
Anti-Phishing in Offense and Defense

Chuan Yue and Haining Wang
The College of William and Mary
{cyue,hnw}@cs.wm.edu

Abstract

Many anti-phishing mechanisms currently focus on help-
ing users verify whether a web site is genuine. However,
usability studies have demonstrated that prevention-based
approaches alone fail to effectively suppress phishing at-
tacks and protect Internet users from revealing their cre-
dentials to phishing sites. In this paper, instead of prevent-
ing human users from “biting the bait”, we propose a new
approach to protect against phishing attacks with “bogus
bites”. We develop BogusBiter, a unique client-side anti-
phishing tool, which transparently feeds a relatively large
number of bogus credentials into a suspected phishing site.
BogusBiter conceals a victim’s real credential among bogus
credentials, and moreover, it enables a legitimate web site
to identify stolen credentials in a timely manner. Leveraging
the power of client-side automatic phishing detection tech-
niques, BogusBiter is complementary to existing preventive
anti-phishing approaches. We implement BogusBiter as an
extension to Firefox 2 web browser, and evaluate its efficacy
through real experiments on both phishing and legitimate
web sites.

1. Introduction

A phishing attack is typically carried out using an email
or an instant message, in an attempt to lure recipients to
a fake web site to disclose personal credentials. To defend
against phishing attacks, a number of countermeasures have
been proposed and developed. Server-side defenses employ
SSL certificates, user selected site-images, and other secu-
rity indicators to help users verify the legitimacy of web
sites. Client-side defenses equip web browsers with auto-
matic phishing detection features or add-ons to warn users
away from suspected phishing sites. However, recent us-
ability studies have demonstrated that neither server-side
security indicators nor client-side toolbars and warnings are
successful in preventing vulnerable users from being de-
ceived [6, 21, 23, 26, 28]. This is mainly because (1) phish-
ers can convincingly imitate the appearance of legitimate

web sites, (2) users tend to ignore security indicators or
warnings, and (3) users do not necessarily interpret secu-
rity cues appropriately. Educational defenses [12, 16, 24]
and takedown defenses [13, 18, 39] have also been studied.
However, these defenses cannot completely foil phishing at-
tacks and will take a long time to be effective on a large
scale.

These different approaches are all preventive by nature.
They endeavor to prevent users from being tricked into re-
vealing their credentials to phishing sites. Nevertheless,
these prevention-based approaches alone are insufficient to
shield vulnerable users from “biting the bait” and defeat
phishers, as human users are the weakest link in the secu-
rity chain. The ever-increasing prevalence and severity of
phishing attacks clearly indicate that anti-phishing is still a
daunting challenge.

In response to this challenge, we have made two observa-
tions with respect to the acquisition of credentials by phish-
ers and the automatic detection of phishing attacks on web
browsers. First, currently the majority of those who have
“bitten the bait” and fallen victim to phishing attacks are
real victims, thus it is trivial for a phisher to verify the ac-
quired credentials and trade them for money. However, if
we can supply phishing sites with a large number of bo-
gus credentials, we might be able to hide victims’ real cre-
dentials among bogus credentials and make it harder for
phishers to succeed. Second, although remarkable advances
in client-side automatic phishing detection have empow-
ered web browsers to identify the majority of phishing sites
[4, 11, 17, 33, 36, 40], the possible false positives (legiti-
mate web sites misclassified as phishing sites) make it hard
for web browsers to directly block users’ connections to
suspected phishing sites. Thus, issuing warnings and ex-
pecting users to leave a suspected phishing site have be-
come the most common actions employed by modern web
browsers. However, instead of just wishing vulnerable users
could make correct decisions, if we can effectively trans-
form the power of automatic phishing detection into the
power of automatic fraud protection, we will take a big step
forward towards winning the battle against phishing.

In this paper, we propose a new approach to protect



against phishing attacks with “bogus bites” on the basis of
the two observations mentioned above. The key feature
of this approach is to transparently feed a relatively large
number of bogus credentials into a suspected phishing site,
rather than attempt to prevent vulnerable users from “bit-
ing the bait”. These “bogus bites” conceal victims’ real
credentials among bogus credentials, and enable legitimate
web sites to identify stolen credentials in a timely manner.
Based on the concept of “bogus bites”, we design and de-
velop BogusBiter, a unique client-side anti-phishing tool
that is complementary to existing prevention-based mech-
anisms. Seamlessly integrated with the phishing detection
and warning mechanisms in modern web browsers, Bogus-
Biter is transparent to users.

While leveraging the power of widely used client-side
automatic phishing detection techniques, BogusBiter is not
bound to any specific phishing detection scheme. Thus, Bo-
gusBiter can utilize the latest advances in phishing detec-
tion techniques such as blacklists and heuristics to protect
against a wide range of phishing attacks. Moreover, Bogus-
Biter is incrementally deployable over the Internet, and the
fraud protection enabled at a legitimate web site is indepen-
dent of the deployment scale of BogusBiter. We implement
BogusBiter as a Firefox web browser extension and evalu-
ate its efficacy through real experiments over both phishing
and legitimate web sites. Our experimental results indicate
that BogusBiter is a promising anti-phishing approach.

2. Background

Figure 1(a) illustrates a phishing site designed to attack
eBay users. In a typical scenario, a user receives a spoofed
email that appears to be sent from the real eBay, luring the
user to log into the phishing site. Once the user believes
this site is the genuine eBay web site and logs in, the user’s
username/password credential is stolen. Passwords have in-
creasingly been targeted by harvesting attacks, as they pro-
tect online accounts with valuable assets [9]. While some
phishing attacks may steal other types of credentials such
as credit card numbers and social security numbers, the
most common type of phishing attack attempts to steal ac-
count numbers and passwords used for online banking [15].
Therefore, protecting a user’s username/password creden-
tial is the primary focus of many client-side anti-phishing
research work such as SpoofGuard [4], Dynamic Security
Skins [5], PwdHash [22], Web Wallet [29], and Passpet
[31]. Our work also focuses on protecting a user’s user-
name/password credential. In the remainder of this paper,
we use the terms credential and username/password pair in-
terchangeably.

