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ABSTRACT
The detection of covert timing channels is of increasing in-
terest in light of recent practice on the exploitation of covert
timing channels over the Internet. However, due to the high
variation in legitimate network traffic, detecting covert tim-
ing channels is a challenging task. The existing detection
schemes are ineffective to detect most of the covert timing
channels known to the security community. In this paper, we
introduce a new entropy-based approach to detecting vari-
ous covert timing channels. Our new approach is based on
the observation that the creation of a covert timing chan-
nel has certain effects on the entropy of the original process,
and hence, a change in the entropy of a process provides a
critical clue for covert timing channel detection. Exploiting
this observation, we investigate the use of entropy and con-
ditional entropy in detecting covert timing channels. Our
experimental results show that our entropy-based approach
is sensitive to the current covert timing channels, and is ca-
pable of detecting them in an accurate manner.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and Protection

General Terms
Security
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1. INTRODUCTION
As an effective way to exfiltrate data from a well-protected

network, a covert timing channel manipulates the timing or
ordering of network events (e.g., packet arrivals) for secret
information transfer over the Internet, even without com-
promising an end-host inside the network. On the one hand,
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such information leakage caused by a covert timing channel
poses a serious threat to Internet users. Their secret cre-
dentials like passwords and keys could be stolen through a
covert timing channel without much difficulty. On the other
hand, detecting covert timing channels is a well-known chal-
lenging task in the security community.

In general, the detection of covert timing channels uses
statistical tests to differentiate covert traffic from legitimate
traffic. However, due to the high variation in legitimate net-
work traffic, detection methods based on standard statistical
tests are not accurate and robust in capturing a covert tim-
ing channel. Although there has been recent research efforts
on detecting covert timing channels over the Internet [3, 4,
7, 20], some detection methods are designed to target one
specific covert timing channel, and therefore fail to detect
other types of covert timing channels; the other detection
methods are broader in detection but are over-sensitive to
the high variation of network traffic. In short, none of the
previous detection methods are effective to detect a variety
of covert timing channels.

In this paper, we propose a new entropy-based approach to
detecting covert timing channels. The entropy of a process is
a measure of uncertainty or information content, a concept
that is of great importance in information and communi-
cation theory [21]. While entropy has been used in covert
timing channel capacity analysis, it has never been used to
detect covert timing channels. We observe that a covert tim-
ing channel cannot be created without causing some effects
on the entropy of the original process 1. Therefore, a change
in the entropy of a process provides a critical clue for covert
timing channel detection.

More specifically, we investigate the use of entropy and
conditional entropy in detecting covert timing channels. For
finite samples, the exact entropy rate of a process cannot
be measured and must be estimated. Thus, we estimate
the entropy rate with the corrected conditional entropy, a
measure used on biological processes [18]. The corrected
conditional entropy is designed to be accurate with limited
data, which makes it excellent for small samples of net-
work data. To evaluate our new entropy-based approach,
we conduct a series of experiments to validate whether our
approach is capable of differentiating covert traffic from le-
gitimate traffic. We perform the fine-binned estimation of
entropy and the coarse-binned estimation of corrected con-
ditional entropy for both covert and legitimate samples, and

1This observation applies to complex processes, like network
traffic, but not to simple independent and identically dis-
tributed processes [8].



then determine false positive and true positive rates for both
types of estimations. Our experimental results show that the
combination of entropy and corrected conditional entropy is
very effective in detecting covert timing channels.

The remainder of this paper is structured as follows. Sec-
tion 2 covers background and related work in covert timing
channels and their detection schemes. Section 3 describes
entropy measures. Section 4 validates the effectiveness of
our approach through experiments with different covert tim-
ing channels. Section 5 describes potential countermeasures
against our entropy-based detection scheme. Finally, Sec-
tion 6 concludes the paper and discusses directions for our
future work.

2. BACKGROUND AND RELATED WORK
To defend against covert timing channels, researchers have

proposed different solutions to detect, disrupt, and elimi-
nate covert traffic. The disruption of covert timing channels
adds random delays to traffic, which reduces the capacity
of covert timing channels but degrades system performance
as well. The detection of covert timing channels is accom-
plished using statistical tests to differentiate covert traffic
from legitimate traffic. While the focus of earlier work is on
disrupting covert timing channels [11, 12, 13, 14] or on elim-
inating them in the design of systems [1, 15, 16], more recent
research has begun to investigate the design and detection
of covert timing channels [3, 4, 6, 7, 20]. In the following
subsections, we give an overview of recent research on covert
timing channels and detection tests.

2.1 Covert Timing Channels
There are two types of covert timing channels: active and

passive. In terms of covert timing channels, active refers
to covert timing channels that generate additional traffic to
transmit information, while passive refers to covert timing
channels that manipulate the timing of existing traffic. In
general, active covert timing channels are faster, but pas-
sive covert timing channels are more difficult to detect. On
the other hand, active covert timing channels often require a
compromised machine, whereas passive covert timing chan-
nels, if creatively positioned, do not. The majority of the
covert timing channels discussed in this section are active
covert timing channels, except where stated otherwise.

