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Abstract. Traditional user authentication methods using passcode or
finger movement on smartphones are vulnerable to shoulder surfing at-
tack, smudge attack, and keylogger attack. These attacks are able to infer
a passcode based on the information collection of user’s finger movement
or tapping input. As an alternative user authentication approach, eye
tracking can reduce the risk of suffering those attacks effectively because
no hand input is required. However, most existing eye tracking tech-
niques are designed for large screen devices. Many of them depend on
special hardware like high resolution eye tracker and special process like
calibration, which are not readily available for smartphone users. In this
paper, we propose a new eye tracking method for user authentication
on a smartphone. It utilizes the smartphone’s front camera to capture
a user’s eye movement trajectories which are used as the input of user
authentication. No special hardware or calibration process is needed. We
develop a prototype and evaluate its effectiveness on an Android smart-
phone. We recruit a group of volunteers to participate in the user study.
Our evaluation results show that the proposed eye tracking technique
achieves very high accuracy in user authentication.
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1 Introduction

Two authentication methods, passcode-based and finger movement pattern-based,
have been widely used by various smartphones for user authentication. However,
previous research has revealed that both authentication methods are vulnerable
to shoulder surfing attack [28], smudge attack [2], and keylogger attack [5, 26,
18, 19]. For shoulder surfing attacks, an attacker could steal a password just by
peeking over a user’s shoulder when the user is entering its password. Recently,
some researchers found that it is possible to steal a password even when a user is
behind some obstacles [25]. Smudge attacks exploit the oily residues left on the
screen for inferring a password. Keylogger attacks are launched from the inside of
device. The malicious program running on the smartphone utilizes smartphone’s
sensors to record the vibrations during the authentication. Then attackers could



figure out the password based on those information. All these attacks exploit the
information from user’s hand typing or finger moving activities.

The authentication methods leveraging eye tracking do not need hand input;
therefore, they are resistant to those attacks above. So far, there are already
some works applying eye tracking techniques in user authentication. These works
can be classified into biometric-based [3, 14, 12, 13] and pattern-based [15, 7, 9,
10]. The biometric-based methods authenticate a user based on the biometric
information extracted from the user’s eyes or eye movement characteristics. Dif-
ferently, the pattern-based methods require a user to issue commands via their
eye movements. The pattern-based authentication can be further divided into
two types. The first type [15] tracks a user’s gaze point on the screen as the
input. A calibration process is required for predicting the gaze point accurately.
And users have to keep their heads fixed after the calibration. The other type
[7, 9, 10] recognizes a user’s eye movement trajectory that represents a specific
command, and does not need calibration process. Most of these eye tracking ap-
plications are proposed for the devices with large screen. Many of them require
special hardware like high resolution eye trackers.

However, it is impractical for smartphone users to either carry a high resolu-
tion eye tracker or conduct the calibration process. In this paper, we propose a
new eye tracking authentication method for smartphone users. We leverage the
eye movement trajectories as the input, which reflect eye moving direction but
not the exact gaze point on the screen. Neither extra eye tracker nor calibration
process is needed.

In our proposed scheme, there are multiple moving objects on the screen,
one of which is the target. A user just tracks the moving target with her eyes.
The authentication passes when the user’s eye movement trajectories match the
target’s movement trajectories. The routes of all moving objects are randomly
generated every time. Therefore, an attacker cannot infer the password by ob-
serving the user’s eye movement during authentication. Each object should also
move very differently from the others, and thus the user’s eye tracking trajec-
tory can easily match the target’s trajectory. We develop a prototype based on
Android 4.2.2 and deploy it on Google Nexus 4 smartphone. Then we invite
21 volunteers to take the user study. The evaluation results show that average
authentication accuracy is as high as 91.6%. The major research contributions
of this work are summarized as follows:

– To the best of our knowledge, this is the first smartphone authentication
method applying the eye tracking technique that does not require extra eye
tracker and calibration process.

– We design a movement pattern for the authentication. The randomness
within the movement pattern reduces the risks of leaking a password. Be-
sides, The movement pattern just requires four corresponding eye movement
actions, which are basic and straightforward for users to perform, achieving
high detection rate.

– We introduce and compare six metrics used for matching the eye movement
trajectory and target movement trajectory. We identify the most effective
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metric based on our experiments. Four of them are not used in previous
works, and two newly introduced metrics lead to higher detection rate than
those used in the previous works.

– We implement a prototype on Android OS, and conduct a user study to
evaluate the effectiveness of this proposed user authentication scheme.

The remainder of the paper is organized as follows. In Section 2, we intro-
duce threat models to the popular user authentication methods on smartphones.
We present the new authentication method in Section 3. Then we evaluate its
effectiveness in Section 4. The limitations of our work are discussed in Section 5.
We survey related work in Section 6. Finally, we conclude this work in Section
7.

2 Threat Models

In this section we present the threat models in the existing authentication meth-
ods on smartphone. Two kinds of authentication methods are popular among
most smartphone users. One is the passcode-based and the other is pattern-
based. As a classic authentication method, the passcode-based methods need a
user to type its passcode. Pattern-based methods require a user to move fingers
following some pre-set patterns. Both authentication methods are vulnerable to
shoulder surfing attack, smudge attack, and keylogger attack.

