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Abstract

We report experiment results from the collaborative par-
ticipation of UIUC and MUSC in the TREC 2005 Ge-
nomics Track. We participated in both the adhoc task
and the categorization task, and studied the use of some
mixture language models in these tasks. Experiment re-
sults show that a structured theme-based language mod-
eling approach is effective in improving retrieval effec-
tiveness for the ad hoc taks and the Latent Dirichlet Allo-
cation method is effective in dimension reduction for the
categorization task.

1 Introduction

The University of Illinois at Urbana-Champaign (UIUC)
and Medical University of South Carolina (MUSC) col-
laborated on both tasks of TREC 2005 Genomics Track
with UIUC being more focused on the first ad hoc task
while MUSC more on the second categorization task. Our
general goal was to explore the effectiveness of several
language modeling approaches in these tasks. Specifi-
cally, for the ad hoc task, our goal was to study a struc-
tured theme-based language model and use it to perform
both pseudo feedback and relevance feedback. For the
categorization task, our goal was to study the effective-
ness of using the Latent Dirichlet Allocation [1] to per-
form dimension reduction to alleviate the problem of data
sparseness.

Experiment results show that these approaches are quite

promising. The structured theme-based language model-
ing approach provides a natural way of performing feed-
back for the structured queries and is shown to improve
retrieval accuracy for the ad hoc task. For the catego-
rization task, the Latent Dirichlet Allocation method is
shown to be effective in dimension reduction. Com-
pared with other participating groups, our ad hoc runs are
mostly above the median and are the best for a few top-
ics, while our categorization runs are mostly below the
median due to a deficiency of our basic categorization
method (SVM), which prevented our system from achiev-
ing a full-spectrum of precision-recall tradeoff.

2 Ad Hoc Retrieval Task

One interesting characteristic of the ad hoc retrieval task
of the TREC 2005 Genomics Track is that the queries are
structured; each query is an instantiation of a template
with entities such as diseases and genes. It is thus very
interesting to study whether such additional information
about query structures can be exploited to improve re-
trieval. In particular, we are interested in studying how
to extend the language models developed for unstructured
text queries to handle such structured queries. We pro-
pose a structured theme-based language model to com-
bine the information from multiple fields of a query and
study how we can estimate such a language model with
feedback documents. Experiment results show that such a
new language model is effective for both pseudo feedback
and relevance feedback.



2.1 KL-divergence retrieval model

Our basic retrieval method is the Kullback-Leibler (KL)
divergence retrieval model [6, 8]. According to this
method, given a query Q and a document D, we esti-
mate a query language model θQ and a document lan-
guage model θD, and then simply score the document us-
ing the KL-divergence of θQ and θD, defined as

s(Q, D) = D(θQ||θD) =
∑

w∈V

p(w|θQ) log
p(w|θQ)

p(w|θD)

where V is the vocabulary set. In practice, for the sake
of efficiency, we truncate our query model θQ and only
use a certain number (100 in our experiments) of highest
probability words for scoring.

Clearly, using such a method, our main tasks are to es-
timate θQ and θD. We estimate θD using Dirichlet prior
smoothing, i.e.,

p(w|θD) =
c(w, D) + µp(w|C)

|D| + µ

where p(w|C) is a collection background language model
and µ is a smoothing parameter, which we empirically set
to 100 based on some tuning with the 10 training topics
available to us.

The main research question we address is how to es-
timate θQ for a structured query. When the queries are
unstructured, we can use the relative frequency counts of
terms in the query to estimate θQ or use feedback doc-
uments to update this model by interpolating it with an-
other topic language model estimated based on the feed-
back documents [8]. We propose a theme-based language
model, which would allow us to estimate a query language
model for structured queries based on either the original
structured query or feedback documents.