2.1.1 IP Covert Timing Channel
Cabuk et al. [7] developed the first IP covert timing chan-

nel, which we refer to as IPCTC, and investigated a num-
ber of design issues. A scenario where IPCTC can be used
is illustrated in Figure 1. In this scenario, a machine is
compromised, and the defensive perimeter, represented as
a perimeter firewall or intrusion detection system, monitors
communication with the outside. Therefore, a covert timing
channel can be used to pass through the defensive perimeter
undetected. IPCTC uses a simple interval-based encoding
scheme to transmit information. IPCTC transmits a 1-bit
by sending a packet during an interval and transmits a 0-bit
by not sending a packet during an interval. A major ad-
vantage to this scheme is that when a packet is lost, a bit
is flipped but synchronization is not affected. The timing-
interval t and the number of 0-bits between two 1-bits deter-
mines the distribution of IPCTC inter-packet delays. It is
interesting to note that if the pattern of bits is uniform, the
distribution of inter-packet delays is close to a Geometric

Figure 1: IPCTC/TRCTC scenarioFIREWALL /IDSCOVERTTIMINGCHANNELCOMPROMISEDMACHINE
Figure 2: JitterBug scenarioFIREWALL /IDSCOVERTTIMINGCHANNELCOMPROMISEDINPUT DEVICE

distribution. To avoid creating a pattern of inter-packet de-
lays at multiples of a single t, the timing-interval t is rotated
among different values.

2.1.2 Time-Replay Covert Timing Channel
Cabuk [6] later designed a more advanced covert tim-

ing channel based on a replay attack, which we refer to as
TRCTC. TRCTC uses a sample of legitimate traffic Sin as
input and replays Sin to transmit information. Sin is par-
titioned into two equal bins S0 and S1 by a value tcutoff.
TRCTC transmits a 1-bit by randomly replaying an inter-
packet delay from bin S1 and transmits a 0-bit by randomly
replaying an inter-packet delay from bin S0. Thus, as Sin

is made up of legitimate traffic, the distribution of TRCTC
traffic is approximately equal to the distribution of legiti-
mate traffic.

2.1.3 JitterBug
Shah et al. [20] developed a keyboard device, called Jit-

terBug, that slowly leaks typed information over the net-
work. JitterBug is a passive covert timing channel, so new
traffic is not created to transmit information. JitterBug
demonstrates how a passive covert timing channel can be
positioned so that the target machine does not need to be
compromised. A scenario where JitterBug can be used is
illustrated in Figure 2. In this scenario, an input device is
compromised, and the attacker is able to leak typed informa-
tion over the network. JitterBug operates by creating small
delays in keypresses to affect the inter-packet delays of a net-
worked application. JitterBug transmits a 1-bit by increas-
ing an inter-packet delay to a value modulo w milliseconds
and transmits a 0-bit by increasing an inter-packet delay
to a value modulo dw

2
e milliseconds. The timing-window w

determines the maximum delay that JitterBug adds to an
inter-packet delay. For small values of w, the distribution



of JitterBug traffic is very similar to that of the original le-
gitimate traffic. To avoid creating a pattern of inter-packet
delays at multiples of w and dw

2
e, a random sequence si is

subtracted from the original inter-packet delay before the
modulo operation.

2.1.4 Other Covert Timing Channels
Berk et al. [4] implemented a simple binary covert tim-

ing channel based on the Arimoto-Blahut algorithm, which
computes the input distribution that maximizes the chan-
nel capacity [2, 5]. Wang et al. [22, 23], as a form of timing
channel, watermarked inter-packet delays to trace encrypted
attack traffic or track anonymous peer-to-peer voice-over-IP
(VoIP) calls. Such timing-based watermarking schemes are
passive timing channels in that new traffic is not created.
Such schemes again demonstrate how a passive timing chan-
nel can be positioned so that the target, i.e., the stepping
stones or anonymizing network, does not need to be compro-
mised. Although not a covert timing channel, Giffin et al.
[10] showed that low-order bits of the TCP timestamp can
be exploited to create a covert storage channel, which is re-
lated to covert timing channels due to the shared statistical
properties of timestamps and packet timing.

2.2 Detection Tests
There are two broad classes of detection tests: shape tests

and regularity tests. The shape of traffic is described by
first-order statistics, e.g., mean, variance, and distribution.
The regularity of traffic is described by second or higher-
order statistics, e.g., correlations in the data. Note that in
previous research the term regularity is sometimes used to
refer to frequency-domain regularity [7, 20], whereas here we
use this term exclusively to refer to time-domain regularity,
i.e., the regularity of a process over time.

2.2.1 Kolmogorov-Smirnov Test
Peng et al. [17] showed that the Kolmogorov-Smirnov test

is effective to detect watermarked inter-packet delays, a form
of timing channel [23]. The watermarked inter-packet delays
are shown to have a distribution that is the sum of a normal
and a uniform distribution. Thus, the Kolmogorov-Smirnov
test can be used to determine if a sample comes from the
appropriate distribution. The Kolmogorov-Smirnov test de-
termines whether or not two samples (or a sample and a dis-
tribution) differ. The use of the Kolmogorov-Smirnov test to
detect covert timing channels is described in more detail in
Section 4.1.2. The Kolmogorov-Smirnov test is distribution
free, i.e., the test is not dependent on a specific distribu-
tion. Thus, the Kolmogorov-Smirnov test is applicable to
different types of traffic with different distributions. The
Kolmogorov-Smirnov test statistic measures the maximum
distance between two empirical distribution functions:

KSTEST = max | S1(x)− S2(x) |,

where S1 and S2 are the empirical distribution functions of
the two samples.

