowed to create subdomains, like
3LDs and 4LDs without asking permission from the registrar. In
the meantime, the registrant takes responsibility for managing the
domain resolution, either by running her own DNS server or using
other public DNS servers.
DNS record. When a registrant requests a domain name from a
registrar, the request is also forwarded to a registry (e.g., Verisign),
which controls the domain space under the eTLD and publishes
DNS records (or resource records (RR)) in the zone file. Similarly, a
subdomain creation request also causes changes in the zone file,
except that the request can be handled by the owner herself. An
RR is a tuple consisting of five fields, <name, TTL, class, type, data>,
where name is a fully qualified domain name (FQDN), TTL specifies
the lifetime in seconds of a cached RR, class is rarely used and is
almost always "IN", type indicates the format of a record, and data
is the record-specific data, e.g., an IP address of a domain.



Figure 1: Adding a subdomain in domain registrar GoDaddy.
Assume the apex domain is foo.com. The added subdomain
is shadowed.foo.com.

Subdomain management. Domain owners can create and man-
age subdomains under their apex domains through web GUI or API
provided by registrars. There are three types of DNS RRs associated
with subdomain creation. An A record maps a domain name to an
IPv4 address, e.g., foo.example.com A 1.1.1.1. A CNAME record
specifies the alias of a canonical domain, e.g., foo.example.com
CNAME bar.another.com. An AAAA record maps a domain name to
an IPv6 address, e.g., foo.example.com AAAA 0:0:0:0:0:0:0:1.
Figure 1 shows the web interface of GoDaddy for subdomain cre-
ation. Assume the apex is foo.com and the Host field is filled with
shadowed. A new subdomain shadowed.foo.com will be created
after the submission of request, which updates the zone file shortly.
The domain owner could fill the Host field with * to create a wild-
card record. As a result, any request to the non-existent subdomain
(not specified by an A, AAAA or CNAME record) will be captured and
resolved to the corresponding IP.

2.2 Domain Shadowing
A malicious web host is a critical asset in the cybercriminal in-
frastructure. To prevent hosts from being easily discovered, like
exposing their physical existence from IPs, attackers abuse DNS ser-
vices and hide the hosts behind the ever-changing domain names.
Many attackers choose to own domain names from registrars. Since
malicious domains are ephemeral, usually revoked shortly after
being detected, they prefer to register many domains at a low price
and short expiration duration. This strategy, however, leaves thema-
licious domains more distinguishable from the legitimate domains
when examined by domain reputation systems [14, 30, 33, 57, 58].

Recently, attackers have begun to compromise the domain sys-
tem to evade existing detection systems while confining the cost
of obtaining domains. Discovered by Cisco Talos in 2015 [40], An-
gler, an exploit kit with widespread usage by underground actors,
evolved its infrastructure and used the subdomains under the le-
gitimate domains as redirectors to cover the exploit servers. In
particular, the bad actors harvested a large amount of credentials
of domain owners (e.g., through phishing emails or brute-force
guessing) and logged into their accounts to create subdomains.
This technique is called domain shadowing, and such subdomains
are called shadowed domains.

Domain shadowing is quite effective in evading existing detec-
tion systems for several reasons. First, many registrants use weak
passwords and never check the domain configuration after its cre-
ation [23]. In addition, the changes are not submitted to the reg-
istries’ zone file, setting aside the monitoring system of registries.
Second, there is usually little restriction over subdomain creation.
As long as a domain consists of less than 127 levels and the name
length is less than 253 ASCII characters, the domain name is valid.

Malicious Ads Compromised Websites Infected Ransomware

aaa.app-garden.com
add.app-gardenuniversity.net
art.appgarden.co
fix.app-gardenuniversity.com
free.appgardenuniversity.com
info.appgardenuniversity.net
may.app-gardenuniversity.org
set.appgardenuniversity.info
fast.app-garden.info
red.app-garden.co
v60198.hosted-by-vdsina.ru

aaa.         109.234.36.165
www.             54.236.178.191; 34.192.129.244; ... 
appgarden15        72.5.194.131
appgarden12        66.150.98.243
appgarden9          66.151.15.203
appgarden1          66.150.98.241

…

…
appgarden10       66.150.105.165

app-garden.com

109.234.36.165

Figure 2: Shadowed domains used in a campaign of EITest
Rig EK in April 2017. app-garden.com is a legitimate apex
domain.

This leaves virtually infinite space for an adversary to rotate do-
mains and evade blacklists. Third, the malicious subdomains inherit
the reputation of legitimate apex domains. As information from the
Whois record could greatly impact the domain score outputted by
many systems [33] and subdomains share the same values as their
apex domains, the shadowed domains can easily slip through the
existing detection systems.

In addition to compromising registrant credentials, vulnerabili-
ties in registrars and DNS servers could also lead to domain shad-
owing. For instance, it has been reported that several reputable
registrars were breached and massive domain credentials were
leaked, including Name.com [67], punto.pe [27], and Hover [79].
As a result, malicious subdomains could be created under a large
volume of apex domains at the same time. Moreover, the zone
files hosted by the authoritative DNS servers could be targeted
by domain hackers who manipulate the RR data to change or add
domains [44].
Scope. In this work, we aim to detect shadowed domains created
in bulk by domain hackers. While the existing research revealed
that this technique was mainly used by exploit kits (see the descrip-
tion of our ground-truth data in Table 2), we consider all attacks
leveraging this technique, like phishing, in our study. Changing
and deleting subdomains without the owners’ consent, which could
achieve the same goal or cause service interruption, are not con-
sidered in this paper, given that they are less likely to be used and
observed. While subdomains could be created under malicious apex
domains, they are not the focus of our study and could be handled
by existing tools gauging domain reputation like PREDATOR [33].
Targeted attacks like APT (Advanced Persistent Threat) operate on
a small number of domains, including subdomains under legitimate
apex domains. Detecting targeted attacks automatically is still a
paramount challenge for the security community [29], due to its
nominal signal overwhelmed by a large amount of data. We do
not expect individual subdomains in these cases to be effectively
detected by our system and leave that research as a future direction.

2.3 Real-world Example
Here we demonstrate how domain shadowing empowers attack-
ers’ operations using a real-world case recently discovered by
our system (illustrated in Figure 2). In this case, we found the



shadowed domains in the passive DNS data (our dataset is de-
scribed in Section 3.2), and the appearance of the shadowed do-
mains was also documented in a security website [60]. One such
domain is aaa.app-garden.com, created under a legitimate 2LD
app-garden.com, which redirects users’ traffic from compromised
doorway sites to Rig Exploit Kit (EK) [72], aiding a malware distri-
bution campaign called EITest. In particular, the doorway sites serve
malicious advertisements created by attackers, and the JavaScript
code redirects the visitor to a sequence of compromised sites until
arriving at aaa.app-garden.com, which stores Rig EK’s drive-by-
download code. If the malicious code executes successfully in a
user’s browser, a ransomeware will be downloaded to encrypt vic-
tim’s files.

By inspecting the data relevant to the shadowed domains, we dis-
covered several unique features about such an attack. The shadowed
domain aaa.app-garden.com points to an IP address that is quite
different from the apex app-garden.com and other sibling subdo-
mains, like www.app-garden.com. More specifically, the shadowed
domain is associatedwith an IP in Russia while all other subdomains
are linked to IPs in the United States. By inspecting the domains
linked to 109.234.36.165 (10 in total from our data), we found
that nine of them share similar apex names to app-garden.com
(e.g., app-garden.co). Notably, all nine apex domains were regis-
tered by Cook Consulting, Inc., with one in April 2011, six in May
2014, and two in March 20172. We speculate that the domain hacker
obtained the login credential and injected the subdomain into many
apex domains under the victim’s account. It is also interesting that
meaningful single words, like info and free, are used to construct
the malicious subdomains. As such, detectors based on random
domain names, like DGA detector [11, 86], have a high probability
of being evaded.

