
Language Models for Expert Finding
–UIUC TREC 2006 Enterprise Track Experiments

Hui Fang, Lixin Zhou, ChengXiang Zhai
Department of Computer Science

University of Illinois at Urbana-Champaign
USA

Abstract

In this paper, we report our experiments in the
TREC 2006 Enterprise Track. Our focus is to study
a language model for expert finding. We extend an
existing language model for expert retrieval in three
aspects. First, we model the document-expert associ-
ation using a mixure model instead of name match-
ing heuristics as in the existing work; such a mix-
ture model allows us to put different weights on email
matching and name matching. Second, we propose to
model the prior of an expert based on the counts of
email matches in the supporting documents instead of
using uniform prior as in the previous work. Finally,
we perform topic expansion and generalize the model
from computing the likelihood to computing the cross
entropy. Our experiments show that the first two ex-
tensions are more effective than the third extension,
though when optimized, they all seem to be effective.

1 Introduction

The problem of expert finding is concerned with
finding experts on a specified topic. The enterprise
track [4] of TREC [9] provides a common platform
for expert finding, which includes the following three
components: (1) a supporting document collection; (2)
a list of expert candidates, each of whom is described
with name and email; (3) a set of topics (i.e., descrip-
tions of expertise). The task is to rank the candidate
experts for a given topic based on the information from
a data collection.

Based on such a problem setting, many participants

tried various methods. For example, Fu et. al. [5],
Azzopardi et. al. [1] and Macdonald et. al. [6] built
an expertise profile for each candidate, and rank the
candidate experts based on the relevance score of their
profiles to the given topic. Some heuristics have been
used to identify mentions of candidate experts, and
create expertise profiles. Cao et. al. [3] and Balog
et. al. [2] proposed some probabilistic models for ex-
pert finding, but their approaches require some heuris-
tics to improve the performance, such as specific name
matching techniques.

We develop a new language model for expert find-
ing by extending the model 2 proposed in [2] in three
aspects. First, we propose a better way to model the
document-expert association. Instead of using name
matching heuristics [2], we use a mixture model to put
different weights on name matching and email match-
ing. Intuitively email matching should be weighted
more than name matching. Second, we estimate the
prior probability that a candidate is an expert based on
the counts of email matches in the colletion. Finally,
we perform topic expansion and generatlize the lan-
guage model from computing the likelihood to com-
puting the cross entropy.

Experiment results show that When optimized,
these expansions seem to be all effective, but the email
count-based prior and the weighting of email match-
ing and name matching seem to be more effective than
topic expansion.

1

2 Language Models for Expert Finding

2.1 Basic setup

The problem of expert finding is similar to the tra-
ditional ad hoc retrieval problem in the sense that both
attempt to find “relevant” information items for a given
query. The main difference is that the “information
items” are persons in the case of expert finding, rather
than documents as in traditional retrieval. A person is
relevant to a topic query if and only if the person has
the expertise on the topic specified in the query.

Following the probabilistic ranking principle [8],
we can rank persons according to the probability that
the person is relevant to the query. Thus, the key chal-
lenge is how to compute the probability that an expert
is “relevant” to a topic (i.e., the expertise specified in
the query).

Formally, suppose S = {d1, ..., d|S|} is a collection
of supporting documents. Let t = t1t2...tm be the de-
scription of a topic, where ti is a term in the descrip-
tion. Let c be an expert candidate whose email and
name are denoted as e(c), n(c), respectively. Given a
query t and an expert candidate c, we are interested in
estimating the conditional probability p(c|t), i.e., the
probability that candidate c is an expert given the topic
t. After applying Bayes’ Theorem, we have

p(c|t) =
p(t|c) × p(c)

p(t)
.

Since p(t) is the same for all the experts, it can be
ignored for the purpose of ranking experts. Thus, we
have

p(c|t) ∝ p(t|c) × p(c), (1)

where p(t|c) is the probability that the topic t reflects
the expertise of candidate c, and p(c) is the prior prob-
ability that the candidate expert c is an expert.

Now the remaining questions are how to estimate
p(t|c) and how to estimate p(c).