2.2 Theme-based query language models

In order to use the KL-divergence method to score a doc-
ument w.r.t. a structured query, our general idea is to
model each query field with a unigram language model
and define the overall query language model as a mix-
ture model with each field model as a component. For-
mally, let Q = (Q1, ..., Qk) be a structured query with
k fields. Qi is the i-th query field. For example, query
116 “Provide information about the role of the gene In-
sulin receptor gene in the disease Cancer” is represented
as 3 fields based on the markup in the topic description:
Q1=”Provide information about the role of the gene”;

Q2=”insulin receptor gene”; Q3=”cancer” 1

Intuitively, each query field characterizes one aspect of
the user’s information need, thus can be modeled using a
theme unigram language model. Thus, we have k unigram
language models for query Q, θ1, ..., θk, with θi modeling
field Qi. The overall information need of the user can
then be defined as a combination of these field language
models:

p(w|θQ) =

k∑

i=1

πip(w|θi)

where πi is the weight on field model θi. The remaining
questions are how to estimate each theme model θi and
the mixing weights πi’s.

2.3 Estimating a theme-based query model

The simplest method for estimating a theme-based query
model is: (1) Treat each query field as a sample of words
drawn from a multinomial distribution (i.e., a theme
model) and estimate the underlying theme model using
the maximum likelihood estimator, giving us p(w|θi) =

p(w|Qi) = c(w,Qi)
|Qi|

. (2) Set πi’s to be uniform, i.e.,
πi = 1/k. We call this method ThemeOrig, which can be
regarded as the baseline theme language model approach.

Since some fields in the query are biological entities
(e.g., genes), one natural way to improve our query model
is to automatically perform query expansion using re-
sources such as LocusLink and MeSH. In particular, we
used LocusLink to add additional gene synonyms for any
given gene name in the query. To avoid introducing too
much noise, we only include gene symbols if their offi-
cial full names match the gene in the query well. This is
a conservative, but relatively reliable way of expansion.
For MeSH, we look up each query term in the MeSH term
list. For each candidate MeSH term matched, we check if
the term is entirely contained in our query, and if so, we
add its other equivalent terms in the MeSH database to the
query.

With such field expansion, we obtain an expanded
structured query QE = (Q1, ..., Qk, E1, ..., Ek), where
Ei is the expanded text for field Qi. For example, if Qi

is a gene, Ei would be a list of gene symbols found from
LocusLink. Naturally, some Ei’s are empty. We can now
obtain a presumably improved estimate of θi by combin-
ing Ei with Qi:

p(w|θi) = p(Qi|θi)p(w|Qi) + p(Ei|θi)p(w|Ei)

1In our experiments, we excluded the background field, as some pre-
liminary experiments showed that excluding it improves performance.
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= p(Qi|θi)
c(w, Qi)

|Qi|
+ p(Ei|θi)

c(w, Ei)

|Ei|

where c(w, Qi) and c(w, Ei) are the counts of word w in
Qi and Ei, respectively and |Qi| and |Ei| are the lengths
of Qi and Ei, respectively. We call such a method The-
meExp.

The probabilities p(Qi|θi) and p(Ei|θi) are the weights
on the original query field and the expanded field, and
clearly, p(Qi|θi) + p(Ei|θi) = 1. In our experiments, we
empirically set both p(Qi|θi) and p(Ei|θi) to 0.5, because
our focus was on experimenting with improving the esti-
mation through feedback documents. Unfortunately, later
we found that the 0.5 setting is far from optimal and has
hurt one of our official runs significantly. Indeed, when
|Ei| << |Qi|, such a setting would give an expanded term
a substantially higher weight than terms in the original
query field. How to optimize these weights is an interest-
ing question that we should explore in the future.