While distinct from preventive anti-phishing mecha-
nisms, BogusBiter complements them in a natural way. In
particular, BogusBiter leverages the power of client-side au-

tomatic phishing detection mechanisms and takes advan-
tage of the state-of-practice phishing warning mechanisms
in popular web browsers to transparently protect vulnerable
users.

Among automatic phishing detection mechanisms, two
commonly used techniques are blacklists and heuristics.
Blacklist-based techniques generate close-to-zero false pos-
itives and can detect most phishing attacks [17, 32, 35, 37].
For example, Ludl et al. demonstrated that blacklists pro-
vided by Google (used by Firefox 2) can recognize almost
90% of live phishing sites. However, because some phish-
ing sites may not be added into blacklists and the so-called
zero-day attacks may occur, researchers have proposed var-
ious heuristic-based techniques to identify phishing sites
in real time [4, 11, 17, 33]. These heuristic-based tech-
niques have obtained very encouraging results. For exam-
ple, CANTINA, a content-based detection tool proposed
by Zhang et al. [33] can identify 90% of phishing pages
with only 1% false positives. A URL-based classifier pro-
posed by Garera et al. [11] is another tool which can catch
95.8% of phishing pages with only 1.2% false positives.
Currently, Firefox 2 primarily employs blacklist-based tech-
niques while Internet Explorer (IE) 7 uses both kinds of
techniques [36, 40]. Because BogusBiter’s design is inde-
pendent of any specific detection scheme, it can leverage
advances in both blacklist-based techniques and heuristic-
based techniques to combat the majority of phishing attacks.

Regarding phishing site warning mechanisms, the state-
of-practice is to make it mandatory for a user to respond
to the warning of a suspected phishing site. Figure 1(b) il-
lustrates the warning given by Firefox 2 [36] after correctly
identifying the example web site in Figure 1(a) as a phishing
site. A user is unable to enter the username and password
without first interacting with the warning page. If the user
clicks on the link “Get me out of here!”, the user is redi-
rected to a default page and is protected. Otherwise, if the
user clicks on the link “Ignore this warning”, the warning
page disappears and the user is exposed to the risk of cre-
dential theft. A similar warning mechanism is also used in
IE 7 [40]. Both Firefox 2 and IE 7 might choose such a
strong warning mechanism because: (1) issuing warnings
simply through browser-based security indicators such as
the address bar, the status bar, and various toolbars is inef-
fective [6, 21, 23, 26, 28], and (2) directly blocking users’
connections to suspected phishing sites is unacceptable, due
to inevitable false positives. Although using strong warning
pages represents current best practice, the usability study of
the IE 7 warning page conducted by Schechter et al. [23]
demonstrates that over 50% of participants still ignore the
warning and enter their passwords, despite the overtness of
the warning page and its strong wording. Another usability
study conducted by Egelman et al. [7] shows that over 20%
of participants ignore the strong warnings.



(a) (b)

Figure 1: (a) A phishing site designed to attack eBay users, (b) Firefox 2 phishing warning mechanism.

3. Design

In this section, we first give an overview on the design of
BogusBiter, and then we detail the offensive line and defen-
sive line of BogusBiter.

3.1. Design Overview

BogusBiter is designed as either a new component or an
extension to popular web browsers such as Firefox 2 or IE 7.
It integrates seamlessly with phishing detection and warn-
ing mechanisms of current web browsers to protect vulner-
able users against phishing attacks.

3.1.1. How It Works. When a login page is classified as a
phishing page by a browser’s built-in detection component,
BogusBiter is triggered. At this point, BogusBiter will per-
form differently based on a user’s response to the browser’s
phishing warning page. For a vulnerable user who clicks
the “Ignore this warning” link and submits a real creden-
tial, BogusBiter will intercept the victim’s real credential,
hide it among a set of S − 1 generated bogus credentials,
and then submit the S credentials one by one to the phish-
ing site within a few milliseconds. For a security-conscious
user who clicks the “Get me out of here!” link on the warn-
ing page, BogusBiter will generate a set of S bogus creden-
tials, and then feed them one by one into the phishing site in
the same way as it does for a vulnerable user. These actions
are completely transparent to both vulnerable and security-
conscious users.

3.1.2. Design Assumption. We assume that a phisher
does not have a complete list of valid usernames for a tar-
geted legitimate web site, and cannot directly query a tar-
geted legitimate web site for the validity of a specific user-
name. Although this assumption may not be strictly cor-

rect for email service web sites and community web sites,
it is generally true for financial institutions, which are the
main targets of phishing attacks. Financial institutions sel-
dom have valid username lists publicly accessible. Mean-
while, for a failed login attempt, web sites often try to hide
whether the failure is due to an incorrect username or due to
an incorrect password by returning the same error message
[3, 10], making it very hard to test the validity of a given
username. Indeed, preventing the leakage of username va-
lidity information is necessary for protecting user privacy,
guarding users from invasive advertising and phishing, and
defending against password guessing attacks. To enhance
such a protection, the recent work by Bortz et al. [3] rec-
ommends that the response time of HTTP requests should
be carefully controlled by some web sites to remove timing
vulnerabilities. Florêncio et al. [10] further suggest that in-
creasing username strength could be more beneficial than
merely increasing password strength.

3.1.3. Design Objectives. To be effective, BogusBiter has
two key design objectives:

• offensive objective: BogusBiter should inject as many
bogus credentials as possible into a phishing site, thus
well hide victims’ real credentials among bogus cre-
dentials.
• defensive objective: Given that a phisher is aware of

BogusBiter and is willing to assume the heavy bur-
den of sifting out bogus credentials, BogusBiter should
enable a legitimate web site to exploit the filtering
process initiated by the phisher for detecting victims’
stolen credentials in a timely manner.

3.2. Offensive Line

To achieve its offensive objective, BogusBiter needs to
meet the following three requirements.



• Massiveness: The number of bogus credentials fed
into a phishing site should be large so that the over-
whelming majority of credentials received by a phisher
are bogus.