To launch a shoulder surfing attack, an attacker just peeks from a user’s
shoulder when the user is entering the password. Then the attacker can infer the
password based on the keyboard layout and the user’s typing actions. A recent
research work [25] reveals that attackers could steal a password even if the user
is behind some obstacles. A smudge attack [2] exploits the oily residues, called
smudge, left on the touch screen to infer a user’s password. Attackers just hold
camera at special angle to the orientation of the touch screen, and put the device
under special lighting source and lighting angle. Under the certain conditions,
the password pattern could be exposed. Some other attacks utilizing the acoustic
of the tapping are introduced in [4, 29].

Keylogger attacks compromise a user’s password from the inside of device.
They leverage various sensors like the accelerometer and the gyroscope equipped
on a smartphone to extract the behavior features of each individual. These in-
formation could result in the leakage of a password. In [5], it is observed that
tappings on the different position of a screen cause different vibrations. Attack-
ers can infer a password based on the vibration features. Xu et al.[26] proposed
to collect the information from more sensors like the accelerometer, gyroscope,
and orientation sensors. Using the collected information, they constructed the
user pattern to calculate the user’s action and input. TapPrints [18] estimates
the tapping location by using machine learning to analyze the motion data. In
[19], the authors can conjecture the input sequences using the data extracted
from the accelerometer sensor.
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(a) (b)

Fig. 1: (a) The layout of objects before they start to move (b) The four objects are
moving in four different directions (up, down, left and right) in a round.

3 A New Authentication Approach

Applying eye tracking techniques in user authentication can significantly reduce
the risks of suffering those attacks mentioned above. We design a new authen-
tication approach based on eye movement pattern so that a smartphone user
can just use the device’s front camera and skip the calibration before each au-
thentication. Compared to the user patterns like EyePassShape and Eye gesture
[7] which require a user to draw some shape using eyes actively, tracking the
moving object with eyes in a passive manner is much easier. Besides, users do
not need to remember the complex shapes but just the target object as a pass-
word. Considering that humans’ eyes move in fast and straight saccades and thus
cannot perform any curves or other non-linear shapes [10], we make the objects
move in straight lines for eye tracking. In the following, we first introduce the
basic authentication process and the architecture of our eye tracking authenti-
cation system. Then we present how to measure the similarity between the eye
movement trajectory and the target movement trajectory.

3.1 Authentication Process

The basic authentication process is described as follows. There are four objects
in the center of the screen at the beginning. The layout is shown in Figure 1a.
Each object is labeled with a number in the range of 1 to 4, and moves in a
straight line smoothly for five rounds. In each round, the four objects move to
different directions simultaneously. When the objects are moving, the user tracks
the target object using eyes. Figure 1b shows a snapshot when the objects are
moving. The target object represents the password in that round. When the
objects start to move, the user eye-tracks the target and could extend the vision
in that direction beyond the screen for providing a more clear eye movement
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trajectory. Once the movements stop at the end of each round, all objects return
to the original positions. Meanwhile, there is a beep sound to notify the user
to move eyes back to the center. Furthermore, before the next round starts, all
the objects pause for one second to guarantee that the user moves eyes back
to the center. The front camera of the smartphone captures the eye movements
and delivers the frames to the analysis component, which extracts the eye points
from each frames. Then a set of metrics will be calculated based on the eye
points. These computed metrics are compared to those of the target’s movement
trajectory. If the metrics match, the authentication passes. Here is an example
showing how our authentication scheme works.

– The user sets the password like 1-2-3-1-4. Each digit represents the target
object in the corresponding movement round.

– When the user is ready, she just clicks the ”start” button to initiate the
authentication.

– All the objects are moving at the same time, the user uses her eyes to track
the target object in that round.

– After the five rounds movement, the system outputs the match result.

3.2 System Architecture

The authentication system’s architecture consists of two parts: the front-end
and the back-end. The front-end includes pattern design, route generation, and
moving control. The back-end mainly captures eye movement trajectory and
matches it to the target movement trajectory. The architecture is illustrated in
Figure 2.

Generate 
routes for 
all objects

Record Frames 
and Moving 

Routes

Recorder

Route 
Generator

Extract eye 
points

Pre-Processor

Fit lines to 
eye points

Line 
generator

Compare the 
line to 

ground truth

Decision 
maker

Fig. 2: Architecture of the system

Front-end We propose to secure the authentication by moving all the objects
randomly each time. Since the authentication process does not need hand input,
the smudge attack and keylogger attack cannot steal any information from the
authentication process. For the shoulder surfing attack, even if attackers record
the eye movement and figure out the eye movement trajectories, they cannot pass
the authentication by replaying the same set of trajectories. This is because the
target’s routes for moving are random in each time. Moreover, attackers have to
deploy a camera close enough to the user’s eyes to capture the eye movement
trajectories, which makes it a challenging task without alerting the user.
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With respect to the layout, all the objects are in the center of the screen at
the beginning of each round. To make the user locate the target easily, the start
positions of all objects should not be changed in each round. Pursuits [24] shows
that the detection rate decreases when there are many objects on the screen.
We also find that users may look towards some other moving objects when they
are tracking the target. We call it distraction problem. It becomes serious when
two moving objects are close to each other. If we leave the objects at one side
of the screen or the corners of the screen at the beginning, the objects could
move across one another. In addition, setting the start positions of the objects
at different corners may exposure the password. In such a scenario, the user will
look to a corner at the beginning of each round. Then, the attacker could figure
out the start position of the target by only observing the gaze direction of the
user. Thus, in our design, the objects move far away from each other while they
are clustered together in the center of the screen at the beginning of a round.

