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Developing effective retrieval models is a long-standing central challenge in information retrieval research.
In order to develop more effective models, it is necessary to understand the deficiencies of the current re-
trieval models and the relative strengths of each of them. In this article, we propose a general methodology
to analytically and experimentally diagnose the weaknesses of a retrieval function, which provides guidance
on how to further improve its performance. Our methodology is motivated by the empirical observation
that good retrieval performance is closely related to the use of various retrieval heuristics. We connect the
weaknesses and strengths of a retrieval function with its implementations of these retrieval heuristics, and
propose two strategies to check how well a retrieval function implements the desired retrieval heuristics.
The first strategy is to formalize heuristics as constraints, and use constraint analysis to analytically check
the implementation of retrieval heuristics. The second strategy is to define a set of relevance-preserving per-
turbations and perform diagnostic tests to empirically evaluate how well a retrieval function implements
retrieval heuristics. Experiments show that both strategies are effective to identify the potential problems
in implementations of the retrieval heuristics. The performance of retrieval functions can be improved after
we fix these problems.
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1. INTRODUCTION

The study of retrieval models is central to information retrieval. Many different
retrieval models have been proposed and tested, including vector space models [Salton
et al. 1975; Salton and McGill 1983; Salton 1989; Singhal et al. 1996a], probabilistic
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models [Amati and Rijsbergen 2002; Fuhr 1992; Lafferty and Zhai 2003; Ponte and
Croft 1998; Robertson and Sparck Jones 1976; Turtle and Croft 2003; van Rijbergen
1977], and logic-based models [Fuhr 2001; van Rijsbergen 1986; Wong and Yao 1995].
Despite this progress in the development of formal retrieval models, none of the
state-of-the-art retrieval functions can outperform other functions consistently, and
seeking an optimal retrieval model remains a difficult long-standing challenge in
information retrieval research. For example, it has been more than a decade since the
Okapi (BM25) retrieval function was proposed [Robertson and Walker 1994; Robertson
et al. 1995], but we still have not been able to find another retrieval function that is
consistently more robust and effective than Okapi.

A retrieval function is typically evaluated using standard test collections and evalu-
ation measures such as Mean Average Precision (MAP) and precision at 10 documents,
which generally reflect the utility of a retrieval function. Unfortunately, such an eval-
uation methodology provides little explanation for the performance differences among
retrieval functions. For example, comparing two retrieval functions based on MAP,
we know which function gives an overall better ranking of documents on a particular
dataset, but it is hard to identify the underlying causes of such performance differ-
ence. The state-of-the-art retrieval functions, when optimized, usually have similar
MAP values even though their function forms are different and their retrieval results
for the same query also tend to differ. This suggests that all the functions may have
their own (potentially different) weaknesses and strengths. Clearly, in order to fur-
ther improve the current generation of retrieval models, it is necessary to understand
their weaknesses, and ideally, pinpoint specific components in a retrieval function that
hinder its performance so that we can improve the function accordingly [Singhal et al.
1996a, 1998]. Thus, a very interesting and important research question is how to de-
sign a new evaluation methodology to help identify the strengths and weaknesses of
retrieval functions.

In this article, we present a novel methodology to analytically and experimentally
diagnose the weaknesses of a retrieval function, and pinpoint its components that need
to be modified in order to further improve its retrieval performance. The methodology
can also be used to compare multiple retrieval functions to identify relative strengths
and weaknesses of each function so that we can gain insights about how to combine
the strengths of different retrieval functions.

The motivation of our work comes from the empirical observation that good retrieval
performance is closely related to the use of various retrieval heuristics, especially
TF-IDF weighting and document length normalization. Virtually all the empirically
effective retrieval formulas tend to boil down to an explicit or implicit implementa-
tion of these retrieval heuristics, even though they may be motivated quite differently
(see, e.g., many experiment results reported in TREC1). It thus appears that these
heuristics are somehow necessary for achieving good retrieval performance. However,
different retrieval functions implement the heuristics differently, and it is unclear at
all whether one implementation of a heuristic is better or worse than the others. For
example, monotonic transformation of a component, such as different normalizations
of TF, can easily lead to substantially inferior performance [Salton and Buckley 1988;
Zobel 1998]. Our main idea is, thus, to formalize these retrieval heuristics and further
design tests to evaluate how well a retrieval function implements a retrieval heuristic,
through both analytical analysis and empirical experiments.

Specifically, we first define a set of basic desirable constraints to capture formally
what are exactly the necessary heuristics. We assume that any reasonable retrieval

1http://trec.nist.gov/
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function should satisfy these constraints. We then check these constraints on a variety
of retrieval formulas, which respectively represent the vector space model (pivoted
normalization [Singhal et al. 1996a]), the classic probabilistic retrieval model (Okapi
[Robertson and Walker 1994]), the language modeling approach (Dirichlet prior [Zhai
and Lafferty 2001a]), and the divergence from randomness approach (PL2 [Amati and
Rijsbergen 2002]). We find that none of these retrieval formulas satisfies all the con-
straints unconditionally, though some formulas violate more constraints or violate
some constraints more “seriously” than others. Empirical results show that when a
constraint is not satisfied, it often indicates nonoptimality of the method, and when
a constraint is satisfied only for a certain range of parameter values, its performance
tends to be poor when the parameter is out of the range. In general, we find that
the empirical performance of a retrieval formula is tightly related to how well it sat-
isfies these constraints. Thus the proposed constraints provide a good explanation of
many empirical observations about retrieval methods, pinpoint the weaknesses of a
retrieval function analytically, and suggest how we may further improve a retrieval
function based on the constraints analysis.

Unfortunately, because we require the constraints to be necessary conditions that
a retrieval function should satisfy, the number of constraints that can be defined in
this way is inevitably limited. Thus if all the retrieval functions to be compared satisfy
all the defined retrieval constraints, or they all satisfy the same set of constraints,
constraint analysis alone would not be very helpful to understand the limitation of a
function or the relative strengths and weaknesses of each function.

To address this limitation, we further propose an approach to diagnose the weak-
nesses of retrieval functions experimentally. Our main idea is to carefully design a set
of diagnostic tests to amplify the differences of performance among retrieval functions
under different conditions designed to capture various retrieval heuristics. Specifically,
we first define a set of relevance-preserving collection perturbation operators as the
basic tools for diagnostic tests. Such collection perturbations would create “extreme
conditions” of datasets so as to amplify the differences among the retrieval functions
in their effectiveness in handling the extreme conditions, which are designed based on
specific retrieval heuristics such as document length normalization. We present a com-
mon procedure for designing diagnostic tests for retrieval models based on the defined
perturbation operators. Following the proposed procedure, we design a group of diag-
nostic tests to examine different aspects of retrieval functions, including robustness in
handling variations of document lengths, resistance to noisy terms, and appropriate
balance of term frequency and length normalization.

Empirical results demonstrate several benefits of the proposed diagnosis methodol-
ogy. First, it can reveal several clear differences among retrieval functions that cannot
be revealed through constraint analysis or regular Cranfield-style evaluation. Second,
as in the case of constraint analysis, empirical diagnosis also helps identify specific
strengths and weaknesses of retrieval functions in implementing different retrieval
heuristics and provides guidance on how to modify a retrieval function, or combine
different retrieval functions to achieve better performance. Based on such analysis of
representative state-of-the-art retrieval functions, we propose some variants of the ex-
isting retrieval functions. Evaluation on eight representative datasets shows that the
proposed variants outperform the corresponding original retrieval functions in most
cases, indicating the effectiveness of the proposed diagnosis evaluation method in pro-
viding guidance for improving existing retrieval functions.