A major research question we address in our TREC ex-
periments is how we can further improve such a structured
language model through both pseudo feedback and rele-
vance feedback. We now propose a mixture model ap-
proach to use a set of feedback documents to improve our
estimation of both the theme language models θi’s and
the mixing weights πi’s. Specifically, suppose we have
a set of theme models θi’s which are estimated based on
the original query text and/or expanded query text. We as-
sume that our feedback documents F = {D1, ..., Dm} are
sampled from a mixture model with k component multi-
nomial distributions (corresponding to the k fields of the
query) and mixing distribution πi’s. We use θi to define
a Dirichlet prior for the i-th component multinomial dis-
tribution, so that each component model will be biased to
model the corresponding original query field. We also in-
troduce a special background language model θ0 to model
the general English words and any non-relevant informa-
tion in F . Our parameters for such a model can thus be
represented as Λ = {φi, πi}

k
i=0, where φ0 is the back-

ground model; φ1, ..., φk are the k query theme language
models; and πi’s are the mixing weights. The parameters
can be estimated using the Maximum A Posterior (MAP)
estimator:

Λ∗ = argmaxΛp(F |Λ)p(Λ)

where p(Λ) ∝
∏k

j=0

∏
w∈V p(w|φj)

σjp(w|θj) is a conju-
gate prior on all the component multinomial distributions
and p(F |Λ) is the likelihood of the feedback documents
given by

p(F |Λ) =

m∏

i=1

∏

w∈V

[

k∑

j=0

πDi,jp(w|φj)]
c(w,Di)

The MAP estimate can be found using the EM algorithm
[3]. The updating formulas are as follows:

p
(n+1)(zw,i = j) =

π
(n)

Di,j
p(n)(w|φj)∑

k

j′=1
π

(n)

Di,j′
p(n)(w|φj′ )

π
(n+1)

Di,j
=

∑
w∈V

c(w, Di)p
(n+1)(zw,i = j)

|Di|

p
(n+1)(w|φj) =

∑
m

i=1
c(w, Di)p

(n+1)(zw,i = j) + σjp(w|θj)∑
w′∈V

∑
m

i=1
c(w′, Di)p(n+1)(zw′,i = j) + σj

The parameters σj’s specify our confidence in the prior,
which, in effect, control the amount of expansion. A
larger σj would cause a smaller amount of expansion.
In our experiments, we empirically set σj = 10m for
j = 1, ..., k (for the component models) and σ0 = 100m
(for the background model), where m is the total number
of feedback documents. Parameterizing σj with m allows
us to interpret σj as an “equivalent sample of text” compa-
rable with each document. For example, when σj = 10m,
the strength of our prior is roughly equivalent to 10 words
in a feedback document.

Once we estimate φi’s and πDi,j’s, we can compute the
query model as

p(w|θ′Q) =
k∑

j=1

p(w|φj)p(φj |F )

∝
1

k

k∑

j=1

p(w|φj)

m∑

i=1

πDi,j

We call such a method ThemeFB

2.4 Experiment Results

We used the Lemur toolkit (http://www.lemurproject.org/)
to do all our experiments. Preprocessing of documents
is minimum and mainly involves normalization of poten-
tial gene names. We noticed the variations in gene name
spelling caused by various ways of separating name con-
stituents using white spaces, hyphens, slashes and brack-
ets. To deal with these variations, we use a tokenizer to
convert the input text into a sequence of tokens, where
each token is either a sequence of lowercase letters or a
sequence of numbers. White spaces and all other symbols
are treated as token delimiters. For instance, the differ-
ent synonyms for gene cAMP dependent protein kinase 2,
“PKA C2”, “Pka C2”, and “Pka-C2”, would all be nor-
malized to the same token sequence “pka c 2” to allow
them to match each other.
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We submitted two official runs – UIUCgAuto and
UIUCgInt. For both runs, we first use the baseline KL-
divergence method Baseline (i.e., ignoring the structures
in the query and treating it as an unstructured text query)
to obtain initial retrieval results. For UIUCgAuto, we
use the top 5 documents from Baseline to fit the mixture
theme language model with a prior defined using a theme
language model computed based on the original query
fields (i.e., ThemeOrig). It thus represents a completely
automatic run without using any biological resources or
having any human interaction. For UIUCgInt, we asked
two people with some biology background to manually
judge the relevance of the top 20 documents from Base-
line and then fit the mixture theme language model to only
the judged relevant documents with a prior defined using a
theme language model computed based on both the orig-
inal query text and the expanded text (i.e., ThemeExp).
This run thus attempts to benefit from both biological re-
sources and human relevance judgments 2.