(a) (b)

Fig. 3: (a) The trajectories of four objects in a round (b) It is hard to tell which object
the user tracks with eyes when the trajectories of two objects are close to each other.

The four objects move to four different directions: up, down, left, and right,
which is shown in Figure 3a. There are four reasons for such a design. (1) Since
the screen of a smartphone is much smaller than a regular screen device, the
number of the moving objects on the screen should be small to avoid the dis-
traction problem. (2) For the purpose of not exposing the target, all the objects’
movement directions are evenly distributed on the screen. Furthermore, the fewer
objects, the larger the angle between two objects’ movement directions. Conse-
quently, it is easier to match the eye movement trajectory to the target movement
trajectory. In other words, it is easier to distinguish the eye movement trajectory
from the other objects’ movement trajectories. (3) Although users can look at
any direction theoretically, it is difficult for them to control eyes to move in an
exact angle. Looking up, down, left, and right are the four most basic and sim-
plest eye movement actions for users. (4) Since the eye movement just roughly
follows the target movement, the problem appears when the eye movement tra-
jectory is close to two different objects’ movement trajectories. In such a case,
it is hard to tell which object the user eye-tracked. As shown in Figure 3b, it is

6



unclear which object the user is eye-tracking. In our design, the four directions
are distinguishable from each other and help alleviate such problems.

Another disadvantage of a small screen is that the user’s eye movement could
be negligible if the user only looks inside of the screen boundary. Some users could
be able to look any positions on the screen without obvious eye movements. In
such a case, it is hard to tell the user’s eye movement trajectory. To make the
eye movement more clear to be detected, we allow the user to look beyond the
screen area following the target’s movement direction, and provide a beep sound
to remind the user look back when the movement ends.

In our current design, we just set five movement rounds in the prototype
and the corresponding key space is 45 = 1024. The key space can be enlarged
simply by allowing a user to choose different number of movement rounds for au-
thentication. Specifically, a password could consist of arbitrary number of digits.
The system first asks the user to input the number of movement rounds, then
it provides corresponding object movements for authentication. More movement
rounds make the authentication safer. Note that the authentication method can
be applied in different scenarios, such as unlocking a phone and accessing an
important file.

Back-end We leverage the front camera to capture the eye movements. The
record starts when the target begins to move. It ends when the target finishes
its movement within one round. The eye tracking component will extract eye
points from these continuous frames. After the 5th round eye tracking finishes,
the Decision Maker starts to match the eye movement trajectory to the target’s
movement trajectory. Note that the Decision Maker only informs the user of
the final match result after five rounds, and does not inform the user about the
match result for each round. A mismatch notice could benefit the legitimate user
because the user can start a new authentication early if the current eye-tracking
round fails. However, it is insecure, because it also informs the attacker whether
the guessed number in the current round is correct. Then, the attacker just needs
to try at most four times to identify the target object in each round and 20 times
to uncover the whole password.

There are two sets of eye points (left eye and right eye) whose correspond-
ing trajectories could be different. It could be that both trajectories match the
target’s trajectory or only one of them matches that of the target. When the
user is eye-tracking the target object, it is possible she peeks to another moving
object because of the distraction problem. The problem could make one eye’s
movement trajectory deviate from the target’s trajectory. However, it is very
hard for the user to intentionally eye-track two different objects at the same
time. So, we regard that the user eye-tracks the target when there is at least one
eye’s movement trajectory matching the target’s movement trajectory.

We introduce six metrics to measure the similarity between the eye movement
trajectory and an object’s movement trajectory. If the eye movement trajectory
is most similar to the target’s movement trajectory, we regard it as a match. On
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the other hand, if the eye movement trajectory is most similar to a non-target
object’s movement trajectory, the authentication fails.

Measure the Similarity After the pre-processor extracts eye points, the cru-
cial task is how to effectively measure the similarity between the eye movement
trajectory and the target’s movement trajectory. Assume that the screen is a
rectangular coordinate system, we can refine the problem as how to measure the
similarity between two lines with directions. We expect that the user’s eye move-
ment trajectory should be similar to that of the moving target. The similarity is
represented as that the two trajectories’ direction should be close to each other.

In previous works [22, 24], correlation is used for matching. Principle Compo-
nent Analysis (PCA) [3] is also used to estimate the direction. In this paper, we
propose to fit a straight line into the eye points and compare the angle difference
between this line and the target trajectory. We adopt RANdom SAmple Con-
sensus (RANSAC) algorithm and introduce three error functions for line fitting.
Simple Linear Regression (SLR) is another potential option for line fitting. We
compare and evaluate them with the previous methods in the evaluation part.