2.2.2 Regularity Test
Cabuk et al. [7] investigated a method of detecting covert

timing channels based on regularity. This detection method,
referred to as the regularity test, determines whether or not

the variance of the inter-packet delays is relatively constant.
This detection test is based on the fact that for most net-
work traffic, the variance of the inter-packet delays changes
over time, whereas with covert timing channels, if the en-
coding scheme does not change over time, then the variance
of the inter-packet delays remains relatively constant. The
use of the regularity test to detect covert timing channels is
discussed in more detail in Section 4.1.2. For the regularity
test, a sample is separated into sets of w inter-packet delays.
Then, for each set, the standard deviation of the set σi is
computed. The regularity is the standard deviation of the
pairwise differences between each σi and σj for all sets i < j.

regularity = STDEV

„
| σi − σj |

σi
, i < j,∀i, j

«
2.2.3 Other Detection Tests

Cabuk et al. [7] investigated a second method of detect-
ing covert timing channels, referred to as ε-similarity, based
on measuring the proportion of similar inter-packet delays.
The ε-similarity test is based on the fact that IPCTC cre-
ates clusters of similar inter-packet delays at multiples of
the timing-interval. While this detection method can be
useful, it targets a specific covert timing channel, namely
IPCTC, and hence, is less interesting than more generic de-
tection methods. Berk et al. [3, 4] used a simple mean-max
ratio to test for bimodal or multimodal distributions that
could be induced by binary or multi-symbol covert timing
channels. The mean-max ratio test assumes that the legit-
imate inter-packet delays follow a normal distribution and
the mean-max ratio should be ≈ 1, which is often not true
for real network traffic.

3. ENTROPY MEASURES
In this section, we first describe entropy, conditional en-

tropy, and corrected conditional entropy, and then explain
how these measures relate to first-order statistics, second or
higher-order statistics, and the regularity or complexity of a
process. Finally, we present the design and implementation
of the proposed scheme to detect covert timing channels,
based on the concept of entropy.

3.1 Entropy and Conditional Entropy
The entropy rate, which is the average entropy per random

variable, can be used as a measure of complexity or regular-
ity [18, 19]. The entropy rate is the conditional entropy of an
infinite sequence. The entropy rate is bounded from above
by the entropy of the first-order probability density function
or first-order entropy. A simple independent and identically
distributed (i.i.d.) process has an entropy rate equal to the
first-order entropy. A highly complex process has a high en-
tropy rate, but less than the first-order entropy. Thus, we
have a distinction between complexity and randomness. A
highly regular process has a low entropy rate, zero for a rigid
periodic process, i.e., a repeated pattern.

A random process X = {Xi} is defined as an indexed
sequence of random variables. To give the definition of the
entropy rate of a random process, we first define the entropy
of a sequence of random variables as:

H(X1, ..., Xm) = −
X

X1,...,Xm

P (x1, ..., xm) logP (x1, ..., xm),



where P (x1, ..., xm) is the joint probability P (X1 = x1, ...,
Xm = xm).

Then, from the entropy of a sequence of random variables,
we define the conditional entropy of a random variable given
a previous sequence of random variables as:

H(Xm | X1, ..., Xm−1) = H(X1, ..., Xm)−H(X1, ..., Xm−1).

Lastly, the entropy rate of a random process is defined as:

H(X) = lim
m→∞

H(Xm | X1, ..., Xm−1).

The entropy rate is the conditional entropy of an infi-
nite sequence and, therefore, cannot be measured for finite
samples. Thus, we estimate the entropy rate with the con-
ditional entropy of finite samples.

3.2 Corrected Conditional Entropy
The exact entropy rate cannot be measured for finite sam-

ples and must be estimated. In practice, probability den-
sity functions are replaced with empirical probability density
functions based on the method of histograms. The data is
binned in Q bins. The specific binning strategy being used
is important to the overall effectiveness of the test and is
discussed in Section 3.3. The empirical probability density
functions are determined by the proportions of patterns in
the data, i.e., the proportion of a pattern is the probability of
that pattern. Here a pattern is defined as a sequence of bin
numbers. The estimates of the entropy or conditional en-
tropy, based on the empirical probability density functions,
are represented as: EN and CE, respectively.

There is a problem with the estimation of CE(Xm | Xm−1)
for some values of m. The conditional entropy tends to zero
as m increases, due to limited data. If a specific pattern of
length m − 1 is found only once in the data, then the ex-
tension of this pattern to length m will also be found only
once. Therefore, the length m pattern can be predicted by
the length m− 1 pattern, and the length m and m− 1 pat-
terns cancel out. If no pattern of length m is repeated in the
data, then CE(Xm | Xm−1) is zero, even for i.i.d. processes.

To solve the problem of limited data, without fixing the
length of m, we use the corrected conditional entropy (CCE)
[18]. The corrected conditional entropy is defined as:

CCE(Xm | Xm−1) = CE(Xm | Xm−1)+perc(Xm)·EN(X1),

where perc(Xm) is the percentage of unique patterns of
length m and EN(X1) is the entropy with m fixed at 1
or the first-order entropy.

The estimate of the entropy rate is the minimum of the
corrected conditional entropy over different values of m. The
minimum of the corrected conditional entropy is considered
to be the best estimate of the entropy rate with the available
data. The corrected conditional entropy has a minimum, be-
cause the conditional entropy decreases while the corrective
term increases. The corrected conditional entropy has been
mainly used on biological data, such as electrocardiogram
[18] and electroencephalogram data [19]. Although not re-
lated to our work, it is interesting to see how such a measure
can differentiate the states of complex biological processes.
For example, with the electroencephalogram, an increase in
the entropy rate indicates a decrease in the depth of anes-
thesia, i.e., the subject is becoming more conscious.