The rest of the article is organized as follows. We first present seven formally defined
retrieval constraints in Section 2. In Section 3, we apply these constraints to a variety
of representative retrieval formulas and show that the satisfaction of these constraints
is closely related to the empirical performance of a retrieval function. We then present
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diagnostic tests in Section 4, and show experiment results of diagnostic tests in Section
5. We discuss how to improve retrieval functions based on the results of diagnostic
tests in Section 6, and summarize the overall diagnostic evaluation methodology in
Section 7. Related work is discussed in Section 8. Finally, we conclude our work and
discuss future research directions in Section 9.

2. FORMAL CONSTRAINTS ON RETRIEVAL FUNCTIONS

In this section, we formally define seven intuitive and desirable constraints that any
reasonable retrieval formula should satisfy. They capture the commonly used retrieval
heuristics, such as TF-IDF weighting, in a formal way, making it possible to apply them
to any retrieval formula analytically.

These constraints are motivated by the following observations on some common
characteristics of typical retrieval formulas. First, most retrieval methods assume
a “bag of words” (more precisely, “bag of terms”) representation of both documents
and queries. Second, a highly effective retrieval function typically involves a TF part,
an IDF part, and a document length normalization part [Hiemstra 2000; Salton and
Buckley 1988; Singhal et al. 1996a; Zobel 1998]. The TF part intends to give a higher
score to a document that has more occurrences of a query term, while the IDF part
is to penalize words that are popular in the whole collection. The document length
normalization is to avoid favoring long documents; long documents generally have
more chances to match a query term, simply because they contain more words. Finally,
different retrieval formulas do differ in their ways of combining all these factors, even
though their empirical performances may be similar.

These observations suggest that there are some “basic requirements” that all rea-
sonable retrieval formulas should follow. For example, if a retrieval formula does not
penalize common words, then it somehow violates the “IDF requirement,” thus can be
regarded as “unreasonable.” However, some of these requirements may compromise
each other. For example, while the TF heuristic intends to assign a higher score to
a document that has more occurrences of a query term, the document length normal-
ization component may cause a long document with a higher TF to receive a lower
score than a short document with a lower TF. Similarly, if two documents match pre-
cisely one single, but different, query term, the IDF heuristic may allow a document
with a lower TF to “beat” the one with a much higher TF. A critical question is thus
how we can regulate such interactions so that they will all be “playing a fair game.”
Clearly, in order to answer this question, we must first define what is a “fair game,”
that is, we must define what exactly is a reasonable retrieval function. To achieve this
goal, we propose to characterize a reasonable retrieval formula by listing the desirable
constraints that any reasonable retrieval formula must satisfy.

We now formally define seven such desirable constraints. Note that these con-
straints are necessary, but not necessarily sufficient, and should not be regarded as
the only constraints that we want a retrieval function to satisfy; indeed, it is possi-
ble to come up with additional constraints that may also make sense. However, we
focus on these seven basic constraints in this article because they capture the major
well-known IR heuristics, particularly TF-IDF weighting and length normalization.

Let us first introduce some notations. We use D to denote a document, Q to denote
a query, and q or t to represent a term. c(t, D) is the count of term t in document D. |D|
denotes the length of document D. Sdenotes a retrieval function, and S(Q, D) gives the
score of document D with respect to query Q. td(t) denotes any reasonable measure of
term discrimination value (usually based on term popularity in a collection). It gives
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higher weights to more discriminative terms. For example, td(t) can be the Inverse
Document Frequency (IDF) of term t.

2.1. Term Frequency Constraints (TFCs)

We define three constraints to capture the desired contribution of term frequency of a
term to scoring.

TFC1. Let Q = {q} be a query with only one term q. Assume |D1| = |D2|. If
c(q, D1) > c(q, D2), then S(Q, D1) > S(Q, D2).

TFC2. Let Q = {q} be a query with only one term q. Assume |D1| = |D2| = |D3|
and c(q, D1) > 0. If c(q, D2) − c(q, D1) = 1 and c(q, D3) − c(q, D2) = 1, then S(Q, D2) −
S(Q, D1) > S(Q, D3) − S(Q, D2).

TFC3. Let Q be a query and q1, q2 ∈ Q be two query terms. Assume |D1| = |D2|
and td(q1) = td(q2), where td(t) can be any reasonable measure of term discrimination
value. If c(q1, D1) = c(q1, D2) + c(q2, D2) and c(q2, D1) = 0, c(q1, D2) �= 0,c(q2, D2) �= 0,
then S(Q, D1) < S(Q, D2).

The first constraint captures the basic TF heuristic, which gives a higher score to
a document with more occurrences of a query term when the only difference between
two documents is the occurrences of the query term. In other words, the score of a
retrieval formula should increase with the increase in TF (i.e., the first partial deriv-
ative of the formula with respect to the TF variable should be positive). The second
constraint ensures that the increase in the score due to an increase in TF is smaller for
larger TFs (i.e., the second partial derivative with respect to the TF variable should be
negative). Here, the intuition is that the change in the score caused by increasing TF
from 1 to 2 should be larger than that caused by increasing TF from 100 to 101. The
third constraint implies another desirable property: if two documents have the same
total occurrences of all query terms and all the query terms have the same term dis-
crimination value, a higher score will be given to the document covering more distinct
query terms.

2.2. Term Discrimination Constraint (TDC)

We define this constraint to capture the desired term discrimination scoring.

TDC. Let D be a document and Q = {q1, q2} be a query. Assume there are two
documents D1 and D2, where |D1| = |D2|, D1 contains only q1 and D2 contains only
q2. If td(q1) > td(q2) , then S(Q, D ∪ D1) > S(Q, D ∪ D2).

This constraint implies that we need to penalize the terms popular in the collection.
It is essentially the basic constraint of the M-TDC (modified TDC) proposed in Shi
et al. [2005]. Based on TFC2 and TDC, the following constraint can be derived. Let D
be a document and Q be a query. If q1 ∈ Q, q2 ∈ Q, q1 ∈ D, q2 ∈ D, td(q1) > td(q2) and
c(q1, D) ≤ c(q2, D), then S(Q, D ∪ {q1}) > S(Q, D ∪ {q2}).

This constraint is a relaxed formulation of the original TDC defined in Fang et al.
[2004], which might be too strong and overfavor terms with higher term discrimination
value. For example, according to the original constraint, given a query “SVM tutorial,”
a document with 99 occurrences of “SVM” and 1 occurrence of “tutorial” should receive
a higher relevance score than another document with 50 occurrences of “SVM tutorial”,
which is somewhat counterintuitive.
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2.3. Length Normalization Constraints (LNCs)

We define two constraints to quantify the penalty on long documents.

LNC1. Let Q be a query and D1, D2 be two documents. If for some word t /∈ Q,
c(t, D2) = c(t, D1) + 1 but for any other term w, c(w, D2) = c(w, D1), then S(Q, D1) ≥
S(Q, D2).

LNC2. Let Q be a query and q ∈ Q be a query term. ∀k > 1, if D1 and D2 are
two documents such that |D1| = k · |D2|, c(q, D2) > 0 and for all terms w, c(w, D1) =
k · c(w, D2), then S(Q, D1) ≥ S(Q, D2).

The first constraint says that the score of a document should decrease if we add an
extra occurrence of a “nonrelevant word” (i.e., a word not in the query). The second
constraint intends to avoid overpenalizing long relevant documents, as it says that if a
document D has at least one query term, and we concatenate the document with itself
k times to form a new document, then the relevance score of the new document should
not be lower than the original one. Here, we make the assumption that the redundant
issue is not considered.

2.4. TF-LENGTH Constraint (TF-LNC)

We define this constraint to balance term frequency heuristics and length
normalization.