In the following, we present the metrics used to measure the similarity. Cor-
relation can measure the linear association between two variables Xa and Xb

in statistics. It is defined as the covariance of the two variables divided by the
product of the two variables’ standard deviations. The formula is

ρXa,Xb
=
E[(Xa − µXa)(Xb − µXb

)]

σXa
σXb

The coefficient is between +1 and −1, where +1 represents the total positive
correlation, 0 means no correlation, and −1 stands for the total negative correla-
tion. The formula can calculate the correlation between two variables. However,
each eye point contains two variables X and Y coordinates. In such a case, the
correlation between eye movement and object movement has to be calculated
separately: one is for X and the other is for Y . In the previous works, the au-
thors claimed that if X and Y of the eye movements change with those of the
object movements, the user’s eyes move following the objects. A threshold is set
for determining whether the two trajectories match.

In this work, we propose to fit a straight line into the eye points whose
angle should be close to the target’s trajectory. Four methods are used to fit a
line into the eye points. The first three are based on the RANSAC algorithm.
RANSAC is designed for removing the noise and identifying the inliers in a set.
As an iterative method, RANSAC cannot test all data points for the mathematic
model exhaustively for a large set of data. However, the number of eye points is
limited. Thus, we can try all possible combinations in a short time. The algorithm
is described in Algorithm 1.

We leverage RANSAC’s idea and introduce three error functions (Err1, Err2,
Err3) in the algorithm. Err1 measures the number of points whose distance to
the line is less than a threshold. Based on the observed data, we set the threshold
to 3 pixels, implying that the line containing most points under this distance
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Algorithm 1 RANSAC algorithm with error functions

1: Data: Eye movement points
2: Result: A line matches the points
3: BestMode1, BestMode2, BestMode3
4: BestMode1Score= 0
5: BestMode2Score = BestMode3Score = Infinity
6: Err1(line L): return the number of points whose distance to the line is smaller than a threshold
7: Err2(line L): return the sum of distance to the line of all points
8: Err3(line L): return the sum of squared distance of all points
9: for point p1 in the set do
10: for another point p2 in the same set do
11: generate a line L based on the two points p1 and p2
12: if Err1(L) > BestMode1Score then
13: BestMode1 = L
14: end if
15: if Err2(L) < BestMode2Score then
16: BestMode2 = L
17: end if
18: if Err3(L) < BestMode3Score then
19: BestMode3 = L
20: end if
21: end for
22: end for
23: Return BestMode1, BestMode2, BestMode3

bound is chosen as the best fitting. Err2 measures the sum of all points’ distance
to the line. Err2 chooses the line, which has the smallest sum, as the best fit.
Err3 measures the sum of squared distance. The error functions 2 and 3 are
similar, but their results could be different.

All of the three error functions choose the line that is calculated from two
points in the eye point set. It is possible that a better-fit line would not pass
any two points. Therefore, we introduce another function SLR to generate the
line. The function SLR is used to fit a straight line through a set of points so
that the sum of the squared residual of the mode is as small as possible. Suppose
there are n eye points (x1, y1), (x2, y2), . . . , (xn, yn). SLR will fit a straight line
y = αx+ β, which provides the minimum sum of squared residues (the vertical
distance from a point to the line).

Findmin
α,β

Q(α, β)

ForQ(α, β) =

n∑
i=1

ξ2 =

n∑
i=1

(yi − αxi − β)2

The values of α and β that result in minimum Q can be computed by either
using the calculus and the geometry of inner product spaces, or expanding to
get quadratic in α and β:

α =
COV [x, y]

V ar[x]
=

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)
, β = y − αx.

PCA is a statistical procedure which employs the orthogonal transformation
to convert a set of observed possibly correlated data into a group of linear un-
correlated variables called principle components. In our case, PCA is used to
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(a) (b)

Fig. 4: (a) The lines generated by the five functions based on one set of eye points (b)
The lines generated by one function (Err2) based on 10 sets of eye points

estimate the direction of the set of eye points. Assume there are n eye points
(x1, y1), (x2, y2), . . . , (xn, yn), the steps for PCA calculation are listed as follows:

– Calculate x′ and y′ as: x′i = xi − x̄, y′i = yi − ȳ.
– Construct covariance matrix M(

COV [x′, x′] COV [x′, y′]
COV [y′, x′] COV [y′, y′]

)
– Calculate the eigenvalues and eigenvectors of the matrix. The eigenvector of

the highest eigenvalue is the principle component of the data set.

– Assume the eigenvector is

(
x′

y′

)
. The straight line’s slope is the value of y′

x′ .

To provide a detailed view of these metrices, we conduct some preliminary
experiments to measure and compare them. We deploy a preliminary eye tracking
prototype on Google Nexus 4 running Android 4.2.2. There is only one object
moving on the screen. The object’s moving distance is set as 300 pixels on the
screen. The moving speed is 200 pixels per 1000 ms. The object moves on the
screen with 45 degree. A volunteer eye-tracks the moving object for 10 times.
The gaze point is used for eye tracking in the previous work. Considering the low
resolution of front camera and the hand tremble during eye tracking, the gaze
points could be unreliable for smartphone authentication. Therefore, we utilize
eye points to identify the eye movement.

