
Computer Networks 54 (2010) 2182–2198
Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/locate /comnet
An automatic HTTP cookie management system

Chuan Yue, Mengjun Xie, Haining Wang *

Department of Computer Science, The College of William and Mary, Williamsburg, VA 23187, United States

a r t i c l e i n f o
Article history:
Received 2 September 2009
Received in revised form 25 February 2010
Accepted 15 March 2010
Available online 20 March 2010
Responsible Editor: Neuman de Souza

Keywords:
Web
HTTP cookie
Security
Privacy
Web browsing
1389-1286/$ - see front matter � 2010 Elsevier B.V
doi:10.1016/j.comnet.2010.03.006

* Corresponding author. Tel.: +1 757 221 3457.
E-mail addresses: cyue@cs.wm.edu (C. Yue), m

Xie), hnw@cs.wm.edu (H. Wang).
a b s t r a c t

HTTP cookies have been widely used for maintaining session states, personalizing, authen-
ticating, and tracking user behaviors. Despite their importance and usefulness, cookies
have raised public concerns on Internet privacy because they can be exploited by third-par-
ties to track user behaviors and build user profiles. In addition, stolen cookies may also
incur severe security problems. However, current Web browsers lack secure and conve-
nient mechanisms for cookie management. A cookie management scheme, which is
easy-to-use and has minimal privacy risk, is in great demand; but designing such a scheme
is a challenge. In this paper, we conduct a large scale HTTP cookie measurement and intro-
duce CookiePicker, a system that can automatically validate the usefulness of cookies from
a Web site and set the cookie usage permission on behalf of users. CookiePicker helps users
achieve the maximum benefit brought by cookies, while minimizing the possible privacy
and security risks. We implement CookiePicker as an extension to Firefox Web browser,
and obtain promising results in the experiments.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

HTTP Cookies, also known as Web cookies or just cook-
ies, are small parcels of text sent by a server to a web brow-
ser and then sent back unchanged by the browser if it
accesses that server again [1]. Cookies are originally de-
signed to carry information between servers and browsers
so that a stateful session can be maintained within the
stateless HTTP protocol. For example, online shopping
web sites use cookies to keep track of a user’s shopping
basket. Cookies make web applications much easier to
write, and thereby have gained a wide range of usage since
debut in 1995. In addition to maintaining session states,
cookies have also been widely used for personalizing,
authenticating, and tracking user behaviors.

Despite their importance and usefulness, cookies have
been of major concern for privacy. As pointed out by Kris-
tol in [2], the ability to monitor browsing habits, and pos-
sibly to associate what you have looked at with who you
. All rights reserved.

jxie@cs.wm.edu (M.
are, is the heart of the privacy concern that cookies raise.
For example, a lawsuit alleged that DoubleClick Inc. used
cookies to collect web users’ personal information without
their consent [3]. Moreover, vulnerabilities of web applica-
tions or web browsers can be exploited by attackers to
steal cookies directly, leading to severe security and pri-
vacy problems [4–7].

As the general public has become more aware of cookie
privacy issues, a few privacy options have been introduced
into Web browsers to allow users to define detailed poli-
cies for cookie usage either before or during visiting a
Web site. However, these privacy options are far from en-
ough for users to fully utilize the convenience brought by
cookies while limiting the possible privacy and security
risks. What makes it even worse is that most users do
not have a good understanding of cookies and often misuse
or ignore these privacy options [8].

Using cookies can be both beneficial and harmful. The
ideal cookie-usage decision for a user is to enable and store
useful cookies, but disable and delete harmful cookies. It
has long been a challenge to design effective cookie man-
agement schemes that can help users make the ideal coo-
kie-usage decision. On one hand, determining whether

http://dx.doi.org/10.1016/j.comnet.2010.03.006
mailto:cyue@cs.wm.edu
mailto:mjxie@cs.wm.edu
mailto:hnw@cs.wm.edu
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet

C. Yue et al. / Computer Networks 54 (2010) 2182–2198 2183
some cookies are harmful is almost impossible, because
very few web sites inform users how they use cookies.
Platform for Privacy Preferences Project (P3P) [9] enables
web sites to express their privacy practices but its usage
is too low to be a practical solution. On the other hand,
determining whether some cookies are useful is possible,
because a user can perceive inconvenience or web page
differences if some useful cookies are disabled. For in-
stance, if some cookies are disabled, online shopping may
be blocked or preference setting cannot take into effect.
However, current web browsers only provide a method,
which asks questions and prompts options to users, for
making decision on each incoming cookie. Such a method
is costly [10] and very inconvenient to users.

In this paper, we first conduct a large scale cookie mea-
surement for investigating the current cookie usage on var-
ious web sites. Our major measurement findings show that
the pervasive usage of persistent cookies and their very
long lifetimes clearly highlight the demand for removing
useless persistent cookies to reduce the potential privacy
and security risks. Then we present CookiePicker, a system
that automatically makes cookie usage decisions on behalf
of a web user. CookiePicker enhances the cookie manage-
ment for a web site by using two processes: a training pro-
cess to mark cookie usefulness and a tuning process to
recover possible errors. CookiePicker uses two comple-
mentary algorithms to effectively detect HTML page differ-
ence online, and we believe that these two algorithms have
the potential to be used by other online tools and applica-
tions. Based on the two HTML page difference detection
algorithms, CookiePicker identifies those cookies that
cause perceivable changes on a web page as useful, while
simply classifying the rest as useless. Subsequently, Coo-
kiePicker enables useful cookies but disables useless cook-
ies. All the tasks are performed without user involvement
or even notice.

Although it is debatable whether defining useful cook-
ies as those that lead to perceivable changes in web pages
retrieved is the best choice, so far this definition is the
most reasonable measure at the browser side and it is also
used in [11]. The reasons mainly lie in that very few web
sites tell users the intention of their cookie usage, P3P
usage is still very low, and many web sites use cookies
indiscriminately [12].

We implement CookiePicker as a Firefox web browser
extension, and validate its efficacy through live experi-
ments over a variety of web sites. Our experimental results
demonstrate the distinct features of CookiePicker, includ-
ing (1) fully automatic decision making, (2) high accuracy
on decision making, and (3) very low running overhead.

The remainder of this paper is structured as follows.
Section 2 presents the background of cookies. Section 3
shows our cookie measurement results. Section 4 de-
scribes the design of CookiePicker. Section 5 details the
two HTML page difference detection algorithms used by
CookiePicker. Section 6 presents the implementation of
CookiePicker and its performance evaluation. Section 7
discusses the potential evasions against CookiePicker as
well as some concerns about using CookiePicker. Section
8 surveys related work, and finally, Section 9 concludes
the paper.
2. Background

HTTP cookies allow an HTTP-based service to create
stateful sessions that persist across multiple HTTP transac-
tions [13]. When a server receives an HTTP request from a
client, the server may include one or more Set-Cookie

headers in its response to the client. The client interprets
the Set-Cookie response headers and accepts those cook-
ies that do not violate its privacy and security rules. Later
on, when the client sends a new request to the original ser-
ver, it will use the Cookie header to carry the cookies with
the request [14].

In the Set-Cookie response header, each cookie begins
with a NAME=VALUE pair, followed by zero or more semi-
colon-separated attribute-value pairs. The NAME=VALUE
pair contains the state information that a server attempts
to store at the client side. The optional attributes Domain
and Path specify the destination domain and the targeted
URL path for a cookie. The optional attribute Max-Age

determines the lifetime of a cookie and a client should dis-
card the cookie after its lifetime expires.

In general, there are two different ways to classify cook-
ies. Based on the origin and destination, cookies can be
classified into first-party cookies, which are created by
the web site we are currently visiting; and third-party
cookies, which are created by a web site other than the
one we are currently visiting. Based on lifetime, cookies
can be classified into session cookies, which have zero life-
time and are stored in memory and deleted after the close
of the web browser; and persistent cookies, which have
non-zero lifetime and are stored on a hard disk until they
expire or are deleted by a user. A recent extensive
investigation of the use of first-party, third-party, session,
and persistent cookies was carried out by Tappenden and
Miller [15].

Third-party cookies bring almost no benefit to web
users and have long been recognized as a major threat to
user privacy since 1996 [2]. Therefore, almost all the pop-
ular web browsers, such as Microsoft Internet Explorer and
Mozilla Firefox, provide users with the privacy options to
disable third-party cookies. Although disabling third-party
cookies is a very good start to address privacy concerns, it
only limits the profiling of users from third-party cookies
[2], but cannot prevent the profiling of users from first-
party cookies.

First-party cookies can be either session cookies or per-
sistent cookies. First-party session cookies are widely used
for maintaining session states, and pose relatively low pri-
vacy or security threats to users due to their short lifetime.
Therefore, it is quite reasonable for a user to enable first-
party session cookies.

First-party persistent cookies, however, are double-
edged swords. As we will show in Section 3, first-party per-
sistent cookies could stay on a user’s disk for a few years if
not removed. Some cookies perform useful roles such as
setting preferences. Some cookies, however, provide no
benefit but pose serious privacy and security risks to users.
For instance, first-party persistent cookies can be used to
track the user activity over time by the original web site,
proxies, or even third-party services. Moreover, first-party
persistent cookies could be stolen or manipulated by three

Fig. 1. Internet Explorer 7 advanced privacy settings.

