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Abstract—With the ever-increasing number and complexity of
applications deployed in data centers, the underlying network
infrastructure can no longer sustain such a trend and exhibits
several problems, such as resource fragmentation and low bi-
section bandwidth. In pursuit of a real-world applicable data
center network (DCN) optimization approach that continuously
maintains balanced network performance with high cost effective-
ness, we design a topology independent resource allocation and
optimization approach, NetDEO. Based on a swarm intelligence
optimization model, NetDEO improves the scalability of the DCN
by relocating virtual machines (VMs) and matching resource
demand and availability. NetDEO is capable of (1) incrementally
optimizing an existing VM placement in a data center; (2)
deriving optimal deployment plans for newly added VMs; and
(3) providing hardware upgrade suggestions and allowing the
DCN to evolve as the workload changes over time. We evaluate
the performance of NetDEO using realistic workload traces and
simulated large-scale DCN under various topologies.

I. INTRODUCTION

Today’s data center networks (DCNs) are continuously

evolving because of two major factors: architectural upgrade,

such as network topology expansion and new server deploy-

ment, driven by increasing application demand, and workload

dynamics, such traffic patterns changes and application evo-

lutions, introduced by tenant services running on top. This is

especially the case in the Cloud environment with virtualized

infrastructures, where users continuously join/leave the system

and client instances (i.e., virtual machines) are dynamically

created and terminated. Driven by this trend, the quest for

a highly scalable and efficient DCN has led to much recent

progresses [1–10].

Specifically, one school of research focuses on designing

new DCN architectures to achieve high-bandwidth all-to-

all connectivity (or 1:1 over-subscription) [1, 3], appealing

scalability [4, 5, 7], ideal agility [3, 8], and desirable topology

flexibility [2, 6, 9, 10]. However, these schemes require

fundamental changes of today’s network architectures and/or

modifications of hardware equipments, and therefore may

encounter nontrivial deployment barrier. In contrast, another

class of approaches, such as TVMPP [11], CPA [12], and RAP

[13], keep the existing network architecture and routing pro-

tocol intact, and instead, aim at reducing network bandwidth

demand by optimizing placement of end-nodes (which can be
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Fig. 1. An example of two equivalent solutions with different transition costs

physical or virtual machines1). In this paper, we choose to

explore the latter research direction due to its low up-front

cost and immediate applicability.

Aiming to develop a real-world applicable optimization so-

lution that can continuously maintain balanced DCN network

performance with high cost effectiveness, we find that existing

placement optimization approaches insufficient for fulfilling

our goal. In particular, they lack in three key attributes,

feasibility, flexibility, and expandability, which we believe are

crucial for effective DCN management.

Feasibility: Data center maintenance is not a one-time task,

but a series of incremental optimizations performed over time.

When optimizing an existing data center configuration, a large

number of equally optimal placement solutions exist due to the

homogeneous computing and network resources in the DCN.

However, the transition costs to these target placements are

significantly different, and may even render certain optimal so-

lutions impossible to realize in practice. Targeting only initial

deployment optimizations, previous approaches [11, 12, 14]

disregard the preexisting configuration, and solve the problem

from scratch. And thus, they are very likely to reach a

very expensive solution in terms of transition cost. To better

understand this, consider an illustration in Figure 1, where

two applications App1 and App2 are deployed in a two-level

tree network. The existing placement of the two applications

on the left is sub-optimal, since traffic flows (B1, C1) and

(B2, D2) have to cross subnets. Two optimal solutions are

given on the right, both placing components of the same

application in the same subnets, thereby eliminating inter-

subnet traffic. However, while both solutions are equivalent

1Without loss of generality, we consider, in the rest of the paper, virtualized
environments where virtual machines are the end-nodes.978-1-4673-1298-1/12/$31.00 c© 2012 IEEE



in terms of network optimality, the transition cost (i.e., the

number of VM migrations) from the original configuration to

the final configuration associated with the two solutions are

quite different. Specifically, Solution 1 involves only two VM

(i.e., D2 and C1) migrations, while Solution 2 requires five.

Flexibility: Besides placement optimality, DCN operators are

also concerned with practical factors such as transition cost,

time, and other administrative constraints. In practice, it is not

uncommon for the DCN operators to compromise optimality

for these practical considerations. Modeling the network opti-

mization as a rigid mathematical problem, previous approaches

could only produce a single “best” solution with no regards

for applicability. However, they have left the large space of

less-optimal-but-more-applicable solutions unexplored.

Expandability: DCNs evolve over time as the operators have

budget to opt for upgrading server and/or network capacity.