There are 10 movements corresponding to 10 sets of eye points. The average
range of eye points’ x coordinate is 19.4 ± 10.26 pixels; that of y coordinate is
7.9±3.78 pixels. Figure 4a shows the straight lines which fit the eye points of one
movement. The x-range is 11 and y-range is 5. It is clear that the lines generated
by the five different methods can reflect the eye movement trajectory. Figure 4b
shows the object movement trajectory and the lines generated by RANSAC Err2
using the 10 sets of eye points.

From this figure, we can see that the user’s eye movement basically follows
the object movement. In other words, the eye movement trajectory is similar to
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Fig. 5: The average angle differ-
ence between the trajectory of
eye movement and that of object
movement
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2
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Fig. 6: When there are any four
successful matches, we relax the
match constraint for the remainder
match.

the object movement trajectory. However, we also observe that the user’s eye
movement cannot strictly follow the object movement. There are three possible
reasons. First, the eye tracking technique cannot guarantee 100% accuracy; sec-
ond, distraction causes the user to move her eyes to a different direction; and
third, the head and hand trembles impact the eye tracking. The average corre-
lation of the 10 set data is 0.74±0.1. The value is the sum of x-coordinate’s and
y-coordinate’s correlation. Figure 5 depicts the angle difference between the eye
movement and the object movement. The smaller the angle difference, the eye
movement is more similar to the object movement.

3.3 Majority Vote

We regard that the eye movement trajectory matches the target movement tra-
jectory if the angle difference between them is less than 45 degree. However, the
user’s eye movement trajectory could deviate more than 45 degree from the tar-
get movement trajectory in practice. The reasons could be eye tracking’s error
or the distraction problem. Moreover, a user cannot control her eyes to move
in an exact straight line, which is just like that a user cannot draw an exact
straight line.

To tolerate these errors, we introduce the majority vote to improve detection
accuracy. The majority vote mechanism works as follows: as long as there are
any 4 successful matches within 5 rounds, we relax the matching condition (i.e.,
the angle difference) from 45 degree to 90 degree for the deviated eye movement
trajectory.

For example, assume that the object “1” in Figure 6 is the target, the eye
movement trajectories in red are regarded as successful matches, since their
angle difference from the target movement trajectory is less than 45 degree;
however, the eye movement trajectory in green, whose angle difference is larger
than 45 degree but less than 90 degree, is still classified as a successful match
under the relaxed matching condition. While the matching relaxation reduces
the number of false rejections, it also increases the chance of false acceptance.
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Using the example above, if an attacker guesses “2” as the password and her
eye movement trajectory happens to fall into the north-west quadrant with the
probability of 50%, it will be classified as a match. The similar situation exists
when the attacker guesses “3” as the password and her eye movement trajectory
falls into the north-east quadrant.

However, in the design of the majority vote, the matching relaxation hap-
pens only if the attacker has already made four successful matches. Thus, the
probability that the attacker could pass the authentication by simply guessing

a password is only C1
4 · C1

4 · C1
4 · C1

4 · C(1+1/2+1/2)
4 = 1+1/2+1/2

4×4×4×4×4 = 0.2%.

4 Evaluation

We implement a prototype as an app based on Android 4.2.2. The prototype
can be integrated as an option in Android’s authentication setting. Currently,
we use the beep sound to notify a user to look back to the screen center. In a
noisy environment, we could replace the beep with vibration. We leverage the
Snapdragon SDK from Qualcomm [1] to track the user’s eye movement. The
snapdragon can be deployed on many existing smartphones. It can extract the
eye points in real time. To better evaluate and analyze the results, we record
eye points and object routes into files. For future real world deployment, these
functions can be easily integrated together and the data can be analyzed in real
time without writing them into files.

To evaluate the effectiveness of the proposed authentication method, 21 vol-
unteers are invited to participate our user study with age range from 24 to 33.
Among them, 14 wear glasses. In the following, we first measure detection accu-
racy. Then we compare the performance of matching trajectories using different
metrics. Finally, we assess the security of our scheme.

4.1 Experimental Setup

Our experiments consist of three parts: indoor, outdoor, and mimic attacks. The
indoor experiments are conducted in a normal office environment with enough
lights. It is common that people use smartphones indoors. Unlike outdoor lights,
indoor lights remain stable as time goes on. So, indoors is the ideal environment
for accuracy evaluation. All volunteers are involved with the indoor experiments,
and each of them applies the correct password for 30 times. Users hold the
smartphone in the front of their faces, and stay in a comfortable posture (either
sitting or standing). They take a short break (at least 5 seconds) between two sets
of experiments. After the indoor experiments are completed, we select five users
to do the outdoor experiments. They perform the same operations as the indoor
experiments. Two users do the outdoor experiments on a cloudy day. The other
three use the smartphone under the tree shade on a sunny day. We do outdoor
experiments under the tree shade because users feel uncomfortable when they
look at the screen in the sun. It also results in inaccurate eye movement detection.
Finally, five users are involved in the mimic attacks for security evaluation.
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(a) (b)

Fig. 7: The average range of eye points in indoor experiments (a) and that in outdoor
experiments (b)

4.2 Detection Accuracy

Detection accuracy is the key performance indicator of an authentication method.
A user could be unsatisfied if the authentication fails even when the correct pass-
word is applied. Our detection accuracy (i.e., true positive rate) is listed in Table
1.