• Indiscernibility: Without the credential verification at
the legitimate web site, it is extremely difficult for a
phisher to deterministically discern, either at credential
submission time or afterwards, who are real victims
and what are real credentials.

• Usability: The usage of BogusBiter at the client-side
should not incur undue overhead or unwanted side ef-
fects, nor should it produce any security or privacy
concerns.

3.2.1. Massiveness. We use the real-to-all ratio—the ra-
tio between the number of real credentials being stolen and
the total number of credentials being collected—to estimate
how many bogus credentials could be fed into a phishing
site to hide victims’ real credentials. Without BogusBiter,
most or perhaps all credentials collected by a phisher are
real credentials submitted by victims, thus the real-to-all
ratio is close to one. A phisher can easily verify these cre-
dentials at the legitimate web site, assess their values, and
ultimately use them to obtain money.

With BogusBiter equipped at each web browser, the real-
to-all ratio will be determined by two factors. The first is
the set size S, i.e., the number of credentials submitted by
BogusBiter for each phishing site visit. The second is the
cheat-to-click ratio, which is the ratio between the number
of victims who reveal their credentials and the total num-
ber of users who visit the phishing site. The set size S is
a parameter that we can configure, while the cheat-to-click
ratio is related to the severity of phishing attacks. If all the
phishing site visitors become victims, the cheat-to-click ra-
tio equals one. Therefore, the upper bound of the real-to-all
ratio is 1

S . However, the experiments conducted by Jakob-
sson and Ratkiewicz [14] demonstrate that even with the
effects of modern anti-phishing efforts, about 11 ± 3% of
users will read a spoofed email, click the link it contains,
and enter their login credentials. In addition, Garera et al.
[11] found that on average, 8.24% of users become victims
after visiting phishing sites. If we use 10% as a realistic
value for the cheat-to-click ratio, the real-to-all ratio be-
comes 1

10S . Thus, if the value of the set size S is 10, a
real credential will be hidden among 100 bogus credentials.
Moreover, it is plausible to assume that the cheat-to-click
ratio will decrease in the long run due to technical advances
and educational efforts — a trend that favors BogusBiter.

Given the indiscernibility achieved by BogusBiter, we
now analyze the probability and the expected number of
tries for a phisher to single out a certain number of real
credentials by verifying them at the legitimate web site.
Since each set of S credentials are submitted by BogusBiter

from a user’s browser within a few milliseconds, a phisher
can easily group the collected credentials by sets and ver-
ify them. If a set of S credentials is submitted from a vic-
tim’s browser, the real credential will be singled out by a
phisher with an expected number of S+1

2 tries. However,
because a phisher cannot discern which set includes a real
credential, the phisher has to verify all sets of the collected
credentials in order to single out as many real credentials
as possible. Considering the very low cheat-to-click ratio,
without loss of generality, we simplify our analysis by mix-
ing together all sets of the collected credentials. Let n be
the total number of credentials collected at a phishing site,
and m be the number of real credentials revealed by vic-
tims. Let Xk be the discrete random variable representing
the number of tries performed by the phisher to single out
k real credentials. The probability and expectation for Xk

are described in Formula (1) and Formula (2), respectively,
where

∑n−m+k
i=k Pr(Xk = i) = 1 and k = 1, 2, ...,m.

Pr(Xk = i)=
(n−m
i−k )(m

k−1)
(n
i−1)

· m− (k − 1)
n− (i− 1)

(1)

E[Xk]=
n−m+k∑

i=k

i · Pr(Xk = i) (2)

For example, we use 10% as the cheat-to-click ratio and
10 as the value of the set size S. If there are six real cre-
dentials hidden among all the collected credentials, the ex-
pected number of tries for a phisher to single out one real
credential, i.e. E[X1], is 86, and the expected number of
tries for a phisher to single out all the six real credentials is
515. This example indicates that BogusBiter has the poten-
tial to feed a relatively large number of bogus credentials
into a phishing site and well hide victims’ real credentials
among bogus credentials.

3.2.2. Indiscernibility. The indiscernibility requirement
has two implications: the submission actions initiated from
victims’ browsers are indiscernible from the submission ac-
tions initiated from security-conscious users’ browsers, and
victims’ real credentials are indiscernible from bogus cre-
dentials generated by BogusBiter.

For a victim who ignores a browser’s phishing warning,
BogusBiter first intercepts the credential submission HTTP
request before it is sent out. Next, BogusBiter creates S−1
bogus credentials based on the victim’s real credential and
spawns S − 1 new HTTP requests based on the original
HTTP request. Each of the S − 1 spawned requests is ex-
actly the same as the original request, except for carrying
a bogus credential instead of a real one. Then, BogusBiter
inserts the original HTTP request into the S − 1 spawned
requests and sends out all the S requests within a few mil-
liseconds. Finally, BogusBiter interprets and properly pro-
cesses the returned HTTP responses so that a phishing site
cannot identify the differences between the S submissions.



For a security-conscious user who accepts a browser’s
phishing warning, BogusBiter first imitates a victim’s be-
havior by entering a generated bogus credential into the
phishing page and submitting it. Next, similar to the above
case for a real victim, BogusBiter intercepts this original
HTTP request, spawns S − 1 new HTTP requests, and gen-
erates the corresponding S − 1 bogus credentials as well.
Finally, BogusBiter sends out the S requests and processes
the returned responses in the same way as it does for a vic-
tim, thereby making it hard for a phisher to distinguish these
submissions from those initiated from a victim’s browser.

As for bogus credential generation, BogusBiter uses the
original credential as the template to generate the S − 1
bogus credentials. For a victim, the original credential is
the victim’s real credential and thus is ready to use. For a
security-conscious user, the automatically generated origi-
nal credential should be similar to a human’s real creden-
tial. In current design, BogusBiter randomly generates a
username/password pair as the original credential. For the
remaining S − 1 bogus credentials, a specific rule should
be followed to generate them so that neither a human nor a
computer can easily discern which is the original credential
and which are the rest. We will present the rule used by
BogusBiter in Section 3.3.