Moreover, in many cases (as we show in Section V), a

complicated optimization solution involving significant server

replacement and traffic re-routing may be greatly simplified by

upgrading only a few resources (e.g., server and network). This

situation leads to many questions that cannot be answered by

previous approaches, such as the sets of servers and switches

to upgrade and the new capacities to upgrade to.

Motivated by the above observations, we present in this

paper a DCN optimization framework called NetDEO. Net-

DEO facilitates the three key attributes by employing a swarm

intelligence [15] optimization algorithm based on modified

simulated annealing [16]. First, thanks to the metaheuristic2

nature of swarm intelligence algorithms, NetDEO is capable

of performing feasible incremental optimizations—finding ef-

ficient optimization solutions for preexisting data center con-

figurations. Second, NetDEO explicitly takes the maintenance

flexibility into account by identifying a set of optimization

solutions with different benefit-cost characteristics for each

problem instance. And finally, NetDEO acknowledges the

DCN expandability and explores these new degrees of freedom

in a controlled manner, providing the DCN operators with

customizable network and server system upgrade suggestions

according to their budget.

We evaluate NetDEO using production server traces of

multiple transaction systems and simulated large DCN in three

different network topologies: non-homogeneous tree, FatTree,

and BCube. Our experiments show that, NetDEO significantly

improves both solution quality (in terms of transition cost) and

running time for incremental optimizations, the key tasks for

DCN maintenance. And for initial deployment optimizations,

NetDEO achieves comparable or improved solution quality

and running time compared with existing approaches. In

addition, NetDEO could also provide efficient DCN upgrade

suggestions that simplify the optimization process.

The remainder of this paper is structured as follows. In

Section II, we give a brief review of related work. In Section

2Metaheuristic designates a computational method that optimizes a problem
by iteratively trying to improve a candidate solution with regard to a given
measure of quality [17].

III, we present the problem formulation and analysis. In

Section IV, we present NetDEO design and algorithm details.

In Section V, we evaluate the performance of NetDEO. In

Section VI, we conclude this paper and point out directions

for future work.

II. RELATED WORK

Many solutions have been proposed to solve the network

optimization problem, falling into two major categories—

architectural revolution and placement optimization.

Architectural revolution mainly focuses on designing new

network architectures to address various issue identified for

today’s tree-like networks, such as low bisection bandwidth,

low agility, and resource fragmentation. An early theme of this

research direction is to provide high-bandwidth connectivity

for all pairs of servers [1, 3]. This objective is necessary for

certain traffic patterns that involve high-throughput all-to-all

communication, which, as recently pointed out by [2], is, in

the least, not ubiquitous in today’s data centers. Driven by this

motivation, several new architectures have been proposed to

achieve on-demand connectivity and bandwidth using optical

switching [2, 9, 18], wireless networks [6], and VLAN [19].

In addition to bandwidth provisioning, another line of research

focuses on providing high scalability [4, 5, 7] and agility [8].

Placement optimization, in contrast to architectural revolu-

tion, keeps existing network architecture and routing protocol

intact. Instead, it aims at eliminating network bottleneck

via optimizing placement of computing service nodes—to

organize the computing services so that their computing and

communication demands are satisfied by the most suitable

hardware resource available. The service placement optimiza-

tion problem belongs to the class of quadratic assignment

problem (QAP), which is one of the hardest problems in the

NP-hard class, and is even hard to approximate [20, 21]. As

a result, a variety of heuristics based optimization models and

problem-solving techniques have been employed. In particular,

TVMPP [11] and Starling [22] establish their optimization

model based on network communication cost (i.e., traffic

volume, link bandwidth, route distance, etc.). CPA [12], RAP

[13] and [14] model both network communication and other

computing resources, such as processor, storage demand, and

availabilities. To solve the optimization problem, CPA and

TVMPP transform the original QAP problem into a combina-

tion of NP problems (such as Stable Marriage and minimal K-

cuts), and solve them using known approximation algorithms.

In [14] and Starling, centralized and decentralized heuristic

algorithms are employed, respectively. RAP takes the linear

programming approach. In addition, recent efforts [23, 24]

also take the bandwidth constraints into account and propose

heuristics algorithms to solve the application placement prob-

lem in a tree or generalized hierarchical network topologies.

III. PROBLEM DEFINITION

We study the placement optimization of a set of service

nodes {n1, n2, ..., nN} on a collection of networked server

systems {s1, s2, ..., sM}, where N and M are respectively the



total number of service nodes and servers in the system. Each

server si has a service capacity of Ci, which is a composite

metric of its processing, memory, and storage resources.