Figure 3: The equiprobable binning of Exponential
data in Q = 5 bins
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3.3 Binning Strategies
The strategy of binning the data is critical to the overall

effectiveness of the test. The binning strategy mainly de-
cides: (1) how the data is partitioned and (2) the bin granu-
larity or the number of bins Q. In previous work, partition-
ing data into equiprobable bins seems to be most effective
[18, 19]. The use of equiprobable bins is illustrated in Figure
3, showing the partitioning of Exponential data into bins of
equal area. The bins, numbered 1 through 5, are small in
width when the proportion of values is high and large in
width when the proportion of values is low. Thus, while the
bins have different widths, the total area of each bin is equal.
The bin number for a value can then be determined based
on the cumulative distribution function:

bin = bF (x) ∗Qc,

where F is the cumulative distribution function and x is the
value to be binned.

The bin numbers can also be determined based on ranges,
e.g., 0.0 < bin1 ≤ 0.22, 0.22 < bin2 ≤ 0.51, 0.51 < bin3 ≤
0.91, and so on, which requires a search of the ranges to de-
termine the correct bin number for a value. Meanwhile, the
cumulative distribution function can determine the correct
bin in constant time, which is important for performance
when the number of bins is large.

The choice of the number of bins offers a tradeoff. While
a larger number of bins retains more information about the
distribution of the data, it increases the number of possible
patterns Qm and, thus, limits the ability of the test to rec-
ognize longer patterns due to the limited data. In contrast,
a small number of bins captures less information about the
distribution, but is better able to measure the regularity
of the data. Therefore, as both strategies have advantages
and disadvantages, we use both coarse-grain and fine-grain
binning.

To determine the best choice of Q for coarse-grain binning,
we run tests on correlated and uncorrelated samples for Q =
2 through 10. The correlated samples are 100 traces of 2,000
HTTP inter-packet delays. The uncorrelated samples are
random permutations of the correlated samples. We then



count the number of uncorrelated samples with scores that
overlap with the scores of correlated samples. There is no
overlap for the values of Q = 5 to 8. Therefore, to retain the
ability of the test to recognize longer patterns and measure
regularity, we use Q = 5 for coarse-grain binning.

It is much simpler to determine the best choice of Q for
fine-grain binning. With increasing values of Q, the number
of possible patterns Qm becomes much larger than the size
of the sample being tested. At this point, the test scores are
dominated by the estimate of the entropy for length 1. Then,
as we increase the value of Q, the bins continue to become
more precise, leading to a better estimate of the entropy for
length 1 than that for smaller values of Q. Therefore, as Q
can be made arbitrarily precise, we use Q = 216 = 65,536
for fine-grain binning.

3.4 Implementation Details
Our design goal is to be effective in detection and efficient

in terms of run-time and storage. The efficiency of tests is
particularly important if tests are conducted in real-time for
online processing of data. Thus, we are careful to optimize
our implementation for performance. We implement the cor-
rected conditional entropy in the C programming language.
The patterns are represented as nodes in a Q-ary tree of
height m. The nodes of the tree include pattern counts and
links to the nodes with longer patterns. The level of the tree
corresponds to the length of patterns. The children of the
root are the patterns of length 1. The leaf nodes are the
patterns of length m.

To add a new pattern of length m to the tree, we move
down the tree towards the leaves, updating the counts of the
intermediate nodes and creating new nodes. Thus, when we
reach the bottom of the tree, we have counted both the new
pattern and all of its sub-patterns. After all patterns of
length m are added, we perform a breadth-first traversal.
The breadth-first traversal computes the corrected condi-
tional entropy at each level and terminates when the mini-
mum is obtained. If the breadth-first traversal reaches the
bottom of the tree without having the minimum, then we
must increase m and continue.

The time and space complexities are O(n ·m), where n is
the size of the sample, if we assume a priori knowledge of the
distribution and use the cumulative distribution function to
determine the correct bin for each value in constant time.
Otherwise, the time complexity increases to O(n·m·log(Q)).
In practice, running our program on a sample of size 2,000
with Q = 5 and a pattern of length 10 on our test machine,
an Intel Pentium D 3.4Ghz, takes 16 milliseconds. However,
small changes in the implementation can have significant
impact on performance.

To demonstrate this, we evaluate the computation over-
head of our implementation and that of a previous imple-
mentation [19]. The computation time of both implemen-
tations with increasing pattern length is shown in Figure
4. For small values of m, our computation time is slightly
longer, because of the overhead of creating our data struc-
ture. However, as m increases, the previous implementa-
tion increases quadratically, whereas our implementation in-
creases linearly. The quadratic growth is caused by the sep-
arate processing of patterns of different lengths, i.e., the pat-
terns of length 1, then the patterns of length 2, and so on,
which introduces a quadratic term due to the summation of

the pattern lengths:
Pm
i=1 i = m2+m

2
.

Figure 4: CCE performance
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4. EXPERIMENTAL EVALUATION
In this section, we validate the effectiveness of our pro-

posed approach through a series of experiments. The focus
of these experiments is to determine if our entropy-based
methods (entropy and corrected conditional entropy) are
able to detect covert timing channels. We test our entropy-
based methods against three covert timing channels: IPCTC
[7], TRCTC [6], and JitterBug [20]. Furthermore, we com-
pare our entropy-based methods to two other detection tests:
the Kolmogorov-Smirnov test and the regularity test [7].

The purpose of a detection test is to differentiate covert
traffic from legitimate traffic. The performance of a detec-
tion test can be measured based on false positive and true
positive rates, with low false positive rate and high true
positive rate being ideal. In practice, because of the large
variation in legitimate network traffic, it is important that
tests work well for typical traffic and occasional outliers. If
a detection test gives test scores with significant overlap be-
tween legitimate and covert samples, then it fails on detec-
tion. Therefore, the mean, variance, and distribution of test
scores are critical metrics to the performance of a detection
test.