We were expecting UIUCgInt to be much better than
UIUCgAuto especially since the documents we used
for feedback in the case of UIUCgInt are manually
judged. But surprisingly, our manual interactive/manual
run UIUCgInt is worse than our automatic run! UIUCgInt
has a MAP of 0.2487 while UIUCgAuto is 0.2577. A per-
topic comparison shows that UIUCgAuto is better than
UIUCgInt for 26 topics and worse for 23 topics out of the
49 topics that have relevant documents in the collection.

UIUCgInt differs from UIUCgAuto in two aspects:
(1) theme language model prior (ThemeOrig for UIUC-
gAuto while ThemeExp for UIUCgInt); and (2) feed-
back documents (top 5 documents for UIUCgAuto while
judged relevant documents for UIUCgInt). Since nor-
mally, relevance feedback is expected to help signifi-
cantly, our results suggest that the LocusLink and MeSH
expansion is ineffective, i.e., ThemeExp is worse than
ThemeOrig, which is confirmed in our post-TREC ex-
periments. It turns out that the problem has to do with
the non-optimal weighting of the original text and the ex-
panded text; assigning equal weights (0.5) can be signif-
icantly biased toward favoring expanded terms in some
cases. This is shown in Table 1, in which we compare
ThemeExp, ThemeOrig, and Baseline. We see that The-
meExp is clearly worse than ThemeOrig by all mea-
sures, indicating that the expanded text using LocusLink
and MeSH is either mostly noise, or more likely, not
weighted appropriately. Additional experiments need to
conducted to further clarify this. We also see that The-

25 topics have no relevant documents in the top 20 documents be-
ing judged; for these topics, we simply used the baseline results when
submitting UIUCgInt.

meOrig has higher “front-end” precision (i.e., precision
at low recall levels) than Baseline, suggesting that con-
structing the query model by giving equal weights to all
the fields can help increase precision, though it also hurts
recall and thus the average precision.

Table 1: Comparison of Baseline, ThemeOrig, and The-
meExp

MAP Pr@0.1 pr@10 RelRet
Baseline 0.2415 0.447 0.382 3340

ThemeOrig 0.2366 0.459 0.398 3156
ThemeExp 0.2221 0.431 0.351 3101

We now examine the effectiveness of ThemeFB by
comparing the feedback runs with the corresponding
baseline runs in Table 2. In each run of ThemeFB, the
prior model used is given within the parentheses. A The-
meFB run can thus be compared with both the Baseline
run and the prior run. From Table 2, we see that all the
feedback runs (both pseudo feedback and relevance feed-
back) perform better than the corresponding prior runs
as well as the baseline run. Moreover, comparing rele-
vance feedback with pseudo feedback, we see that rele-
vance feedback performs better by all measures, as ex-
pected. These results show that the proposed theme-based
language models are effective in exploiting feedback doc-
uments to improve the estimation of the query language
model.

Table 2: Effectiveness of mixture theme language models
Method MAP Pr@0.1 pr@10 RelRet
Baseline 0.2415 0.447 0.382 3340

ThemeOrig 0.2366 0.459 0.398 3156
Pseudo ThemeFB 0.2577 0.482 0.412 3476

(+ThemeOrig)
= UIUCgAuto

ThemeExp 0.2221 0.431 0.351 3101
Rel ThemeFB 0.2487 0.485 0.422 3403
(+ThemeExp)
= UIUCgInt

Rel ThemeFB 0.2704 0.513 0.431 3500
(+ThemeOrig)

Compared with other groups’ submissions, both of our
runs are above the median of the same type of runs 3 for a
majority of topics (shown in Table 3). Moreover, UIUC-
gAuto is the best for 2 topics and UIUCgInt is the best for
7 topics.