Correspondingly, each service node nx has a resource require-

ment Ux, representing its consumption of the aforementioned

resources. Thus, a server can host many service nodes as

long as the sum of resource requirements of all deployed

service nodes does not exceed server capacity Ci. We remark

that, in practice, the number of VMs that can co-exist in a

given server is also affected by other factors, such as the

correlation between individual VMs’ workloads and resource

sharing characteristics [25]. In the paper, we do not consider

these factors for ease of presentation. However, the proposed

approach can be easily extended to incorporate more complex

resource models.
We denote by pij the fixed path between servers si and sj

and pij = ∅ if the two servers are unreachable to each other.

Node pair nx and ny respectively deployed on servers si and

sj communicate via route pij at traffic rate Txy. Each route

pij consists of a set of link segments, which may partially

overlap with those of other routes. We define the length of the

route as the number of link segments, i.e., Dij = |pij |. Each

link segment lk has a channel capacity Bk and a reliability

factor Rk, the latter defined as the complement of the packet

loss rate of the link, which is readily available at switches via

SNMP. The reliability Rij of a route pij is then defined as the

product of the reliability factors of all links that constitute the

route: Rij =
∏

k∈pij
Rk.

We define the traffic stress between two communicating

VMs nx and ny as the product of their traffic rate, route length,

and inverse route reliability:

TStress(nx, ny) = Txy ×Dij ×R−1

ij , (1)

where nx and ny respectively reside on si and sj . The stress

value represents the traffic condition between two service

nodes – the higher the value, the worse the traffic condition.

For example, for two pairs of nodes with identical traffic rate,

the node pair that uses the longer or less reliable route has a

worse traffic condition, which in turn is reflected in a higher

stress value. Notably, when route distance is zero, that is, when

two communicating nodes are deployed on the same server,

their traffic stress is always zero regardless of their traffic rate.

This is consistent with the fact that communication between

VMs residing on the same server actually becomes internal

memory swapping, and no longer affects the network.
The traffic stress of a service node is defined as the quadratic

mean (also called root-mean-square) of the traffic stresses

between the node and all its communicating peers:

NodeStress(nx) =

√

√

√

√

1

Nx

Nx
∑

y=1

TStress(nx, ny)2 , (2)

where Nx is the number of service nodes communicating with

node nx. Note that we use the quadratic mean instead of

a simple average in flavor of a more balanced traffic load

distribution. Accordingly, the traffic stress of the whole system

under a given service node placement scheme π is defined as

the quadratic mean of all service nodes’ traffic stresses:

SysStress(π) =

√

√

√

√

1

N

N
∑

x=1

NodeStress(nx)2 (3)

=

√

√

√

√

1

N

N
∑

x=1

N
∑

y=1

TStress(nx, ny)2 ,

where N is the total number of service nodes.

The optimization objective is to find service node place-

ment schemes that minimize the traffic stress values between

all communicating service nodes over the whole system, as

expressed below:

argmin
π∈Π

SysStress(π) , (4)

where Π represents all possible service node placement

schemes, subject to the server capacity and link capacity

constraints:


















Ci ≥
∑

x∈αi

Ux (for each server si)

Bk ≥
∑

y∈βk

Ty (for each link lj)

, (5)

where αi is the set of service nodes deployed on server si,

and βk is the set of flows that pass through link lk. In other

words, the sum of resource requirement of all nodes deployed

on any server must not exceed the capacity of that server; and

the sum of traffic rates of all flows on any link segment must

not exceed the channel capacity Bk of that link.

Note that as a variation of the QAP, our definition of

system traffic stress has two major differences from the typical

definition of a QAP cost function:

Cost(π) =

n
∑

x=0

n
∑

y=0

W (x, y)D(Lx, Ly) , (6)

where W (x, y) is the “weight” between two facilities x and y,

and D(Lx, Ly) is the “distance” between the locations of the

two facilities Lx and Ly. First, quadratic mean is employed for

a more balanced system-wide network load. Second, in addi-

tion to “weight” and “distance,” which respectively correspond

to Txy and Dij in (1), we also add the reliability factor Rij ,

a microscopic variable that reflects the quality of a placement

from the physical hardware point-of-view. By introducing this

realistic parameter, our definition more accurately reflects the

performance situation of a network.

IV. NETDEO DESIGN

In this section, we start with a discussion on the design

intuition of the NetDEO algorithm, then we introduce the

pseudo-physical optimization model and then present details

of the optimization algorithm.



A. Optimization Algorithm Selection

To efficiently derive solutions that are cost effective, flexi-

ble, and expandable, our search algorithm should possess two

important properties—incremental and exploratory.

The incremental property stems from the requirement of

generating cost effective solutions. Due to the massive in-

frastructure in a data center, the cost of conducting signif-

icant global changes, such as deploying all service nodes

from scratch, are prohibitively high. As a result, any feasible

optimization solution must make only incremental changes.