Table 1: Accuracy of the authentication method

Users Trials Environment Left eye Right eye
Detection
accuracy

Detection accuracy
Majority Vote

21 630(30×21) Indoor 1584 1566 77.1% 91.6%
5 150(30×5) Outdoor 336 414 79.3% 97.3%

While using the RANSAC Err2 metric for matching, the detection accuracy of
indoor experiments is 77.1% (486/630) and that of outdoor experiments is 79.3%
(119/150). We regard that such results are reasonable, considering that neither
extra eye tracker nor calibration process is required. In the previous work [22]
that utilizes the front camera for eye gesture detection, five users were enrolled
in the user study with the smartphone fixed on the table. Its recognition rate is
just about 60%. In our evaluation, we further observe that many authentication
failures only have one digit mismatch. After applying the majority vote, the
detection accuracy of indoor experiments increases to 91.6% (577/630) and that
of outdoor experiments increases to 97.3% (146/150).

Since we track the eye movement for authentication, users do not need to
keep their heads fixed during the authentication. They can take a comfortable
posture to conduct eye movements. Different postures like standing or sitting
have little impact on detection accuracy. Our method can tolerate the slight head
and hand tremble, because the eye point range is large enough for reflecting the
eye movement trajectory. The eye point ranges are shown in Figures 7a and 7b.

As stated before, a user’s eye movement trajectory of left eye could be dif-
ferent from that of right eye. We choose the one which is closer to the target
movement trajectory for matching. There are 1584 left eye movement trajecto-
ries and 1566 right eye movement trajectories being used in the evaluation. Note
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that we use different eye movement data just for matching with higher accuracy.
When left eye movement data is selected, it does not mean that the right eye
movement data mismatches.

The accuracy of outdoor experiments during the daytime is close to that
of indoor experiments. No matter it is sunny or cloudy, the accuracy does not
change much. Our authentication method does not work well in weak light or
dark. If there is adequate light, the number of captured eye points should be
about 89. It means that we extract eye points from 16 frames in a second. The
eye point number in weak light could be as low as 28, which corresponds to that
5 frames are handled in a second. It is clear that the eye point number in weak
light is much less than that in normal light. This will negatively impact the line
generation and match precision. Be aware that different people have different
understanding of the weak light. Thus, we provide an approximation view on
the connection between eye point number and light strength. Figure 8 shows the
eye point number extracted at different time of a day. We can see that in most
time when a user needs authentication, the light should be strong enough. We do
not suggest to use this authentication method in weak light, which could cause
an authentication failure. In such a case, the user could choose an alternative
option, for example the pattern-based authentication.

We further classify the failures into one time failure, two consecutive failures,
three consecutive failures, four and more consecutive failures. When a legitimate
user suffers a failure, she will expect to pass the authentication in the next
trial. The consecutive failures will frustrate the users. Table 2 demonstrates the
failure statistics. There are 84 one time failures, 18 two consecutive failures, 7
three consecutive failures, and only 1 four consecutive failures. The three and
more consecutive failures happen in a low probability. When majority vote is
applied, there are 42 one time failures, 5 two consecutive failures, and only 1
three consecutive failures.

Table 2: Consecutive failures statistic
No majority

vote
One time
failure

Two
failures

Three
failures

Four and more
failures

Number 83 36 21 4
Rate 13.2% 5.7% 3.3% 0.6%

Majority
vote

One time
failure

Two
failures

Three
failures

Four and more
failures

Number 40 10 3 0
Rate 6.3% 1.6% 0.5% 0%

4.3 Effectiveness Comparison

Correlation and PCA are used to estimate the eye movement direction in previ-
ous works. Besides these two metrics, we further consider four additional meth-
ods to fit a line into the eye points and compare the angle difference between the
fitted line and the target movement trajectory. Thus, in total we use six metrics
to measure the similarity between the eye movement trajectory and the tar-
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Fig. 8: The number of eye points
captured at different time

Fig. 9: Numbers of successful
matches belonging to the 6 metrics

get movement trajectory. Figure 9 shows the average successful match number
among the 21 users.

There are 150 (5×30) comparisons in 30 sets of experiments for one user. The
correlation’s average successful match number is 129.7, which corresponds to the
match rate of 86.5%. RANSAC with error function 2 makes the largest number
of successful matches (141), and the match rate is as high as 94%. Among the
21 users, 20 user’s RANSAC ERR2 successful match number exceeds that of
other metrics, and only 1 user’s SLR successful match number is higher than
that of RANSAC ERR2. Table 3 lists the overall successful match number and
the corresponding match rate for six metrics without applying the majority
vote. We note that oscillation could happen during a user’s eye movement. It
means that users’ eyes may move back, left, right, and then forward. Correlation
is calculated by the eye point sequence. Such oscillation will impact the final
correlation result. However, it brings little impact on fitting a line, since all
these points are still distributed along the line. It could be a reason why fitting
a line achieves higher match rate than correlation. Through the comparison,
we identify that RANSAC ERR2 is the most effective and reliable metric for
matching among the six metrics.