2184 C. Yue et al. / Computer Networks 54 (2010) 2182–2198
kinds of long-standing attacks: (1) cross-site scripting
(XSS) attacks that exploit web applications’ vulnerabilities
[16,6,17], (2) attacks that exploit web browser vulnerabil-
ities [18,19,7], and (3) attacks that could directly steal and
control cookies launched by various malware and browser
hijackers such as malicious browser extensions [20–22].
These attacks can easily bypass the same origin policy
[23] of modern web browsers, which protects cookies
stored by one origin from accessing by a different origin.
As an example, recently cookie-stolen related XSS vulnera-
bilities were even found in Google’s hosting services
[24,25]; and the flaws in Internet Explorer 7 and Firefox
could enable attackers to steal and manipulate cookies
stored on a PC’s hard drive [26].

Disabling third-party cookies (both session and persis-
tent) and enabling first-party session cookies have been
supported by most web browsers. The hardest problem
in cookie management is how to handle first-party persis-
tent cookies. Currently web browsers only have very lim-
ited functions such as automatically accepting or
blocking all first-party persistent cookies, or prompting
each of them to let users manually make decisions. Fig. 1
shows the advanced privacy settings of Internet Explorer
7, in which the functions provided to control first-party
persistent cookies are very cumbersome and impractical
to use. Therefore, the focus of this paper is on first-party
persistent cookies and how to automatically manage the
usage of first-party persistent cookies on behalf of a user1.
Instead of directly addressing XSS and various web browser
vulnerabilities, CookiePicker reduces cookie privacy and
security risks by removing useless first-party cookies from
a user’s hard disk. Here we assume that the hosting web site
is legitimate, since it is worthless to protect the cookies of a
malicious site.
1 The design of CookiePicker and its decision algorithms can be easily
applied to other kinds of cookies as well if needed.
3. HTTP cookie measurement

To comprehensively understand the usage of HTTP
cookies over the Internet, we conduct a large scale mea-
surement study in December 2009. We choose over five
thousand web sites from directory.google.com, an online
web site directory containing millions of web sites catego-
rized by topic. Then, we use a customized web page retrie-
val tool wget [27] to identify those web sites that set
cookies at client side. We only consider first-party cookies,
including both session cookies and persistent cookies, in
this measurement study.

3.1. Web site selection and crawling

Since there are numerous web sites on the Internet, we
select the web sites for measurement study based on the
following two requirements: diversity and representative-
ness. As with [28], the selection pool we use is direc-
tory.google.com, in which web sites are organized into
hierarchical categories and listed in Google page-rank or-
der indicating the relevance to the classified category.
There are fifteen top-level categories in direc-
tory.google.com. Our selection covers thirteen of them, ex-
cept categories ‘‘world” and ‘‘regional”. These two are
avoided due to the existence of many non-English web
sites. Since a top-level category has multiple sub-catego-
ries which also have further sub-categories, each top-level
category may consist of hundreds of thousands of web
sites. Thus, we only choose the web sites listed in the
top-level categories and their immediate sub-categories.
To select representative web sites, we filter out those
web sites with page-rank less than 0.252. There may exist
duplicate web sites inside a category or between two cate-
gories. We first remove the duplicate intra-category web
2 Page-rank value is between 0 and 1. The bigger, the more relevant.

Table 1
Statistics of the selected web sites and their usage of HTTP cookies.

Category Web sites Cookies Session only Persistent only Both

Arts 342 113 (33%) 55 21 37
Business 602 265 (44%) 181 28 56
Computers 512 190 (37%) 108 33 49
Games 151 51 (34%) 19 12 20
Health 303 148 (49%) 82 17 49
Home 324 157 (48%) 83 23 51
News 483 176 (36%) 86 51 39
Recreation 351 173 (49%) 86 36 51
Reference 308 134 (44%) 69 17 48
Science 537 215 (40%) 118 48 49
Shopping 461 290 (63%) 93 67 130
Society 214 78 (36%) 35 17 26
Sports 673 287 (43%) 152 51 84
Multi-category 132 64 (48%) 23 24 17
Total 5,393 2,341 (43%) 1,190 445 706

1 10 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of cookies per website

Pr
ob

ab
ilit

y

All
Session
Persistent

Fig. 2. CDFs of the number of all cookies, the number of session cookies,
the number of persistent cookies per web site, respectively.

C. Yue et al. / Computer Networks 54 (2010) 2182–2198 2185
sites and then move all the duplicate inter-category web
sites into a new category—‘‘Multi-category”. After filtering
and removing, the total number of unique web sites chosen
for our study is 5,393. The number of web sites in each cat-
egory is listed in Table 1, where the second column lists the
total number of web sites in the corresponding category and
the third column shows the number and percentage of the
web sites that set cookies at client side. The fourth, fifth,
and sixth columns of Table 1 show the number of the web
sites that set only session cookies, only persistent cookies,
and both session and persistent cookies, respectively.

We instruct the customized wget to crawl the selected
web sites and save the corresponding cookies carried in the
HTTP response headers. To simulate a user surfing the web,
we turn on the recursive option in wget so that wget can
recursively retrieve web pages. The maximum depth of
recursion level is set to two. We instruct wget to only save
first-party cookies. To avoid crawling being blocked or run-
ning too long, we use a random wait time varied from zero
to two seconds between consecutive retrievals, and limit
the crawling time on a single web site within six minutes.
3.2. Measurement results

After web crawling, we find that 2,341 (43%) web sites
in total have set at least one first-party cookie at client
side. The average number of retrieved unique URLs per
web site for these 2,341 web sites is 538. The percentage
of web sites setting cookies in each category varies from
33% to 63%, as shown in Table 1. These numbers are con-
servative since wget cannot obtain the cookies set by the
web pages that require a user login or carried by the cli-
ent-side JavaScript. Even so, the results clearly show the
pervasive cookie usage among various types of web sites.

For those web sites that use cookies, we compute the
CDFs (Cumulative Distribution Functions) of the number
of cookies, the number of session cookies, and the number
of persistent cookies per web site, respectively, and draw
them in Fig. 2. Note that the X-axis is in logarithmic scale.
We are interested in these numbers because web browsers
usually set limits on the total number of cookies and the
number of cookies per domain, in order to save memory
and disk space on a user’s computer. For example, the max-
imum default number of cookies per domain and maxi-
mum number of total cookies are set to 50 and 1,000
respectively in Firefox. From Fig. 2, we can see that about
99% of the web sites set less than 10 cookies at client side
and none of them sets more than 40 cookies. This indicates
that all web sites under study follow the basic rule that a
web site should not set too many cookies to a client.

Web browsers usually also set limit on the size of a coo-
kie, which is mainly determined by the length of cookie va-
lue. For example, Firefox limits the length of a cookie
NAME/VALUE pair up to 4,096 bytes. Fig. 3 depicts the CDFs
of cookie size in bytes for all cookies, session cookies, and
persistent cookies, respectively. Around 94% of cookies
are less than 100 bytes and none of them is greater than
4,096 bytes.

If cookie is enabled during browsing a web site, the path
of URL will determine what cookies to be transmitted to-
gether with the HTTP request to server. If the Path attri-
bute of a cookie matches the prefix of the URL path, the
cookie previously set will be sent back. We examine the

1 10 100 1000 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cookie size (Byte)

Pr
ob

ab
ilit

y

All
Session
Persistent

Fig. 3. CDFs of cookie size in bytes for all cookies, session cookies, and
persistent cookies, respectively.

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Directory depth of cookie path

Pr
ob

ab
ilit

y

All
Session
Persistent

Fig. 4. CDFs of cookie PATH depth for all cookies, session cookies, and
persistent cookies, respectively.

1 hour 1 day 1 month 1 year 30 years
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lifetime of persistent cookie (Hour)

Pr
ob

ab
ilit

y

Fig. 5. CDF of persistent cookie lifetime.

2186 C. Yue et al. / Computer Networks 54 (2010) 2182–2198
Path depth for cookies, session cookies, and persistent
cookies, respectively, and draw their CDFs in Fig. 4. Sur-
prisingly, near 90% of cookies have root ‘‘/” as their Path
attribute values, which implies that these cookies will be
sent back to the original web sites for any URL requests
to those sites. Although some cookies may need to be sent
back to the web servers for any URL on the servers, the
abnormally high percentage suggests that the Path attri-
butes of many cookies may not be appropriately set. As a
consequence of this inappropriate setting, many requests
carry cookies that are functionally unnecessary: the cook-
ies neither affect responses nor make difference to server
states. Wide-spread indiscriminate usage of cookies not
only impedes many optimizations such as content delivery
optimizations studied in [12], but also increases the risk of
cookie stealing.

We are especially interested in the lifetime of persistent
cookies, which can be calculated from the cookie attribute
Max-Age specified in the Set-Cookie HTTP response
header. We compute the lifetime for all persistent cookies
and draw its CDF in Fig. 5 (The X-axis is log-scaled). There
are a few hikes in the curve, among which the lifetimes
corresponding to one year (365 days) and 30 years are
most evident. Clearly, over 60% of persistent cookies are
set to expire after one year or longer. We also find that se-
ven web sites set their cookies to expire in year 9999,
nearly eight thousand years from now! The mean and
median lifetimes of persistent cookies are 38 years and
one year, respectively.

In summary, our major measurement findings show
that cookie has been widely used by web sites. Although
the simple cookie collection tool we use cannot retrieve
the web pages that require login and cannot acquire the
cookies set by JavaScript, we still find that about 43% of
the total selected web sites use either session cookies, per-
sistent cookies, or both. Moreover, around 21% of the total
selected web sites use persistent cookies and the majority
of persistent cookies have their lifetimes longer than one
year. Therefore, the pervasive usage of persistent cookies
and their very long lifetimes clearly highlight the demand
for removing those useless persistent cookies to reduce po-
tential privacy risks.