And consequently, our optimization algorithm must accept

preexisting configurations as the basis for improved solutions.

Meanwhile, the exploratory property is necessitated by flexible

and expandable DCN maintenance. In order to discover worth-

while candidate solutions, our algorithm must explore into

the solution space. Because computing and network resources

in DCN are highly homogenous, the solution space is often

too large to completely enumerate. And therefore, the most

efficient solution is to non-deterministically sample alternative

solutions in an unbiased manner.

Guided by these design insights, we determine that swarm-

intelligence (SI) optimization algorithms are a good fit to

solve the DCN optimization problem. First, SI algorithms are

metaheuristic, i.e. optimizations are performed iteratively by

gradually improving a candidate solution. And as a conse-

quence, the incremental property is implicit. Second, most SI

algorithms are stochastic, i.e., the search space is explored in a

randomized fashion. This characteristic meets our requirement

of efficient alternative solution exploration, and thus satisfies

the exploratory property.

B. Pseudo-physical SI model

Inspired by the principle of minimum total potential energy,

a fundamental physics concept, we devise a pseudo-physical

SI model for the service node placement optimization problem.

Search space and agents: The networked servers are modeled

as the search space, in which each service node represents a

search agent. According to the problem definition, a service

node can be placed only on a server but not in-between servers,

and thus the search space is discrete.

Objective function: The objective function in our model is

the system potential energy, the most important component

in our model. The system potential energy plays two key

roles: to evaluate the solution quality, which corresponds

to the system traffic stress in equation (3), and to enforce

the optimization constraints given in equation (5). However,

instead of expressing the constraints in a rigid binary form, we

use a set of barrier functions, which incorporate flexibility into

their expressions to better support the exploratory property.

First, following the definition of service node traffic stress

in equation (2), we define the traffic potential of a search agent

(ie. service node) nx in a similar fashion:

NodePotential(nx) =

√

√

√

√

1

Nx

Nx
∑

y=1

TPotential(nx, ny)2 ,

where TPotential(nx, ny) is the traffic potential between a

pair of communicating service nodes nx and ny:

TPotential(nx, ny) = Txy ×Dij × U−1

ij . (7)

Compared with equation (1), the sole difference of equation

(7) is that the route reliability factor is replaced by the route

usability factor, which is defined as the product of the usability

factors of all links that constitute the route, Uij =
∏

k∈pij

Uk.

The usability factor Uk is a metric we introduced to both

evaluate the optimization objective, and reflect the traffic load

constraint on a link segment. Similar to reliability, usability is

inversely correlated to the traffic load. But unlike reliability,

usability decreases faster when the load approaches a per-

determined “maximum” value and becomes zero when the load

exceeds the “maximum” threshold, signifying that the link is

carrying infeasible traffic loads. This characteristic allows us

to flexibly yet precisely control the exploration of the problem

search space. We use the following split function to calculate

the inverse usability value of link lk:

InvU(lk) =











1 (θk ≤ θT )

1 + tan(π
2

θk−θT
θMax−θT

) (θT < θk < θMax)

∞ (θk ≥ θMax)

.

where θk is the load factor (ie. load over capacity) of link lk,

θT is a threshold (θT ≤ 1), and θMax is the maximum load

factor. See Figure 2 for an illustration of this step function.
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Fig. 2. The Inverse Usability Function

Analogous to the load constraint on each link, each server

also has constraint on the number of deployed nodes. To

express this constraint, we define repulsive potential between

a server and all nodes deployed on it. The strength of the

repulsive potential depends on the load of the server: under low

load, the repulsion is zero or very small; as the load approaches

the constraint, the repulsion increases rapidly; and when the

constraint is violated, the repulsion becomes infinitely large.

The computation of the repulsive potential is similarly defined

as the inverse usability value:

RPotential(si) =











0 (γi ≤ γT )

tan(π
2

γi−γT

γMax−γT
) (γT < γi < γMax)

∞ (γi ≥ γMax)

,

where γi is the load factor of the server, i.e. sum of all resource

requirements over the service capacity, γT is a load factor

threshold (γT ≤ 1), and γMax is the maximum load factor.