3 AUTOMATIC DETECTION OF SHADOWED
DOMAINS

In response to the emerging threat of domain shadowing, in this
section we present our design of an automated detection system,
Woodpecker. We first overview its workflow and deployment sce-
narios. Then, we describe the dataset used for training and testing.
Finally, we elaborate on the features we use to distinguish shadowed
and legitimate domains.

3.1 Overview
We could follow conventional approaches, like content or URL
analysis, to detect shadowed domains. However, after our initial
exploration, we found that these approaches are not suitable. Many
shadowed domains are used as redirectors. Finding the gateways,
e.g., compromised sites, is a non-trivial task. Even if we are able
to find the shadowed domains and download the content, we may
still fail to classify them correctly when they only serve seemingly
benign redirection code. Compared to domains owned by attackers,
the registration information of a shadowed domain is identical to
that of the benign apex domain, which undermines the effectiveness
of many approaches based on domain registration.

2The app-garden.com site was registered through a domain proxy, and the registrant
information is not available through the Whois query. However, that domain was
registered at the same time as one of the nine domains.

Users’ visits to shadowed domains would be observed by DNS
servers and further collected by a passive DNS (PDNS) database.
Erasing the traces fromDNS servers and PDNS is considerably more
difficult than compromising websites and domain accounts. As such,
we decide to analyze the DNS data to solve our problem. Though the
information underlying the DNS data is muchmore scarce than web
content, it is still sufficient to distinguish shadowed and legitimate
domains, due to two key insights. First, shadowed domains serve a
different purpose from the legitimate parent domains and sibling
subdomains: for instance, they could be associated with IPs far
from their parents’ and siblings’, leading to prominent deviation.
Second, to make malicious infrastructures resilient to take-down
efforts, attackers prefer to play domain fluxing and rotate shadowed
domains. In the meantime, the IPs covered by them are limited,
leading to abnormal correlation, especially when they are under
apex domains whose owners have no business relations.

Our detection system, Woodpecker, is driven by those two in-
sights and runs a novel deviation and correlation analysis on the
PDNS data. It takes three steps to detect shadowed domains. Given
a set of subdomains S observed at a certain vantage point (e.g.,
enterprise proxy and scanning service), we first build the profiles
for each apex of S using the data retrieved from the PDNS source.
Assume an apex D is represented by a set of tuples:

D = { si | si :=< namei , rrtype, rdata, tf , tl , count > }
where namei is the FQND under D, rrtype and rdata represent
the type (e.g., A record) and data (e.g., IP) fields within the answers
returned by DNS servers , tf and tl denote the time when an indi-
vidual rdata is first and last seen, and count is the number of DNS
queries that receive the rdata in response.

In the second step, Woodpecker aggregates these profiles and
characterizes the subdomains using a set of 17 significant features
from the dimensions of deviation and correlation. In addition to the
data from PDNS, we also query a public repository of web crawl
data to measure the connectivity of domains (only extracting web
links). Finally, a machine-learning classifier is trained over a labeled
dataset and is further applied to large unlabeled datasets to detect
shadowed domains. Figure 3 depicts the workflow of Woodpecker.
Deployment. Woodpecker is a lightweight detector against shad-
owed domains, which only requires passive DNS and publicly
crawled data. We envision Woodpecker to be deployed in several
scenarios. It can help domain registrars like GoDaddy to detect
domains whose subdomains are added in an unexpected way, and
hence allows them to notify domain owners promptly. The opera-
tors of DNS servers can deploy our system to trace and mitigate
Internet threats. The administrators of organizational networks
can use the output of our system to amend their blocked lists (i.e.,
whether to block a subdomain or an apex domain). Finally, it can
be deployed by public scanning services, like VirusTotal [82], to
analyze submitted URLs/domains and provide more accurate labels.
When these services are used as blacklists and a site is blocked,
knowing the label is essential for the owner to diagnose the root
cause [15].
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Figure 3: Workflow of Woodpecker.

3.2 Dataset
To bootstrap our study, we collected domains from different sources
and queried the PDNS data to build profiles. Below we describe
how these data were collected and summarize them in Table 1.
Shadowed domains. Obtaining a list of shadowed domains re-
quires a lot of manual effort. While there are many public blacklists
documenting malicious domains, we have not found any such list
for shadowed domains specifically. Hence, we rely on web search3
(using keywords like "domain shadowing" and "shadowed domain")
to find all relevant articles. After manually reviewing that infor-
mation, the indicators (i.e., malicious domains/IPs/hashes) in the
articles are downloaded. The subdomains hosted under knownmali-
cious apex domains and directly under third-party hosting services
are removed for dataset sanitization. Overall, we managed to collect
26,132 known shadowed domains under 4,862 apex domains, as
listed in Table 14. Table 2 summarizes this dataset, and we name it
Dshadowed . While all shadowed domains in Dshadowed are used
for exploit kits, we are able to discover other types of usage, like
phishing, from the testing dataset (elaborated in §5.1).
Legitimate domains.We collected legitimate domains as another
source to train the classifier. The data comes from two channels.
First, we chose domains that are consistently ranked among the top
20,000 from 2014 to 2017 by Alexa [61], and we obtained 8,719 2LDs
in total. These popular domains usually have many subdomains
that cover a broad spectrum of services, including web, mail, and file
downloading. Solely relying on popular domains can introduce bias
to our system, so we also obtained non-popular legitimate domains
from a one-week DNS trace collected from a campus network. The
DNS trace was anonymized and desensitized for our usage. We
scanned these domains using VirusTotal and excluded all of the
malicious ones (alarmed by at least one participating blacklist).
Further, we randomly sampled 2,500 2LDs that were ranked below
500,000 by Alexa in 2017. The two datasets are denoted as Dpop and
Dnonpop . The volume of subdomains found from our legitimate
datasets is not very extensive due to the rate limit placed by the
PDNS provider, as described later.
VT daily feeds. We evaluated the trained model based on the
data downloaded from VT, as a showcase to demonstrate that

3Searching Google and otx.alienvault.com, a platform sharing threat intelligence.
4We rely on a list documenting the public suffix in domain names to extract the
apex [62].

## From 360
{"rrname": "eu.account.amazon.com", "rrtype": "A",
"rdata": "52.94.216.25;", "count": 31188,
"time_first": 1477960509, "time_last": 1494290720}
## From Farsight
{"rrname":"aws.amazon.com.","rrtype":"A",
"rdata":["54.240.255.207"], "count":63,
"time_first":1302981660,"time_last":1318508315}

Figure 4: Two sample records for subdomains under
Amazon.com from 360 and Farsight (field explanation is cov-
ered in Section 3.1).

Woodpecker can be readily integrated into security services. In
particular, we queried for a live feed of reports on all URLs submit-
ted to VT during February∼April 2017 on a daily basis. For each
submitted subdomain si , we queried VT to obtain the domain re-
port and IP report to include additional information for later result
validation. All subdomains without IP and apex information were
filtered out, in order to reduce unnecessary queries submitted to
PDNS. We further excluded subdomains one level under web host-
ing services and dynamic DNS based on the category field from
the VT domain report (e.g., "web hosting" and "dynamic DNS").
This dataset is denoted as Dvt , which contains 22,481,892 unique
subdomains under 2,573,196 apex domains.
Passive DNS data. We queried the PDNS data of two security
companies, Farsight Security [26] and 360 Security [64], to obtain
aggregated DNS statistics for apex domains in all datasets (we used a
wildcard query, like *.example.com, to retrieve the data associated
with all subdomains of example.com), except DVT . We did not
query Farsight for DVT due to its daily rate limit. Our account
granted by 360 does not have such restrictions and we queried 360
for all apex domains in DVT . Figure 4 shows two sample records
from 360 and Farsight.