TF-LNC. Let Q = {q} be a query with only one term q. If D1 and D2 are two
documents such that c(q, D1) > c(q, D2) and |D1| = |D2| + c(q, D1) − c(q, D2), then
S(Q, D1) > S(Q, D2).

This constraint regulates the interaction between TF and document length. It en-
sures that the relevance score would not decrease after adding more query terms to a
document. The intuition is that if D1 is generated by adding more occurrences of the
query term to D2, the score of D1 should be higher than D2.

Based on TF-LNC and LNC1, it is not hard to derive the following constraint:
Let Q = {q} be a query with only one term q. If D2 and D3 are two documents such
that c(q, D3) > c(q, D2) and |D3| < |D2| + c(q, D3) − c(q, D2), then S(Q, D3) > S(Q, D2).

To see why, assume we have a document D1 such that |D1| = |D2|+c(q, D1)−c(q, D2)
and c(q, D3) = c(q, D1). It is obvious that the only difference between D1 and D3 is
that D1 has more occurrences of the nonquery terms. According to LNC1, we know
that S(Q, D3) ≥ S(Q, D1). Since S(Q, D1) > S(Q, D2) follows from TF-LNC, it is clear
that S(Q, D3) > S(Q, D2).

This constraint ensures that document D1, which has a higher TF for the query
term, should have a higher score than D2, which has a lower TF, as long as D1 is not
too much longer than D2.

The first four constraints (i.e., TFCs and TDC) are intended to capture the desired
scoring preferences when two documents have equal lengths. The other three con-
straints are applicable when we have variable document lengths.

Table I summarizes the intuitions behind each formalized constraint. In fact, TFC1
can be derived from LNC1 and TF-LNC. We still present TFC1 in the article, because
it is the most intuitive constraint. All the other constraints defined are basic and
nonredundant in the sense that none of them can be derived from the others. Formally,
suppose C = {C1, ..., Cn} is a set of retrieval constraints, Si is the set of all the retrieval
functions satisfying constraint Ci. Ci and C j are not redundant, if and only if the set
differences Si\S j and S j\Si are both nonempty, that is, |Si\S j| > 0, and |S j\Si| > 0.

We must emphasize once again that the constraints proposed in this section are
necessary for a reasonable retrieval formula, but not necessarily sufficient, and should
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Table I. Summary of Intuitions for Each Formalized Constraint

Constraints Intuitions
TFC1 to favor a document with more occurrences of a query term
TFC2 to ensure that the amount of increase in score due to

adding a query term repeatedly must decrease as more terms are added

TFC3 to favor a document matching more distinct query terms
TDC to penalize the words popular in the collection

and assign higher weights to discriminative terms

LNC1 to penalize a long document(assuming equal TF)
LNC2, TF-LNC to avoid over-penalizing a long document

TF-LNC to regulate the interaction of TF and document length

not be regarded as the only constraints that a reasonable retrieval formula has to sat-
isfy. When any constraint is violated, we know the retrieval function may not perform
well empirically, but satisfying all the constraints does not necessarily guarantee good
performance.

3. CONSTRAINT ANALYSIS ON REPRESENTATIVE RETRIEVAL FUNCTIONS

In this section, we apply the seven constraints defined in the previous section to
four state-of-the-art retrieval functions which, respectively, represent the vector space
model (pivoted normalization [Singhal et al. 1996a; Singhal 2001]), the classic prob-
abilistic retrieval model (Okapi [Robertson et al. 1995]), the language modeling ap-
proach (Dirichlet prior smoothing [Zhai and Lafferty 2001a]), and the divergence from
randomness model (PL2 [Amati and Rijsbergen 2002; He and Ounis 2005]). Our goal
is to see how well each retrieval formula satisfies the proposed constraints and how
closely the constraint analysis results are related to the empirical performance of a
retrieval function. As will be shown, it turns out that none of these retrieval formulas
satisfies all the constraints unconditionally, though some models violate more con-
straints or violate some constraints more “seriously” than others. The analysis thus
suggests some hypotheses regarding the empirical behavior of these retrieval formu-
las. Furthermore, empirical results show that when a constraint is not satisfied, it
often indicates nonoptimality of the method, and when a constraint is satisfied only
for a certain range of parameter values, its performance tends to be poor when the
parameter is out of the range. In general, we find that the empirical performance of a
retrieval formula is tightly related to how well it satisfies these constraints. Thus the
proposed constraints provide a good explanation of many empirical observations about
retrieval methods. More importantly, they make it possible to evaluate any existing
or new retrieval formula analytically to obtain insights about how we may further
improve a retrieval formula.

The following notations will be used in this section:

— c(t, D) is the count of term t in the document D.
— c(t, Q) is the count of term t in the query Q.
— N is the total number of documents in the collection.
— df (t) is the number of documents that contain the term t.
— |D| is the length of document D.
— avdl is the average document length.
— |Q| is the length of query Q.
— c(t, C) is the count of term t in the collection C.
— p(t|C) is the probability of a term t given by the collection language model [Zhai and

Lafferty 2001a].
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Table II. Constraint Analysis Results (Pivoted)

TFCs TDC LNC1 LNC2 TF-LNC

Yes Yes Yes Cond. Cond.

3.1. Constraint Analysis

3.1.1. Pivoted Normalization Method. In the vector space model, text is represented by a
vector of terms. Documents are ranked by the similarity between a query vector and
document vectors. The pivoted normalization retrieval formula [Singhal 2001] is one
of the best performing vector space retrieval formulas.

S(Q, D) =
∑

t∈D∩Q

1 + ln(1 + ln(c(t, D)))

(1 − s) + s |D|
avdl

· c(t, Q) · ln
N + 1
df (t)

(1)

The results of analyzing the pivoted normalization formula are summarized in
Table II, where TFCs means TFC1, TFC2, and TFC3. It is easy to prove that TFCs,
TDC, and LNC1 can be satisfied unconditionally. We now examine some of the non-
trivial constraints.

First, let us examine the TF-LNC constraint. Consider a common case when
|D1| = avdl. It can be shown that the TF-LNC constraint is equivalent to the following
constraint on the parameter s:

s ≤ l(c(t, D1)) − l(c(t, D2))
(c(t, D1) − c(t, D2)) × (1 + l(c(t, D1)))

× avdl,

where l(x) = ln(1 + ln(x)).
This means that TF-LNC is satisfied only if s is below a certain upper bound. The

TF-LNC constraint thus provides an upper bound for s which is tighter for a larger
c(t, D1). However, when c(t, D1) is small, the TF-LNC constraint does not provide any
effective bound for s, since s ≤ 1.

Finally, we show that the LNC2 leads to an upper bound for parameter s as well.
The LNC2 constraint is equivalent to

1 + ln(1 + ln(k × c(t, D2)))

1 − s + sk×|D2|
avdl

≥ 1 + ln(1 + ln(c(t, D2)))

1 − s + s |D2|
avdl

.

Therefore, the upper bound of s can be derived as

s ≤ tf1 − tf2

(k |D2|
avdl − 1)tf2 − ( |D2|

avdl − 1)tf1
,

where tf1 = 1 + ln(1 + ln(k × c(t, D2))), tf2 = 1 + ln(1 + ln(c(t, D2))). In order to get a sense
of what the bound is exactly, consider a common case when |D2| = avdl. We have

s ≤ 1
k − 1

× (
tf1

tf2
− 1).

As shown in Figure 1, the bound becomes tighter when k increases or when the term
frequency is larger. This bound shows that in order to avoid overpenalizing a long
document, a reasonable value for s should be generally small; it should be below 0.4
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Fig. 1. Upper bound of parameter s.

even in the case of a small k, and we know that for a larger k the bound would be even
tighter. This analysis thus suggests that the performance can be poor for a large s,
which is confirmed by our experiments.