3.2.3. Usability. In terms of usability, the major advan-
tage of BogusBiter is its transparency to users. Meanwhile,
because BogusBiter only needs to submit some extra bogus
credentials to a suspected phishing site and does not con-
tact any third-party service, it will not cause any security or
privacy problems.

The main usability concerns come from the scenario of
a false positive (i.e., a legitimate web site is wrongly classi-
fied as a phishing site). While the occurrence of false pos-
itives is rare for Firefox 2, IE 7, and recent detection tech-
niques as mentioned in Section 2, BogusBiter should elim-
inate or reduce the possible side-effects on users’ access to
mis-classified legitimate web sites.

The first side-effect is that submitting a set of S login
requests and waiting for responses will induce an additional
delay to users. To reduce the delay, BogusBiter sends out all
the S requests within a few milliseconds, so that the round-
trip times of the S submissions can be overlapped as much
as possible. Accordingly, as long as the set size S is not too
large, the additional delay incurred by BogusBiter should
be minimal and unobtrusive. Our experimental results in
Section 5 confirm that the additional delays are negligible.

The second side-effect is that a user’s real account may
be locked because multiple login requests are submitted
from the user’s browser to a legitimate web site within a few
milliseconds. To defend against password guessing attacks,
some web sites may lock a user’s account for a period of
time after several failed login attempts. However, because

all the usernames are different for the S login requests sent
out by BogusBiter, the “account with many failed login at-
tempts” alarm will not be triggered as discussed in [20]. Our
experiments on 20 legitimate web sites confirm that account
locking is not a concern for BogusBiter.

The third side-effect is that a user may be asked to com-
plete a CAPTCHA [25] test, for the same reason that mul-
tiple login requests are submitted from the user’s browser
within a few milliseconds. Some web sites may resort to
this mechanism to counter password guessing attacks or de-
nial of service attacks. However, in our legitimate site ex-
periments where false positives are assumed to occur, no
CAPTCHA test is triggered if the set size S is not greater
than 10, and only two of the 20 web sites ask a user to do a
CAPTCHA test if the set size S is greater than 10.

3.3. Defensive Line

Given the indiscernibility of BogusBiter, phishers can-
not single out real credentials without verifying the col-
lected credentials one by one at legitimate web sites. More-
over, with the unique design of BogusBiter, the forced
verification process, either manually or automatically con-
ducted, will help legitimate sites to detect victims’ stolen
credentials and provide fraud protection in a timely manner.

3.3.1. Working Mechanism. BogusBiter makes such a
defensive feature feasible by imposing a correlation re-
quirement upon the generation of the S − 1 bogus creden-
tials, in addition to the indiscernibility requirement.

• Correlation Requirement: Based on the original cre-
dential, a specific rule is applied to generate the S − 1
bogus credentials. This rule must guarantee that the
S credentials in a set are correlated: given any one of
them, we can reversely derive a small superset that in-
cludes all the S credentials.

BogusBiter uses a simple substitution rule to meet both
the correlation and indiscernibility requirements. While
there are other ways to meet the two requirements, we
choose the substitution rule because of its simplicity and
efficiency for verification. Due to our empirical experience
that if the set size S is not greater than 10, no usability prob-
lem occurs and the delay overhead is small (see Section 5),
the substitution rule is tailored to have S ≤ 10. Note that
the exact value of S should be publicly known.

To generate the S − 1 bogus username/password pairs,
BogusBiter first uses Formula (3) to deterministically com-
pute an integer position i between 1 and S inclusively:

i=PRF (k, original username) mod S + 1 (3)

where k is a master secret that is randomly chosen when a
BogusBiter is installed or configured, and PRF is a secure



pseudo-random function. The master secret k is securely
stored and used by BogusBiter. A user does not need to
memorize the master secret, but is allowed to export and
use the same master secret on different computers. Since
this formula only securely hashes the original username, it
is applicable both to web sites that ask a user to submit user-
name/password pair at the same time, and to web sites that
require a user to first submit a username and then submit a
password.

Next, BogusBiter identifies the first digit in the original
username as the username replacement character, denoted
as username-rc; if the original username does not contains
a digit, the first letter (upper or lower case) is identified
as the username-rc. Using the same method, BogusBiter
identifies the password replacement character in the origi-
nal password, denoted as password-rc.

Then, for each integer position j from 1 to S inclu-
sively where j 6= i, BogusBiter generates a bogus user-
name/password pair by substituting both the username-rc
character and the password-rc character in the original user-
name/password pair using one of the following two replace-
ment methods:

(1) For the case of j − i > 0: if username-rc (also for
password-rc) is a letter, this lower (or upper) case let-
ter is replaced by another lower (or upper) case letter
j−i places further down the alphabet, wrapped around
if needed, i.e., ‘z’ is followed by ‘a’ (or ‘Z’ is fol-
lowed by ‘A’); if username-rc (also for password-rc) is
a digit, this digit is replaced by another digit j−i places
further down the single digit sequence “0123456789”,
wrapped around if needed, i.e., ‘9’ is followed by ‘0’.

(2) For the case of j − i < 0: if username-rc (also for
password-rc) is a letter, this lower (or upper) case let-
ter is replaced by another lower (or upper) case letter
i− j places further up the alphabet, wrapped around if
needed, i.e., ‘a’ is followed by ‘z’ (or ‘A’ is followed
by ‘Z’); if username-rc (also for password-rc) is a digit,
this digit is replaced by another digit i−j places further
up the single digit sequence “0123456789”, wrapped
around if needed, i.e., ‘0’ is followed by ‘9’.

Position Username/Password
j=1 (kcsmith/Fuzzycat95)
j=2 (lcsmith/Fuzzycat05)

→i=3 (mcsmith/Fuzzycat15)
j=4 (ncsmith/Fuzzycat25)

Table 1: Substitution from
the original username/password
pair (mcsmith/Fuzzycat15).