The columns 6∼8 in Table 1 present the obtained data. As shown,
different PDNS databases have varying coverage. The evaluation
of the impact of different PDNS sources is presented in §4.3. For
Dshadowed , their siblings under the same apex domains might be
added by attackers but missed by security companies. It is desir-
able to determine whether Woodpecker can detect new shadowed
domains among them. As such, we constructed another dataset
Dunknown , which includes all unlabeled siblings of Dshadowed .



Dataset Category # of Domains # of Apex Farsight 360
# of Domains # of IP # of Domains # of IP

Dshadowed Shadowed 26,132 4,862 21,958 1,188 7,121 965
Dunknown Unlabeled siblings of Dshadowed - - 34,586 27,630 8,573 10,609

Dpop Legitimate popular - 8,719 8,965,818 3,596,441 1,081,112 645,763
Dnonpop Legitimate unpopular - 2,500 713,154 349,874 80,920 61,507

Dvt Daily feeds from VirusTotal - 2,573,196 - - 22,481,892 4,809,728

Table 1: Training and test datasets. Columns 3∼4 include all domains we manually collected and thus some cells like those of
Dunknown do not have data. Columns 5∼8 present the number of domains obtained from two PDNS, Farsight and 360, respec-
tively.

Source Campaign # Indicators
blogs.cisco.com Angler [8, 40] 16,580
blog.talosintelligence.com Neutrino [78], Angler [71, 80], Sundown [20] 9,536
heimdalsecurity.com Angler [31] 5
blog.malwarebytes.com Neutrino [70], Angler [2, 81] 9
proofpoint.com Angler [69] 2

Total 26,132

Table 2: Sources of confirmed domain shadowing.

3.3 Features of Domain Shadowing
Woodpecker inspects the PDNS data collected from the global sen-
sor array to detect shadowed domains. Prior to our work, there
have been several approaches using PDNS data to detect malicious
domains in general, like Notos [9], Exposure [14], and Kopis [10].
However, these systems are not good choices for finding shadowed
domains, due to their different features (e.g., ephemeral and read-
able names) and appearance in many different attack vectors (not
only those used by botnet). We provide a detailed comparison in
Appendix §A.

By examining the ground-truth setDshadowed , we found a set of
features unique to shadowed domains, which are essentially divided
into two dimensions.
- Deviation from legitimate domains under the same apex.
How subdomains are created and used differs greatly between legit-
imate site owners and domain hackers. To name a few, legitimate
subdomains tend to be hosted close to the apex, while shadowed
domains are hosted by bullet-proof servers with much fewer restric-
tions whose IP is far from the apex. A site owner usually creates
subdomains gradually while shadowed domains are added in bulk
around the same time. The homepage of the apex domain (or www
subdomain) usually contains a link to legitimate subdomains while
shadowed domains are isolated, since the registrar and apex website
run different systems and compromising them at the same time is
much more difficult.
- Correlation among shadowed domains under a different
apex. Inspecting a single apex is not always effective. On the other
hand, shadowed domains under a different apex might be correlated,
when an attacker compromises multiple domain accounts and uses
all injected subdomains for the same campaign. For instance, shad-
owed domains under a different apex might be visited around the
same time and point to the same IP address, which rarely happens
for legitimate subdomains under a different apex.

In the end, we discovered 17 key features for the detection pur-
pose, under four categories: usage, hosting, activity, and name, as
listed in Table 3. All features related to deviation can be defined
as D(si ,Sapex (si )), where Sapex (si ) represents all known-good do-
mains under the same apex of si . Labeling all known-good domains

is impractical when processing massive amounts of data. Instead,
we simply consider the apex domain and www subdomain as known-
good. Site owners usually create www subdomains for serving web
content after the domain is purchased, so they are rarely taken by
attackers. The correlation features are extracted from subdomains
hosted together, i.e., sharing the same IP. We choose IP to model
correlation since legitimate websites tend to avoid sharing the IP
with attackers. Below we elaborate the details of each feature.

3.3.1 Subdomain Usage.

This category characterizes how subdomains are visited, their
popularity and web connectivity.
Days between first non-www and apex domain.We check when
the first non-www subdomain was created under the apex. We found
that many compromised apex domains only run websites, whose
only legitimate subdomain is a www domain. Therefore, a new sub-
domain created suddenly should be considered suspicious. Assume
Date(d) is the date when a domain d is first seen. We compute this
feature as F1 = 1

log(Date(s)−Date(apex (s))+1) , where s is the first
non-www subdomain under its apex and apex(s) denotes its apex.
If there are no subdomains or all subdomains are created on the
same day as their apex, this feature is set to 1.
Ratio of popular subdomains.Miscreants usually generate names
of their shadowed domains algorithmically. We observe that the
names tend to avoid being overlapped with popular subdomain
names, as changing the existing subdomain is not among the at-
tacker’s goals. Based on this observation, we define two features,
the ratio of popular subdomains under the upper apex and on an
IP5. Specifically, given a suspicious subdomain s , we compute F2 =

| {POP (di )} |
| {di |2LD(di )==2LD(s)} | and F3 = minj=1..n { | {POP (di )} |

| {di |I P (di )==I Pj (s)} |
},

where IPj is the jth IP of s . For POP(di ), we only consider sub-
domains with only one more level than their apex. For example,
www.foo.com is a popular subdomain under foo.com while
www.a.foo.com is not. We examined the Forward DNS names col-
lected by Project Sonar [25] and selected the top 50 names for
popular subdomains, as listed in Table 4.
Web connectivity. Shadowed domains are irrelevant to the ser-
vices provided by their apex, sibling and hosting servers. As a
result, they are not connected to the homepage or other subdo-
mains through web links, while connections between legitimate
subdomains and apex are more likely established. Furthermore, a

5We issue additional PDNS queries to obtain subdomains not shown in the collected
datasets for an uncovered IP.



Category Feature ID Feature Name Dimension Novel

Subdomain
Usage

F1 Days between 1st non-www and apex domain D
√

F2 Ratio of popular subdomains under the same apex domain D
√

F3 Ratio of popular subdomains co-hosted on the same IP C
√

F4 Web connectivity of a subdomains D
√

F5 Web connectivity of subdomains under the same apex domains D
√

F6 Web connectivity of subdomains co-hosted on the same IP C
√

Subdomain
Hosting

F7 Deviation of a subdomain’s hosting IPs D
√

F8 Average IP deviation of subdomains co-hosted on the same IP C
√

F9 Correlation ratio in terms of co-hosting subdomain number C [14]
F10 Correlation ratio in terms of co-hosting apex number C [14]

Subdomain
Activity

F11 Distribution of first seen date C
√

F12 Distribution of resolution counts among subdomains on the same IP C
√

F13 Reciprocal median of resolution counts among subdomains on the same IP C
√

F14 Distribution of active days among subdomains on the same IP C
√

F15 Reciprocal median of active days among subdomains on the same IP C
√

Subdomain
Name

F16 Diversity of domain levels C
√

F17 Subdomain name length C [11, 33]

Table 3: Features used in our approach to detect shadowed domains. Feature dimensions D and C denote Deviation and Cor-
relation, respectively. Although some features use the same data source as previous work, e.g., resolution counts as in [4, 51],
we model them in different ways.

www mail remote blog webmail
server ns1 ns2 smtp secure
vpn m shop ftp mail2
test portal ns ww1 host

support dev web bbs ww42
mx email cloud 1 mail1
2 forum owa www2 gw

admin store mx1 cdn api
exchange app gov 2tty vps
govyty hgfgdf news 1rer lkjkui

Table 4: List of top 50 popular subdomain names.

shadowed domain is hardly accessible to web crawlers that aim to
index web pages, and cloaking is frequently performed.