3.1.2. Okapi Method. The Okapi formula is another highly effective retrieval for-
mula that represents the classical probabilistic retrieval model [Robertson and Walker
1994]. The formula as presented in Singhal [2001] is2

S(Q, D) =
∑

t∈Q∩D

(
ln

N − df (t) + 0.5
df (t) + 0.5

× (k1 + 1) × c(t, D)

k1((1 − b ) + b |D|
avdl ) + c(t, D)

× (k3 + 1) × c(t, Q)
k3 + c(t, Q)

)
, (2)

where k1 (between 1.0-2.0), b (usually 0.75), and k3 (between 0-1000) are constants.
The major difference between Okapi and other retrieval formulas is the possibly

negative value of the IDF part, which has been discussed in Robertson and Walker
[1997]. It is trivial to show that if df (t) > N/2, the IDF value would be negative.

When the IDF part is positive (which is mostly true for keyword queries), it is easy
to see that Okapi method satisfies TFCs and LNCs. By considering a common case
when |D2| = avdl, the TF-LNC constraint is shown to be equivalent to b ≤ avdl

c(t,D2) . Since
b is always smaller than 1, TF-LNC can be satisfied unconditionally. Moreover, we can
show that TDC is unconditionally satisfied.

Although Okapi satisfies some constraints conditionally, unlike in the pivoted nor-
malization method, the conditions do not provide any bound for the parameter b .
Therefore, the performance of Okapi can be expected to be less sensitive to the length
normalization parameter than the pivoted normalization method, which is confirmed
by our experiments.

When the IDF part is negative, the Okapi formula would satisfy TDC but violate
the TFCs, LNCs, and TF-LNC, since matching an additional occurrence of a query
term could mean decreasing the score. Since a negative IDF only happens when a
query term has a very high document frequency (e.g., when the query is verbose), our
analysis suggests that the performance of Okapi may be relatively worse for verbose
queries than for keyword queries.

2There is a typo in the formula in Singhal [2001], which is corrected here.
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Table III. Constraint Analysis Results (Okapi)

Formula TFCs TDC LNC1 LNC2 TF-LNC

Original Cond. Yes Cond. Cond. Cond.
Modified Yes Yes Yes Yes Yes

Table IV. Constraint Analysis Results (Dirichlet)

TFCs TDC LNC1 LNC2 TF-LNC
Yes Yes Yes Cond Yes

A simple way to solve the problem of negative IDF is to replace the original IDF in
Okapi with the regular IDF in the pivoted normalization formula.

S(Q, D) =
∑

t∈Q∩D

(
ln

N + 1
df (t)

× (k1 + 1) × c(t, D)

k1((1 − b ) + b |D|
avdl ) + c(t, D)

× (k3 + 1) × c(t, Q)
k3 + c(t, Q)

)

This modified Okapi satisfies all the defined constraints. We thus hypothesize that
modified Okapi would perform better than the original Okapi for verbose queries. As
will be shown later, this is indeed true according to our experiment results.

The results of analyzing the Okapi formula are summarized in Table III. We distin-
guish two forms of the formula: the original formula and the one with a modified IDF
part. The modification significantly affects the constraint analysis results as discussed
earlier.

3.1.3. Dirichlet Prior Method. The Dirichlet prior retrieval method is one of the best per-
forming language modeling approaches [Zhai and Lafferty 2001a]. This method uses
the Dirichlet prior smoothing method to smooth a document language model and then
ranks documents according to the likelihood of the query according to the estimated
language model of each document. With a notation consistent with the preceding for-
mulas, the Dirichlet prior retrieval function is

S(Q, D) =
∑

t∈Q∩D

c(t, Q) · ln(1 +
c(t, D)

μ · p(t|C)
) + |Q| · ln

μ

|D| + μ
. (3)

p(t|C) is similar to the document frequency df (t), and it indicates how popular the term
t is in the whole collection.

The results of analyzing the Dirichlet prior formula are summarized in Table IV.
TFCs, TDC, LNC1, and TF-LNC are easily seen to be satisfied. The LNC2 constraint
can be shown to be equivalent to c(t, D2) ≥ |D2| · p(t|C), which is usually satisfied for
content-carrying words. If all the query terms are discriminative words, long docu-
ments will not be overpenalized. Thus, compared to pivoted normalization, Dirichlet
prior appears to have a more robust length normalization mechanism, even though
none of them satisfies the LNC2 constraint unconditionally.

3.1.4. PL2 Method. The PL2 method is a representative retrieval function of the Di-
vergence From Randomness (DFR) retrieval model [Amati and Rijsbergen 2002; He
and Ounis 2005]. The basic idea of PL2 is to measure the informative content of a
term by computing how much the term frequency distribution departs from a distribu-
tion described by a random process. With the previous notations, the PL2 method can
be described as

S(Q, D) =
∑

t∈Q∩D

c(t, Q) · tfnD
t · log2(tfnD

t · λt) + log2e · ( 1
λt

− tfnD
t ) + 0.5 · log2(2π · tfnD

t )

tfnD
t + 1

, (4)

ACM Transactions on Information Systems, Vol. 29, No. 2, Article 7, Publication date: April 2011.



Diagnostic Evaluation of Information Retrieval Models 7:11

Table V. Constraint Analysis Results (PL2)

Functions TFCs TDC LNC1 LNC2 TF-LNC

PL2 Cond Cond Cond Cond Cond
Mod.-PL2 Yes Cond Yes Cond Cond

Fig. 2. TF curves are sensitive to term discrimination value: left plot (λt = 2) - TF constraints satisfied;
right plot (λt = 0.5) - TF constraints violated.

where tfnD
t = c(t, D) × log2(1 + c · avdl

|D| ), λt = N
c(t,C) and c > 0 is a retrieval parameter.

The constraint analysis results of the PL2 method are summarized in Table V. Un-
like the previous three retrieval functions, the PL2 method cannot unconditionally
satisfy any of the retrieval constraints. In particular, we can make the following two
interesting observations.

First, the analysis of the TDC, LNC2, and TF-LN constraints suggests a lower
bound for the retrieval parameter c in the PL2 method. Specifically, assuming that

|D| = avdl, we can show that the PL2 function can satisfy TDC if c > 2
log2e

λt − 1. More-
over, constraints LNC2 and TF-LN can be shown to be equivalent to c ≥ |D|

avdl , which is
c ≥ 1 under the assumption that |D| = avdl. Clearly, the analysis results suggest that
PL2 would violate the retrieval constraints for smaller values of c. Thus, we expect it
to perform poorly for a smaller c, which is confirmed by our experiments.

Second, the term discrimination values (i.e., λt) affect whether the PL2 retrieval
function satisfies a retrieval constraint. In particular, it can be shown that the three
TF constraints are equivalent to the following constraint on the term discrimination
value (λt) of term t.

λt ∗ log(λt) + 0.18 ∗ λt ≥ log2e

This means that the three TF constraints are satisfied only when query terms have
term discrimination values that are larger than a threshold around 1. For example,
Figure 2 shows two curves of relevance scores (i.e., S(Q, D)) with respect to the values
of the TF component (i.e., c(t, D) · log2(1 + c avdl

|D| )) for a query with a relatively discrim-
inative term (λt = 2, shown on left) and one with a common word ( λt = 0.5, shown
on right), respectively. We see clearly that PL2 violates the defined TF constraints in
the right plot where the term discrimination value is small. Moreover, the analysis
of LNC1 constraint also provides a similar lower bound for the term discrimination
values, that is, λt ≥ 1.