We did a similar measurement study in December 2006
[29]. The procedure and tool for selecting and crawling
web sites used in that study are the same as our current
study. Although we cannot directly compare the results
of two studies due to the differences of web sites and
crawling paths, we find that the findings mentioned above
hold in the 2006 study. For example, in the 2006 study,
about 37% of the total (5,211) selected web sites use cook-
ies and about 18% of the total selected web sites use persis-
tent cookies. Similarly, more than 60% of persistent cookies
have lifetimes longer than one year in the 2006 study.

Recently Tappenden and Miller [15] did an extensive
study on cookie deployment and usage. Some of their
study results have the similar implications as ours. For
example, their study shows that 67.4% (66,031) of the
98,006 web sites use cookies and 83.8% (55,130) of those
66,031 sites use first-party cookies. In addition, they ob-

C. Yue et al. / Computer Networks 54 (2010) 2182–2198 2187
served that approximately 50.4% of all persistent cookies
surveyed are set to live for over one year. The discrepancy
in numbers between their study and ours can be attributed
to the differences in the sample set and study methods. For
example, they chose web sites from Alexa while we chose
web sites from Google directory; they instrumented Fire-
fox browser while we instrumented wget.

4. CookiePicker design

The design goal of CookiePicker is to effectively identify
the useful cookies of a web site, and then disable the return
of those useless cookies back to the web site in the subse-
quent requests and finally remove them. A web page is
automatically retrieved twice by enabling and disabling
some cookies. If there are obvious differences between
the two retrieved results, we classify the cookies as useful;
otherwise, we classify them as useless. CookiePicker en-
hances the cookie management for a web site by two pro-
cesses: forward cookie usefulness marking and backward
error recovery. We define these two processes and detail
the design of CookiePicker in the following.

Definition 1. FORward Cookie Usefulness Marking (FOR-
CUM) is a training process, in which CookiePicker deter-
mines cookie usefulness and marks certain cookies as
useful for a web site.
Definition 2. Backward error recovery is a tuning process,
in which wrong decisions made by CookiePicker in the
FORCUM process may be adjusted automatically or manu-
ally for a web site.
4.1. Regular and hidden requests

A typical web page consists of a container page that is
an HTML text file, and a set of associated objects such as
stylesheets, embedded images, scripts, and so on. When a
user browses a web page, the HTTP request for the con-
tainer page is first sent to the web server. Then, after
receiving the corresponding HTTP response for the con-
tainer page, the web browser analyzes the container page
and issues a series of HTTP requests to the web server for
downloading the objects associated with the container
page. The HTTP requests and responses associated with a
single web page view are depicted by the solid lines (1)
and (2) in Fig. 6, respectively.

Web page contents coming with the HTTP responses are
passed into the web browser layout engine for processing.
Fig. 6. HTTP requests/responses in a single web page view.
Fig. 7 depicts the data flow inside of Gecko [30], one of the
most popular web browser layout engines used in all Moz-
illa-branded software and its derivatives. When a web
page comes into Gecko, its container page is first parsed
and built into a tree. The structure of the tree follows the
W3C Document Object Model (DOM), thus the tree is
known as DOM tree. Next, the data from the DOM tree
are put into abstract boxes called frames by combining
the information from stylesheets. Finally, these frames
and the associated web objects are rendered and displayed
on a user’s screen.

In order to identify the cookie usefulness for a web
page, CookiePicker compares two versions of the same
web page: the first version is retrieved with cookies en-
abled and the second version is retrieved with cookies dis-
abled. The first version is readily available to CookiePicker
in the user’s regular web browsing window. CookiePicker
only needs to retrieve the second version of the container
page. Similar to Doppelganger [11], CookiePicker utilizes
the ever increasing client side spare bandwidth and com-
puting power to run the second version. However, unlike
Doppelganger, CookiePicker neither maintains a fork win-
dow nor mirrors the whole user session. CookiePicker only
retrieves the second version of the container page by send-
ing a single hidden HTTP request. As shown in Fig. 6, line
(3) is the extra hidden HTTP request sent by CookiePicker
for the second version of the container page, and line (4)
represents the corresponding HTTP response. In the rest
of the paper, we simply refer the requests and responses,
represented by the solid lines (1) and (2) of Fig. 6, as regu-
lar requests and responses; and refer the extra request and
response, represented by the dashed lines (3) and (4) of
Fig. 6, as the hidden request and response.

4.2. Forward cookie usefulness marking

As shown in Fig. 8, the FORCUM process consists of five
steps: regular request recording, hidden request sending,
DOM tree extraction, cookie usefulness identification, and
cookie record marking.

When visiting a web page, a user issues regular requests
and then receives regular responses. At the first step, Coo-
kiePicker identifies the regular request for the container
page and saves a copy of its URI and header information.
CookiePicker needs to filter out the temporary redirection
or replacement pages and locate the real initial container
document page.

At the second step, CookiePicker takes advantage of
user’s think time [31] to retrieve the second copy of the
container page, without causing any delay to the user’s
regular browsing. Specifically, right after all the regular re-
sponses are received and the web page is rendered on the
screen for display, CookiePicker issues the single hidden
request for the second copy of the container page. In the
hidden request, CookiePicker uses the same URI as the
saved in the first step. It only modifies the ‘‘Cookie” field
of the request header by removing a group of cookies,
whose usefulness will be tested. The hidden request can
be transmitted in an asynchronous mode so that it will
not block any regular browsing functions. Then, upon the
arrival of the hidden response, an event handler will be

Fig. 7. Data flow inside Gecko.

Fig. 8. The Five-Step FORCUM Process.

2188 C. Yue et al. / Computer Networks 54 (2010) 2182–2198
triggered to process it. Note that the hidden request is only
used to retrieve the container page, and the received hid-
den response will not trigger any further requests for
downloading the associated objects. Retrieving the con-
tainer page only induces very low overhead to
CookiePicker.

At the third step, CookiePicker extracts the two DOM
trees from the two versions of the container page: one
for the regular response and the other for the hidden re-
sponse. We call these two DOM trees the regular DOM tree
and the hidden DOM tree, respectively. The regular DOM
tree has already been parsed by web browser layout engine
and is ready for use by CookiePicker. The hidden DOM tree,
however, needs to be built by CookiePicker; and Cookie-
Picker should build the hidden DOM tree using the same
HTML parser of the web browser. This is because in prac-
tice HTML pages are often malformed. Using the same
HTML parser guarantees that the malformed HTML pages
are treated as same as before, while the DOM tree is being
constructed.

At the fourth step, CookiePicker identifies cookie useful-
ness by comparing the differences between the two ver-
sions of the container page, whose information is well
represented in the two DOM trees. To make a right cookie
usefulness decision, CookiePicker uses two complementary
algorithms by considering both the internal structural dif-
ference and the external visual content difference between
the two versions. Only when obvious structural difference
and visual content difference are detected, will CookiePick-
er decide that the corresponding cookies that are disabled
in the hidden request are useful. The two algorithms will
be detailed in Section 5.

At the fifth step, CookiePicker will mark the cookies that
are classified as useful in the web browser’s cookie jar. An
extra field ‘‘useful” is introduced to each cookie record. At
the beginning of the FORCUM process, a false value is as-
signed to the ‘‘useful” field of each cookie. In addition,
any newly-emerged cookies set by a web site are also as-
signed false values to their ‘‘useful” fields. During the FOR-
CUM process, the value of the field ‘‘useful” can only be
changed in one direction, that is, from ‘‘false” to ‘‘true” if
some cookies are classified as useful. Later on, when the
values of the ‘‘useful” field for the existing cookies are rel-
atively stable for the web site, those cookies that still have
‘‘false” values in their ‘‘useful” fields will be treated as use-
less and will no longer be transmitted to the corresponding
web site. Then, the FORCUM process can be turned off for a
while; and it will be turned on automatically if CookiePick-
er finds new cookies appeared in the HTTP responses or
manually by a user if the user wants to continue the train-
ing process.

4.3. Backward error recovery

In general, CookiePicker could make two kinds of errors
in the FORCUM process. The first kind of error is that use-
less cookies are misclassified as useful, thereby being con-
tinuously sent out to a web site. The second kind of error is
that useful cookies are never identified by CookiePicker
during the training process, thereby being blocked from a
web site.

The first kind of error is solely due to the inaccuracy of
CookiePicker in usefulness identification. Such an error will
not cause any immediate trouble to a user, but leave use-
less cookies increasing privacy risks. CookiePicker is re-
quired to make such errors as few as possible so that a
user’s privacy risk is lowered. CookiePicker meets this
requirement via accurate decision algorithms.

The second kind of error is caused by either a wrong
usefulness decision or the fact that some cookies are only
useful to certain web pages but have not yet been visited
during the FORCUM process. This kind of error will cause
inconvenience to a user and must be fixed by marking
the corresponding cookies as useful. CookiePicker attempts
to achieve a very low rate on this kind of error, so that it
does not cause any inconvenience to users. This require-
ment is achieved by two means. On one hand, for those vis-
ited pages, the decision algorithms of CookiePicker attempt

C. Yue et al. / Computer Networks 54 (2010) 2182–2198 2189
to make sure that each useful persistent cookie can be
identified and marked as useful. On the other hand, since
CookiePicker is designed with very low running cost, a
longer running period (or periodically running) of the FOR-
CUM process is affordable, thus training accuracy can be
further improved.