Algorithm 1 The Optimization Algorithm

/* Input: π – current node placement scheme
/* Input: ET0 – initial system thermal energy
/* Input: Budget – number of iterations to run */
EP := SystemEP (π); ET := ET0; EFree:= 0; Cnt:= 0;
repeat

/* Step 1: Select the node to move */
MoveNode:= GetMoveNode();

/* Step 2: Evaluate trial moves */
CurServer:= CurrentServer(MoveNode);
for each Serveri 6= CurServer do

/* Step 2.1: Try 1-displacement neighborhood */
π′:= π + Place MoveNode onto Serveri;
∆EP := EP - SystemEP (π′);
if AcceptMove(∆EP , ET ) then break

/* Step 2.2: Try 2-displacement neighborhoods */
for each Nodej on Serveri do

π′′:= π′ + Place Nodej onto CurServer;
∆EP := EP - SystemEP (π′′);
if AcceptMove(∆EP , ET ) then break(2)

end for
end for

/* Step 3: Handle accepted move */
if Accepted move then

π:= π′′;
EFree:= EFree +∆EP ; // Energy pooling
ET := ET - ActFun 1(ET ); // and dissipation

end if

/* Step 4: Thermal Energy Conversion */
∆ET := ActFun 2(EFree)−1;
EFree:= EFree −∆ET ; ET := ET +∆ET ;
Increment Cnt;

until Cnt ≥ Budget;

The potential energy of a service node nx on server si is

thus defined as the summation of the service node’s traffic

potential and the server’s repulsive potential,

NodeEP (nx) = TPotential(nx) +RPotential(si) . (8)

The service node potential energy indicates the quality of

the node’s placement – the higher the potential energy, the

worse the placement. In particular, on servers with resource

utilization ratios below θT , the goodness of nodes’ placement

is solely determined by the optimization objective function.

On the other hand, when a node placement causes the server

resource utilization to approach or exceed load factor θMax,

the repulsive potential becomes the dominant factor. A poten-

tial energy of infinity signifies an infeasible placement.
Finally, the potential energy of the entire system under

placement π is defined as the quadratic mean of all service

nodes’ potential energy:

SystemEP (π) =

√

√

√

√

1

N

N
∑

x=1

NodeEP (nx)2 . (9)

C. Optimization Algorithm

We choose Simulated Annealing (SA) as the design basis

of our optimization algorithm. SA is an SI optimization

Algorithm 2 Selecting a Service Node to Move

function GETMOVENODE

PMax:= 0;
for each Nodei do

ProbScore:= NodeEp(Nodei);
Increment PMax by ProbScore;
MoveScorei:= PMax;

end for

PRand:= Random(0, PMax);
for each Nodei do

if MoveScorei ≥ PRand then return Nodei
end for

end function

Algorithm 3 Decide Whether to Accept a Move

function ACCEPTMOVE(∆EP , ET )
/* Input: ∆EP – Reduction of potential energy
/* Input: ET – System thermal energy */

/* Obtain the greediness control value */
G:= ActFun 3(ET );
/* Convert ∆EP to acceptance probability */
AccptProb:= ActFun 4(∆EP , G);

return AcceptProb ≥ Random(0, 1);
end function

algorithm that models the annealing process of metallurgy.

It is designed to perform stochastic search on discrete search

space and therefore is particularly suitable for solving QAP.

We customize the SA by introducing an adaptive greediness

control scheme with our novel cooling scheduling algorithm,

which accelerates the annealing process and achieves much

faster convergence and better optimization than those of the

classic SA algorithms.

The iterative optimization algorithm of NetDEO is shown

as pseudo-code in Algorithm 1. Similar to the classic SA

algorithms, for each iteration NetDEO performs randomized

exploration of (1, 2)-displacement neighborhood configura-

tions (i.e., configurations that require only one or two node

migrations to reach), and probabilistically accepts the new

configuration. The randomized exploration is implemented

in the GetMoveNode function, shown as pseudo-code in

Algorithm 2, and the probabilistic configuration acceptance is

implemented in the AcceptMove function shown as pseudo-

code in Algorithm 3. However, the similarity between the

classic SA algorithms and NetDEO stops as we dive deeper

into the detailed design.

First, instead of exploring the neighborhood configurations

completely randomly, the GetMoveNode function performs

controlled stochastic selection. The potential energy of each

node corresponds to a probability score, which represents the

fair share of probability a node is chosen to move over all

other nodes. The rational behind this design is to encourage

migration of nodes in relatively worse configurations, and thus

yielding faster convergence.

Second, unlike classic SA algorithms, which greedily accept

all improved configurations while probabilistically accept de-

graded ones, the AcceptMove function performs full-range
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probabilistic acceptance. In other words, the probabilistic

behavior covers both improved and degraded configurations—

improved configurations are always preferred to degraded

ones, and the more improvement, the higher the preference.

This design helps the algorithm to better differentiate the

quality of sampled solutions, while still preserving the degree

of randomness in the stochastic search.