3UIUCgAuto is compared with all automatic runs, while UIUCgInt
all manual/interactive runs.
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Table 3: Comparison with group median.
Number of topics

UIUCgAuto UIUCgInt
> median 32 39
= median 0 3
< median 17 7

=best 2 7

3 Categorization Task

For the text categorization task, our goal was to study
the effectiveness of using the Latent-Dirichlet Allocation
(LDA) for dimension reduction. Our basic categoriza-
tion method is Support Vector Machine (SVM), and we
mainly explored two techniques for improving its perfor-
mance: (1) the use of LDA to generate semantically en-
riched feature representation of a document; (2) the use of
a semi-supervised learning method to augment the train-
ing data. Our experiment results show that the semantic
feature representation generated using LDA significantly
enhances the performance of SVM and semi-supervised
learning further improves the recall on the categories with
very few training cases. When applied to the test data,
our system had good balanced performance on all cate-
gories in terms of F values. However, the recall of the
SVM was somehow capped, resulting in relatively unsat-
isfactory utility scores.

3.1 Support Vector Machine

Support vector machine is a well studied kernel-based
classification algorithm, which searches for a linear deci-
sion surface that has the largest margin between positive
and negative training data. We used the publicly available
implementation, SVMlight [5]. The categorization task
was performed by training an one-vs-all classifier for each
of the subtasks. We only tuned the cost-factor parameter
“-j” of SVMlight, which adjusts the weight of training er-
ror on positive training cases relative to that of negative
cases. The performance of SVM classification with dif-
ferent cost-factors was evaluated by the built-in leave-one-
out (LOO) estimation in SVMlight. In some preliminary
experiments, we found that the performance of SVMlight
on the training data set tends to reach a plateau as the cost-
factor is increased, and we decided to set the cost-factor
parameter to 20 for all our experiments.

3.2 Vocabulary-based Text Representation

The full text for task II was processed as follows: (1)
SGML tags were stripped; (2) Tokens consisting of let-
ters and numbers were extracted; (3) Words from a stop
word list were removed; (4) Tokens were stemmed using a
Porter stemmer. We further constructed a vocabulary con-
sisting of 21,000 tokens that were “biologically informa-
tive” using a protein-related corpus consisting of MED-
LINE abstracts and titles associated with Gene Ontology
terms from the Gene Ontology Annotation [2] The tokens
were extracted from the corpus and the mutual informa-
tion of tokens with respect to GO terms was calculated,
sorted and 21,000 tokens with high mutual information
were retained.

For the SVM classification, a document is represented
as a vector in a vector space. The element of the vector
is further weighted using tf-idf weighting scheme and the
length of the vector is normalized to 1 [7]. Such a vector
representation using the original vocabularly was referred
to as vocabulary-based text representation ( VocRep).

3.3 Semantic Text Representation

The VocRep of the training text has a key drawback: the
text is represented by a sparse vector in a very high di-
mensional space. Within such a space, data points tend
to spread far apart and the SVM decision surface learned
in such a space is likely to over-fit the training data, es-
pecially when a relatively small number of training cases
are available. The ambiguities of natural language, i.e.,
polysemy and synonym, further complicate the situation
because variations of word usages may easily cause two
documents with similar semantic contents to be separated
far away within the space.

To alleviate such a problem, we applied a probabilistic
topic model, the Dirichlet Allocation Model (LDA) [1, 4]
to extract semantic topics from the corpus and represent
the text documents within this reduced semantic space.
LDA treats a document as a mixture of words from differ-
ent topics and applies probabilistic inference to extract the
semantic topics from a corpus in an unsupervised way. We
have applied the model on the combined training and test
data sets and extracted 400 semantic topics from the cor-
pus. The semantic topic for each word in the corpus was
then inferred, which allowed us to represent a document
as a vector within the semantic space defined by these 400
subtopics. Each element of the vector corresponds to the
number of words within the document that belongs to the
corresponding topic. Such a text representation is referred
to as SemRep.
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Semantic representation by the LDA has the following
advantages: (1) Text is classified according to the seman-
tic content; (2) Projecting text into a semantic space al-
lows the documents that share few common words yet
have similar semantic content to be closer in the vec-
tor space, thus increases the sensitivity of the classi-
fier; (3) Dimension reduction increases the generality of
the trained classifier; (4) LDA is computationally much
less expensive than the classical latent semantic indexing
(LSI).