CookiePicker provides a simple recovery button for
backward error recovery in the tuning process. In case a
user notices some malfunctions or some strange behaviors
on a web page, the cookies disabled by CookiePicker in this
particular web page view can be re-marked as useful via a
simple button click. Note that once the cookie set of a web
site becomes stable after the training and tuning processes,
those disabled useless cookies will be removed from the
web browser’s cookie jar. CookiePicker also provides a user
interface, allowing a user to view those useless cookies and
confirm the deletion action. We will introduce this inter-
face in Section 6.
5. HTML page difference detection

In this section, we present two complementary mecha-
nisms for online detecting the HTML web page differences
between the enabled and disabled cookie usages. In the
first mechanism, we propose a restricted version of Simple
Tree Matching algorithm [32] to detect the HTML docu-
ment structure difference. In the second mechanism, we
propose a context-aware visual content extraction algo-
rithm to detect the HTML page visual content difference.
We call these two mechanisms as Restricted Simple Tree
Matching (RSTM) and Context-aware Visual Content
Extraction (CVCE), respectively. Intuitively, RSTM focuses
on detecting the internal HTML document structure differ-
ence, while CVCE focuses on detecting the external visual
content difference perceived by a user. In the following,
we present these two mechanisms and explain how they
are complementarily used.

5.1. Restricted simple tree matching

As mentioned in Section 4, in a user’s web browser, the
content of an HTML web page is naturally parsed into a
DOM tree before it is rendered on the screen for display.
Therefore, we resort to the classical measure of tree edit
distance introduced by Tai [33] to quantify the difference
between two HTML web pages. Since the DOM tree parsed
from the HTML web page is rooted (document node is the
only root), labeled (each node has node name), and ordered
(the left-to-right order of sibling nodes is significant), we
only consider rooted labeled ordered tree. In the following,
we will first review the tree edit distance problem; then
we will explain why we choose top-down distance and de-
tail the RSTM algorithm; and finally we will use Jaccard
similarity coefficient to define the similarity metric of a
normalized DOM tree.

5.1.1. Tree edit distance
For two rooted labeled ordered trees T and T 0, let jTj and

jT 0j denote the numbers of nodes in trees T and T 0, and let
T½i� and T 0½j� denote the ith and jth preorder traversal nodes
in trees T and T 0, respectively. Tree edit distance is defined
as the minimum cost sequence of edit operations to trans-
form T into T 0 [33]. The three edit operations used in trans-
formation include: inserting a node into a tree, deleting a
node from a tree, and changing one node of a tree into an-
other node. Disregarding the order of the edit operations
being applied, the transformation from T to T 0 can be de-
scribed by a mapping. The formal definition of a mapping
[33] is as follows:

Definition 3. A mapping from T to T 0 is defined by a triple
ðM; T; T 0Þ, where M is any set of pairs of integers ði; jÞ
satisfying:

1. 1 6 i 6 jTj; 1 6 j 6 jT 0j
2. For any two pairs ði1; j1Þ and ði2; j2Þ in M,

(a) i1 ¼ i2 iff j1 ¼ j2;
(b) i1 < i2 iff j1 < j2;
(c) T½i1� is an ancestor (descendant) of T½i2� iff T 0½j1� is an

ancestor (descendant) of T 0 ½j2�.

Intuitively, condition (2a) ensures that each node of
both trees appears at most once in the mapping, and con-
dition (2b) and (2c) ensure that the structural order is pre-
served in the mapping.

The algorithm presented by Tai [33] solves the tree edit
distance problem in time OðjTj � jT 0 j � jDj2 � jD0j2Þ, where jDj
and jD0j are the maximum depths, respectively, of T and
T 0. Zhang et al. [34] further improved the result via a sim-
ple fast dynamic programming algorithm in time
OðjTj � jT 0j �minfjDj; jLjg �minfjD0j; jL0jgÞ, where jLj and jL0j
are the numbers of leaves in T and T 0, respectively.

Since the solution of the generic tree edit distance prob-
lem has high time complexity, researchers have investi-
gated the constrained versions of the problem. By
imposing conditions on the three edit operations men-
tioned above, a few different tree distance measures have
been proposed and studied in the literature: alignment dis-
tance [35], isolated subtree distance [36], top-down distance
[37,32], and bottom-up distance [38]. The description and
comparison of these algorithms are beyond the scope of
this paper, see [39] and [38] for details.

5.1.2. Top-down distance
Because RSTM belongs to the top-down distance ap-

proach, we review the definition of top-down distance
and explain why we choose this measure for our study.

Definition 4. A mapping ðM; T; T 0Þ from T to T 0, is top-down
if it satisfies the condition that for all i; j such that T½i� and
T 0½j� are not the roots, respectively, of T and T 0:

if pair ði; jÞ 2 M thenðparentðiÞ;parentðjÞÞ 2 M:

The top-down distance problem was introduced by Sel-
kow [37]. In [32], Yang presented a OðjTj � jT 0jÞ time-com-
plexity top-down dynamic programming algorithm,
which is named as the Simple Tree Matching (STM) algo-
rithm. As we mentioned earlier, our goal is to effectively
detect noticeable HTML web page difference between the
enabled and disabled cookie usages. The measure of top-
down distance captures the key structure difference be-

2190 C. Yue et al. / Computer Networks 54 (2010) 2182–2198
tween DOM trees in an accurate and efficient manner, and
fits well to our requirement. In fact, top-down distance has
been successfully used in a few web-related projects. For
example, Zhai and Liu [40] used it for extracting structured
data from web pages; and Reis et al. [41] applied it for
automatic web news extraction. In contrast, bottom-up
distance [38], which although can be more efficient in time
complexity ðOðjTj þ jT 0jÞÞ, falls short of being an accurate
metric [42] and may produce a far from optimal result
[43] for HTML DOM tree comparison, in which most of
the differences come from the leaf nodes.
5.1.3. Restricted simple tree matching
Based on the original STM algorithm [32], Fig. 9 illus-

trates RSTM, our restricted version of STM algorithm. Other
than lines 4 to 8 and one new parameter level, our RSTM
algorithm is similar to the original STM algorithm. Like
the original STM algorithm, we first compare the roots of
two trees A and B. If their roots contain different symbols,
then A and B do not match at all. If their roots contain same
symbols, we use dynamic programming to recursively
compute the number of pairs in a maximum matching be-
tween trees A and B. Fig. 10 gives two trees, in which each
node is represented as a circle with a single letter inside.
According to the preorder traversal, the fourteen nodes in
tree A are named from N1 to N14, and the eight nodes in
tree B are named from N15 to N22. The final result re-
turned by STM algorithm or RSTM algorithm is the number
of matching pairs for a maximum matching. For example,
STM algorithm will return ‘‘7” for the two trees in Fig. 10,
and the seven matching pairs are fN1;N15g; fN2;N16g;
fN6;N18g; fN7;N19g; fN5;N17g; fN11;N20g, and fN12;
N22g.

There are two reasons why a new parameter level is
introduced in RSTM. First, some web pages are very dy-
namic. From the same web site, even if a web page is re-
Fig. 9. The Restricted Simple Tree Matching Algorithm.
trieved twice in a short time, there may exist some
differences between the retrieved contents. For example,
if we refresh Yahoo home page twice in a short time, we
can often see some different advertisements. For Cookie-
Picker, such dynamics on a web page are just noises and
should be differentiated from the web page changes
caused by the enabled and disabled cookie usages. The
advertisement replacements on a web page use different
data items (e.g., images or texts) but they often stay at
the same location of a web page’s DOM tree. Data items
are mainly represented by lower level nodes of a DOM tree
[44]. In contrast, the web page changes caused by en-
abling/disabling cookies may introduce structural dissimi-
larities at the upper level of a DOM tree, especially when
the theme of the page is changed. By using the new param-
eter level, the RSTM algorithm restricts the top-down com-
parison between the two trees to a certain maximum level.
Therefore, equipped with the parameter level, RSTM not
only captures the key structure dissimilarity between
DOM trees, but also reduces leaf-level noises.

The second reason of introducing the new parameter le-
vel is that the OðjTj � jT 0 jÞ time complexity of STM is still too
expensive to use online. Even with C++ implementation,
STM will spend more than one second in difference detec-
tion for some large web pages. However, as shown in Sec-
tion 6, the cost of the RSTM algorithm is low enough for
online detection.

The newly-added conditions at line 5 of the RSTM algo-
rithm restrict that the mapping counts only if the com-
pared nodes are not leaves and have visual effects. More
specifically, all the comment nodes are excluded in that
they have no visual effect on the displayed web page.
Script nodes are also ignored because normally they do
not contain any visual elements either. Text content nodes,
although very important, are also excluded due to the fact
that they are leaf nodes (i.e., having no more structural
information). Instead, text content will be analyzed in
our Context-aware Visual Content Extraction (CVCE)
mechanism.

5.1.4. Normalized top-down distance metric
Since the return result of RSTM (or STM) is the number

of matching pairs for a maximum matching, based on the
Jaccard similarity coefficient that is given in Formula (1),
we define the normalized DOM tree similarity metric in
Formula (2).

JðA;BÞ ¼ jA \ Bj
jA [Bj ; ð1Þ

NTreeSimðA;B; lÞ ¼ RSTMðA;B; lÞ
NðA; lÞ þ NðB; lÞ � RSTMðA;B; lÞ : ð2Þ

The Jaccard similarity coefficient JðA;BÞ is defined as the ra-
tio between the size of the intersection and the size of the
union of two sets. In the definition of our normalized
DOM tree similarity metric NTreeSimðA;B; lÞ;RSTMðA;B; lÞ
is the returned number of matched pairs by calling RSTM
on trees A and B for upper l levels. NðA; lÞ and NðB; lÞ are
the numbers of non-leaf visible nodes at upper l levels of
trees A and B, respectively. Actually NðA; lÞ ¼ RSTMðA;A; lÞ
and NðB; lÞ ¼ RSTMðB;B; lÞ, but NðA; lÞ and NðB; lÞ can be

Fig. 10. (a) Tree A. (b) Tree B.