Notably, the implementation of the AcceptMove function

deserves some explanation. The probability of accepting a

configuration is derived from two factors: the improvement

of objective function (∆EP ) and the system thermal energy

(ET ). First, ET is “compressed” by an activation function

ActFun_3() into a positively correlated greediness control

value G with range (0,∞). And then, ∆EP and G are passed

as parameters to another activation function ActFun_4(),

which transforms ∆EP into the acceptance probability. The

greediness control value G is used as a “slope” value to control

the behavior of ActFun_4(). To help comprehension, we

have visualized the two activation functions and the effect of

G on ActFun_4() in Figure 3—a high thermal energy yields

to a large G value, which in turn results in a flatter curve of

ActFun_4(), causing the the acceptance probability to be

less sensitive (greedy) to ∆EP ; On the other hand, a low

thermal energy yields to a small G value, a steeper curve of

ActFun_4(), and thus a more sensitive (greedy) acceptance

probability to ∆EP .

The last, but not the least difference between NetDEO and

the classic SA algorithms lies in the cooling schedule. Con-

ceptually similar to temperature in SA algorithms, the system

thermal energy is inversely correlated with the greediness of

the algorithm, and it gradually decreases as the iteration pro-

gresses, allowing the system to converge to a low energy state.

However, our algorithm do not control system thermal energy

using deterministic cooling schedules as classic SA does for

temperature. Inspired by the laws of physics, we associate

the system thermal energy with the system potential energy

(defined in equation (9)), and introduce a novel “conversion-

and-dissipation” mechanism for an adaptive system cooling.

Shown in step 3 and 4 of Algorithm 1, we set up an

energy conversion rule, storing the potential energy released

during iterative optimization in an energy pool, which then

gradually converts its energy into thermal energy. In addition,

we consider our pseudo-physical system a black body, which

continuously releases a portion of thermal energy proportional

TABLE I
LIST OF ACTIVATION FUNCTIONS

Name Description Slope

ActFun 1
ActFun 2
ActFun 3

{

exp(x · Slope+ 1) + 1 (x ≤ 0)

log(x · Slope) (x > 0)

0.1
0.01
0.2

ActFun 4 (1 + exp(−x · Slope))−1 G

to its current thermal energy. The energy conversion and

dissipation provide a proportional feedback mechanism from

the optimization procedure (i.e. the reduction of potential

energy) to the system greediness control (i.e. the system

thermal energy), and allow the system to self-regulate the

cooling process and to promote faster convergence.

The four activation functions used in Algorithms 1 and 3

and their parameters are listed in Table I. The slope parameters

of activation functions 1–3 are responsible of controlling the

convergence behavior of the algorithm. Their values are ob-

tained from a quick human-supervise training, and we believe

they are good for solving general problems. However, they

are by no means “the optimal” values. In fact, we believe that

there may not be a single set of “good-for-all” parameters –

different problem setup and optimization objective may have

their unique optimal parameter set. We provide a general

guideline of determining the range and relationship of these

parameters as the following:

• The slope of ActFun_1() determines the thermal dissi-

pation rate – the higher the value, the faster the thermal

energy is dissipated to zero. This value functions similar

to the cooling schedule of the classic SA algorithm;

• The slope of ActFun_2() determines the “free energy”

conversion rate – the higher the value, the faster the free

energy is converted to thermal energy, in other words, the

stronger the feedback of current optimization progress to

the cooling schedule. This value should be smaller than

the thermal dissipation rate, otherwise the thermal energy

would increase too fast during optimization and thus slow

down the convergence;

• The slope of ActFun_3() determines the sensitivity of

greediness to the thermal energy – the higher the value, the

more sensitive. This value should be set within the range

of one order of magnitude of the thermal dissipation rate.

V. EVALUATION

In this section, we present a comprehensive evaluation of the

NetDEO using a realistic setup and four experiments covering

different usage scenarios.

A. Setup and Evaluation Methodology

Data Center Network: We simulate data centers of over 1000

servers with heterogeneous resource capacities, and in three

different topologies. We first randomly generate 1080 servers

with three levels of resource capacities—50% “main-stream”

servers have a “standard” capacity, capable of hosting 3 to

6 VMs, 30% “upgraded” servers have a capacity doubles the
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Fig. 4. Enterprise Applications Templates

“main-stream” servers, and the final 20% “advanced” server

have a capacity doubles the “advanced” servers. Then we

arrange the servers in three topologies—heterogeneous tree

(Tree), FatTree [1, 3, 8], and BCube [4]. The Tree topology

mimics the layout of today’s data center with 3-tier network,

while the FatTree topology represents a variety of bandwidth-

enhancing tree-like layouts, and the BCube topology repre-

sents an alternative (hypercube variant) network layout.

Service Applications: We synthesize 143 service applications

with 1067 service nodes, based on real traffic traces captured

from our local testbed hosting multiple multi-tier applications.

The original traffic traces consist of three applications and

21 traffic nodes, and their composition are show in Figure 4.