Table 3: Total match of all metrics
PCA Cor Err1 Err2 Err3 SLR

Number 1200 2724 2890 2961 2304 2661
Rate 38.1% 86.5% 91.7% 94% 73.1% 84.5%

4.4 Security Evaluation

Since our authentication method requires no hand input, it is resistant to the
smudge and keylogger attacks. We try to compromise it by mounting a shoulder
surfing attack. When a user is authenticating, an “attacker” peeks the process
from different angles around the user. However, the “attacker” cannot figure out
the password no matter standing in the front of the user or facing the user’s back.
In such cases, the “attacker” can only see either the objects’ movements on the
screen or eye movement. We observe that the password could be stolen only if
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the “attacker” stands at a special position—the “attacker” stands very close to
the user (less in a meter) and face to the user’s one side so that the “attacker”
can make slight turns to monitor both the user’s eye movement and the objects’
movements. But the user will notice the peek easily in such a special scenario.
Thus, our authentication method can significantly reduce the vulnerability to
shoulder surfing attacks.

To further evaluate the security of our proposed scheme, we ask 5 users to
authenticate using incorrect passwords. Each user tries 15 incorrect passwords.
These passwords are divided into 5 groups, one of which contains 3 passwords.
Each password in the first group contains 0 correct digit. For example, if the
correct password is “1-4-3-1-2”, the incorrect passwords could be “2-3-1-3-1”,
“3-1-1-2-4”, or “4-1-2-3-3”. Each password in the second group contains 1 correct
digit, each password in the third group contains 2 correct digits, and so forth. All
incorrect passwords are generated randomly. In this set of experiments, all trails
(75) fail as expected without matching relaxation. After matching relaxation
is applied, there is still no false acceptance if the number of correct digits in
a password is smaller than 4. The false acceptance could occur if an incorrect
password contains 4 correct digits. However, as we discussed in Section 3.3, the
false acceptance rate is merely 0.2% given that matching relaxation is active.

5 Discussion

To provide a comprehensive view of this work, we discuss the limitations of this
work and the potential future work in this section.

Like other applications leveraging face recognition and eye tracking tech-
niques, our work depends on adequate light. It cannot accurately track a user’s
eyes in weak light or dark. We try to capture eye movements by leveraging the
screen illumination in dark; however, the eye movements cannot be recorded.
One possible solution is to use the infrared detector to capture the eye move-
ments. Unfortunately, many current smartphones have not yet equipped with
the infrared detector. We plan to explore this problem in the future.

Another limitation is that our method will cost longer time than passcode-
based and pattern-based authentication. However, eye tracking authentication
methods offer stronger security to resist those attacks discussed before. In ad-
dition, the time of conducting our authentication method for one time is about
9.6 seconds. It is shorter than the average time of existing works EyePIN (48.6
s) and EyePassShape (12.5 s) [7], which work with the assistance of desktop
display.

When the eye points are clustered together, it is hard to tell the eye movement
direction. A simple solution to this problem is that we just fail the authentication
when either the x-range or y-range of eye points is less than a threshold. The
threshold could vary from user to user.

This work is a first step towards applying the eye tracking technique in
smartphone authentication. It may not be able to satisfy all because of individual
difference. But it provides smartphone users a new authentication option for
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lowering the risks. With the development of hardware equipped on smartphone,
e.g., higher resolution front camera, front infrared detector or front flash light,
we believe that this authentication method can achieve higher accuracy within
a shorter period.

6 Related work

Biometric information, such as fingerprint, has been used in authentication.
However, researchers have shown that a fingerprint-based authentication sys-
tem could be defeated [17]. Moreover, an attacker may bypass the fingerprint-
based authentication system using a carefully printed fingerprint image. Human
behavioral biometrics have also been used for user authentication. Keystroke
dynamics have been studied as a second-factor for user identification. Each indi-
vidual shows unique rhythm during keypad tapping. Zahid et al. [27] extracted
six features from a user’s keystrokes for individual identification. In [6], neural
network classifier is utilized to distinguish impostors from legitimate users when
someone dials a phone number or types text.

An abundance of sensors equipped on a smartphone can provide much valu-
able information on a user’s tapping behaviors. The sense data from multi-touch
screen, accelerometer, orientation and compass is translated to a user’s gesture
in work [16]. The data is used to train a classifier which can decide whether a user
is legitimate. Another work [8] collects touch pressure, size, X and Y coordinates,
and time as the raw data, then uses Dynamic Time Warping (DTW) algorithm
to decide whether the input data matches the legitimate user’s pattern. GEAT
[21] authenticates a user based on behavioral features, including finger velocity,
device acceleration, and stroke time extracted from users’ hand input. Zheng
et al. [28] proposed an authentication method based on a four-feature combi-
nation (acceleration, pressure, size, and time). Their study indicates that the
four-feature combination can effectively distinguish impostors from legitimate
users. Different from other works, they used one-class classifier for user verifica-
tion, which only needs the legitimate user’s data in training. However, the work
[20] reveals that it is feasible to highly increase the equal error rate of the classi-
fiers, which could penetrate the second level authentication methods by utilizing
the data from a general population of operation statistics.