4.1 Experimental Setup
The defensive perimeter of a network, made up of fire-

walls and intrusion detection systems, is designed to protect
the network from malicious traffic. Typically, only a few
specific application protocols, such as HTTP and SMTP, al-
though heavily monitored, are allowed to pass through the
defensive perimeter. In addition, other protocols, such as
SSH, might be permitted to cross the perimeter but only to
specific trusted destinations.

We now consider the scenarios discussed in Section 2. In
the first scenario, which relates to IPCTC and TRCTC, a
compromised machine uses a covert timing channel to com-
municate with a machine outside the network. For IPCTC
and TRCTC, we utilize outgoing HTTP inter-packet de-
lays as the medium, due to the wide acceptance of HTTP
for crossing the network perimeter and the high volume of
HTTP traffic. In the second scenario, which relates to Jit-
terBug, a compromised input device uses a covert timing



channel to leak typed information over the traffic of a net-
worked application. For JitterBug, we utilize outgoing SSH
inter-packet delays as the medium, based on the original de-
sign [20] and the high volume of keystrokes in interactive
network applications.

4.1.1 Dataset
The covert and legitimate samples that we use for our ex-

periments are from two datasets: (1) HTTP traces we col-
lected on a medium-size campus network and (2) the dataset
obtained from the University of North Carolina at Chapel
Hill (UNC). In total, we have 12GB of uncompressed tcp-
dump packet header traces (HTTP protocol) that we col-
lected and 79GB of tcpdump packet header traces (all pro-
tocols) from the UNC dataset. In our experiments, we use
several subsets of the two datasets, including:

• HTTP training set: 10,000,000 HTTP packets

• LEGIT-HTTP: 200,000 HTTP packets

• TRCTC: 200,000 HTTP packets

• SSH training set: 10,000,000 SSH packets

• LEGIT-SSH: 200,000 SSH packets

• JitterBug: 200,000 SSH packets

In our experiments, we test a number of covert samples,
which are generated from these subsets and from the en-
coding methods for IPCTC, TRCTC, and JitterBug. For
TRCTC, we generate the covert samples from a set of 200,000
legitimate HTTP inter-packet delays. For JitterBug, we gen-
erate the covert samples from a set of 200,000 legitimate
SSH inter-packet delays. A test machine replays the set of
200,000 SSH inter-packet delays and adds JitterBug delays.
It should be noted that our version of JitterBug is imple-
mented in software. A monitoring machine on the campus
backbone then collects a trace of the JitterBug traffic, which
adds network delays after the addition of JitterBug delays.
The monitoring machine is 4 hops away from the test ma-
chine, so the added network delays are small, which repre-
sents the scenario illustrated in Figure 2, where a defensive
perimeter monitors outgoing traffic.

The large training sets of legitimate traffic are useful for
some of the detection tests. The Kolmogorov-Smirnov test
uses the training sets to represent the behavior of legiti-
mate traffic. The Kolmogorov-Smirnov test then measures
the distance between the test sample and the training set.
The entropy and corrected conditional entropy tests use the
training sets to determine bin ranges, based on equiproba-
ble binning. These tests do not require a priori binning, but
doing so improves performance, as the data does not need
to be partitioned online.

4.1.2 Detection Methodology
In our experiments, we run detection tests on samples of

covert and legitimate traffic. We use the resulting test scores
to determine if a sample is covert or legitimate as follows.
First, we set the targeted false positive rate at 0.01. To
achieve this false positive rate, the cutoff scores—the scores
that decide whether a sample is legitimate or covert—are set
at the 99th or 1st percentile (high scores or low scores for
different tests) of legitimate sample scores. Then, samples

with scores worse than the cutoff are identified as covert,
while samples with scores better than the cutoff are identi-
fied as legitimate. The false positive rate is the proportion
of legitimate samples that are wrongly identified as covert,
while the true positive rate is the proportion of covert sam-
ples that are correctly identified as covert.

Considering the properties of the detection tests, we can
classify them as tests of shape or regularity. The shape of
traffic is described by first-order statistics, and the regular-
ity of traffic is described by second or higher-order statistics.
The Kolmogorov-Smirnov test and entropy test are tests of
shape, while the regularity test and corrected conditional
entropy test are tests of regularity. The test scores are in-
terpreted as follows.

In the Kolmogorov-Smirnov test, we measure the distance
between the test sample and the training set that represents
legitimate behavior. Thus, if the test score is small, it im-
plies that the sample is close to the normal behavior. How-
ever, if the sample does not fit the normal behavior well, the
test score will be large, indicating the possible occurrence of
a covert timing channel. By contrast, in the regularity test,
we measure the standard deviation of the standard deviation
of sets of 100 packets. If the regularity score is low, then the
sample is highly regular, indicating the possible existence of
a covert timing channel.

The entropy test estimates the first-order entropy, whereas
the corrected conditional entropy test estimates the higher-
order entropy. The entropy test is based on the same al-
gorithm as the corrected conditional entropy test. The cor-
rected conditional entropy test uses Q = 5, whereas the
entropy test uses Q = 65, 536 and m fixed at 1. With m
fixed at 1, the corrected and conditional components of the
algorithm are no longer factors. If the entropy test score
is low, it suggests a possible covert timing channel, because
the sample does not uniformly fit the appropriate distribu-
tion. If the conditional entropy test score is lower or higher
than the cutoff scores, it suggests a possible covert timing
channel. When the conditional entropy test score is low, the
sample is highly regular. When the conditional entropy test
score is high, near the first-order entropy, the sample shows
a lack of correlations.