Using them as template, we generate synthetic applications by

randomly select template applications and scaling the traffic

and resource requirement up or down, as well as scaling

out the components (i.e. double the number of nodes in

each component, and then split the corresponding traffic and

resource requirements of each node).

Evaluation Methodology: We conduct four experiments to

thoroughly evaluate NetDEO’s characteristics. Experiment 1

and 2 compare NetDEO and TVMPP on solving the initial

deployment and incremental optimization problems, respec-

tively. Experiment 3 examines NetDEO’s unique ability to

help data center operators to efficiently upgrade the network

and servers. Experiment 4 evaluates NetDEO’s scalability and

time complexity, as well as its performance improvement over

classic SA algorithm.

The results of NetDEO and classic SA algorithms are

obtained by taking the average of 100 runs with different

random seeds; the results of TVMPP are obtained with a single

execution, because it is a deterministic algorithm.

B. Experiment 1: Initial Deployment

In this experiment, we compare the optimization for ini-

tial deployment of NetDEO and TVMPP. Since there is no

preexisting assignments, service nodes can be freely deployed

to any suitable servers. The two major performance metrics in

this experiment are the degree of optimization and the running

time, and for both metrics the smaller value the better.

Figure 5(a) shows the best optimization stress of both

algorithms running for about the same amount of time. For

Tree and FatTree topologies TVMPP is slightly better than

NetDEO, by 3.25% and 2.53% respectively. However, for

BCube topology, NetDEO outperform TVMPP by 21.4%.

NetDEO’s slightly worse optimization results for Tree and

FatTree can be attributed to the unusual server setup that each

server can only host a single service3. This setup heavily

restricts the search space so that only two-displacement neigh-

borhood exploration is possible, which limits the effectiveness

of stochastic search algorithms such as NetDEO. However,

interestingly, although NetDEO suffer from the similar effects

for BCube, its performs significant better than TVMPP. We

believe this is due to TVMPP’s weakness on this topology—

BCube, as well as other hypercube variant topologies, organize

servers in high dimensional space, which cause the K-means

clustering algorithm, a critical component of TVMPP, to

perform poorly.

Note that, instead of comparing the running time between

NetDEO and TVMPP, we let both algorithms run for about

the same amount of time. This is because like NetDEO,

TVMPP also has a running time–optimization trade off, which

makes comparing both metric at the same time meaningless.

TVMPP requires the number of clusters (i.e., K in the K-

means clustering algorithm) as one of its parameter. However,

determining the optimal value of K is an open hard problem.

To work around the problem, TVMPP runs the cluster-and-cut

algorithm multiple times using a series of K values, and pick

the best optimization. Figure 5(b) shows that the improvement

of TVMPP optimizations as we run it for more K values.

C. Experiment 2: Incremental Optimization

Using the optimized deployment schemes generated in the

previous experiment as the existing service node placements,

we simulate realistic workload / traffic pattern changes in the

data center by manually scaling up and down the traffic and

resource requirements of 12 applications (102 service nodes,

or about 10% of all nodes and traffic flows). The goal of

this experiment is to recover the performance degradation by

finding new placements with stress no greater than that of the

original optimized placements. We compare the performance

of NetDEO and TVMPP in terms of the running time and

the number of displaced service nodes in their solutions (the

smaller value the better for both metrics).

As shown in Figure 6, NetDEO outperforms TVMPP with

dominating factors. With respect to Tree, FatTree and BCube

topologies, NetDEO is 67.25%, 95.54% and 98.40% faster,

and moves 26.55%, 78.41% and 98.66% less number of

service nodes than TVMPP. The dominating success is well

expected for NetDEO, because it is designed with incremental

optimization in mind, while TVMPP is not. TVMPP treats

the slightly altered setup as a totally new problem and solves

it from scratch. The changes in the traffic matrix leads to

a different partitioning sequence which in turn yields to

different service–server mappings. And as a consequence of

this avalanche effect, with even a small change in traffic, the

new solution of TVMPP is likely to be totally different from

its previous solution.

3We have modified (simplified) our DCN setup for experiment 1 and 2 in
order to compare with TVMPP, which is not designed to handle heterogeneous
server resource capacities and service node resource requirements.
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Fig. 5. Experiment 1:(a) NetDEO vs. TVMPP on Initial Deployment;(b) TVMPP Run-time vs.
Optimization.
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Fig. 6. Experiment 2:NetDEO vs. TVMPP on Incre-
mental Optimization
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(b) Server Upgrade Improvements

Fig. 7. Experiment 3:(a) Network Upgrade Solutions;(b) Server Upgrade Solutions.
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Fig. 8. Experiment 4:Scalability Test Results

D. Experiment 3: Upgrade Suggestions

This experiment consists of two sub-experiments which

examines NetDEO’s capability to provide data center network

and server system upgrade suggestions. We use setups similar

to that of Experiment 1, but with some modifications according

to our use cases.