2.2 Setting the candidate prior p(c)

We first consider how to estimate p(c), which is the
prior probability of a candidate being an expert. In
most existing work [3, 2], this probability is assumed

to be uniform. However, as shown in Section 3, rea-
sonable prior can help improve the retrieval accuracy.
In this paper, we assume such a prior probability is
related to the occurrences of the person’s email, and
model the email frequency in the same way as the term
frequency in Okapi [7]. Specifically, this prior proba-
bility is assumed to be given by

p(c) ∝
c(e(c), S)

c(e(c), S) + β
, (2)

where c(e(c), S) is the count of mentions of the email
of candidate c in the collection S, and β is a param-
eter to control the skewness of the prior. A larger β

would reduce the skewness of the prior (i.e., leading
to a weaker prior), thus it can be interpreted as being
inversely proportional to our confidence in this prior.

2.3 Modeling candidate-topic relationship p(t|c)

Second, we discuss how to estimate p(t|c), the
probability that t describes the expertise of candidate
c. Similar to what other participants have been do-
ing, we also exploit the co-occurrences of the topic
terms and candidate mentions in the supporting docu-
ments and estimate p(t|c) based on the supporting doc-
uments. Specifically, we use supporting documents as
a “bridge” to connect t and c in the following way:

p(t|c) =
∑

d∈S

p(t|d) × p(d|c)

That is, we assume that a topic t can be “generated”
from a candidate c by first “generating” a support-
ing document d from c, and then “generating” t from
the document d. Intuitively, this formula is quite rea-
sonable: p(d|c) allows us to model the probability
that a supporting document d mentions candidate c,
while p(t|d) allows us to model the probability that d

matches t. A document d with high values for both
p(d|c) and p(t|d) would contribute the most to our es-
timate of p(t|c) which intuitively makes sense.

p(t|d) can be computed efficiently by treating t as a
query and using the standard query likelihood retrieval
method. In order to compute p(d|c), we may further
rewrite the equation above as follows:

p(t|c) =
∑

d∈S

p(t|d) × p(d|c)

2

=
∑

d∈S

p(t|d) ×
p(c|d)p(d)

p(c)

=
∑

d∈S

p(t|d) ×
p(c|d)p(d)

∑
d′∈S p(c|d′)p(d′)

The rewriting of p(d|c) in terms of p(c|d) allows us to
treat the name and email of c as a query and use the
standard query likelihood retrieval method to compute
p(c|d) efficiently.

If we have some prior knowledge about the support-
ing documents in S, we can exploit p(d) to favor a
certain type of documents in S (e.g., email messages).
Here we simply assume that p(d) is uniform, which
leads to

p(t|c) ≈
∑

d∈S

p(t|d) ×
p(c|d)

∑
d′∈S p(c|d′)

(3)

Equation 3 is our basic expert retrieval formula. It
has two components – p(c|d) and p(d|t), which we
now describe how to compute.

2.4 Modeling candidate mentions p(c|d)

In general, p(c|d) can be computed by treating the
description of the candidate c (e.g., name and/or email)
as a query and using a standard query likelihood re-
trieval method to score the document d.

The simplest method would be to concatenate the
email e(c) and the name n(c) to form a query to repre-
sent candidate c, and p(c|d) would thus be computed
as

p(c|d) = p(“e(c), n(c)′′|d) (4)

However, intuitively, a name and an email have dif-
ferent characteristics. For example, using email alone
to identify an expert could generate high-precision re-
sults, but using name alone to identify an expert could
cause high-recall results. Thus, to capture this intu-
ition, we propose to model p(c|d) using a mixture
model involving both p(e(c)|d) and p(n(c)|d). That
is, p(c|d) can be computed as

p(c|d) = λe · p(e(c)|d) + (1 − λe) · p(n(c)|d) (5)

where λe is the weight of the email model. Since e(c)
and n(c) are both text, they can be computed using the
query likelihood retrieval model with Dirichlet prior
smoothing as described in [11].

2.5 Incorporating topic expansion

Since t is a piece of text, p(t|d) can be com-
puted using the query likelihood retrieval method with
Dirichlet prior smoothing [11]. However, the origi-
nal topic description t tends to be quite short, so it
may not be informative. We thus propose to use some
pseudo feedback method (e.g., the model-based feed-
back method proposed in [10]) to estimate an enriched
query model θt, and incorporate this query model
into our expert finding model through generalizing
the topic likelihood p(t|d) as the cross entropy of the
query model θt and the document model θd estimated
based on d using Dirichlet prior smoothing.