Here we use the data collected by public web crawlers, includ-
ing Internet Archive [12] and CommonCrawl [21], to measure the
connectivity6. For each subdomain s , we issue a query to Internet
Archive and CommonCrawl. If any page under s is found to be in-
dexed, this feature, denoted as F4 = WEB(s), is set to 1. Otherwise,
it is set to 0.

Additionally, we compute F5 =
∑
WEB(di )

| {di |2LD(di )==2LD(s)} | and F6 =

minj=1..n {
∑
WEB(di )

| {di |I P (di )==I Pj (s)} |
}, or the ratio of reachable subdo-

mains under the same apex and same IP. Although accurately
assessing connectivity is impossible, we observe that these two
crawlers have good coverage of the legitimate domains and hence
provide a solid approximation.

3.3.2 Subdomain Hosting.

Deviation of hosting IP. Shadowed domains are usually hosted
on IP addresses distant from their apex domain and other known-
good subdomains. By contrast, legitimate subdomains tend to be
hosted within one region, e.g., within the same autonomous system
(AS). Given an apex domain A = {< fi , li , ipi >}i=1..n and its
subdomains S = {< fi , li , ipi >}i=1..m , where fi and li denote the
first and last seen date of ipi , the deviation (F7) is computed as,

Dev(A, S) =max j=1..m {mini=1..n {ψ (Ai , Sj )|A(fi ) < S(fj )}} (1)

6We did not query search engines like Google, because queries are blocked when
sending too many.

where ψ (Ai , Sj ) is a function that computes the deviation score
between two IP records. It is defined as,

ψ (Ai , Sj ) =
∑

C ∈{I P,ASN ,CC }

wk (C[Ai ] , C[Sj ]) (2)

wherewk is the weighted penalty for the binary difference between
Ai and Sj in IP, AS number (ASN), and country code (CC). We
empirically set the weights to 0.3, 0.2, and 0.5. For example, if Ai
and Sj share the same IP, the deviation score is 0 (ASN and CC
are identical, too). Otherwise, if Ai and Sj share the same ASN
but not the same IP, the deviation score will be 0.3. If all of these
attributes are different, the deviation score reaches 1.0. Additionally,
we compute the average deviation (F8) of all subdomains hosted
on the same IP.
Correlation ratio. In order to characterize the co-hosting proper-
ties of subdomains, we define two features. First, given a subdomain
s = {IPj }j=1..n , we compute how many subdomains are co-hosted
with s , specifically F9 = minj=1..n { 1

log( | {di |I Pj (di )==I Pj (s)} |+1) }.
This feature alone cannot distinguish shadowed and legitimate sub-
domains, as we found that some IPs are hosting tens of thousands of
legitimate subdomains, probably used by CDN. To address this issue,
we count the distinct apex whose subdomains are hosted together
with s . The reason behind using this feature is that most site owners
prefer to have a dedicated host with a dedicated IP after we filter
out the domains that belong to shared hosting and dynamic DNS.
We compute F10 = minj=1..n { 1

log( | {2LD(di ) |I Pj (di )==I Pj (s)} |+1) }

for this feature.
Take the case described in §2.3 as an example to explain how

the feature values are computed. There are 11 subdomains from 11
distinct 2LDs co-hosted with aaa.app-garden.com. Therefore, the
two feature values are ( 1

log 12 ,
1

log 12 ). By contrast, legitimate subdo-
mains under app-garden.com, like appgarden15.app-garden.com,
do not co-host with any other subdomains, and their feature values
are ( 1

log 2 ,
1

log 2 ).

3.3.3 Subdomain Activity.

To evade blacklists, miscreants tend to create many shadowed do-
mains under different hijacked apex domains, using and discarding



them simultaneously, which results in strong but abnormal correla-
tion. However, the legitimate subdomains are more independent
from one another. In this study, we measure the correlation from
three aspects: first seen date, resolution count, and active days.

Our goal here is to determine how consistent these features are
across different subdomains. To this end, we convert each feature
into a frequency histogram and compare it to a crafted histogram
when all subdomains share the same value, and then use Jeffrey
divergence [1] to measure their difference. Specifically, given a set
of values V , we first count the weighted frequency of each value,
resulting in a setW = {< wi ,

wi
|V |
>}i=1..n . We then derive a new

setW ′ by setting < wi , 1 > if wi has the largest frequency wi
|V |

;
otherwise < wi , 0 >. Finally, Jeffrey divergence is computed over
W andW ′.
Distribution of first seen date.Given a subdomain s , we compute
the Jeffrey divergence of the first seen date (in the format of MM-
DD-YYYY) among all subdomains hosted together with s . This
feature is denoted as F11.
Resolution count. The visits to shadowed domains tend to be
more uniform, as they are rotated in regular intervals. The visits to
legitimate domains are much more diverse, and certain subdomains
like www usually receive substantially more visits. Also, legitimate
domains tend to receive more visits than malicious ones. To model
this property, we define two features, Jeffrey divergence (F12) and
the reciprocal of median (F13) of resolution count.

When computing this feature, we aggregate all the resolution
counts associated with the observed IPs for a domain name. There-
fore, even if the mapping between an IP address and a domain name
is not one-to-one, e.g., when IP-fluxing is played by attackers, the
resolution count is not diluted. On the other hand, when an IP is
shared across different domain names, e.g., when domain-fluxing is
abused, this feature is not affected either, because resolution counts
are separated between individual domain names, regardless of their
IPs.

Note that while a malicious apex domain is oftentimes mapped
to multiple IPs (IP-fluxing), the attackers we studied here usually
use subdomains in a thrown-away manner because it costs them
nothing to create. More specifically, we observe that a shadowed
domain is normally used only for a very short period of time (most
of them less than five resolutions) and mapped to one IP.
Active days. The feature above may raise alarm when legitimate
subdomains are rarely visited. As a complementary method, we
also compute the active days of subdomains, or how long a subdo-
main and IP pair is witnessed. This works particularly well when
an attacker frequently changes the hosting IP. By contrast, IPs
for legitimate domains are more stable, resulting in longer active
days. Similar to the resolution count, we use two features, Jeffrey
divergence (F14) and the reciprocal of median (F15) of active days.

3.3.4 Subdomain Name.

Similar to DGA domains [11, 65, 86], many shadowed domains
are algorithmically generated, instead of beingmanually named.We
model the name similarity of all co-hosted subdomains under two
numerical features. Note that the randomness of characters (e.g.,
entropy of words) within one domain name is not considered by

us, because we found many shadowed domain do have meaningful
label, like info.
Diversity of domain name levels. Shadowed domains belong-
ing to the same campaign are usually generated using the same
template, and thus their domain levels are the same. However, le-
gitimate domains hosted on the same IP have less uniform domain
levels. Similar to the above features, we compute the Jeffrey diver-
gence (F16) for all of the subdomains hosted together.
Subdomain name length. For this feature, we remove the sub-
string matching the apex from each subdomain and compare the
remaining length. When subdomains in the same group have dif-
ferent levels, we pad them to the maximum level by adding empty
strings. Assume the prefix of subdomain is N = {< ni >i=1..m },
where ni is the ith level, we compute the Jeffrey divergence for
each level of name, denoted as Jeffrey(Ni ), and then take the mean
value, as F17 =

∑m
i=1 J ef f r ey(Ni )

m .