Thus if a query contains a term with smaller term discrimination values, the PL2
function would violate the TF constraints and LNC1 constraint, which means that in
such a case, more occurrences of a query term in a document may actually lead to
lower relevance scores. This further suggests that the PL2 function would perform
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Table VI. Summary of Constraint Analysis Results for Different
Retrieval Formulas

Formula TFCs TDC LNC1 LNC2 TF-LNC
Pivoted Yes Yes Yes C∗

1 C∗
2

Dirichlet Yes Yes Yes C3 Yes
Okapi(original) C4 Yes C4 C4 C4

Okapi(modified) Yes Yes Yes Yes Yes
PL2(original) C5 C∗

6 C7 C∗
8 C∗

8

PL2(modified) Yes C∗
6 Yes C∗

8 C∗
8

worse for verbose queries than for keyword queries, which again is confirmed in our
experiments.

The analysis suggests that a simple way to potentially improve the performance
of PL2 for verbose queries is to consider only the query terms whose values of λt are
larger than 1 (the threshold obtained from constraint analysis). The modified PL2 is
as follows.

S(Q, D) =
∑

t∈Q∩D,λt>1

c(t, Q) · tfnD
t · log2(tfnD

t · λt) + log2e · ( 1
λt

− tfn D
t ) + 0.5 · log2(2π · tfnD

t )

tfnD
t + 1

The only difference from the standard PL2 is the extra condition λt > 1 derived from
the analysis of the TF constraints and LNC1 constraint. The motivation of this mod-
ified function is to ignore query terms violating the retrieval constraints. This is rea-
sonable since these terms have term discriminative values smaller than 1, that is, each
of these terms has, on average, at least one occurrence in every document of the collec-
tion. The effect of this modified retrieval function is similar to stopwords removal, but
the modification is guided by the constraint analysis and the proposed method is more
adaptive to the characteristics of different document collections.

The modified PL2 method satisfies the three TFCs and LNC1 constraints uncon-
ditionally and the other constraints conditionally. When the retrieval parameter c is
set to a value larger than a threshold, the modified PL2 method would satisfy all the
constraints. We thus hypothesize that modified PL2 would perform better than the
original PL2 for verbose queries when c is set appropriately based on the guidance
provided by the constraint analysis. As will be shown later, this hypothesis is indeed
confirmed by our experiment results.

3.1.5. Summary of Constraint Analysis Results. We have applied the proposed seven con-
straints to four representative retrieval formulas. The results are summarized in
Table VI, where a “Yes” means that the corresponding model satisfies the particu-
lar constraint and a “Cx” means that the corresponding model satisfies the constraint
under some particular conditions not related to parameter setting, and a “C∗

x” means
that the model satisfies the constraint only when the parameter is in some range. The
specific conditions are

C∗
1 ⇔ s ≤ tf1 − tf2

(k |D2|
avdl − 1)tf2 − ( |D2|

avdl − 1)tf1

C∗
2 ⇔ s ≤ (l(c(t, D1)) − l(c(t, D2))) × avdl

(c(t, D1) − c(t, D2)) × (1 + l(c(t, D1)))
C3 ⇔ c(t, D2) ≥ |D2| · p(t|C)
C4 ⇔ idf (t) ≥ 0 ⇔ df (t) ≤ N/2
C5 ⇔ λt ∗ log(λt) + 0.18 ∗ λt ≥ log2e
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C∗
6 ⇔ c > 2

log2e
λt − 1

C7 ⇔ λt ≥ 1 ⇔ N ≥ c(t, C)

C∗
8 ⇔ c ≥ |D|

avdl
.

Based on the results, we can make three interesting observations: First, the original
IDF part of the Okapi formula causes the formula to violate almost all constraints
(see also Robertson and Walker [1997] for a discussion about this weakness), thus
we may expect Okapi to have worse performance for verbose queries. Second, the
implementation of term discrimination part in PL2 (i.e., λt) causes it to violate several
constraints for nondiscriminative terms, thus we may also expect PL2 to perform worse
for verbose queries. Third, C1 and C2 provide an approximate upper bound for the
parameter s in the pivoted normalization method, while C6 and C8 provide a lower
bound for the parameter c in the PL2 method. In contrast, however, by checking the
constraints, we have not found any particular bound for the parameters in Dirichlet
prior and Okapi. Therefore, we may expect the pivoted normalization method and PL2
method to be more sensitive to the parameter setting than the other two methods.
As we will further discuss in the next section, these predictions have been mostly
confirmed in our experiments.

3.2. Benefits of Constraint Analysis

In the previous subsection, we have examined four representative retrieval formulas
analytically. Based on the analysis, we propose some hypotheses about the perfor-
mance for each retrieval formula. In this section, we test these hypotheses through
carefully designed experiments. Our experiment results show that the proposed con-
straints can explain the performance difference in various retrieval models, provide an
approximate bound for the parameters in a retrieval formula, and enable us to ana-
lytically diagnose the weaknesses of a retrieval function to obtain guidance on how to
improve a retrieval function.

3.2.1. Experiment Design. Retrieval performance can vary significantly from one test
collection to another. We thus construct several very different and representative test
collections using the existing TREC test collections. To cover different types of queries,
we follow Zhai and Lafferty [2001a] , and vary two factors: query length and verbosity.
This gives us four different combinations: Short-Keyword (SK, keyword title), Short-
Verbose (SV, one sentence description), Long-Keyword (LK, keyword list), and Long-
Verbose (LV, multiple sentences). The number of queries is usually larger than 50. To
cover different types of documents, we construct our document collections by varying
several factors, including: (1) the type of documents; (2) document length; (3) collec-
tion size; and (4) collection homogeneity. Our choice of document collection has been
decided to be news articles (AP), technical reports (DOE), government documents (FR),
a combination of AP, DOE, and FR (ADF), the Web data used in TREC8 (Web), the ad
hoc data used in TREC7 (Trec7), and the ad hoc data used in TREC8 (Trec8). Table VII
shows some document set characteristics, including the number of queries used on the
document set, the average number of relevant documents per query, the collection size,
the number of documents, the vocabulary size, the mean document length, the stan-
dard deviation of document length, and the mean length of relevant documents.

The preprocessing of documents and queries is minimum, involving only Porter’s
stemming. We intentionally did not remove stop words for two reasons: (1) A truly
robust model should be able to discount the stop words automatically; (2) removing
stop words would introduce at least one extra parameter (e.g., the number of stop

ACM Transactions on Information Systems, Vol. 29, No. 2, Article 7, Publication date: April 2011.



7:14 H. Fang et al.

Table VII. Document Set Characteristic

AP DOE FR ADF Web Trec7 Trec8

#qry 142 35 42 144 50 50 50
#rel/q 103 57 33 126 46 93 95

size 491MB 184MB 469MB 1GB 2GB 2GB 2GB
#doc(k) 165K 226K 204K 437K 247K 528K 528K
#voc(k) 361K 163K 204K 700K 1968K 908K 908K

mean(dl) 454 117 1338 372 975 477 477
dev(dl) 239 58 5226 1739 2536 789 789

mean(rdl) 546 136 12466 1515 6596 1127 1325

Table VIII. Optimal s (for average precision) in the Pivoted
Normalization Method

AP DOE FR ADF Web Trec7 Trec8
lk 0.2 0.2 0.05 0.2 — — —

sk 0.01 0.2 0.01 0.05 0.01 0.05 0.05
lv 0.3 0.3 0.1 0.2 0.2 0.2 0.2

sv 0.2 0.3 0.1 0.2 0.1 0.1 0.2

words) into our experiments. On each test collection, for every retrieval method, we
vary the retrieval parameter to cover a reasonably wide range of values. This allows
us to see a complete picture of how sensitive each method is to its parameter. We use
mean average precision as the main evaluation measure.