1) Network Upgrade: In this experiment, we simulate an

overloaded data center network by scaling up all traffic rates

of our service applications by 100 times. As a result, it is

impossible to deploy the applications on any of the three

topologies without violating network capacity constraints. And

thus, the challenge is to deploy all applications without net-

work capacity violation, with the minimum number of network

links requiring an upgrade.

Shown in Figure 7(a), for Tree, FatTree and BCube topolo-

gies, NetDEO identifies viable deployment solutions that (on

average) upgrade 13.90, 14.41, and 11.57 network links with

double capacity, respectively. In contract TVMPP’s solutions

require over 3 times more link upgrades than NetDEO for all

topologies. The results of a randomized deployment are also

shown in the same figure as references.

2) Server Upgrade: In this experiment, we solve the prob-

lem of service consolidation and server upgrading. Suppose the

DCN operator has a limited budget to upgrade some servers.

The goal of this experiment is to find answers to the questions

of which servers to upgrade, and how to deploy services after

the upgrade to benefit the most from the upgrade.

We configure NetDEO to search solutions with up to 4×
server resource capacity upgrade. Shown in Figure 7(b), for

Tree, FatTree and BCube topologies, NetDEO provides de-

ployment solutions that (on average) upgrade 64.65 (5.99%),

63.27 (5.86%), and 62.85 (5.82%) servers with average ca-

pacity increase of 1.69×, 1.67×, and 1.69×, respectively.

Correspondingly, with the new deployment solutions, the

stress is improved by 8.18%, 8.01%, and 6.03%, and the

server occupation is reduced by 3.23%, 3.30%, and 2.91%,

for Tree, FatTree and BCube topologies respectively. These

new solutions with server upgrades enjoy not only improved

performance comparable to the cost of upgrade, but also

reduced server occupation, which can lead to lowered energy

consumption as well as reduced maintenance cost.

E. Experiment 4: Scalability and Time Complexity

In this experiment, we evaluate the scalability of NetDEO

with respect to the number of service nodes. Because the

NetDEO algorithm belongs to the SA optimization, presenting

the asymptotic upper bound of the runtime is meaningless in

practice4. Instead, we present its empirical running time of

reaching an acceptable level of optimization, given different

sizes of input, and approximate the runtime using curve-fitting.

Shown in Figure 8, we plot the run time vs. service

node count of NetDEO with 110, 226, 420, 823 and 1067

service nodes for each topology. We found that the series of

data points for each topology can be curve-fitted by a 4th

degree polynomial with very high (> 99.9%) confidence. The

results indicate that the empirical time complexity of NetDEO

algorithm is O(n4), in agreement with previous SA research

4SA optimization algorithms guarantee to find the optimal solution when
they completely converge, and their time complexity for solving NP-hard
problem is known to be exponential.



[26]. Also shown in the same figure are the running time and

fitting curves of a classic SA algorithm solving the same set

of problems. And we observe that NetDEO has effectively

speed up the convergence rate (by about 8–10%), thanks to

our algorithm enhancements.

VI. CONCLUSION

In this paper, we presented NetDEO, a DCN performance

optimization framework designed continuous and cost effec-

tive data center maintenance. Different from previous ap-

proaches, NetDEO takes into account the applicability of

solutions, the evolutionary nature of data center networks, and

the real-world constraints encountered by network operators.

NetDEO employs a pseudo-physical optimization model and

an enhanced simulated annealing optimization algorithm. Our

comprehensive evaluation shows that for incremental opti-

mization problems, NetDEO significant outperforms existing

solutions, in terms of solutions quality and running time. For

initial deployment problem, NetDEO’s optimization and run-

ning time are comparable to or better than existing solutions. In

addition, NetDEO can help the operators to efficiently upgrade

data center hardware.
In terms of limitations, there are two application constraints.

First, in order for NetDEO to perform efficient optimiza-

tions, the DCN operators need to supply the correct network

configurations, as well as an accurate estimation of service

workload. And sometimes the latter is difficult to obtain.

Second, the theoretical time complexity of NetDEO algorithm

is exponential. However, empirically NetDEO can reach good

optimization within a reasonable time frame.

We are currently in the process of porting NetDEO onto

operational data centers and evaluating its performance using

traffic traces generated by real-world applications. Our future

work also involves designing techniques that reduce NetDEO’s

monitoring overhead, exploring mechanisms that minimize

operators’ intervention, and incorporating into NetDEO ad-

ditional constraints such as security rules and administrative

policies.
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