4.2 Experimental Results
In the following, we present our experimental results in de-

tail. The four detection tests are: the Kolmogorov-Smirnov
test, regularity test, entropy test, and corrected conditional
entropy test. The three covert timing channels are: IPCTC,
TRCTC, and JitterBug. The experiments are organized by
covert timing channels, which are ordered in terms of in-
creasing detection difficulty.

4.2.1 IPCTC
Our first set of experiments investigates how the detec-

tion tests perform against IPCTC [7]. IPCTC is the sim-
plest among the three covert timing channels being tested
and the easiest to detect, because it exhibits abnormality in
both shape and regularity. The abnormal shape of IPCTC
is caused by the encoding scheme. The encoding scheme
encodes a 1-bit by transmitting a packet during an interval,
and encodes a 0-bit with no packet transmission. Thus, the
number of 0-bits between two 1-bits determines the inter-
packet delays. If the bit sequence is uniform, then we can
view the bit sequence as a series of Bernoulli trials and, thus,



the inter-packet delays approximate a Geometric distribu-
tion. The timing-interval t is rotated among 40 milliseconds,
60 milliseconds, and 80 milliseconds after each 100 packets,
as suggested by Cabuk et al. [7], to avoid creating a reg-
ular pattern of inter-packet delays at multiples of a single
t. However, this instead creates a regular pattern of inter-
packet delays at multiples of 20 milliseconds. The regularity
of IPCTC is due to the lack of significant correlations be-
tween inter-packet delays. That is, the inter-packet delays
are determined by the bit sequence being encoded, not by
the previous inter-packet delays.

We run each detection test 100 times for 2,000 packet sam-
ples of both legitimate traffic and IPCTC traffic. The mean
and standard deviation of the test scores are shown in Ta-
ble 1. The detection tests all achieve lower average scores
for IPCTC than those for legitimate traffic. The regularity
test has a very high standard deviation for legitimate traf-
fic, which suggests that this test is sensitive to variations in
the behavior of legitimate traffic. The corrected conditional
entropy test has a mean score for covert traffic that appears
somewhat close to that of legitimate traffic, 1.96 for legiti-
mate and 2.21 for covert. However, in relative terms, these
scores are not that close. The mean score for IPCTC is much
closer to the maximum entropy than to the mean score of le-
gitimate traffic. The maximum entropy is the most uniform
possible distribution [9]. The maximum entropy for Q = 5
is:

H(X) = Q · 1

Q
log(

1

Q
) = 5 · 1

5
log(

1

5
) ≈ 2.3219

The corrected conditional entropy score is bounded from
above by the first-order entropy. The first-order entropy is
then bounded from above by the maximum entropy. There-
fore, the corrected conditional entropy score for IPCTC can-
not be much higher.

As shown in Table 2, the detection rates for IPCTC (i.e.
true positive rates for detecting IPCTC) are 1.0 for all tests
except the regularity test, whose detection rate is only 0.49.
The regularity test measures sets of 100 packets and the
timing-interval t is rotated after each set of 100 packets, so
the regularity test observes three distinct variances and ac-
curately measures the regularity of IPCTC. The problem
though is not measuring IPCTC, but measuring legitimate
traffic. The very high standard deviation of the regularity
test against legitimate traffic makes it impossible to differen-
tiate IPCTC from legitimate samples without a higher false
positive rate. Moreover, if we increase the timing-interval
t to greater than 100 packets, the regularity test observes
a different number of packets for each t value within each
window, as the sets of t packets overlap with the window at
different points, making the test less reliable. However, if we
decrease the timing-interval t to much less than 100 packets,
the regularity test observes a similar number of packets for
each t value within each window and the variance for each
window is similar, which makes the test more reliable.

Still, the main problem with the regularity test is its high
standard deviation for legitimate traffic. The regularity test
is very sensitive to outliers in legitimate traffic. For example,
if σi is very small, due to a sequence of similar inter-packet

delays, and σj is average or larger, then
|σi−σj |
σi

is very large,

especially for the values of σi close to zero, which are not
uncommon. In fact, one such outlier in a sample is more
than sufficient to make a covert sample appear to be a le-

Table 1: IPCTC test scores

LEGIT-HTTP IPCTC
test mean stdev mean stdev

KSTEST 0.180 0.077 0.708 0.000
regularity 12.605 22.973 0.330 0.056

EN 17.794 0.862 3.059 0.032
CCE 1.964 0.149 2.216 0.013

Table 2: IPCTC detection rates

LEGIT-HTTP IPCTC
test false positive true positive

KSTEST ≥ 0.35 .01 1.00
regularity ≤ 0.34 .01 .49
EN ≤ 15.12 .01 1.00
CCE ≥ 2.18 .01 1.00

gitimate sample. The high variance of the regularity test
demonstrates that it is important to examine more than the
average test score, since the variance and distribution of test
scores are critical to the successful detection of covert timing
channels.

4.2.2 TRCTC
Our second set of experiments investigates how our detec-

tion tests perform against TRCTC [6]. TRCTC is a more
advanced covert timing channel that makes use of a replay
attack. TRCTC replays a set of legitimate inter-packet de-
lays to approximate the behavior of legitimate traffic. Thus,
TRCTC has the approximately the same shape as legiti-
mate traffic, but exhibits abnormal regularity, like IPCTC.
The regularity of TRCTC, like IPCTC, is due to the lack
of significant correlations between inter-packet delays. Al-
though TRCTC replays inter-packet delays, the replay is in
random order, as determined by the bit sequence that is be-
ing encoded, thus breaking the correlations in the original
inter-packet delays.