3.2.2. Parameter Sensitivity. Based on the analysis in the previous subsection, we for-
mulate the following hypotheses: (1) The pivoted normalization method is sensitive to
the value of parameter s, where 0 < s < 1. The analysis of LNC2 suggests that the
reasonable value for s should be generally smaller than 0.4 and the performance can be
bad for a large s. (2) Okapi is more stable with the change of parameter b (0 < b < 1)
compared with the pivoted normalization method. (3) The PL2 method is sensitive
to the value of parameter c, where c > 0. The constraint analysis suggests that the
reasonable values for c should be generally equal to or larger than 1.

We now discuss the experiment results from testing these hypotheses. First, let
us consider the experiment result for the pivoted normalization method. As shown
in Table VIII, the optimal value of s to maximize average precision is indeed very
small in all cases. Moreover, Figure 3 shows how average precision is influenced by
parameter value in the pivoted normalization method on the AP document set and
long-keyword queries; the curves are similar for all other datasets. Clearly when s is
large, which causes the method not to satisfy the LNC2 constraint, the performance
becomes significantly worse.

Next, we experiment with the Okapi method. Assume k1 = 1.2, k3 = 1000 [Singhal
2001] and b changes from 0.1 to 1.0. Okapi is indeed more stable than the pivoted
normalization (shown in Figure 3). By checking the constraints, we have not found
any particular bound for the parameters in Okapi, which may explain why Okapi is
much less sensitive to the parameter setting than the pivoted normalization method,
where the LNC2 constraint implies a concrete bound on parameter s.

We now consider the experiment results for the PL2 method. Table IX shows that
the optimal values of c are always larger than 1 in all cases. Moreover, as shown in
Figure 4, when the values of c are smaller than 1, which would cause the retrieval
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Fig. 3. Performance comparison between Okapi and pivoted for AP-LK.

Table IX. Optimal c (for average precision) in the PL2 Method

AP DOE FR ADF Web Trec7 Trec8
lk 2 2 10 2 — — —

sk 5 5 5 5 15 15 15
lv 5 2 10 2 2 5 5

sv 5 2 10 5 50 7 5

Fig. 4. Performance sensitivity of PL2 to parameter c for AP-LK.

function to violate TDC, LNC2, and TF-LNC constraints, the performance indeed
becomes significantly worse.

In summary, the constraints generally can provide an empirical bound for the
parameters in retrieval formulas and the performance would tend to be poor when
the parameter is out of the bound.

3.2.3. Performance Comparison. We compare the performance of the four retrieval
formulas through systematic experiments. Our goal is to see whether the experi-
ment results are consistent with the analytical results based on formalized heuristics.
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Table X. Comparison of Optimal Performance for Four Formulas

AP DOE FR ADF Web Trec7 Trec8

lk Piv 0.39 0.28 0.33 0.27 — — —
Dir 0.38 0.28 0.32 0.25 — — —

Okapi 0.38 0.27 0.28 0.33 — — —
Mod-Okapi 0.39 0.28 0.28 0.33 — — —

PL2 0.38 0.27 0.27 0.32 — — —
Mod-PL2 0.38 0.27 0.27 0.32 — — —

sk Piv 0.23 0.18 0.19 0.22 0.29 0.18 0.24
Dir 0.22 0.18 0.18 0.21 0.30 0.19 0.26

Okapi 0.23 0.19 0.23 0.19 0.31 0.19 0.25
Mod-Okapi 0.23 0.19 0.23 0.19 0.31 0.19 0.25

PL2 0.22 0.19 0.22 0.19 0.31 0.18 0.26
Mod-PL2 0.22 0.19 0.22 0.19 0.31 0.18 0.26

lv Piv 0.29 0.21 0.23 0.21 0.22 0.20 0.23
Dir 0.29 0.23 0.24 0.24 0.28 0.22 0.26

Okapi 0.03 0.07 0.09 0.06 0.23 0.08 0.11
Mod-Okapi 0.30 0.24 0.25 0.23 0.28 0.26 0.25

PL2 0.24 0.20 0.09 0.08 0.09 0.09 0.13
Mod-PL2 0.29 0.22 0.25 0.20 0.27 0.21 0.25

sv Piv 0.19 0.10 0.14 0.14 0.21 0.15 0.20
Dir 0.20 0.13 0.16 0.16 0.27 0.18 0.23

Okapi 0.08 0.08 0.08 0.09 0.21 0.09 0.10
Mod-Okapi 0.19 0.12 0.16 0.14 0.25 0.16 0.22

PL2 0.16 0.09 0.07 0.10 0.11 0.08 0.10
Mod-PL2 0.19 0.10 0.18 0.15 0.25 0.15 0.21

We form the following hypotheses based on the constraint analysis: (1) For verbose
queries, both Okapi and PL2 would perform worse than pivoted normalization and
Dirichlet prior, due to violation of more constraints in these cases. (2) The modified
Okapi and modified PL2, which are derived from heuristically modifying the original
functions to make them satisfy more constraints in the case of verbose queries, would
perform better than their respective original functions.

In order to test these hypotheses, we run experiments over seven collections and
four query sets to test all these methods, including pivoted normalization, Dirichlet
prior, Okapi, modified Okapi, PL2, and modified PL2. We summarize the optimal
performance for each formula in Table X.

We see that, for keyword queries, the optimal performances of all the four retrieval
formulas, representing four different types of retrieval models, are comparable, con-
firming that these state-of-the-art retrieval models are indeed all effective. However,
for verbose queries (LV and SV), as we hypothesized, both Okapi and PL2 are sub-
stantially worse than pivoted normalization and Dirichlet prior. The fact that both
modified Okapi (Mod-Okapi) and modified PL2 (Mod-PL2) are generally much better
than their corresponding original functions further shows that the cause of the poor
performance on verbose queries for these two functions is indeed due to the violation
of constraints. The improvements of Mod-Okapi over Okapi and Mod-PL2 over PL2
are both significant (the p-values of the Wilcoxon signed rank test are all below 0.013).

Specifically, the original Okapi violates many constraints due to possible negative
IDF scores in the case of verbose queries, which explains the poor performance of
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Fig. 5. Performance comparison between modified Okapi, Okapi, and pivoted for AP-SV.

the original Okapi. Mod-Okapi was obtained by replacing the IDF in Okapi with the
IDF from pivoted normalization so as to satisfy more constraints (indeed, after this
modification, Mod-Okapi satisfies all our constraints), and it indeed improves over the
original Okapi substantially for verbose queries. In Figure 5, we compare Mod-Okapi
with the original Okapi (together with pivoted normalization) for a range of parameter
values, where we see that Mod-Okapi is consistently better than the original Okapi for
the entire range of parameter b , and gives performance comparable to that of pivoted
normalization for verbose queries.

The case of PL2 is similar. The original PL2 violates many constraints in the case
of very small term discrimination values (i.e., verbose queries), which explains its poor
performance on verbose queries. After modifying the PL2 by excluding the terms
whose term discrimination values are smaller than 1.0, the performance on verbose
queries is improved consistently and substantially as can be seen by comparing PL2
and Mod-PL2. The performance remains the same for keyword queries since presum-
ably no term in the keyword queries has a term discrimination value (i.e., λt) smaller
than 1. Note that although removing the stopwords may achieve a similar effect and
make the original PL2 perform well for both keyword and verbose queries, we believe
that a robust retrieval function should be able to discount the stop words automat-
ically, thus this result reveals a weakness of PL2 which can be corrected through a
heuristic modification (i.e., Mod-PL2).

Overall, both Table X and Figure 5 show that satisfying more constraints appears to
be correlated with better performance. Therefore, the proposed constraints can provide
a plausible explanation for the performance difference in various retrieval models,
allow us to diagnose the weaknesses of a retrieval function, and use the insights gained
from the analysis to further improve a retrieval function.