3.4 Semi-supervised learning

To further enhance the classification performance of the
SVM, especially for the categories with few training
cases, we augmented the positive training set using a
semi-supervised learning approach described in [9]. This
algorithm is based on the graph theory and allows the
labels of training examples to be propagated to the un-
labeled data. The newly-labeled pseudo-positive cases
would then be incorporated into the training data set to
enhance training of the SVM classifier. We constructed a
weighted undirected graph, in which the vertices are the
training documents and the weights of edges connecting
the vertices are defined as:

wij = exp(
1

0.03
(1 −

v′ivj

|vi| × |vj |
))

where wij is the weight of the edge connecting vertices
i and j; v′

ivj is the dot product of the vectors for docu-
ments i and j. The term |vi| stands for the norm of the
vector vi. As negative examples, we have manually se-
lected 500 training documents that do not belong to any
of the four categories. These negative cases were used in
combination with the provided positive training cases to
perform the label-propagation experiments. For each cat-
egory, we obtained 100 pseudo positive cases to augment
the training cases for the category. Then, the SVM models
were re-trained using the augmented data sets.

3.5 Result Analysis

We first compare VocRep and SemRep in terms of the
training performance of SVM in Table 4 We see that Sem-
Rep significantly increases the utility and recall of SVM-
light based on the leave-one-out evaluation on the train-
ing data, though it slightly decreases the F-score in some
cases.

However, the improvement on the two relatively more
difficult categories (i.e., E and G) is quite consistent for
both F-score and utility, indicating that the LDA model

Table 4: Comparison of VocRep and SemRep
Method Task

A E G T
F-score VocRep 0.725 0.210 0.281 0.417

SemRep 0.843 0.482 0.617 0.611

F-score VocRep 0.363 0.152 0.159 0.283
SemRep 0.317 0.154 0.160 0.268

Utility VocRep 0.708 0.207 0.239 0.416
SemRep 0.793 0.458 0.424 0.607

can capture the major directions of the semantic structure
of the corpus while maintaining the discriminative power
in these cases.

We further examine the effect of semi-supervised learn-
ing in Table 5. We see that the semi-supervised learn-
ing approach significantly improves recall for the subtasks
with very few positive training cases, namely the E and T
subtasks, while the benefit on the other two subtasks is
less significant.

Table 5: Recall of before and after semi-supervised learn-
ing

Method Task
A E G T

Before 0.840 0.531 0.617 0.639
After 0.867 0.691 0.630 0.861

In comparison with other groups’ submissions, our of-
ficial results are very good by F-score, but poor by utility.
We believe that the main reason why the utility values of
our runs are poor is because the SVM method we used
appears to be have some ceiling for recall, probably be-
cause of the sparse training data. In the future, we plan
to explore how to address this problem by de-regularizing
SVM as well as other classifiers.

4 Summary

In summary, our ad hoc retrieval experiments are fo-
cused on studying how to optimize retrieval with semi-
structured queries. The results show that exploiting the
query structure is beneficial and the proposed theme-
based language models are effective in performing both
pseudo feedback and relevance feedback for such semi-
structured queries. Our categorization experiments are
focused on studying the effectiveness of using LDA for
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dimension reduction. The experiment results demon-
strate that LDA is capable of capturing meaningful se-
mantic contents of text documents and such features are
useful in improving SVM performance. We also found
that the SVM approach appears to have some limitation
in optimizing strongly biased utility functions and semi-
supervised learning is beneficial to alleviate this problem.
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