Username/Password
(icsmith/Fuzzycat75)
(jcsmith/Fuzzycat85)
(kcsmith/Fuzzycat95)
→(lcsmith/Fuzzycat05)
(mcsmith/Fuzzycat15)

(ncsmith/Fuzzycat25)
(ocsmith/Fuzzycat35)

Table 2: Derivation from
the username/password pair
(lcsmith/Fuzzycat05).

Table 1 illustrates an example of applying the substitu-
tion rule to the original username/password pair (mcsmith

/ Fuzzycat15). In this example, the username replacement
character username-rc is the first ‘m’ in the original user-
name and the password replacement character password-rc
is the digit ‘1’ in the original password. These two alphanu-
meric characters will be replaced to generate S − 1 bogus
credentials. If S = 4 and the computed integer position i
is 3, three bogus username/password pairs are generated for
j=1, 2, and 4, respectively.

Finally, BogusBiter submits the S username/password
pairs to a suspected phishing site following their corre-
sponding position order. Using Formula (3) to compute the
integer position i and using their position order to send out
the S credentials, BogusBiter makes it hard for a phisher
to narrow down a victim’s real credential even if the vic-
tim visits a phishing site twice from the same browser and
enters the real credential twice.

Clearly the substitution rule above meets the correlation
requirement. Given any one of the S credentials, we can
derive at most 2 ∗ (S − 1) variations based on the substitu-
tion rule, in which further down replacement produces S−1
variations and further up replacement produces other S − 1
variations. These 2 ∗ (S − 1) variations cover all the S cre-
dentials submitted to the phishing site. Table 2 lists an ex-
ample derivation from the credential (lcsmith / Fuzzycat05).

Algorithm: SCI (f-uname/f-pword)
1. Initialize the result set as empty : R = ∅;
2. Construct the set : D = {(d-uname/d-pword) : (d-uname/d-pword)

is a credential derived from (f-uname,f-pword) };
3. for each (d-uname/d-pword) ∈ D do
4. if d-uname matches a valid account’s username then
5. if d-pword matches the valid account’s password then
6. R=R ∪ {(d-uname/d-pword)};
7. endif
8. endif
9. endfor
10. return the result set R;

Figure 2: The Stolen Credential Identification (SCI) procedure.

Now let us see how a legitimate web site can take ad-
vantage of the correlation requirement to identify the cre-
dentials stolen by phishing attacks. If a phisher is lucky
enough (with 1

S probability) to choose a victim’s real cre-
dential as the first try to verify at the legitimate web site,
this login attempt will succeed and the legitimate web
site cannot detect the fact that a real credential has been
stolen and verified. However, for any failed login at-
tempt, the legitimate web site will trigger the procedure of
Stolen Credential Identification (SCI), which is illustrated
in Figure 2. SCI takes the failed username/password pair
(f-uname/f-pword) as its input. It constructs the set D
of derived credentials (line 2), and seeks a match between
a derived username/password pair and a valid account’s
username/password pair. Then, it adds any derived user-



name/password pair (d-uname/d-pword) that matches
a valid account’s username/password pair to the result set R
(line 6). SCI finally returns the result set R as its output.

If the failure of a login attempt is caused by a phisher
who is verifying any one of the S − 1 bogus credentials
generated from a victim’s real credential, SCI must report a
match since the derived credential set D contains the vic-
tim’s real credential. The matched credential is the vic-
tim’s real credential that has been revealed to the phisher,
and is included in the result set R. However, if the fail-
ure of a login attempt is due to any other reasons, even if
there is a chance that a derived username d-uname may
match a valid account’s username (line 4), the probability
that the correspondingly derived password d-pword also
happens to match this valid account’s password (line 5) is
extremely low. This probability is equivalent to that of ran-
domly guessing a valid account’s password. As an exam-
ple, if a user accidentally mistypes the user’s real password
(or an attacker launches online password guessing attacks
against a user), the login attempts will fail but SCI will not
report a match.

Therefore, if the result set R is not empty, the user-
name/password pair 1 contained in R must have been stolen
by a phisher. The legitimate web site can take immediate
actions to protect the victim even before the phisher figures
out the victim’s real credential. Because SCI is turned on
only when a login attempt fails and it only needs a small
number of verifications (at most 2 ∗ (S − 1) for our sub-
stitution rule), the overhead is very small for a legitimate
web site. If necessary, this identification task can even be
delegated to a separate machine.

3.3.2. Deployment of Defensive Line. While BogusBiter
is installed in a user’s web browser, the defensive line en-
abled by BogusBiter needs to be deployed only on those
legitimate web sites that are really targeted by phishers.
These phishing-targeted legitimate web sites listed in the
APWG database [34] usually have properly registered do-
main names and well-designed web pages, and may even
be whitelisted by some phishing detection tools. None of
their login pages will be mis-classified as phishing pages
by popular detection tools. The rare false positives [32, 37]
produced by phishing detection tools are mainly caused by
some legitimate web sites that are almost never targeted by
phishing attacks. We do not need to deploy the defensive
line of BogusBiter on them.

3.3.3. Scale-Independency Properties. The defensive
line enabled by BogusBiter also has two valuable scale-
independency properties. First, the efficacy of the defensive
line does not depend on the cheat-to-click ratio, i.e., it does

1The probability of having two or more credential pairs in the result set
R is also extremely low.

not require a large percentage of users to properly respond
to anti-phishing warnings. Second, the efficacy does not
depend upon a massive installation of BogusBiter in users’
browsers, i.e., even a single vulnerable user who installs Bo-
gusBiter can benefit from a deployed defensive line.

4. Implementation

We implemented BogusBiter as a Firefox extension in
JavaScript and C++, and seamlessly integrated it with the
built-in phishing protection feature of Firefox 2 [36]. Bo-
gusBiter consists of four main modules. The information
extraction module extracts the username and password pair
and its corresponding form element on a login page by ana-
lyzing Document Object Model (DOM) objects. The bogus
credential generation module generates bogus credentials
based on an original credential. The request submission
module spawns multiple HTTP requests and submits them
to phishing sites. It uses XMLHttpRequest objects to cre-
ate internal HTTP channels and submit HTTP requests be-
hind the screen. By carefully performing request initializa-
tion, message body replacement, header fields setting, and
header fields reordering, this module meets the indiscerni-
bility and usability requirements of BogusBiter. Finally,
the response process module correctly matches responses to
their corresponding requests and properly processes them.