4 EVALUATION
In this section, we present the evaluation results of Woodpecker
on labeled datasets described in §3.2. We first compare the over-
all performance of five different classifiers on three ground-truth
datasets. Then, we analyze the importance of each feature. Finally,
we evaluate Woodpecker on two testing sets, Dunknown and Dvt .

4.1 Training and Testing Classifiers
We first test the effectiveness of our detector over the ground-truth
datasets, Dshadowed , Dpop , and Dnonpop through the standard 10-
fold cross-validation. We partition the data based on the apex do-
mains to ensure that for each round of testing, we have subdomains
to test from the apex domains unseen in the training phase. Specifi-
cally, subdomains in 9

10 of the randomly selected apex domains fill
the training set, and those in the remaining 1

10 apex domains fill
the testing set.

We use the scikit-learnmachine-learning library to prototype our
classifiers [68]. We compare five mostly used machine-learning clas-
sification algorithms, including RandomForest, SVM with a linear
kernel, Gaussian Naive Bayes, L2-regularized Logistic Regression,
and Neutral Network. Figure 5 illustrates the receiver operating
characteristic (ROC) curves of these classifiers, when using Farsight
and 360 PDNS to build domain profiles. The x-axis shows the false-
positive rate (FPR), which is defined as NFP

NFP+NTN , and the y-axis
shows the true-positive rate (TPR), which is defined as NT P

NT P+NFN
.

We observe that all classifiers can achieve promising accuracy on
both PDNS data sources. To reach a 90% detection rate, the maxi-
mum FPR is always less than 3% for all classifiers, suggesting that
Woodpecker can effectively detect shadowed domains.

Evidently, RandomForest outperforms the other classifiers in
all cases. This is mainly because domain shadowing detection is
a non-linear classification task. Thus, RandomForest and Neutral
Network consistently outperform Logistic Regression and linear
SVM. Meanwhile, our dataset is not very clean, e.g., shadowed
domains being falsely labeled as benign for training. RandomForest
can handle noisy datasets very well [17]. Moreover, some features
that Woodpecker extracts could be inaccurate, e.g., the resolution
count and active days. These features depend on the vantage points
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Figure 5: Performance comparison of classifiers under 10-
fold cross-validation. The number of trees used in Random-
Forest is 100. All other classifiers use the default configura-
tion in scikit-learn.

where DNS queries are monitored. RandomForest is more robust
to those errors [17]. Finally, RandomForest can effectively handle
imbalanced training datasets [17].

Next, we draw more details on the false positives and negatives.
We focus on the best performing classifier RandomForest only and
use it for all follow-up experiments. Due to the space limit, we
only present the results on Farsight data (results on 360 have a
similar distribution) in the rest of evaluations. In total, Woodpecker
misclassifies 222 shadowed domains as legitimate (false negatives)
and six legitimate ones as shadowed (false positives). We manually
inspect these instances to understand the cause of the misclassi-
fication. First, about one third of these shadowed domains have
snapshots in Archive.org. Nevertheless, most of these snapshots
were captured several years ago. By contrast, most of the legitimate
subdomains in our dataset have much fresher snapshots. For exam-
ple, the last snapshot of extranet.melia.com dated back to 2008,
but the subdomain was used for an attack in 2015. We speculate
that these subdomains have been abandoned by domain owners
(i.e., no longer serving any web content) but were later revived by
attackers for illicit purposes. One approach to address this inaccu-
racy is to set an expiration date for snapshots. Second, the majority
of the missed shadowed domains co-host either with siblings only
or with a few other subdomains, which lessens the effectiveness of
our correlation analysis. On the other hand, the features of all six

Rank Feature Score rank Feature Score
1 F10 0.26188 10 F8* 0.03374
2 F2* 0.13213 11 F12* 0.03183
3 F7* 0.11509 12 F16* 0.03128
4 F17 0.06493 13 F3* 0.02852
5 F5* 0.0623 14 F15 0.02395
6 F9 0.05221 15 F13* 0.02309
7 F1* 0.04496 16 F6* 0.01491
8 F14 0.04424 17 F4* 0.00036
9 F11* 0.03451

Table 5: Importance of features. Features marked with an
asterisk (*) are novel.

false positives resemble shadowed domains. For instance, they are
all hosted in countries different from their apex domains, and all
subdomains on the same IP are visited only a few times.

4.2 Feature Analysis
We assess the importance of our features through a standard metric
in the RandomForest model, namely mean decrease impurity (MDI)
[18], which is defined as,

MDI (Xm ) =
1
NT

∑
T

∑
t ∈T :(st )=Xm

p(t)∆f (st , t) (3)

where Xm is a feature, NT is the number of trees, p(t) is the pro-
portion of samples reaching node t (Nt /N), v(st ) is the variable
used in split st , and f (st , t) is an impurity decrease measure (Gini
index in our case). Table 5 shows the score of each feature with the
novel ones marked with an asterisk. As we can see, three of the top
five features are novel, suggesting that using known features is not
sufficient to capture shadowed domains.

We further evaluate the impact of different groups of features.
Figure 6 compares the performance of Woodpeckerwhen deviation-
only and correlation-only features are used. Interestingly, Woodpecker
can still achieve a 95% TPR with less than 0.1% FPR when only
features in deviation dimension are used. As such, the operators
behind Woodpecker can choose to trade a little accuracy for higher
efficiency, since computing correlation features are more resource-
consuming.

In addition, we assess the performance of features under each
of the four categories. The results are shown in Figure 7. Except
for the feature of subdomain name, all other feature categories
produce a reasonable performance. The feature of subdomain name
does not perform well because many legitimate services like cloud
platforms and content delivery network (CDN) also have seemingly
algorithmically generated domain names.

In summary, according to our analysis, it is almost impossible
for attackers to evade Woodpecker by manipulating a few features.
Instead, they would need to manipulate many features in both
deviation and correlation dimensions, and the cost is non-negligible.
Take the feature of hosting IP deviation as an example. We observe
that most compromised apex domains use their registrars’ hosting
services. GoDaddy is particularly popular as it is also the largest
domain registrar. In order to confuse this feature, attackers can
either change the IP of an apex domain, which will be discovered
by site owners immediately, or host their shadowed domains on
GoDaddy as well. However, unlike less reputable and bullet-proof
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Figure 6: ROC of RandomForest on Farsight data when all,
deviation-only (F1, F2, F4, F5, F7) and correlation-only (all
others) features are used.
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Figure 7: ROC of RandomForest on Farsight data when fea-
tures in a single category are used.

hosting services, GoDaddy is a poor choice for attackers, due to its
much more stringent policies and actions against malicious content.

4.3 Generality of Trained Models
The training and testing stages of our last experiments are car-
ried out on an identical dataset. We want to confirm whether
Woodpecker can be trained on one dataset and then applied to
another dataset, and how its performance is impacted. To this end,
we evaluate two configurations, i.e., training the model on Farsight
and testing on 360, and vice versa. We exclude all subdomains in
Farsight that overlap with the 360 dataset, and thus the training
and testing datasets have no overlap.

Figure 8 illustrates the results when different dimensions of fea-
tures are used. We find that both configurations cannot produce
comparable results to our prior settings when all features are used,
which might indicate that Woodpecker needs to be re-trained when
being deployed on different vantage points. We further examine the
performance when deviation-only features are used. Interestingly,
the result of the model trained on Farsight is significantly improved,
while the result of the model on 360 remains almost the same. More-
over, the performance of both models decreases significantly when
correlation-only features are used. The plausible reason behind this
is the uneven coverage of PDNS sources, which greatly impacts

the correlation analysis. For instance, given an IP address, Farsight
may observe tens of subdomains hosted on the IP, while 360 might
observe only one or two. Hence, a model trained on Farsight could
derive totally different feature weights compared to 360.