C. Yue et al. / Computer Networks 54 (2010) 2182–2198 2191
computed in OðnÞ time by simply preorder traversing the
upper l levels of trees A and B, respectively.
Fig. 11. The Text Content Extraction Algorithm.
5.2. Context-aware visual content extraction

The visual contents on a web page can be generally clas-
sified into two groups: text contents and image contents.
Text contents are often displayed as headings, paragraphs,
lists, table items, links, and so on. Image contents are often
embedded in a web page in the form of icons, buttons,
backgrounds, flashes, video clips, and so on. Our second
mechanism mainly uses text contents, instead of image
contents, to detect the visual content difference perceived
by users. Two reasons motivate us to use text contents
rather than image contents. First, text contents provide
the most important information on web pages. This is be-
cause HTML mainly describes the structure of text-based
information in a document, while image contents often
serve as supplements to text contents [45]. In practice,
users can block the loading of various images and browse
web pages in text mode only. Second, the similarity be-
tween images cannot be trivially compared, while text
contents can be extracted and compared easily as shown
below.

On a web page, each text content exists in a special con-
text. Corresponding to the DOM tree, the text content is a
leaf node and its context is the path from the root to this
leaf node. For two web pages, by extracting and comparing
their context-aware text contents that are essential to
users, we can effectively detect the noticeable HTML web
page difference between the enabled and disabled cookie
usages. Fig. 11 depicts the recursive algorithm to extract
the text content.

The contentExtract algorithm traverses the whole DOM
tree in preorder in time OðnÞ. During the preorder traversal,
each non-noise text node is associated with its context,
resulting in a context-content string; and then the con-
text-content string is added into set S. The final return re-
sult is set S, which includes all the context-content strings.
Note that in lines 2 to 4, only those non-noise text nodes
are qualified for the addition to set S. Similar to [46],
scripts, styles, obvious advertisement text, date and time
strings, and option text in dropdown lists (such as country
list or language list) are regarded as noises. Text nodes that
contain no alphanumeric characters are also treated as
noises. All these checkings guarantee that we can extract
a relatively concise context-content string set from the
DOM tree.

Assume S1 and S2 are two context-content string sets
extracted from two DOM trees A and B, respectively. To
compare the difference between S1 and S2, again based
on the Jaccard similarity coefficient, we define the normal-
ized context-content string set similarity metric in For-
mula (3):

NTextSimðS1; S2Þ ¼
jS1 \ S2j þ s
jS1 [S2j

: ð3Þ

Formula (3) is a variation [47] of the original Jaccard simi-
larity coefficient. The extra added s on the numerator
stands for the number of those context-content strings that
are not exactly same, while having the same context prefix,
in S1 and S2. Intuitively, between two sets S1 and S2, For-
mula (3) disregards the difference caused by text content
replacement occurred in the same context; it only consid-
ers the difference caused by text content appeared in each
set’s unique context. This minor modification is especially
helpful in reducing the noises caused by advertisement
text content and other dynamically changing text contents.

5.3. Making decision

As discussed above, to accurately identify useful cook-
ies, CookiePicker has to differentiate the HTML web page
differences caused by web page dynamics from those

Fig. 12. CookiePicker Decision Algorithm.

2192 C. Yue et al. / Computer Networks 54 (2010) 2182–2198
caused by disabling cookies. Assume that tree A is parsed
from a web page retrieved with cookies enabled and tree
B is parsed from the same web page with cookies disabled.
CookiePicker examines these two trees by using both algo-
rithms presented above. If the return results of NTreeSim
and NTextSim are less than two tunable thresholds, Thresh1
and Thresh2, respectively, CookiePicker will make a deci-
sion that the difference is due to cookie usage. Fig. 12 de-
picts the final decision algorithm.

Note that these two thresholds are internal to Cookie-
Picker, so a regular user does not need to know them. In
our experiments (Section 6.2), we set the values of both
thresholds to 0.85, and we found that no backward error
recover is needed. We would like to recommend this as a
reference value for CookiePicker. However, it is possible
to further tune these two thresholds. For example, one ap-
proach is to self-adaptively adjust the thresholds based on
the number or frequency of a user’s backward error re-
cover actions. The bottom line is that backward error
recovery should not cause too much inconvenience to a
user. Another approach is to use site-specific thresholds
so that the granularity of accuracy can be refined to the
site-level. In addition, it is also possible to allow users to
share fine-tuned site-specific thresholds.
Fig. 13. CookiePicker
6. System evaluation

In this section, we first briefly describe the implementa-
tion of CookiePicker, and then we validate its efficacy
through two sets of live experiments.
6.1. Implementation

We implemented CookiePicker as a Firefox extension.
Being one of the most popular web browsers, Firefox is very
extensible and allows programmers to add new features or
modify existing features. Our CookiePicker extension is
implemented in about 200 lines of XML user interface def-
inition code, 1,600 lines of JavaScript code, and 600 lines of
C++ code. JavaScript code is used for HTTP request/response
monitoring and processing, as well as cookies record man-
agement. The HTML page difference detection algorithms
are implemented in C++, because JavaScript version runs
very slow. C++ code is compiled into a shared library in
the form of an XPCOM (Cross-Platform Component Object
Mode) component, which is accessible to JavaScript code.
CookiePicker is a pure Firefox extension and it does not
make any change to the Firefox’s source code.

We omit other details and only describe two key inter-
faces in CookiePicker’s implementation: the interface to
user and the XPCOM component interface. Fig. 13 shows
CookiePicker’s main user interface. We port the codes of
a popular Firefox extension Cookie Culler [48] and merge
them into CookiePicker. Cookie Culler allows a user to ac-
cess cookie records and manually delete those cookies
the user does not need to keep. By integrating this inter-
face, CookiePicker provides a user with the capability to
easily view the decisions made by CookiePicker and double
check those useless cookies before they are finally re-
moved from a browser’s cookie jar. As shown in Fig. 13,
user interface.

C. Yue et al. / Computer Networks 54 (2010) 2182–2198 2193
if a user wants, the user can know that these three first-
party persistent cookies from ebay.com have been auto-
matically marked as useless and will be deleted by Cookie-
Picker. The user can also make corrections to this result if
necessary.

In the XPCOM component interface, two functions are
defined as follows and they correspond to CookiePicker’s
two HTML page difference detection algorithms,
respectively:

interface ICookiePickerComponent : nsISupports{

float nTreeSim(in nsIDOMNode rNode, in nsIDOMNode
hNode, in long l);
float nTextSim(in nsIDOMNode rNode, in nsIDOMNode
hNode);

}

These two functions are implemented in C++, and can be
accessed by JavaScript code via the ICookiePickerCompo-
nent component. For nTreeSim, its three input parameters
match exactly with those in Fig. 12. For nTextSim, its defi-
nition here is a little bit different from that in Fig. 12, because
the DOM trees are directly passed in and the corresponding
context-content string sets are extracted internally.
6.2. Evaluation

We installed CookiePicker on a Firefox version 1.5.0.8
web browser3 and designed two sets of experiments to val-
idate the effectiveness of CookiePicker in identifying the
useful first-party persistent cookies. The first set of experi-
ments is to measure the overall effectiveness of CookiePicker
and its running time in a generic environment; while the
second set of experiments focuses on the web sites whose
persistent cookies are useful only, and examines the identi-
fication accuracy of CookiePicker upon useful persistent
cookies. For all the experiments, the regular browsing win-
dow enables the use of persistent cookies, while the hidden
request disables the use of persistent cookies by filtering
them out from HTTP request header. The two thresholds
used in CookiePicker decision algorithm are both set to
0.85, i.e., Thresh1 = Thresh2 = 0.85. The parameter l for
NTreeSim algorithm is set to 5, i.e., the top five level of
DOM tree starting from the body HTML node will be com-
pared by NTreeSim algorithm.
6.2.1. First set of experiments
From each of the 15 categories listed in Table 1, we ran-

domly choose two web sites that use persistent cookies.
Thus, in total there are 30 web sites in the first set of exper-
iments. As listed in the first column of Table 2, these 30
web sites are represented as S1 to S30 for privacy concerns.

Inside each web site, we first visit over 25 web pages to
stabilize its persistent cookies and the ‘‘useful” values of
the persistence cookies, i.e, no more persistent cookies of
the web site are marked as ‘‘useful” by CookiePicker after-
wards. Then, we count the number of persistent cookies set
3 Porting CookiePicker to recent Firefox versions is quite feasible because
CookiePicker uses the standard XPCOM mechanism of Firefox.
by the web site and the number of persistent cookies
marked as useful by CookiePicker. These two numbers
are shown in the second and third columns of Table 2,
respectively. Among the total 30 web sites, the persistent
cookies from five web sites (S1, S6, S10, S16, S27) are
marked as ‘‘useful” by CookiePicker, and the persistent
cookies from the rest of 30 web sites are identified as ‘‘use-
less”. In other words, CookiePicker indicates that we can
disable the persistent cookies in about 83.3% (25 out of
30) of testing web sites. To further validate the testing re-
sult above, we check the uselessness of the persistent
cookies for those 25 web sites through careful manual ver-
ification. We find that blocking the persistent cookies of
those 25 web sites does not cause any problem to a user.
Therefore, none of the classified ‘‘useless” persistent cook-
ies is useful, and no backward error recovery is needed.