5. Evaluation

We conducted three sets of experiments to evaluate the
potential efficacy of the proposed anti-phishing approach
and our reference implementation.

5.1. Testbed Experiments

In the testbed experiments, we set up an Apache 2 web
server in a Linux machine and hosted over twenty phishing
web pages on it. We used BogusBiter to send various lo-
gin requests to these phishing web pages either directly or
through proxies. By examining both request logs and re-
quest contents at the web server, we verified that all the S
requests in a set are exactly the same, except for the creden-
tials carried in the request bodies.

5.2. Phishing Site Experiments

In the phishing site experiments, we ran BogusBiter
against 50 verified phishing sites chosen from PhishTank
[41]. For each phishing site, when it was online, we tested
BogusBiter with four different set sizes of 4, 8, 12, and 16.
Our major experiential findings are summarized as follows.

First, BogusBiter is capable of attacking all the 50 phish-
ing sites. Acting as either a victim or a security-conscious



0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Delay (seconds)

P
e
rc

e
n
ta

g
e
 o

f 
P

h
is

h
in

g
 S

it
e
s

 

 

S=4

S=8

S=12

S=16

Figure 3: Delay on phishing sites.

user, BogusBiter always works correctly. It sends out all the
S requests within 10 milliseconds, and then properly pro-
cesses their responses. In rare cases that phishing sites were
not correctly detected by Firefox 2, we manually corrected
the detection results to trigger BogusBiter.

Second, the delay caused by BogusBiter is minimal
when the set size S is 4 or 8. Here the delay means the
submission interaction time difference between using Bo-
gusBiter and not using BogusBiter. The submission inter-
action time is the time elapsed between the transmission of
the first request and the reception of the last response. Fig-
ure 3 depicts the percentage of phishing sites versus the de-
lay caused by BogusBiter under four different set sizes. We
can see that if the set size S is 4 or 8, for over 85% of phish-
ing sites, the delay is less than 4 seconds. This delay mea-
sure is common to either a security-conscious user or a vic-
tim, but the delay effect is different. A security-conscious
user is unaware of such a delay because the user is actually
redirected to a default web page by Firefox. A victim may
perceive this delay while waiting for the response from the
phishing site. Nevertheless, it is worthwhile adding a small
delay on revealing a victim’s credential, in order to make it
less likely for phishers to succeed.

Third, phishing sites take three different response ac-
tions after receiving a user’s credential submission request.
Among 50 phishing sites, 38 of them simply redirect a user
to the invalid login pages of the targeted legitimate web
sites; 11 of them keep a user at their local sites by using
more faked web pages; and the last phishing site is very
tricky because it verifies the received credential in real time
at the legitimate web site and then sends back a response
based on the verification result. All three types of response
actions attempt to continue deceiving a victim and prevent
the victim from realizing that an attack has happened, but
the third type of response action is more deceptive. The de-
fensive line of BogusBiter indeed provides a good opportu-
nity for a legitimate web site to defend against such attacks
in real time.

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Delay (seconds)

P
e
rc

e
n
ta

g
e
 o

f 
L
e
g
it
im

a
te

 S
it
e
s

 

 

S=4

S=8

S=12

S=16

Figure 4: Delay on legitimate sites.

5.3. Legitimate Site Experiments

In the legitimate site experiments, we ran BogusBiter
against 20 legitimate web sites listed in Table 3. None of
these web sites is classified as a phishing site by either Fire-
fox 2 or IE 7. We intentionally set the detection results as
phishing to simulate false positive cases, and used real ac-
counts on these legitimate web sites to evaluate the usabil-
ity of BogusBiter. We summarize the major experimental
results as follows.

paypal.com amazon.com gmail.com cox.com myspace.com
ebay.com buy.com yahoo.com sprint.com walmart.com
citibank.com ecost.com msn.com geico.com careerbuilder.com
53.com ubid.com aol.com aaa.com my.wm.edu

Table 3: The 20 legitimate web sites.

First, as we expected, none of these legitimate web sites
lock a real account during our extensive tests. Second, if
the set size S is 4 or 8, none of these legitimate web sites
require CAPTCHA tests. If the set size S is 12 or 16, only
two web sites ask a user to do a CAPTCHA test after receiv-
ing S credentials. This test is a burden to a user but will not
block a user’s further interactions with a web server. Third,
the delay caused by BogusBiter is very small when the set
size S is 4 or 8. Figure 4 depicts the percentage of legiti-
mate sites versus the delay caused by BogusBiter under four
different set sizes. We can see that if the set size S is 4 or
8, for all the 20 legitimate sites the delay is less than 3 sec-
onds, and for over 85% of legitimate sites the delay is less
than one second. Therefore, BogusBiter only induces a very
small delay to users even if false positives really occur.

6. Discussions

In this section, we discuss deployment requirements, de-
ployment preparations, and limitations of BogusBiter.



6.1. Deployment Requirements

At the client-side, users need to install BogusBiter. Vul-
nerable users can install BogusBiter to protect themselves,
while security-conscious users can install BogusBiter to
help protect others. Because BogusBiter is a browser exten-
sion, the client-side installation is straightforward. At the
server-side, phishing-targeted legitimate web sites need to
deploy the defensive line enabled by BogusBiter. However,
this deployment work is very simple compared to that of
Dynamic Security Skins [5] and BeamAuth [1], because our
SCI only uses these sites’ existing authentication informa-
tion and does not change their authentication mechanisms.