In summary, when deviation-only features are used, Woodpecker
can be migrated among different vantage points without re-training.
A model trained on a PDNS source would yield better results when
tested on the same source.

4.4 Evaluation on Dunknown
We now evaluate Woodpecker on Dunknown to examine whether
we can accurately distinguish legitimate and unknown shadowed
subdomains under known hijacked apex domains.

Among the 34,586 unknown subdomains in Dunknown (Table 1),
Woodpecker reports 10,905 shadowed domains. Since this dataset
is unlabeled, we have to validate the result through manual investi-
gation. We use a set of rules, after confirming their validity with
an analyst from a security company. In particular, we consider a
subdomain as a true positive (1) if it has been deleted from the
authoritative DNS servers, (2) if it is hosted together with those
in Dshadowed , (3) if its name follows the same pattern as known
shadowed ones, (4) if it is reported by other security companies, and
(5) if it is not running any legitimate business. After these steps, we
confirm 10,866 as true positives and 39 as false detections. The false
detection rate is thus 0.35%, which is consistent with our results
on Dshadowed . Measuring FNR is very challenging, given there are
still over 20K subdomains remaining. Here we randomly sample
50 apex domains in Dshadowed and examine all the subdomains.
In the end, we do not find any new shadowed domains missed by
Woodpecker.

4.5 Evaluation on Dvt

Finally, we apply Woodpecker to a large unlabeled dataset,Dvt built
from the daily feeds of VT, consisting of more than 20M subdomains
that are recorded by 360. This dataset is more representative in that
it covers many types of malicious domains, either shadowed or
non-shadowed. Many legitimate subdomains are also contained in
this dataset. As demonstrated in §4.3, Woodpecker achieves its best
performance when it is trained and tested using data from the same
PDNS source. Therefore, we use Woodpecker with RandomForest
that is trained on 360 data for this evaluation. In total, Woodpecker
reports 287,780 shadowed domains (1.28% of the total subdomains)
under 23,495 apex domains.

Given these results, we first sanitize them by removing subdo-
mains under malicious apex domains, since our main goal is to de-
tect malicious subdomains created under legitimate apex domains.
Then, we verify whether the remaining subdomains are indeed
shadowed. Such a validation process is very time-consuming and
challenging. The best way is to report all of them to domain owners
and registrars and wait for their responses. However, previous stud-
ies [52] have shown that most are unresponsive. Even finding all of
the recipients is impossible in short term. So, we take a best-effort
approach instead and categorize these domains based on cluster-
ing and manual analysis. In the end, they can be labeled into five
categories.
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(a) All features.
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(b) Deviation-only features.
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(c) Correlation-only features.

Figure 8: Performance of Woodpecker using RandomForest trained and tested on different PDNS sources. FS stands for Farsight.

Expired apex domains. First, we examine the Whois of all apex
domains and find that 1,782 out of the 23,495 apex domains have al-
ready expired, which account for 45,093 of the reported subdomains.
We exclude all subdomains under these expired apex domains, be-
cause there is no sufficient information left to us to determine the
legitimacy of the apex. This rule may remove some true positives:
We check the apex in Dshadowed and find that about 18% have
expired. As a future improvement, we could run Woodpecker more
promptly when the data is downloaded from our vantage point.
Lead fraud [48, 55]. Second, we observe that 341 of the in-use apex
domains covering 86,886 reported subdomains are involved in lead
fraud, a type of online scam that solicits user’s personal informa-
tion. They are identified by scanning domain names using a set of
keywords attributed to known lead-fraud campaigns, like rewards.
One such example is oiyzz.exclusiverewards.6053.ws. Manual
sampling over these domains (and apex) shows most of them are
indeed carrying out lead fraud. We check the features of these
domains and find that they show similar patterns to domain shad-
owing. For instance, their subdomains are hosted in different ASes
and sometimes in different countries from their apex domains.
Deleted subdomains. After expired and lead fraud domains are
excluded, we further run DNS probing over the remaining 155,801
subdomains to see whether they are resolvable. It turns out that
29,565 had already been deleted. We consider these domains very
suspicious as their injected DNS records might be purified by do-
main owners, especially when in most cases their siblings are still
resolvable.
Heuristics based pruning. We further validate the remaining
resolvable domains using three heuristics. First, we construct the
prefix patterns based on known-shadowed domains, which are
rarely used by legitimate subdomains, like add. and see.. Second,
we search for the subdomains alarmed by at least one vendor in
VT but whose apex domains have no alarms. Third, we cluster all
subdomains based on their IP addresses. If one subdomain in a
cluster has been confirmed in previous steps, we consider all others
to be confirmed as well. In this way, we successfully identify 97,996
additional shadowed domains.
Manual review. Finally, we manually review the remaining 28,240
subdomains. In order to make this task tractable, we cluster these

subdomains based on their apex domains and analyze the top 100
large clusters and 200 other random apex domains. We observe that
98 apex domains (covering 14,090 subdomains) are quite suspicious
in that we cannot find any information about the hosting sites from
Google search results. Meanwhile, many of themhave been reported
by security companies. Among them, 41 are potential DGA (Domain
Generation Algorithm) domains, which we speculate are registered
by attackers. In the remaining set, 868 subdomains come from
eight dynamic DNS and three CDN services like dyn-dns.org and
Limelight CDN, and they are labeled as false positives. In addition,
358 are falsely alarmed as they run the apex owner’s legitimate
business, e.g., live.bilibili.com, totaling 1,226 false positives.
We are unable to confirm the remaining 12,924 subdomains due to
their sheer volume.
Summary. In total, 127,561 shadowed domains are confirmed un-
der 21,228 apex domains, hosted on 4,158 IP addresses. Compared
to Dshadowed , only 254 subdomains under 216 apex domains are
overlapped. Note that our validation and sanitization of the data
is best-effort: True shadowed domains could be eliminated, and
legitimate subdomains might be included. We would like to em-
phasize two lessons learned during this validation process. First,
dynamic DNS and CDN services are the main sources of false posi-
tives reported by Woodpecker. Therefore, to improve accuracy, we
have built whitelists for dynamic DNS and CDN services [24, 66].
Second, subdomains under malicious apex domains could exhibit
similar features to shadowed domains and trigger alarms. To dis-
tinguish them, blacklists focusing on apex domains like VirusTotal
and other domain reputation systems [33] can be leveraged. The
whitelists and blacklists can be incorporated into Woodpecker to
further improve its accuracy.

5 MEASUREMENT AND DISCOVERIES
Woodpecker identifies in total 127,561 shadowed domains from
various sources, which significantly surpasses the community’s
knowledge about this attack vector (only 26,132 shadowed domains
were reported before our study). This sheer amount of data offers
us a good opportunity to gain a deeper understanding of this issue.
We conduct a comprehensive measurement study on the collected
data and report our findings below.
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Figure 9: Trend of domain shadowing.

Figure 10: Top 10 registrars in terms of distinct apex do-
mains with shadowed domains.