For those five web sites that have some persistent cook-
ies marked as ‘‘useful”, we verify the real usefulness of
these cookies by blocking the use of them and then com-
paring the disabled version with a regular browsing win-
dow over 25 web pages in each web site. The result is
shown in the fourth column of Table 2. We observe that
three cookies from two web sites (S6, S16) are indeed use-
ful. However, for the other three web sites (S1, S10, S27),
their persistent cookies are useless but are wrongly
marked as ‘‘useful” by CookiePicker. This is mainly due to
the conservative threshold setting. Currently the values
of both thresholds are set to 0.85, i.e., Thresh1 =
Thresh2 = 0.85. The rationale behind the conservative
threshold setting is that we prefer to have all useful persis-
tent cookies be correctly identified, even at the cost of
some useless cookies being misclassified as ‘‘useful”. Thus,
the number of backward error recovery is minimized.

In Table 2, the fifth and sixth columns show the average
running time of the detection algorithms and the entire
duration of CookiePicker, respectively. It is clear that the
running time of the page difference detection is very short
with an average of 14.6 ms over the 30 web sites. This
detection time is roughly the extra CPU computation time
introduced by running the CookiePicker browser extension.
The extra memory resource consumption is also negligible
because CookiePicker does not have a large memory
requirement. The average identification duration is
2,683.3 ms, which is reasonable short considering the fact
that the average think time of a user is about 10 s [31]. Note
that web sites S4, S17, and S28 have abnormally high iden-
tification duration at about 10 s, which is mainly caused by
the slow responses from these web sites.

6.2.2. Second set of experiments
Since only two web sites in the first set of experiments

have useful persistent cookies, we attempt to further
examine if CookiePicker can correctly identify each useful
persistent cookie in the second set of experiments. Because
the list of web sites whose persistent cookies are really
useful to users does not exist, we have to locate such
web sites manually. Again, we randomly choose 200 web
sites that use persistent cookies from the 15 categories
listed in Table 1. Note that the 30 web sites chosen in the
first set of experiments are not included in these 200
web sites. We manually scrutinize these 200 web sites,

Table 2
Online testing results for thirty web sites (S1 to S30).

Web site Persistent Marked useful Real useful Detection time (ms) CookiePicker duration (ms)

S1 2 2 0 8.3 1,821.6
S2 4 0 0 9.3 5,020.2
S3 5 0 0 14.8 1,427.5
S4 4 0 0 36.1 9,066.2
S5 4 0 0 5.4 698.9
S6 2 2 2 5.7 1,437.5
S7 1 0 0 17.0 3,373.2
S8 3 0 0 7.4 2,624.4
S9 1 0 0 13.2 1,415.4
S10 1 1 0 5.7 1,141.2
S11 2 0 0 2.7 941.3
S12 4 0 0 21.7 2,309.9
S13 1 0 0 8.0 614.9
S14 9 0 0 11.9 1,122.4
S15 2 0 0 8.5 948.0
S16 25 1 1 5.8 455.9
S17 4 0 0 7.5 11,426.3
S18 1 0 0 23.1 4,056.9
S19 3 0 0 18.0 3,860.5
S20 6 0 0 8.9 3,841.6
S21 3 0 0 14.4 936.1
S22 1 0 0 13.1 993.3
S23 4 0 0 28.8 2,430.1
S24 1 0 0 23.6 2,381.1
S25 3 0 0 30.7 550.1
S26 1 0 0 5.03 611.6
S27 1 1 0 8.7 597.5
S28 1 0 0 10.7 10,104.1
S29 2 0 0 7.7 1,387.1
S30 2 0 0 57.6 2,905.6
Total 103 7 3 – –
Average – – – 14.6 2,683.3

2194 C. Yue et al. / Computer Networks 54 (2010) 2182–2198
and finally find six web sites whose persistent cookies are
really useful to users, i.e., without cookies, users would
encounter some problems. Because the manual scrutiny
is tedious, we cannot afford more effort to locate more
such web sites. The six web sites are listed in the first col-
umn of Table 3 and represented as P1 to P6 for privacy
concerns.

In Table 3, the second column shows the number of the
cookies marked as ‘‘useful” by CookiePicker and the third
column shows the number of the real useful cookies via
manual verification. We observe that for the six web sites,
all of their useful persistent cookies are marked as ‘‘useful”
by CookiePicker. This result indicates that CookiePicker sel-
dom misses the identification of a real useful cookie. On the
other hand, for web sites P5 and P6, some useless persistent
cookies are also marked as ‘‘useful” because they are sent
out in the same regular request with the real useful cookies.
The fourth and fifth columns show the similarity score
Table 3
Online testing results for six web sites (P1 to P6) that have useful persistent cook

Web site Marked useful Real useful NTr

P1 1 1 0.3
P2 1 1 0.4
P3 1 1 0.6
P4 1 1 0.2
P5 9 1 0.2
P6 5 2 0.5
Average – – 0.4
computed by NTreeSimðA;B;5Þ and NTextSimðS1; S2Þ,
respectively, on the web pages that persistent cookies are
useful. These similarity scores are far below 0.85, which is
the current value used for the two thresholds Thresh1 and
Thresh2 in Fig. 12. The usage of these useful persistent cook-
ies on each web site is given at the sixth column. Web sites
P1, P4, and P6 use persistent cookies for user’s preference
setting. Web sites P3 and P5 use persistent cookies to prop-
erly create and sign up a new user. Web site P2 uses persis-
tent cookie in a very unique way. Each user’s persistent
cookie corresponds to a specific sub-directory on the web
server, and the sub-directory stores the user’s recent query
results. Thus, if the user visits the web site again with the
persistent cookie, recent query results can be reused to im-
prove query performance.

In summary, the above two sets of experiments show
that by conservatively setting Thresh1 and Thresh2 to
0.85, CookiePicker can safely disable and remove persistent
ies.

eeSim ðA;B;5Þ NTextSim ðS1; S2Þ Usage

11 0.609 Preference
59 0.765 Performance
67 0.623 Sign Up
50 0.158 Preference
26 0.253 Sign Up
93 0.719 Preference
18 0.521 –

C. Yue et al. / Computer Networks 54 (2010) 2182–2198 2195
cookies from about 83.3% of web sites (25 out of the 30
web sites that we intensively tested). Meanwhile, all the
useful persistent cookies are correctly identified by Cookie-
Picker and no backward error recovery is needed for all the
8 web sites (S6, S16, P1, P2, P3, P4, P5, P6) that have useful
persistent cookies. Misclassification happens only in 10%
web sites (3 out of 30), on which useless persistent cookies
are wrongly identified as useful.
7. Discussions

In CookiePicker, useful cookies are defined as those that
can cause perceivable changes on a web page, and as we
discussed before this definition is probably the most rea-
sonable measure right now at the browser side. We as-
sume that this measure is known to anyone who wants
to evade CookiePicker. In this section, we first identify pos-
sible evasion techniques, and then we analyze potential
evasion sources and explain why those evasion techniques
are not a serious concern to CookiePicker. Finally, we dis-
cuss some concerns about using CookiePicker.

7.1. Possible evasion techniques

Since CookiePicker makes its decision based on HTML
page difference detection, we identify the following four
possible techniques that could be used to evade
CookiePicker:

� random advertising: A web site can serve more random
advertisements to different retrieves of a web page in
order to reduce the accuracy of CookiePicker’s differ-
ence detection algorithms.
� dynamic content rewriting: A web site can identify Coo-

kiePicker’s hidden request and use JavaScript to dynam-
ically rewrite web page contents at the browser side.
� dramatic structure changing: A web site can identify

CookiePicker’s hidden request and intentionally gener-
ate structurally different response pages (even if with
very similar visual content).
� cookie root path abusing: A web site can set attribute

values of all its cookies as root ‘‘/” to let all its cookies,
no matter useful or useless, return back for every web
request.

For the random advertising evasion technique, indeed as
shown in previous experimental results, CookiePicker’s
two difference detection algorithms can filter out the ef-
fects of advertisements and web page dynamics very well.
Moreover, other advertisement removing techniques such
as those used in [49] can be integrated into CookiePicker
to further improve the detection accuracy. The other three
kinds of evasion techniques can be employed by a web site
operator. However, as we discuss below, they will not pose
a serious threat to the usage of CookiePicker.

7.2. Evasion sources

The evasion of CookiePicker will most likely come from
two sources: web site operators who want to track user
activities, and attackers who want to steal cookies. As sta-
ted in Section 2, we assume that the hosting web site is
legitimate, since it is pointless to provide cookie security
and privacy services for a malicious web site. For legiti-
mate web sites, if some operators strongly insist to use
first-party persistent cookies for tracking long-term user
behaviors, they can evade CookiePicker by detecting the
hidden HTTP request and manipulating the hidden HTTP
response using the evasion techniques mentioned above.
However, we argue that many web site operators will not
pay the effort and time to do so, either because of the lack
of interest to track long-term user behaviors in the first
place, or because of inaccuracy in cookie-based user behav-
ior tracking, which has long been recognized [50]. These
web site operators are either not aware of the possible pri-
vacy and security risks of stolen first-party persistent cook-
ies, or simply not willing to pay the cost to renovate their
systems. Our CookiePicker is a pure client-side solution
that especially aims to protect the users of these web sites.