Authentication based on eye tracking can be classified into two categories.
The first authenticates a user using the biometric features of the user’s eyes or eye
movements. The second authenticates a user based on eye movement patterns.

The biometric authentication methods in the first category extract biomet-
ric features, e.g., the distance between two eyes, light reflection, and so on, to
identify a user. These features belong to physical biometrics like fingerprint. Spe-
cial hardware such as the eye tracker is needed for catching a user’s biometric
features. Usually, a calibration process will be launched before authentication,
during which the user keeps head fixed in the front of the eye tracker and stays a
certain distance from the device. Bednarik et al. [3] made the first step towards
using eye movements as biometric identification. They found that the distance
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between eyes turns out to be the most discriminative and stable indicator. How-
ever, this feature does not truly reflect the behavioral properties of eyes. The
best dynamic feature is the delta pupil size, which brings 60% identification
rate in this work. CUE [14] incorporates the individual and aggregated charac-
teristics belonging to a scanpath. Using the combination of Oculomotor Plant
Characteristics (OPC) and Complex Eye Movement (CEM) patterns, it can re-
duce the authentication error by 30% comparing to using one of them. It can
also achieve the highest False Rejection Rate (FRR) 18% and False Acceptance
Rate (FAR) 20% at the same time. Holland et al. [12] evaluated the effects of
stimulus types and eye tracking specifications on the accuracy of biometric verifi-
cation based on CEM. The work [13] presents an objective evaluation of utilizing
patterns identifiable in human eye movement to distinguish individuals. The au-
thors hypothesized that the distribution of primitive features inherent in basic
eye movements could be exploited to uniquely identify a given individual. How-
ever, these works are not applicable for portable devices because it is infeasible
for a user to carry an eye tracker and conduct calibration in public places.

The methods in the second category leverages gaze points as the input. To
use the authentication system proposed in [15], users input password by star-
ing at corresponding buttons on the display. Researchers also proposed to use
the trajectory of eye movement as password. Since recognizing a trajectory is
much easier than identifying the gaze points, these methods do not need calibra-
tion process and high resolution eye tracker. De Luca et al. [9] evaluated three
different eye gaze interaction methods. They also investigated an approach on
gaze gestures and compared it to the well known gaze-interaction methods. The
authors of work [10] introduced three types of password patterns-ShapePass,
Eye Gesture and EyePass. ShapePass allows users to easily remember complex
shapes, which consist of arbitrary combinations of eight basic strokes (eight
directions). Eye gesture is constructed by different gaze tracks that represent
different digits. EyePass is a combination of ShapePass and EyeGesture. They
mentioned that the stroke perfectly fits human eye’s biometric constraint because
eyes move in fast and straight saccade, and thus cannot perform any curves or
other non-linear shapes. EyePassShape [7] combines EyePin and PassShape. It
requires a user to remember some shape and draw the shape via eye movement
actively. Unfortunately, none of these works is applicable for smartphone users.

Some recent works reveal the feasibility of exploiting the eye tracking tech-
niques for smartphone authentication. Drewes et al. [11] evaluated eye gaze in-
teraction as a new input method on mobile phones with the assistance of eye
tracker. They compared a dwell time based gaze interaction to the gaze ges-
ture, and found that both methods are feasible on mobile phones. The work [22]
presents the first prototype of eye gesture recognition system for portable devices.
The system does not need any additional hardware. It incorporates techniques
of image processing, computer vision, and pattern recognition to detect eye ges-
tures in a video recorded by the device’s front camera. Normalized correlation
coefficient is used as the metric which brings about 60% accuracy. Although eye
gesture makes authentication robust, users cannot easily remember the complex
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eye gestures in practice. The work [23] introduces a novel set of shape features,
which capture the characteristic shape of smooth pursuit movement over time.
Each feature individually represents incomplete information about the smooth
pursuit, but they can reflect the pursuit once combined. Pursuit [24] is pro-
posed to recognize a user’s eye movement when the user tracks a moving target
on a big screen through eyes. It provides a general design guidance for pursuit
applications.

7 Conclusion

In this paper, we propose an eye tracking authentication method for smartphone
users. Unlike conventional user authentication on a smartphone, our scheme only
needs a user to track a moving target on the screen through eyes. Thus, it is
resistant to shoulder surfing attack, smudge attack, and many other attacks that
infer a user’s password based on the hand input information. In our design, the
moving pattern consists of four basic strokes to reduce distraction as much as
possible. Meanwhile, the object movement route is randomly changed to lower
the risk of password leakage. We introduce six different metrics to measure the
similarity between the eye movement trajectory and the target movement tra-
jectory, and identify the most effective metric for development. To validate the
efficacy of the proposed authentication approach, we implement a prototype on
Android and conduct a user study with the help of 21 volunteers. The evaluation
results show that our authentication method is able to achieve high accuracy.
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