That is, p(t|d) ∝ exp(
∑

w p(w|θt) log p(w|θd)).
Clearly, if we set θt to the empirical word distribution
in t, this would be equivalent to the original topic like-
lihood.

2.6 Parameters

There are five parameters in the proposed model:
µt, µe, µn, λe, and β. µt, µe, and µn are the Dirich-
let prior smoothing parameter involved in computing
p(t|d), p(e(c)|d), and p(n(c)|d), respectively. λe con-
trols the relative weight on email matching as com-
pared with name matching. β is a prior confidence
parameter defined earlier in this section.

3 Experiments

3.1 Official runs

We submitted four runs on expert finding –
UIUCe1, UIUCe2, UIUCeFB1, and UIUCeFB2.
These runs differ in that in UIUCe1 and UIUCe2, we
used the original topic description while in UIUCeFB1
and UIUCeFB2, we expanded the original topic de-
scription by using the model-based feedback approach
[10] to add 50 terms extracted from the top 10 docu-
ments. In UIUCe1 and UIUCeFB1, β = 2 whereas in
UIUCe2 and UIUCeFB2, β = 5. In all these experi-
ments, we set µt = µe = µn = 100 and λe = 0.9.

We use the entire corpus, and only the titles of the
topic description. We have done minimal preprocess-
ing, where we apply stemming with a Porter stemmer
and no stop word is removed.

3

Table 1. Comparison of four official runs
Regular Expert Ranking Supported Expert Ranking

Run MAP BPref Prec@5doc MAP BPref Prec@5doc
UIUCe1 0.3043 0.3110 0.4512 0.1489 0.2420 0.2531
UIUCe2 0.3364 0.3388 0.5388 0.1650 0.2582 0.3143

UIUCeFB1 0.3185 0.3364 0.5143 0.1521 0.2518 0.3061
UIUCeFB2 0.3114 0.3450 0.5020 0.1382 0.2467 0.2898

In Table 1, we compare these four official runs. We
see that the results seem to be mixed. For unexpanded
runs, a larger β value is clearly helpful, but for ex-
panded runs, a smaller β is more beneficial. Overall,
the unexpanded run with β = 5 performs the best.

We now report some performance from our prelim-
inary and diagnostic runs. The collection used in En-
terprise track of 2005 will be labeled as “Ent05”, while
the collection used in Enterprise track of 2006 will
be labeled as “Ent06”. We evaluate the methods with
mean average precision (MAP).

3.2 Preliminary Experiments on Enterprise 2005

Table 2. Performance Comparison on Ent05
query expanded query

BL priorBL 0.151 0.166
prior 0.155 0.170

Mixture priorBL 0.172 0.172
prior 0.196 0.204

In our preliminary experiments, we evaluated the
proposed models, and compared them with the base-
line models over Enterprise 2005 collection. The op-
timal performance is shown in Table 2. “Mixture”
means that we estimate p(c|d) as a mixture model as
in Equation 5 while “BL” means that p(c|d) is esti-
mated as p(“e(c), n(c)′′ |d). “prior” means that p(c)
is estimated using Equation 2, and “priorBL” means
that p(c) is same for all the experts. “query” means
that p(t|d) is computed with query generation model
described in [11], and “expanded query” means that
p(t|d) is computed with expanded query model using
the model-based feedback method described in [10].

From Table 2, we can make the following obser-
vations. First, the mixture model in Equation 5 is
a better model for p(c|d). Second, the proposed es-

timate of prior in Equation 2 is better than the uni-
form prior. Third, the performance is always improved
when p(t|d) is estimated using expanded topic instead
of query likelihood. Finally, the proposed model out-
performs the model 2 proposed in [2] where optimal
MAP is 0.1880.

3.3 Parameter sensitivity

We examined the parameter sensitivity for the three
Dirichlet prior smoothing parameters (i.e., µt, µe, µn)
in Figure (1). In every case, we change the value of
one parameter while fixing the values of the other pa-
rameters. The figures show that the performance is rel-
atively more stable w.r.t. the change of µe compared
with the change of µt and µn. In addition, the optimal
values of µs is around 500, which is much smaller than
2000, the recommended value in traditional ad hoc IR
[11].

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

M
A

P

\mu

Parameter sensitivity in Ent05

\mu_t \mu_n \mu_e

Figure 1. Performance Sensitivity in Ent05

Another paramter in topic generation model is λe

introduced in Equation 5. Figure 2 shows that the per-
formance is relatively stable when λ < 0.9.