6.2. Massive Deployment Preparations

The main concern regarding a massive deployment of
BogusBiter is that if the login page of a legitimate site is
wrongly flagged as a phishing page, the load on the site’s
authentication server will increase by a factor of S due
to BogusBiter. However, the false positives produced by
widely-deployed phishing detection mechanisms such as
used in IE 7 and Firefox 2 are rare, especially for popu-
lar web sites that have a large number of users. This is
because otherwise the false positives would have been no-
ticed and corrected by these web sites to prevent losing
users. As reported in [32], both IE 7 and Firefox 2 achieve
a zero false positive rate for 516 representative legitimate
web sites. Thus, we expect that only few less-popular and
poorly-designed legitimate web sites need to prepare for a
massive deployment of BogusBiter. The operators of these
web sites can either revise their login pages or contact web
browser vendors to fix this problem.

6.3. Limitations of BogusBiter

Phishers may use JavaScript attacks to evade BogusBiter.
For example, phishers can directly steal a user’s credential
using keystroke monitoring techniques. Such attacks can be
mitigated by adopting the keystroke intercepting technique
introduced in PwdHash[22]. However, it is still possible for
phishers to fabricate more sophisticated JavaScript attacks.

Phishers may also use non-standard login pages to evade
BogusBiter. For example, phishers may use irregular
HTML login forms, use CAPTCHA on login pages, or
even write the entire login page in Flash. For legitimate
web sites, using non-standard login pages is not popular
because it may create accessibility and usability problems
[27, 38]. Meanwhile, for phishing sites, using non-HTML
login forms is also not popular because it makes a phishing
attack more evident to users or phishing detection tools if
its surface-level or deep-level characteristics become devi-
ated from that of the targeted legitimate web site. For these

reasons, standard HTML pages remain the central focus of
most anti-phishing research work [4, 22, 29, 33].

7. Related Work

Basically the various client-side anti-phishing tech-
niques can be classified into three different approaches. The
first approach focuses on building tools or toolbars to en-
hance the security of a login process. Ye and Smith [30]
designed a prototype of “Trusted Path” to convey relevant
trust signals from a web browser to a human user. Dhamija
and Tygar [5] proposed “Dynamic Security Skins” to allow
a legitimate web site to prove its identity in a way that is
easy for a user to verify but hard for a phisher to spoof. Ross
et al. [22] designed PwdHash to transparently produce dif-
ferent passwords for different domains, so that passwords
stolen at a phishing site are not useful at a legitimate web
site. Wu et al. [29] introduced “Web Wallet” to direct an
alternative safe path to a user if the user’s intended web site
does not match the current web site. Adida [1] proposed
BeamAuth to use a secret token in a URL fragment identi-
fier as a second factor for web-based authentication. These
tools are very helpful, but users must be well trained to use
them and must change some of their login habits.

The second approach focuses on improving the accuracy
of automatic phishing detection techniques. Chou et al. [4]
built SpoofGuard to compute spoof indexes using heuristics
and to provide warnings for suspected phishing web sites.
Recent work by Zhang et al. [33] and Garera et al. [11]
demonstrate that heuristic-based techniques can correctly
identify over 90% of phishing pages with about 1% false
positives. Many other automatic phishing detection tools
or toolbars have been developed, and both Firefox 2 and
IE 7 have automatic phishing detection as a built-in fea-
ture. The evaluation of popular automatic phishing detec-
tion tools, toolbars, and web browser features can be found
in [17, 32, 35, 37].

Researchers have also sought to develop non-preventive
anti-phishing approaches. Florêncio and Herley [8] pro-
posed a password rescue scheme which relies on client-side
reporting and server-side aggregation to detect and protect
stolen credentials. However, this scheme can only make a
detection decision after several users become victims, and
it also raises privacy concerns by using an extra server to
collect user activity information. Parno et al. [19] pro-
posed a Phoolproof anti-phishing mechanism. Although
their mechanism eliminates reliance on perfect user behav-
ior, a trusted mobile device must be used to perform mutual
authentications. Birk et al. [2] introduced an “active phish-
ing tracing” method, which injects fingerprinted credentials
into phishing sites to trace money laundering. Their method
can support forensic analyses and enforce judicial prosecu-
tions, but it cannot directly protect phishing victims.



8. Conclusion

We introduced BogusBiter, a new client-side anti-
phishing tool to automatically protect vulnerable users by
injecting a relatively large number of bogus credentials into
phishing sites. These bogus credentials hide victims’ real
credentials, and force phishers to verify their collected cre-
dentials at legitimate web sites. The credential verification
actions initiated by phishers, in turn, create opportunities for
legitimate web sites to detect stolen credentials in a timely
manner. BogusBiter is transparent to users and can be seam-
lessly integrated with current phishing detection and warn-
ing mechanisms on web browsers. We implemented Bo-
gusBiter as a Firefox 2 extension and evaluated its effec-
tiveness and usability. Phishing is a serious security prob-
lem today, and phishers are smart, economically motivated,
and adaptable. We must therefore actively pursue different
approaches and promote the cooperation of different solu-
tions. The effectiveness of BogusBiter depends on many
factors, but we believe its unique approach will make a use-
ful contribution to the anti-phishing research.

Acknowledgments: We thank anonymous reviewers for
their insightful comments, and Barbara G. Monteith for her
valuable suggestions. This work was partially supported by
NSF grants CNS-0627339 and CNS-0627340.

References

[1] B. Adida. BeamAuth: Two-factor web authentication with a book-
mark. In Proceedings of the CCS, pages 48–57, 2007.

[2] D. Birk, M. Dornseif, S. Gajek, and F. Gröbert. Phishing phishers
- tracing identity thieves and money launderer. Technical Report,
Horst-Görtz Institute of Ruhr-University of Bochum, 2006.

[3] A. Bortz, D. Boneh, and P. Nandy. Exposing private information by
timing web applications. In Proceedings of the WWW, pages 621–
628, 2007.

[4] N. Chou, R. Ledesma, Y. Teraguchi, and J. C. Mitchell. Client-
side defense against web-based identity theft. In Proceedings of the
NDSS, 2004.

[5] R. Dhamija and J.D.Tygar. The battle against phishing: Dynamic
security skins. In Proceedings of the SOUPS, pages 77–88, 2005.