We first count the number of compromised apex domains, and
show the trend in Figure 9. When there are many shadowed do-
mains under an apex domain, we use the year of its first observed
shadowed domain. The earliest case that we observed happened in
2014. Since then, the number of affected apex domains increases
substantially every year. Because our dataset only contains data
before May 2017, we observe fewer shadowed domains in 2017. This
result indicates that domain shadowing is becoming increasingly
rampant and deserves more attention from the security community.
Next, we conduct in-depth analysis from three aspects.
Affected registrars. In total, the shadowed domains trace back
to 117 registrars. Figure 10 shows the top 10 registrars in terms of
distinct apex domains. We can see that GoDaddy accounts for more
than 70% of compromised apex domains while the percentage for
other registrars is much lower. Considering that GoDaddy shares
about 32% of the domain market, which is much greater than the
second largest one (6%), this result does show that domain shad-
owing is a serious issue for GoDaddy, but this does not necessarily
indicate that it is the most vulnerable registrar. There are also small
registrars gaining high rankings in our result. The registrant buy-
ing domains under them should check their account settings more
cautiously.

To assess how these registrars protect their users, we manually
examine the security measures of the top 5 registrars. Table 6 shows
their password requirements for registrants, whether they enforce
two-factor authentication (2FA), and how they notify owners about
modifications. We observe that 2FA is either not provided or dis-
abled by default. This situation is alarming and disappointing, as
the best account defense does not play a role here. Also, no regis-
trars notify users when the DNS records are modified in the default
settings.
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Figure 11: Distribution of IPs in the top 10 countries.

Registrar Password Length 2FA Notification of
Modifications

GoDaddy >9 chars with 1 capital, 1 lower and 1 digit SMS No
123-reg >9 chars with 1 capital, 1 digit and 1 special No No
Tucows† - - -
XinNet 8-16 with 1 digit Yes No
eNom 6-20 with 1 number and 1 special SMS No

Table 6: Security policy of the top 5 registrars in our detec-
tion. †Tucows is the owner of eNom and Hover etc. and pro-
vides services under them.

Hosting IP. In total, 4,158 IP addresses associated with shadowed
domains spreading in 91 countries are discovered. Figure 11 illus-
trates the top 10 countries and their percentages. As shown, most
of these IPs are located in the United States (US) and Russia (RU).
We further find that the IPs in US and RU are widely spread as
they belong to 161 and 137 ASes, respectively. This indicates that
domain shadowing is used for many different campaigns or by dif-
ferent attackers. We check these IP addresses in VirusTotal and find
that 1,499 IPs were not alarmed. Therefore, malware-evidence or
blacklist-based features used in Notos [9] and Kopis [10] will not
work well for our settings.
Shadowed domains. Finally, we analyze the characteristics of
shadowed domains and their apex. Basically, the number of shad-
owed domains under an apex is quite random, from one up to 2,989
with the average number at six. Most shadowed domains have a
short lifetime and are mostly (85%) resolved for less than five times
per IP. Figure 12 shows the CDF of the active days of shadowed
domains. Among them, 85% are observed for only one day. This
indicates that miscreants rotate shadowed domains quickly, in a
similar fashion as fast-flux networks [39].

Previous work [14] uses the TTL value to identify malicious
domains. We do not use it for our problem, since it is usually not
distinctive on the ground-truth set. We verify this design choice
on the entire set by sending DNS queries for 10,000 randomly
sampled resolvable shadowed domains. The result confirms our
prior observation that the value is either the same as their apex or
within the normal range of other legitimate domains.

By cross-checking with VT, we find that 126,384 shadowed do-
mains were submitted to VirusTotal but only 14,134 subdomains
were alarmed. In other words, security companies have not yet
devised and deployed an effective solution, and we believe that
Woodpecker can provide great value in tackling domain shadow-
ing.
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5.1 Case Studies
There are two new findings uncovered in our measurement study.
First, in addition to serving exploit kits, shadowed domains are also
used for other attack vectors like phishing. Second, wildcard DNS
records are also leveraged to create shadowed domains.
Phishing. All currently reported shadowed domains like those in
Table 2 are exclusively involved in exploit kits. However, Woodpecker
identifies many phishing attempts that exploit shadowed domains.
One ongoing campaign is paypal.com.webapps.random-characters.
5degreesfalmouth.co.uk. We consider the apex domain as le-
gitimate because we find that its Facebook account is actively
maintained7 and it is advertised on reputable websites8. There are
many similar cases like verifychase.com-u.mescacompany.com
and apple.com.random-characters.yclscholarship.org.

However, we did not see a phishing site impersonating com-
promised apex domains. We assume this is probably because most
compromised apex domains are not popular enough, and only a
limited number of victims can be targeted.
WildcardDNS records.While an arbitrary number of subdomains
can be spawned by insertingmany A and CNAME records, the simplest
way to create many records is to exploit wildcard DNS records. One
prominent advantage of using wildcard records is that attackers
do not need to use templates or algorithms to generate subdomain
names. However, it is at the cost that the prone to be spotted by
domain owners. Woodpecker identifies many shadowed domains
spawned by wildcard records9, like bookstore.hyon.com.cn and
blackhole.yilaiyin.com. We determine these cases to be true do-
main shadowing by incorporating several pieces of evidence. First,
most of these apex domains are proven to be legitimate based on the
information collected through Google search. Second, all wildcard
records under these apex domains point to IP 180.178.59.74, and
several other domains hosted on the IP have at least one alarm in
VirusTotal. Our detected subdomains have no alarms because they
were never submitted to VirusTotal. Finally, VirusTotal reports that
two malware samples communicated with this IP. We observe that
all of these apex domains are registered from the same registrar,
XinNet. Considering that there have been several data breaches
against this registrar [44, 73] in the past, we speculate that these
apex domains are probably victims in these incidents.

7https://www.facebook.com/5DegreesWest/
8https://www.falmouth.co.uk/eatanddrink/5-degrees-west/
9Wildcard record is identified if the record *.apex.com can be resolved.

6 DISCUSSION
Woodpecker is designed to detect subdomains created in bulk by
attackers. The malicious subdomains falling out of this category
might be missed, like modification of existing subdomains or the
subdomains created under malicious apex domains, as elaborated
in §2.2.

An attacker who knows the features used by Woodpecker could
change her strategy for evasion. To hinder the effectiveness of our
correlation features, the attacker can choose to cut off the connec-
tions between the shadowed domains, like spreading them to larger
pool of IPs. However, this change would increase the attacker’s
operational cost. Alternatively, the servers linked to the shadowed
domains can be co-hosted with other benign servers on the same
set of IPs in order to confuse our detector. So far, we find such co-
hosting rarely happened, since many shadowed domains are related
to the core components of malicious infrastructures, like exploit
servers, which are preferably hosted by bullet-proof providers [32].
In addition, placing the services on reputable hosting providers
increases their risk of being captured. To evade our deviation anal-
ysis, the attacker can learn how the legitimate services on the apex
domains are managed and then configure the shadowed domains
to resemble her target. For instance, increasing the observed days
until reaching the same level of the apex domain is likely effective
against Woodpecker. However, such changes are more noticeable
to site owners. To summarize, evading Woodpecker requires metic-
ulous adjustment from the side of adversary, while the side-effects
are inevitable (e.g., raising operational costs and awareness from
site owners).

When the subdomains under malicious apex domains exhibit
similar features to shadowed domains, they may be detected by
Woodpecker as well. We believe capturing such instances is also
meaningful, especially for security companies. Meanwhile, tools
focusing on malicious apex domains, like PREDATOR [33], can be
used here for better triaging.

To some extent, the effectiveness of Woodpecker depends on the
training data. While some previous works rely on data not directly
accessible to the public [9, 10, 14], we want to highlight that all of
our data is obtained from sources open to researchers and practi-
tioners. Thus, deploying our approach is considerably easier. So
far, Woodpecker runs in a batch mode, i.e., when PDNS data from a
large amount of domains and IPs are available. For real-time detec-
tion, Woodpecker can be configured to load all existing domain/IP
profiles into memory and run the trained model whenever there is
an update.