We run each detection test 100 times for 2,000 packet sam-
ples of both legitimate traffic and TRCTC traffic. The mean
and standard deviation of the test scores are shown in Table
3. The test scores for TRCTC and legitimate traffic are ap-
proximately equal for the Kolmogorov-Smirnov and entropy
tests. These tests strictly measure first-order statistics, and,
as such, are not able to detect TRCTC. The regularity test
achieves a much lower average score for TRCTC than that
for legitimate traffic, which is due to the similar variance
between groups of packets in TRCTC. However, the stan-
dard deviation of the regularity test is again very high for
legitimate traffic and, this time, is high for covert traffic as
well. At the same time, the corrected conditional entropy
test gives similar results to those for IPCTC. The corrected
conditional entropy test has a mean score for TRCTC that
appears somewhat close to that of legitimate, 1.96 for legit-
imate and 2.21 for covert. However, if we examine the dis-
tribution of test scores for TRCTC and legitimate traffic, as
illustrated in Figure 5, then we can see that, although some
scores are in adjacent bins, there is no overlap between the
distributions. Furthermore, the distribution of legitimate



Table 3: TRCTC test scores

LEGIT-HTTP TRCTC
test mean stdev mean stdev

KSTEST 0.180 0.077 0.180 0.077
regularity 35.726 36.635 7.845 9.324

EN 17.794 0.862 17.794 0.861
CCE 1.964 0.149 2.217 0.012

Table 4: TRCTC detection rates

LEGIT-HTTP TRCTC
test false positive true positive

KSTEST ≥ 0.35 .01 .02
regularity ≤ 0.34 .01 .04
EN ≤ 15.12 .01 .02
CCE ≥ 2.18 .01 1.00

test scores is strongly skewed to the left, away from the dis-
tribution of TRCTC test scores. The detection rates for
TRCTC, as shown in Table 4, are very low (0.04 or less) for
all the detection tests except the corrected conditional en-
tropy test, which has a detection rate of 1.0. The corrected
conditional entropy test scores of TRCTC are again close to
the maximum entropy, therefore the corrected conditional
entropy test is successful in detecting TRCTC.

4.2.3 JitterBug
Our third set of experiments investigates how our detec-

tion tests perform against JitterBug [20]. JitterBug is a
passive covert timing channel, so no additional traffic is gen-
erated to transmit information. Instead, JitterBug manip-
ulates the inter-packet delays of existing legitimate traffic.
The timing-window w, which determines the maximum de-
lay that JitterBug adds, is set at 20 milliseconds, as sug-
gested by Shah et al. [20]. The average inter-packet delay
of the original SSH traffic is 1.264 seconds, whereas, with
JitterBug, the average inter-packet delay is 1.274 seconds.
In addition, while 20 milliseconds might be noticeable with
other protocols, SSH traffic has a small proportion of short
inter-packet delays, i.e., few inter-packet delays less than
100 milliseconds, which makes JitterBug harder to detect in
this part of the distribution. Therefore, because of having
legitimate traffic as a base and only slightly increasing the
inter-packet delays, JitterBug is able to retain much of the
original correlation from the legitimate traffic. Moreover,
by slightly increasing the inter-packet delays, JitterBug only
slightly affects the original shape. Thus, JitterBug has sim-
ilar shape and regularity to legitimate traffic.

Also JitterBug is very difficult to detect for several other
reasons. From a practical perspective, the machine itself has
not been compromised, so conventional host-based intrusion
detection methods fail. Moreover, the traffic is encrypted, so
the contents of the packets cannot be used to predict the ap-
propriate behavior. Additionally, the position of JitterBug,
between the machine and the human, further complicates
detection because of the variation in human behavior, i.e.,
different typing characteristics. However, as JitterBug is a
covert timing channel and transmits information, there is
some affect on the entropy of the original process.

Figure 5: CCE test scores for TRCTC
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We run each detection test 100 times for 2,000 packet
samples of both legitimate traffic and JitterBug traffic. The
mean and standard deviation of the test scores are shown in
Table 5. The test scores for JitterBug and legitimate traffic
are close to each other for all the tests except the entropy
test. If we look at the distribution of entropy test scores for
JitterBug and legitimate traffic, as illustrated in Figure 5,
we can see that the distributions of JitterBug and legitimate
test scores are quite distinct. The detection rates for Jitter-
Bug shown in Table 6, are very low (0.04 or less) for all the
detection tests except the entropy test, which has a detec-
tion rate of 1.0. Note that the other tests do detect some
difference between JitterBug and legitimate traffic, but the
differences are so small that it is impossible for these tests
to differentiate JitterBug from legitimate traffic without a
much higher false positive rate.

In contrast, the entropy test is able to detect JitterBug.
The entropy test uses a large number of bins, with bin widths
determined by the distribution of legitimate traffic. The en-
tropy test measures how uniformly the inter-packet delays
are distributed with respect to the bins, and how uniformly
the inter-packet delays fit the legitimate traffic distribution.
JitterBug creates small changes throughout the distribution.
Since these changes fall within the variance that is typical
of legitimate traffic, the tests that measure the maximum
distance, like the Kolmogorov-Smirnov test, fail to detect
the changes. However, the entropy test is sensitive to such
changes throughout the distribution. JitterBug increases the
inter-packet delays and, due to the rotating window, redis-
tributes the inter-packet delays in an Equilikely distribution.
However, the increases are not uniform with respect to the
legitimate distribution, leading to increases or decreases in
the proportion of inter-packet delays for each bin. The en-
tropy test measures how uniformly the inter-packet delays
are distributed with respect to the bins, with the legitimate
traffic distribution being the most uniform or maximum en-
tropy 2 . Therefore, the entropy test score for JitterBug is
lower than that for legitimate traffic, which can be easily
detected.