[6] J. S. Downs, M. B. Holbrook, and L. F. Cranor. Decision strategies
and susceptibility to phishing. In Proceedings of the SOUPS, pages
79–90, 2006.

[7] S. Egelman, L. F. Cranor, and J. Hong. You’ve been warned: An em-
pirical study of the effectiveness of web browser phishing warnings.
In Proceedings of the CHI, pages 1065–1074, 2008.

[8] D. Florêncio and C. Herley. Password rescue: A new approach to
phishing prevention. In Proceedings of the HOTSEC, 2006.

[9] D. Florêncio and C. Herley. A large-scale study of web password
habits. In Proceedings of the WWW, pages 657–666, 2007.

[10] D. Florêncio, C. Herley, and B. Coskun. Do strong web passwords
accomplish anything? In Proceedings of the HOTSEC, 2007.

[11] S. Garera, N. Provos, M. Chew, and A. D. Rubin. A framework for
detection and measurement of phishing attacks. In Proceedings of
the WORM, 2007.

[12] T. N. Jagatic, N. A. Johnson, M. Jakobsson, and F. Menczer. Social
phishing. Commun. ACM, 50(10):94–100, 2007.

[13] M. Jakobsson and S. Myers. Phishing and Countermeasures: Under-
standing the Increasing Problem of Electronic Identity Theft. Wiley-
Interscience, ISBN 0-471-78245-9, 2006.

[14] M. Jakobsson and J. Ratkiewicz. Designing ethical phishing exper-
iments: a study of (ROT13) rOnl query features. In Proceedings of
the WWW, pages 513–522, 2006.

[15] M. Jakobsson and A. Young. Distributed phishing attacks. In Pro-
ceedings of the workshop on Resilient Financial Information Sys-
tems, 2005.

[16] P. Kumaraguru, Y. Rhee, A. Acquisti, L. F. Cranor, J. Hong, and
E. Nung. Protecting people from phishing: The design and evaluation
of an embedded training email system. In Proceedings of the CHI,
pages 905–914, 2007.

[17] C. Ludl, S. McAllister, E. Kirda, and C. Kruegel. On the effective-
ness of techniques to detect phishing sites. In Proceedings of the
DIMVA, 2007.

[18] T. Moore and R. Clayton. Examining the impact of website take-
down on phishing. In Proceedings of the APWG eCrime Researchers
Summit, 2007.

[19] B. Parno, C. Kuo, and A. Perrig. Phoolproof phishing prevention. In
Proceedings of the Financial Cryptography, pages 1–19, 2006.

[20] B. Pinkas and T. Sander. Securing passwords against dictionary at-
tacks. In Proceedings of the CCS, pages 161–170, 2002.

[21] Rachna Dhamija and J.D.Tygar and Marti Hearst. Why phishing
works. In Proceedings of the CHI, pages 581–590, 2006.

[22] B. Ross, C. Jackson, N. Miyake, D. Boneh, and J. C. Mitchell.
Stronger password authentication using browser extensions. In Pro-
ceedings of the USENIX Security Symposium, pages 17–32, 2005.

[23] S. E. Schechter, R. Dhamija, A. Ozment, and I. Fischer. The em-
peror’s new security indicators: An evaluation of website authentica-
tion and the effect of role playing on usability studies. In Proceedings
of the IEEE Symposium on Security and Privacy, pages 51–65, 2007.

[24] S. Sheng, B. Magnien, P. Kumaraguru, A. Acquisti, L. F. Cranor,
J. Hong, and E. Nunge. Anti-Phishing Phil: the design and evaluation
of a game that teaches people not to fall for phish. In Proceedings of
the SOUPS, pages 88–99, 2007.

[25] L. von Ahn, M. Blum, N. Hopper, and J. Langford. CAPTCHA: Us-
ing hard AI problems for security. In Proceedings of the Eurocrypt,
pages 294–311, 2003.

[26] T. Whalen and K. M. Inkpen. Gathering evidence: use of visual
security cues in web browsers. In Proceedings of the conference on
Graphics interface, pages 137–144, 2005.

[27] M. Wu. Fighting Phishing at the User Interface. PhD thesis, MIT,
2006.

[28] M. Wu, R. C. Miller, and S. L. Garfinkel. Do security toolbars ac-
tually prevent phishing attacks? In Proceedings of the CHI, pages
601–610, 2006.

[29] M. Wu, R. C. Miller, and G. Little. Web Wallet: preventing phishing
attacks by revealing user intentions. In Proceedings of the SOUPS,
pages 102–113, 2006.

[30] Z. E. Ye and S. Smith. Trusted paths for browsers. In Proceedings of
the USENIX Security Symposium, pages 263–279, 2002.

[31] K.-P. Yee and K. Sitaker. Passpet: convenient password management
and phishing protection. In Proceedings of the SOUPS, pages 32–43,
2006.

[32] Y. Zhang, S. Egelman, L. F. Cranor, and J. Hong. Phinding phish:
Evaluating anti-phishing tools. In Proceedings of the NDSS, 2007.

[33] Y. Zhang, J. Hong, and L. Cranor. CANTINA: A content-based ap-
proach to detecting phishing web sites. In Proceedings of the WWW,
pages 639–648, 2007.

[34] APWG: Phishing Scams by Targeted Company.
http://www.millersmiles.co.uk/scams.php.

[35] Firefox 2 Phishing Protection Effectiveness Testing.
http://www.mozilla.org/security/phishing-test.html.

[36] Firefox Phishing Protection.
http://www.mozilla.com/en-US/firefox/phishing-protection/.

[37] Gone Phishing: Evaluating Anti-Phishing Tools for Windows.
http://www.3sharp.com/projects/antiphishing/gone-phishing.pdf.

[38] Inaccessibility of CAPTCHA. http://www.w3.org/TR/turingtest/.
[39] Know your Enemy: Phishing.

http://www.honeynet.org/papers/phishing/.
[40] Microsoft Phishing Filter.

http://www.microsoft.com/protect/products/yourself/.
[41] PhishTank. http://www.phishtank.com/.