For third-party attackers, unless they compromise a
legitimate web site, it is very difficult for them to use any
of the above evasion techniques to manipulate the web
pages sending back to a user’s browser and circumvent
CookiePicker. Therefore, CookiePicker can effectively iden-
tify and remove useless cookies stored by most legitimate
web sites on a user’s hard disk, and prevent them from
being stolen by malicious attacks such as cross-site script-
ing attacks.
7.3. Concerns about using cookiePicker

One concern is that CookiePicker might reject third-
party cookies in the case of HTTP redirection (see Section
5.1.2 of [15]). However, this concern is invalid because
CookiePicker does not block (or even touch) third-party
cookies by itself – decision regarding third-party cookies
is made completely by the web browser based on users’
preference setting. Similarly, whether a cookie is a first-
party cookie of a web site is also decided by the web brow-
ser, and CookiePicker makes its decision based on the
browser’s decision. Therefore, it does not matter whether
a web site is using CDN (Content Delivery Network) or not.

Another concern is that CookiePicker may not work well
on web pages that use Ajax (Asynchronous JavaScript and
XML). This concern is reasonable because Ajax requests
may use cookies and may also change web page contents.
Currently, CookiePicker only sends hidden requests to re-
trieve container pages, as described in Section 4. But it is
possible to extend CookiePicker to evaluate the impact of
cookies on Ajax requests, for example, by asking Cookie-
Picker to send out two Ajax requests (one with cookies
and the other without cookies) at the same time and then
compare the response messages.
8. Related work

RFC 2109 [14] specifies the way of using cookies to cre-
ate a stateful session with HTTP requests and responses. It
is also the first document that raises the general public’s
awareness of cookie privacy problems. RFC 2965 [51] fol-

2196 C. Yue et al. / Computer Networks 54 (2010) 2182–2198
lows RFC 2109 by introducing two new headers, Cookie2
request header and Set-Cookie2 response header. How-
ever, these two new headers are not supported by the pop-
ular web browsers such as Internet Explorer and Firefox.
RFC 2964 [13] focuses on the privacy and security of using
HTTP cookies, and identifies the specific usages of cookies
that are either not recommended by the IETF or believed
to be harmful. Fu’s study [4] suggests that setting authenti-
cators in cookies should be very careful and especially per-
sistent cookies should not be used to store authenticators.

Cookies not only can be retrieved and stored by the
headers of HTTP requests and responses, but also can be
read and written by client-side JavaScript. The same origin
policy [23] introduced in Netscape Navigator 2.0 prevents
cookies and JavaScript in different domains from interfer-
ing with each other. The successful fulfillment of the same
origin policy on cookies and JavaScript further invokes the
enforcement of this policy on browser cache and visited
links [52]. Recently, in order to mitigate cross-site scripting
attacks, Internet Explore also allows a cookie to be marked
as ‘‘HttpOnly” in the Set-Cookie response header, indi-
cating that a cookie is ‘‘non-scriptable” and should not be
revealed to client applications [53].

Modern web browsers have provided users with refined
cookie privacy options. A user can define detailed cookie
policies for web sites either before or during visiting these
sites. Commercial cookie management software such as
Cookie Crusher [54] and CookiePal [55] mainly rely on
pop-ups to notify incoming cookies. However, the studies
in [8] show that such cookie privacy options and cookie
management policies fail to be used in practice, due mainly
to the following two reasons: (1) these options are very
confusing and cumbersome, and (2) most users have no
good understanding of the advantages and disadvantages
of using cookies. A few Firefox extensions such as Cookie
Culler [48] and Permit Cookies [56], although convenient
to use, are just very simple add-ons for user to easily access
privacy preference settings or view cookies. Acumen sys-
tem [57] can inform a user how many other users accept
certain cookies. However, the system does not protect
the privacy of the user itself. Moreover, many users’ deci-
sions could be wrong, resulting in negative reference. An-
other interesting system is Privoxy [49] web proxy. It
provides advanced filtering capabilities for protecting pri-
vacy, modifying web page data, managing cookies, control-
ling access, and removing advertisement, banners, pop-ups
and other obnoxious Internet junk. However, Privoxy is
more useful for those sophisticated users who have the
ability to fine-tune their installation.

Recently, the most noticeable research work in cookie
management is Doppelganger [11]. Doppelganger is a sys-
tem for creating and enforcing fine-grained privacy-pre-
serving cookie policies. Doppelganger leverages client-
side parallelism and uses a twin window to mirror a user’s
web session. If any difference is detected, Doppelganger
will ask the user to compare the main window and the fork
window, and then, make a cookie policy decision. Although
taking a big step towards automatic cookie management,
Doppelganger still has a few obvious drawbacks. First,
Doppelganger still heavily relies on the user’s comparison
between the main window and the fork window to make
a decision. Second, the cost of its parallel mirroring mech-
anism is very high. This is because not only every user ac-
tion needs to be mirrored, but every HTTP request also
needs to be duplicately sent back to the web server. Third,
due to the high cost, a user may not be patient enough to
have a long training period, thus the policy decision accu-
racy cannot be guaranteed. Last but not the least, Doppel-
ganger only achieves web site level cookie policy making.
In contrast, our CookiePicker works fully automatically
without user involvement or even notice. It has very low
overhead, and hence, can be trained for a long period on
a user’s web browser to achieve high accuracy. CookiePick-
er achieves cookie-group level policy making, implying
that usefulness is identified for a group of cookies used in
a web page view.
9. Conclusions

In this paper, we have conducted a large scale cookie
measurement, which highlights the demand for effective
cookie management. Then, we have presented a system,
called CookiePicker, to automatically managing cookie
usage setting on behalf of a user. Only one additional HTTP
request for the container page of a web site, the hidden re-
quest, is generated for CookiePicker to identify the useful-
ness of a cookie set. CookiePicker uses two complementary
algorithms to accurately detect the HTML page differences
caused by enabling and disabling cookies. CookiePicker
classifies those cookies that cause perceivable changes on
a web page as useful, and disable the rest as useless. We
have implemented CookiePicker as an extension to Firefox
and evaluated its efficacy through live experiments over
various web sites. By automatically managing the usage
of cookies, CookiePicker helps a user to strike an appropri-
ate balance between easy usage and privacy risks.

Acknowledgments

We thank the anonymous reviewers for their careful
and insightful comments. This work was partially sup-
ported by NSF Grant CNS-091537 and ONR Grant
N00014-09-1-0746.

References

[1] HTTP Cookie, <http://en.wikipedia.org/wiki/HTTP_cookie>.
[2] D.M. Kristol, Http cookies: standards, privacy, and politics, ACM

Trans. Inter. Tech. 1 (2) (2001) 151–198.
[3] S. Chapman, G. Dhillon, Privacy and the internet: the case of

doubleclick, inc, 2002.
[4] K. Fu, E. Sit, K. Smith, N. Feamster, Do’s and don’ts of client

authentication on the web, in: Proceedings of the In 10th USENIX
Security Symposium, Washington, DC, 2001.

[5] M. Jakobsson, S. Stamm, Invasive browser sniffing and
countermeasures, in: Proceedings of the WWW’06, 2006, pp. 523–
532.

[6] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, G. Vigna, Cross
site scripting prevention with dynamic data tainting and static
analysis, in: Proceedings of the NDSS’07, 2007.

[7] Y.-M. Wang, D. Beck, X. Jiang, R. Roussev, C. Verbowski, S. Chen, S.T.
King, Automated web patrol with Strider HoneyMonkeys: finding
web sites that exploit browser vulnerabilities, in: Proceedings of the
NDSS’06, 2006.

[8] V. Ha, K. Inkpen, F.A. Shaar, L. Hdeib, An examination of user
perception and misconception of internet cookies, in: CHI’06

http://en.wikipedia.org/wiki/HTTP_cookie

C. Yue et al. / Computer Networks 54 (2010) 2182–2198 2197
extended abstracts on human factors in computing systems,
Montreal, Canada, 2006, pp. 833–838.

[9] Platform for privacy preferences (P3P) project, <http://www.w3.org/
P3P/>.

[10] L.I. Millett, B. Friedman, E. Felten, Cookies and web browser design:
toward realizing informed consent online, in: Proceedings of the
CHI’01, 2001, pp. 46–52.

[11] U. Shankar, C. Karlof, Doppelganger: better browser privacy without
the bother, in: Proceedings of the ACM CCS’06, Alexandria, VA, 2006.

[12] L. Bent, M. Rabinovich, G.M. Voelker, Z. Xiao, Characterization of a
large web site population with implications for content delivery, in:
Proceedings of the WWW’04, 2004, pp. 522–533.

[13] K. Moore, N. Freed, Use of http state management, RFC 2964 (2000).
[14] D. Kristol, L. Montulli, Http state management mechanism, RFC 2109

(1997).
[15] A.F. Tappenden, J. Miller, Cookies: a deployment study and the

testing implications, ACM Trans. Web 3 (3) (2009) 1–49.
[16] E. Kirda, C. Kruegel, G. Vigna, N. Jovanovic, Noxes: a client-side

solution for mitigating cross-site scripting attacks, in: Proceedings of
the 2006 ACM symposium on Applied computing (SAC’ 06), ACM
Press, 2006, pp. 330–337.

[17] CERT Advisory CA-2000-02 Malicious HTML tags embedded in client
web requests, 2000, <http://www.cert.org/advisories/CA-2000-
02.html>.

[18] S. Chen, J. Meseguer, R. Sasse, H.J. Wang, Y.-M. Wang, A systematic
approach to uncover security flaws in gui logic, in: Proceedings of
the 2007 IEEE Symposium on Security and Privacy (S&P ’07), IEEE
Computer Society, 2007, pp. 71–85.