2In absolute terms, the uniform distribution is the maximum
entropy distribution of all continuous distributions [9], but
the entropy test, due to the bins, is a relative measure.



Table 5: JitterBug test scores

LEGIT-SSH JitterBug
test mean stdev mean stdev

KSTEST .270 .133 .273 .123
regularity 6.230 5.847 6.038 5.624

EN 19.422 1.856 9.432 1.253
CCE 1.779 0.261 1.837 0.220

Table 6: JitterBug detection rates

LEGIT-SSH JitterBug
test false positive true positive

KSTEST ≥ 0.63 .01 .01
regularity ≤ 0.08 .01 .02
EN ≤ 21.20 .01 1.00
CCE ≥ 2.17 .01 .04

4.3 Discussion
The detection tests that we present are all able to de-

tect some covert timing channels under certain conditions.
However, the previous methods fail for detecting most of
the tested covert timing channels. One major reason lies
in the high variation of legitimate traffic. For example, the
regularity test exhibits obvious weakness in this regard. In-
terestingly, the regularity test is the only test, other than
the corrected conditional entropy test, that achieves lower
average scores for all the covert timing channels. However,
due to the high standard deviation of the regularity test
in measuring legitimate traffic, the regularity test is not an
effective detection method.

The other main reason lies in the properties of covert traf-
fic. For example, while the Kolmogorov-Smirnov test is bet-
ter able to deal with legitimate traffic variation, it has prob-
lems with covert timing channels whose distribution is very
close to that of legitimate traffic. The Kolmogorov-Smirnov
test measures the maximum distance between the two dis-
tributions, rather than measuring differences throughout the
distribution. Thus, when the distribution of covert traffic is
very close to that of legitimate traffic, the variance of the
test scores is sufficiently large so that the test cannot differ-
entiate covert traffic from legitimate traffic.

Our entropy-based approach proves more effective than
previous schemes. Based on the advantages of different
binning strategies, we make use of both entropy and cor-
rected conditional entropy for detecting covert timing chan-
nels. The entropy test is sensitive to small changes through-
out the distribution. However, for a covert timing channel
whose distribution is nearly identical to that of legitimate
traffic, the entropy test fails. By contrast, the corrected con-
ditional entropy test measures the regularity or complexity
of the traffic, rather than the distribution. Thus, it is effec-
tive to detect such a covert timing channel. However, if the
original correlations of traffic are retained and the distribu-
tion is changed, then the conditional entropy test fails; but
the entropy test works in this scenario by detecting slight
changes in the distribution. Therefore, in combination of
both, our entropy-based approach is effective in detecting
all the tested covert timing channels.

Figure 6: EN test scores for JitterBug
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5. POTENTIAL COUNTERMEASURES

In this section, we discuss possible countermeasures that
could be used to harden covert timing channels against our
entropy-based approach. Our discussion focuses on TRCTC
and JitterBug. TRCTC is detected by the corrected condi-
tional entropy test and JitterBug is detected by the entropy
test.

To evade the corrected conditional entropy test, TRCTC
could be redesigned to replay longer correlated sequences of
inter-packet delays. The corrected conditional entropy test
could counter this technique for short sequences by increas-
ing the minimum pattern length. Of course, with increas-
ing sequence length, the corrected conditional entropy test
would lose its ability to measure regularity, because of the
issues discussed in Section 3, unless the sample size were
increased. However, this is not a significant threat, because
replaying long correlated sequences of inter-packet delays
would greatly reduce the capacity of TRCTC.

To evade the entropy test, JitterBug could be reconfigured
to use a smaller timing-window w. Eventually, as w becomes
smaller, the entropy test would need a larger sample to de-
tect the JitterBug. However, using a smaller timing-window
would, similar to our discussion of TRCTC, reduce the ca-
pacity of JitterBug. It remains an open question whether or
not these countermeasures would be practical.

6. CONCLUSION AND FUTURE WORK
We introduced an entropy-based approach to detecting

covert timing channels, which makes use of entropy and cor-
rected conditional entropy. We designed and implemented
the entropy-based detection tool. The development of this
tool addresses a number of non-trivial design issues, includ-
ing efficient use of data structures, data partition, bin gran-
ularity, and pattern length. We observed that as bin gran-
ularity increases, entropy estimates become more precise,
whereas corrected conditional entropy estimates become less
precise. Therefore, based on this observation, we utilized
the fine-binned entropy estimation and the coarse-binned
corrected conditional entropy estimation for covert timing
channel detection.



We then applied our entropy-based techniques for detect-
ing covert timing channels. The corrected conditional en-
tropy test is able to detect the covert timing channels with
abnormal regularity, while the entropy test is able to de-
tect the covert timing channels with abnormal shape. Our
experimental results show that the combination of entropy
and corrected conditional entropy is capable of detecting a
variety of covert timing channels. In contrast, for a covert
timing channel whose distribution is close to that of legiti-
mate traffic, all the previous detection methods fail.

There are a number of possible directions for our future
work. We plan to further investigate the possible counter-
measures that could be used by attackers to evade entropy-
based detection. We also plan to explore the connection
between our entropy-based detection methods and the en-
tropy that relates to covert timing channel capacity. We
believe that the exploration could lead to better detection
methods or lower overall bounds on the capacity of covert
timing channels.
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