4. DIAGNOSTIC EVALUATION WITH COLLECTION PERTURBATION

Constraints analysis described in the previous sections provides a principled way to
examine the implementations of retrieval heuristics analytically. Unfortunately, if two
analyzed retrieval functions satisfy the same set of constraints, constraint analysis
would not be able to help us judge which is better. Moreover, analytical checking of a
constraint can sometimes be mathematically challenging, thus we may not always be
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Table XI. Medical Diagnosis Analogy

Medical Domain IR Domain
patients retrieval functions

illness non-optimal performance
diseases problems of heuristic implementation,

causes of non-optimal performance

medical records existing findings in IR
symptoms empirical results

medical instruments relevance-preserved collection perturbations
medical tests tests for retrieval models

treatments for disease better implementations of heuristics,
modification for performance improvement

able to derive an analytical result. In all these cases, we will still need to rely on test
collections to experimentally compare retrieval functions.

The traditional Cranfield evaluation methodology allows us to easily compare two
retrieval functions based on their overall retrieval accuracy. However, when one
retrieval function has a lower retrieval accuracy than another, such an evaluation
method cannot help us understand why. An interesting question is, thus, whether we
can design some tests to experimentally diagnose the strengths and weaknesses of re-
trieval functions. For example, can we design a test to examine whether the inferior
performance of a retrieval function is due to an inferior length normalization compo-
nent when compared with another retrieval function?

In this section, we propose a general methodology to compare retrieval functions
experimentally to understand how well they implement specific retrieval heuristics.
Our main idea is to perturb a standard retrieval test collection to gradually make it
approach various “extreme conditions” (e.g., making all the documents have an equal
length or amplifying the length differences of documents), and examine how a retrieval
function responds to such perturbations. We can then compare the performance pat-
terns exhibited by different retrieval functions under such perturbations. The pertur-
bations will be designed in such a way that a certain aspect of difference in two re-
trieval functions (e.g., their effectiveness in handling length normalization) would be
amplified under a particular extreme condition (e.g., when the variances of document
lengths are made artificially very high).

Our idea is essentially similar to medical diagnosis as shown in Table XI. Specifi-
cally, we will propose a set of operators for perturbing existing evaluation collections
while preserving the relevance status of all documents. Such perturbations make it
possible to enlarge the empirical performance differences among retrieval functions
and make it easier to observe the “symptoms” of existing retrieval functions (i.e., the
problems of current heuristic implementations). We will further design various diag-
nostic tests targeting at testing specific aspects of a retrieval function. These diagnos-
tic tests are thus similar to medical instruments (e.g., a medical thermometer) in that
they allow us to measure specific symptoms of a retrieval function. Through analyzing
the results from various tests, we can then diagnose the relative strengths and weak-
nesses of a retrieval function. We can then “treat” the retrieval function by fixing its
weakness through better implementation of retrieval heuristics.

We now describe this diagnosis methodology in more detail.

4.1. Collection Perturbations

One reason why existing evaluation methodology is not informative enough is that a
test collection usually has a mixed set of documents with various characteristics. Our
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Table XII. Basic Perturbation Operators

Name Semantic Operator
term addition Add K occurrences of term t to document D aT(t, D, K)
term deletion Delete K occurrences of term t from document D dT(t, D, K)

document addition Add document D to the collection K times aD(D, K)
document deletion Delete document D form the collection dD(D)

document concatenation Concatenate document D1 with D2 K times, cD(D1, D2, K)

idea to perform diagnosis evaluation is thus to perturb an existing evaluation collec-
tion to control or vary some characteristics. This would generate a series of perturbed
collections which can then be used to test a retrieval function. We hope the perturbed
collections would allow us to see more meaningful differences between retrieval func-
tions. With our medical domain analogy, these perturbations serve as our instruments
to perform diagnostic tests for retrieval models.

We first introduce some new notations. D is the set of all the documents in the
test collection, Dr is the set of relevant documents, and Dn is the set of nonrelevant
documents. Vn is a set of “noise terms,” that is, terms that are not relevant to any
query; for example, they can be meaningless terms outside our vocabulary. In other
words, ∀tn ∈ Vn, if we add tn to D, the relevance status of D would not be changed.
As in the previous sections, we assume that both queries and documents use “bag of
terms” representation.

A standard evaluation collection includes a document collection, a set of queries,
and a set of relevance judgments indicating which documents are relevant to which
queries. To leverage the relevance judgments in the existing test collections, we keep
the topics and perturb only the documents, which means to perturb term statistics in
documents (e.g., term occurrences), document statistics (e.g., document length), and
collection statistics (e.g., number of documents). We define five basic operators for
collection perturbations, including term addition, term deletion, document addition,
document deletion, and document concatenation; they are summarized in Table XII.
Every operator has a parameter K to control the degree of perturbation. K can either
be the same for all documents or vary according to term/document statistics, such as
the occurrences of a term. These basic operators can be combined to perform more
sophisticated perturbations.

Since it is time consuming to recreate relevance judgments, we want to preserve the
relevance status of every document after any perturbation. Following the definition of
relevance used in TREC, we assume that any relevance evidence in a document makes
the document relevant.

Note that not all the proposed basic operators are guaranteed to maintain the rel-
evance status of a document. For example, deleting query terms from a relevant doc-
ument could change the document to nonrelevant. Thus, what we need is relevance-
preserving perturbations. A relevance-preserving perturbation is a perturbation where
we have high confidence that the relevance status of each document after the pertur-
bation remains the same as that of the corresponding original document.

We now define several relevance-preserving perturbations based on the proposed
basic operators (summarized in Table XIII). All these perturbations are intuitive. For
example, a relevant document remains relevant if we add more query terms. Also, un-
der the assumption that a document is relevant as long as part of it is relevant, adding
noisy terms to any document would not change its relevance status. Furthermore,
the relevance status of a document remains the same if we concatenate it with itself
several times. Similarly, concatenating two relevant documents or two nonrelevant

ACM Transactions on Information Systems, Vol. 29, No. 2, Article 7, Publication date: April 2011.



7:20 H. Fang et al.

Table XIII. Relevance-Preserving Perturbations

Name Semantic Perturbation
relevance Add a query term to a aT(t, D, K), where D ∈ Dr, t ∈ Q
addition a relevant document

noise Add a noisy term aT(t, D, K), where D ∈ D, t ∈ Vn
addition to a document

internal Add a term to a document aT(t, D, K), where D ∈ D, t ∈ D
term growth that originally contains the term

document Concatenate D with cD(D, D, K), where D ∈ D
scaling itself K times

relevant doc. Concatenate two relevant cD(D1, D2, K), where D1, D2 ∈ Dr
concatenation documents K times

non-relevant doc. Concatenate two non-relevant cD(D1, D2, K), where D1, D2 ∈ Dn
concatenation documents K times

noise Delete a term from dT(t, D, K), where D ∈ Dn, t ∈ D
deletion a non-relevant document

document Add a document aD(D, K)
addition to the collection

document Delete a document dT(D), where D ∈ D.
deletion from the collection

documents would not affect the relevance status either. Note that in document con-
catenation, the changes of term occurrences are proportional to the document length.

4.2. Diagnostic Tests for IR Models

We now discuss how to use the proposed relevance-preserving perturbations to design
diagnostic tests for retrieval models.

4.2.1. Common Procedure. In general, in order to design diagnostic tests, we would
first identify the aspects of retrieval functions that we want to test, that is, some spe-
cific desirable properties that we believe a reasonable retrieval function should have.
This reasoning is similar to the definition of the formalized retrieval constraints given
in the previous sections. However, instead of using those binary constraints to com-
pare retrieval functions analytically, here we design diagnostic tests to examine these
properties experimentally using test collections.