7 RELATEDWORK
Detecting malicious domains. A wealth of research has been
conducted on detecting malicious domains. Similar to our work,
there are different approaches to examining DNS data [9–11, 14,
86]. As elaborated in Appendix §A, shadowed domains exhibit
different properties from the objects of previous studies. A new
approach is needed, and we show that Woodpecker is capable of
achieving the detection goal with the combination of deviation and
correlation analysis. A recent work by Hao et al. [34] aims to detect
malicious domains at their registration time. Given that shadowed
domains and their parent apex domains share the same registration



information, such an approach is ineffective at detecting shadowed
domains. Plohmann et al. [65] and Lever et al. [50] conducted large-
scale studies onmalicious domains by running the collected samples
in a sandbox environment. Botfinder [76] and Jackstraws [42] aim to
detect C&C domains in botnets based on the similar communication
patterns of bot clients. By contrast, our approach does not assume
the possession of any file samples (malware and web page).
Detecting malicious web content and URLs. Detecting a ma-
licious web page is another active research line in finding traces
of cybercriminal activities. Most of the prior works leverage web
content and execution traces of a runtime visit for detection. Fea-
tures regarding web content are deemed effective in detecting web
spam [63], phishing sites [85], URL spam [77], and general mali-
cious pages [19]. Malicious sites usually hide themselves behind
web redirections, but their redirection pattern is different from
legitimate cases, which can be leveraged to spot those malicious
sites [49, 74, 84]. Invernizzi et al. [41] showed that a query result
returned from search engines can be used to guide the process
of finding malicious sites. To trap more visitors, vulnerable sites
are frequently compromised and turned into redirectors through
code injection. Such a strategy introduces unusual changes to the
legitimate sites and can be detected by differing web content [16],
HTTP traffic [6], and JS libraries [53]. The URLs associated with
malicious web content might exhibit distinctive features, and previ-
ous works showmachine-learning based approaches are effective at
addressing this problem [30, 57, 58]. Obtaining web content or URLs
usually requires active web crawling, which is time-consuming and
ineffective when cloaking is performed by malicious servers. By
contrast, our solution is lightweight and robust against cloaking.
DNS security. Most previous studies on DNS security focus on
cache poisoning, which was first uncovered by Bellovin [13] in the
1990s. Conventional cache poisoning attacks exploit the flaws in
DNS servers and inject inauthentic RRs to DNS caches. Recently,
off-path DNS poisoning has been proposed to poison DNS caches
with spoofed DNS responses [35–37, 43]. Alternatively, cybercrim-
inals can set up rogue DNS resolvers so that users’ traffic can be
arbitrarily rerouted [22, 47]. Domain shadowing is different from
cache poisoning and rogue resolvers in that the changes to DNS
servers do not exploit their system vulnerabilities. To some extent,
domain shadowing resembles the attack that hijacks the dangling
DNS records of legitimate domains (called Dare) [56]. However, the
solution for finding Dare is not viable for our problem, in which
there are no dangling DNS records.
Security of domain ecosystem.The security issues in the domain
ecosystem, including registrars and registries, have been studied
for a long time. In particular, researchers have investigated how
domains are recruited and used by attackers for a spectrum of
cybercrime businesses, like spam [7], exploit kits [32], blackhat
SEO [28], and dedicated hosts [54]. Previous studies also show that
adversaries actively register domain names similar to reputable ones
(called typosquatting) in hopes of harvesting traffic from careless
users [3, 45, 75]. When a domain is not serving its owner’s website,
the owner could leave it to a parking service that places ads there
and share the revenue when the ads are viewed or clicked. However,
the business practices of some parking services are problematic,
as shown in previous studies [5, 83]. A recent study measures the

security on the basis of individual TLD and demonstrates that the
scale of free services on a TLD could impact its reputation [46]. Our
study is complementary to these existing works in understanding
the security issues in the domain ecosystem.

8 CONCLUSION
In this paper, we present the first study on domain shadowing,
an emerging strategy adopted by miscreants to build their attack
infrastructures. Our study stems from a set of manually confirmed
shadowed domains.We find that domain shadowing can be uniquely
characterized by analyzing the deviation of subdomains from their
apex domains and the correlation among subdomains under dif-
ferent apex domains. Based on these observations, a set of novel
features are identified and used to build our domain shadowing
detector, Woodpecker. Our evaluation on labeled datasets show that
among five popular machine-learning algorithms, Random Forest
works best, achieving a 98.5% detection rate with an approximately
0.1% false positive rate. By applying Woodpecker to the daily feeds
of VirusTotal collected in two months, we can detect thousands of
new domain shadowing campaigns. Our results are quite alarm-
ing and indicate that domain shadowing has become increasingly
rampant since 2014. We also reveal for the first time that domain
shadowing is not only involved in exploit kits but also in phish-
ing attacks. Another prominent finding is that some miscreants do
not use algorithmically generated subdomains but exploit wildcard
DNS records.
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A EXISTING SYSTEMS
- Antonakakis et al. [9] proposed a system named Notos to dynami-
cally assign reputation scores for domain names. Notos uses three
categories of features to check a domain d, namely network-based
(i.e., IPs associated with d), zone-based (i.e., subdomains under
d), and evidence-based (i.e., malware samples contacting d). Zone-
based features are useful in measuring the apex domain but not
for individual subdomains. Most of the shadowed domains in our
ground-truth dataset and testing dataset are related to drive-by-
download and phishing activities, which are not directly contacted
by malware. Hence, evidence-based features are ineffective here.
- Exposure, a system developed by Bilge et al. [14] shares the same
goal as Notos. But different from Notos, it does not require any

historical data associated with malicious activities and is able to
detect malicious domains from an unseen IP. The key insight is that
malicious domains exhibit different statistical properties aggregated
among requests, e.g., the repeated querying pattern, the diversity
of associated IPs, and the low average TTL. However, we found
that many shadowed domains do not share the same properties;
they are thrown away quickly after going live for a short window,
pointed to one IP during its lifetime and bounded to a regular TTL.
- Kopis was developed by Antonakakis et al. [10] to detect mali-
cious domains using DNS traffic logged by a single upper-level DNS
server, like a TLD server or an authoritative name server. Differ-
ent from Notos and Exposure, Kopis requires very fine-grained
DNS data, like the timestamp and source IP of a single domain re-
quest, instead of aggregated data. We argue that such data provides
higher visibility but is hardly accessible to parties other than DNS
operators. So far, we have not found any public sharing programs
of DNS logs from well-known DNS operators. Other issues with
Kopis include its dependence on evidence (not available for shad-
owed domains) and its prerequisite of diversity of requesters (many
shadowed domains are visited only a few times as observed in our
data).
- Pleiades detects domains used by DGA-based botnets, based on
the insight that bot clients tend to query a large amount of domains,
but only a few of them actually resolve to IP addresses (while others
return NXDOMAIN responses) [11]. This observation does not hold in
our case, where most of the subdomains we found were resolvable
at some point.
- Yadav et al. proposed a system to detect DGA domains by comput-
ing the distribution of alphanumeric characters of domains in an
IP-domain cluster [86]. Since algorithmically generated domains
present different distributions compared to domains created for
legitimate purposes, they can be effectively detected. However, an
adversary in our case can use any names for the labels under the
apex domain level as long as these names are not used by the do-
main owner. The name can be short but meaningful, like info,
which becomes a blind spot for the DGA detector.

In summary, shadowed domains exhibit different features (e.g.,
ephemeral and readable names) and are used for many attack vec-
tors (e.g., exploit kit and phishing, instead of only botnet-related
attacks). Thus, the problem of domain shadowing cannot be ad-
dressed by the existing systems.
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