Finally, there is one more paramter β to examine.
The parameter sensitivity curve is shown in Figure 3.

4

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 0.2 0.4 0.6 0.8 1

M
A

P

lambda_e

Parameter sensitivity for lambda_e in Ent05

Figure 2. Performance Sensitivity (λe)

This figure shows that the performance is sensitive to
the value of the paramter β.

0.182

0.184

0.186

0.188

0.19

0.192

0.194

0.196

0.198

1 2 3 4 5 6 7 8 9 10

M
A

P

beta

Parameter sensitivity for beta in Ent05

Figure 3. Performance Sensitivity of β in
Ent05

3.4 Experiments on Enterprise 2006

Table 2 has demonstrated that the effectiveness of
our estimation for expert prior probability (i.e., p(c))
and probability that an expert is relevant to a docu-
ment (i.e., p(c|d)). In fact, we can also make similar
observations from the results over Ent06.

In Table 4. “Ent05-Param” corresponds to the per-
formance of using the parameter values trained over
Enterprise 2005 collection. “Ent06-Param” corre-
sponds to the optimal performance over Enterprise
2006 collection. The optimal parameter values trained
over two collections are shown in Table 3.

Table 3. Optimal Parameter Values
Parameters Ent05 Ent06

µt 100 100
µn 100 100
µe 100 100
λe 0.6 0.9
β 2.5 5

Table 4. Performance Comparison of Topic
Generation Models on Ent06

query expanded query
Ent05- priorBL 0. 204 0.227
Param. prior 0.318 0.336
Ent06- priorBL 0.205 0.234
Param. prior 0.334 0.359

Table 3 and 4 show that the optimal paramter val-
ues are similar for both collections. And Table 4 also
demonstrates that when optimized, the proposed three
extensions, i.e., estimation of document-expert associ-
ation, prior of an expert and topic expansion, seem to
be all effective.

4 Summary

In our experiments with the TREC 06 Enterprise
Track expert finding task, we evaluated some ideas of
extending an existing language model, including as-
signing different weights to email matching and name
matching, defining an email count-based prior, and in-
corporating topic expansion. When optimized, these
expansions seem to be all effective, but the email
count-based prior and the weighting of email match-
ing and name matching seem to be more effective than
topic expansion.

References

[1] L. Azzopardi, K. Balog, and M. de Rijke. Lan-
guage modeling approaches for enterprise tasks.
In Proceedings of TREC-05, 2006.

[2] K. Balog, L. Azzopardi, and M. de Rijke. Formal
models for expert finding in enterprise corpora.
In Proceedings of SIGIR-06, 2006.

5

[3] Y. Cao, J. Liu, S. Bao, and H. Li. Research on
expert search at enterprise track of trec2005. In
Proceedings of TREC-05, 2006.

[4] N. Craswell, A. P. de Vries, and I. Soboroff.
Overview of the trec-2005 enterprise track. In
Proceedings of TREC-05, 2006.

[5] Y. Fu, W. Yu, Y. Li, Y. Liu, M. Zhang, and S. Ma.
Thuir at trec 2005: Enterprise track. In Proceed-
ings of TREC-05, 2006.

[6] C. Macdonald, B. He, V. Plachouras, and I. Ou-
nis. University of glasgow at trec 2005: Exper-
iments in terabyte and enterprise tracks with ter-
rier. In Proceedings of TREC-05, 2006.

[7] S. Robertson and S. Walker. Some simple effec-
tive approximations to the 2-poisson model for
probabilistic weighted retrieval. In Proceedings
of SIGIR’94, 1994.

[8] S. E. Robertson. The probability ranking princi-
ple in ir. Journal of Documentation, 33(4):294–
304, Dec. 1977.

[9] E. Voorhees and D. Harman, editors. Pro-
ceedings of Text REtrieval Conference
(TREC1-9). NIST Special Publications,
2001. http://trec.nist.gov/pubs.html.

[10] C. Zhai and J. Lafferty. Model-based feedback in
the language modeling approach to information
retrieval. In Proceedings of CIKM-01, 2001.

[11] C. Zhai and J. Lafferty. A study of smoothing
methods for language models applied to ad hoc
information retrieval. In Proceedings of SIGIR-
01, 2001.

6