[19] C. Reis, J. Dunagan, H.J. Wang, O. Dubrovsky, S. Esmeir,
Browsershield: vulnerability-driven filtering of dynamic html, in:
Proceedings of the 7th conference on USENIX Symposium on
Operating Systems Design and Implementation (OSDI’06), USENIX
Association, 2006, pp. 61–74.

[20] E. Kirda, C. Kruegel, G. Banks, G. Vigna, R.A. Kemmerer, Behavior-
based spyware detection, in: Proceedings of the 15th conference on
USENIX Security Symposium, USENIX Association, 2006, pp. 273–
288.

[21] M.T. Louw, J.S. Lim, V. Venkatakrishnan, Extensible web browser
security, in: Proceedings of the Fourth GI International Conference
on Detection of Intrusions & Malware, and Vulnerability Assessment
(DIMVA’07), 2007.

[22] S. Saroiu, S.D. Gribble, H.M. Levy, Measurement and analysis of
spywave in a university environment, in: Proceedings of the 1st
conference on Symposium on Networked Systems Design and
Implementation (NSDI’04), USENIX Association, 2004, pp. 141–153.

[23] Same origin policy, <http://en.wikipedia.org/wiki/
Same_origin_policy>.

[24] Google plugs cookie-theft data leak, 2005, <http://www.eweek.com/
article2/0,1895,1751689,00.asp>.

[25] Google slams the door on XSS flaw ’Stop cookie thief!’, 2007, <http://
software.silicon.com/security/,January17th,2007>.

[26] Flaws in IE7 and Firefox raise alarm, 2007, <http://news.zdnet.co.uk/
security,Febuary19th,2007>.

[27] GNU Wget - GNU Project - Free Software Foundation (FSF), <http://
www.gnu.org/software/wget/>.

[28] A. Moshchuk, T. Bragin, S.D. Gribble, H.M. Levy, A crawler-based
study of spyware in the web., in: Proceedings of the NDSS’06, 2006.

[29] C. Yue, M. Xie, H. Wang, Automatic cookie usage setting with
CookiePicker, in: Proceedings of the 37th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks
(DSN’07), IEEE Computer Society, 2007, pp. 460–470.

[30] Data flow inside Gecko, <http://developer.mozilla.org/en/docs>.
[31] B.A. Mah, An empirical model of http network traffic., in:

Proceedings of the INFOCOM’97, 1997, pp. 592–600.
[32] W. Yang, Identifying syntactic differences between two programs,

Softw. Pract. Exper. 21 (7) (1991) 739–755.
[33] K.-C. Tai, The tree-to-tree correction problem, J. ACM 26 (3) (1979)

422–433.
[34] K. Zhang, D. Shasha, Simple fast algorithms for the editing distance

between trees and related problems, SIAM J. Comput. 18 (6) (1989)
1245–1262.

[35] T. Jiang, L. Wang, K. Zhang, Alignment of trees – an alternative to tree
edit, Theor. Comput. Sci. 143 (1) (1995) 137–148.

[36] E. Tanaka, K. Tanaka, The tree-to-tree editing problem, Int. J. Pattern
Recognit. Artif. Intell. 2 (2) (1988) 221–240.

[37] S.M. Selkow, The tree-to-tree editing problem, Inf. Process. Lett. 6 (6)
(1977) 184–186.

[38] G. Valiente, An efficient bottom-up distance between trees, in:
Proceedings of the SPIRE’01, 2001, pp. 212–219.
[39] P. Bille, A survey on tree edit distance and related problems, Theor.
Comput. Sci. 337 (1-3) (2005) 217–239.

[40] Y. Zhai, B. Liu, Web data extraction based on partial tree alignment,
in: Proceedings of the WWW’05, 2005, pp. 76–85.

[41] D.C. Reis, P.B. Golgher, A.S. Silva, A.F. Laender, Automatic web news
extraction using tree edit distance, in: Proceedings of the WWW’04,
2004, pp. 502–511.

[42] A. Torsello, D. Hidovic-Rowe, Polynomial-time metrics for attributed
trees, IEEE Trans. Pattern Anal. Mach. Intell. 27 (7) (2005) 1087–
1099.

[43] R. Al-Ekram, A. Adma, O. Baysal, diffx: an algorithm to detect
changes in multi-version xml documents, in: Proceedings of the
CASCON’05, 2005, pp. 1–11.

[44] Y. Zhai, B. Liu, Structured data extraction from the web based on
partial tree alignment, IEEE Trans. Knowledge Data Eng. 18 (12)
(2006) 1614–1628.

[45] HTML, <http://en.wikipedia.org/wiki/HTML>.
[46] S. Gupta, G. Kaiser, D. Neistadt, P. Grimm, Dom-based content

extraction of html documents, in: Proceedings of the WWW’03,
2003, pp. 207–214.

[47] S. Joshi, N. Agrawal, R. Krishnapuram, S. Negi, A bag of paths model
for measuring structural similarity in web documents, in:
Proceedings of the KDD’03, 2003, pp. 577–582.

[48] Cookie Culler, <http://cookieculler.mozdev.org>.
[49] Privoxy - Home Page, <http://www.privoxy.org/>.
[50] Accurate web site visitor measurement crippled by cookie blocking

and deletion, jupiterresearch finds, 2005, <http://
www.jupitermedia.com/corporate/releases/05.03.14-
newjupresearch.html>.

[51] D. Kristol, L. Montulli, Http state management mechanism, RFC 2965
(2000).

[52] C. Jackson, A. Bortz, D. Boneh, J.C. Mitchell, Protecting browser state
from web privacy attacks, in: Proceedings of the WWW’06, 2006, pp.
737–744.

[53] Mitigating cross-site scripting with HTTP-only cookies, <http://
msdn2.microsoft.com/en-us/library/ms533046.aspx>.

[54] Cookie crusher, <http://www.pcworld.com/downloads>.
[55] Cookie pal, <http://www.kburra.com/cpal.html>.
[56] Permit cookies, <https://addons.mozilla.org/firefox/44>.
[57] J. Goecks, E.D. Mynatt., Social approaches to end-user privacy

management, in: Security and Usability: Designing Secure Systems
That People Can Use, 2005.

Chuan Yue is a Ph.D. candidate in computer
science at The College of William and Mary.
His broad research interests include Web-
based Systems, Computer and Information
Security, Distributed and Parallel Computing,
Human-Computer Interaction, and Collabora-
tive Computing. His current research focuses
on web browsing security and collaborative
browsing. Previously, he received his B.S. and
M.S. degrees in computer science from Xidian
University and then worked as a Member of
Technical Staff at Bell Labs China, Lucent

Technologies for four years, mainly on the development of web-based
Service Management System for Intelligent Network.
Mengjun Xie received his Ph.D. in Computer
Science at the College of William and Mary in
2009. His research focuses on securing net-
work systems, especially Internet-based
message systems, and improving the perfor-
mance of network systems. His research
interests include network security, informa-
tion security, network systems, and operating
systems.

http://www.w3.org/P3P
http://www.w3.org/P3P
http://www.cert.org/advisories/CA-2000-02.html
http://www.cert.org/advisories/CA-2000-02.html
http://en.wikipedia.org/wiki/Same_origin_policy
http://en.wikipedia.org/wiki/Same_origin_policy
http://www.eweek.com/article2/0,1895,1751689,00.asp
http://www.eweek.com/article2/0,1895,1751689,00.asp
http://software.silicon.com/security/,January17th,2007
http://software.silicon.com/security/,January17th,2007
http://news.zdnet.co.uk/security,Febuary19th,2007
http://news.zdnet.co.uk/security,Febuary19th,2007
http://www.gnu.org/software/wget
http://www.gnu.org/software/wget
http://developer.mozilla.org/en/docs
http://en.wikipedia.org/wiki/HTML
http://cookieculler.mozdev.org
http://www.privoxy.org
http://www.jupitermedia.com/corporate/releases/05.03.14-newjupresearch.html
http://www.jupitermedia.com/corporate/releases/05.03.14-newjupresearch.html
http://www.jupitermedia.com/corporate/releases/05.03.14-newjupresearch.html
http://msdn2.microsoft.com/en-us/library/ms533046.aspx
http://msdn2.microsoft.com/en-us/library/ms533046.aspx
http://www.pcworld.com/downloads
http://www.kburra.com/cpal.html
http://https://addons.mozilla.org/firefox/44

etworks 54 (2010) 2182–2198
Haining Wang is an Associate Professor of
Computer Science at the College of William

and Mary, Williamsburg, VA. He received his
Ph.D. in Computer Science and Engineering
from the University of Michigan at Ann Arbor
in 2003. His research interests lie in the area
of networking, security and distributed com-
puting. He is particularly interested in net-
work security and network QoS (Quality of
Service).

2198 C. Yue et al. / Computer N

	An automatic HTTP cookie management system
	Introduction
	Background
	HTTP cookie measurement
	Web site selection and crawling
	Measurement results

	CookiePicker design
	Regular and hidden requests
	Forward cookie usefulness marking
	Backward error recovery

	HTML page difference detection
	Restricted simple tree matching
	Tree edit distance
	Top-down distance
	Restricted simple tree matching
	Normalized top-down distance metric

	Context-aware visual content extraction
	Making decision

	System evaluation
	Implementation
	Evaluation
	First set of experiments
	Second set of experiments

	Discussions
	Possible evasion techniques
	Evasion sources
	Concerns about using cookiePicker

	Related work
	Conclusions
	Acknowledgments
	References