After we identify the desirable properties to be diagnosed, we need to further con-
nect these properties with our relevance-preserving perturbations and select appropri-
ate perturbation operators. Once the perturbations are chosen for a particular prop-
erty, we could use the perturbation parameter of the operators to control the degree of
perturbation. As we gradually increase the degree of perturbation, we would record
the empirical performance of retrieval functions for each perturbation parameter value
on the corresponding perturbed collections, and stop perturbing when we get enough
information (e.g., when we can observe clear performance differences among retrieval
functions). This procedure allows us to obtain a performance curve like the one shown
in Figure 6; it gives us a picture of how the performance changes as we impose more
dramatic perturbations. In such a figure, the x-axis is always the value of perturbation
parameter, and y-axis is a standard retrieval performance measure, which is MAP in
our experiments.

Note that the perturbation parameter K could be set in many different ways. Here
we only consider two possibilities: (1) constant growth, where K is the same for all
terms and documents; (2)linear growth, where K is proportional to some term statis-
tics, such as c(t, D), or document statistics, such as |D|. It is often hard to predefine
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Fig. 6. Example curve for the results of a diagnostic test.

the range of perturbations. In this work, we increase K and stop when we observe
clear performance differences among retrieval functions or when K reaches a suffi-
ciently large value. We leave the problem of finding a more principled way to set the
parameter range as a future work. There are also different ways to select documents
for perturbation: (1)general collection perturbation, where all the documents in the
collection would be perturbed; (2)subcollection perturbation, where only a subset of a
collection is perturbed. Note that we need to make sure that this choice is consistent
with the requirements of the relevance-preserving perturbations.

Intuitively, the perturbation results can be very useful to understand the behavior
of a retrieval function. For example, a flat curve would mean that the function being
tested is completely insensitive to such perturbation, while a dropping curve would
mean that the function suffered from the perturbation. To interpret the results, we
need to design measures to quantitatively evaluate perturbation results.

In general, measures can be defined based on the area under the curve or some
extreme performance values (e.g., initial and end values or maximum and minimum
values). Naturally, which measure is the best would often depend on the property to
be tested. In our study, we are most interested in how the performance degrades or
increases as we increase the amount of perturbation. For this purpose, we define the
following Performance Ratio (PR) measure.

PerformanceRatio =
area under curve

area under line through init point

The PR value of the curve shown in Figure 6 can be computed by dividing the area
of shaded part A by the area of rectangle B. Intuitively, the PR value tells us the
average amount of degradation or gain in performance after a perturbation. A high
PR value indicates more gain in performance while a low PR value indicates more
loss. The desirable PR value would depend on the specific perturbation, though in
most of our experiments, a high PR value is better and suggests a more robust retrieval
function. Note that the PR value can be larger than 1, which means that the retrieval
performance increases as we increase the amount of perturbation.

We now present three groups of diagnostic tests designed by following this common
procedure.

4.2.2. Length Variation Sensitivity Tests. Document length normalization is an important
component in virtually all effective retrieval functions. To help understand a func-
tion’s length normalization mechanism, we design tests to examine the sensitivity of
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a retrieval function to the length variance in the document collection. We use docu-
ment scaling perturbation, thatis, cD(D, D, K), to perform the tests, because it changes
the document length of each document, yet maintains the relative ratio of term occur-
rences. We design the following three different tests to examine the different aspects
of the length variation. These three tests differ in how to set the value of perturbation
parameter, that is, K.

Length variance reduction test (LV1). This test is to use the document scaling per-
turbation to make all the documents have similar or identical length, and it would
thus reduce the variance of document lengths. The test is defined as follows.

For every D ∈ D, perform cD(D, D, K)

with K = (1−β)×|d|+β×1000000
|d| and 0 ≤ β ≤ 1.

β is a parameter to control the degree of perturbation. When β is set to 0, all the
documents have the original length. When β is set to 1, all the documents have the
same length (i.e., number of terms in the documents is 1,000,000).

Since more perturbation would deprive the retrieval function of any benefit of length
normalization, the test result can indicate how effective the length normalization
mechanism of a function is. A lower PR value indicates that the function could gain
more through length normalization.

Length variance amplification test (LV2). This test is to amplify the differences in
document lengths and make distribution of document lengths skewer. The test is de-
fined as follows.

For every D ∈ D, perform cD(D, D, K),
where K = |D| × β.

K is proportional to the original document length, which means that longer docu-
ments will grow much more rapidly compared with shorter ones. β is used to control
the degree of perturbation. A larger β leads to skewer document length distribution.
We expect a robust function to have a high PR value.

Length scaling test (LV3). This test is to concatenate all the documents with them-
selves K times, where K is same for all the documents. In this way, the length variance
would change but the relative length ratio remains the same.

The test has the same intuition as the LNC2 constraint proposed in previous sec-
tions. Thus, if a retrieval function achieves a higher PR value, it means that the
function does a better job to avoid over-penalizing long documents.

4.2.3. Term Noise Resistance Tests. A robust retrieval function should also be resistant
to term noise, that is., the terms that do not contribute to the relevance of a document
(∀tn ∈ Vn). We assume that a document is relevant if it contains some relevant evidence,
so a reasonable retrieval function is expected to be resistant to the addition of term
noise. We design the following test to examine the term noise resistance of a retrieval
function.

Noise addition test (TN). This test is to add noise (i.e., nonrelevant terms) to docu-
ments. We use the noise addition perturbation operator as follows.

For every D ∈ D, perform aT(tn, D, K)
where tn ∈ Vn and K is a parameter.

There are two variations: (1) constant growth: K is a constant, that is, we add the
same number of noisy terms to all documents; and (2) linear growth: K = β × |D|,
β > 1, that is, the length of a perturbed document is linear to the original document
length. The test has the same intuition as the LNC1 constraint, because both of them
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consider the situations when more nonquery terms are added to documents. Thus, a
high PR value indicates that the function is reasonable in penalizing long documents.

An alternative way to examine noise resistance would be to design a test to remove
noise from documents. Unfortunately, this is not easy, since nonquery terms may still
contribute to the relevance of a document, and removing many nonquery terms from
relevant documents may cause a relevant document to be nonrelevant. We leave fur-
ther exploration of this option as part of our future work.

4.2.4. TF-LN Balance Tests. TF (term frequency) and LN (length normalization) are
two important heuristics that are often coupled together in retrieval models due to the
need for TF normalization. We design three tests to examine the ability of a retrieval
function to balance TF and LN. The main idea is to increase the occurrences of the
query terms that are already in the documents. This has a mixed effect on the score of
a document: the score may be increased due to the increase of TF values, but it may
also be decreased due to the increased length of the document. Thus our tests would
reveal the overall influence of such perturbation on the retrieval performance. The
following three tests differ in how to pick the query terms whose occurrences are to be
increased.

Single query term growth test (TG1). We increase the term occurrence for only one
random query term, and use the internal term growth perturbation as follows.

t is a random query term, for every D ∈ D
if t ∈ D, perform aT(t, D, K).

This test is designed to increase term occurrence of one query term so that a query
term will dominate in a document. A retrieval function with a higher PR value for this
test is more robust against such dominance and favors documents containing more
distinct query terms.

Majority query term growth test (TG2). We can increase the term occurrences for all
but one random query term. This test can be defined as follows.

t is a random query term, for every D ∈ D
for every t′ ∈ Q − {t}, if t′ ∈ D, perform aT(t′, D, K).

The test is designed to increase term occurrences for majority query terms so that
only one query term will be less dominant in a document. Obviously this test is only
meaningful for queries with at least two terms, and in the case when there are ex-
actly two terms, it is the same as the previous test. A higher PR value indicates that
the function is more robust against such majority dominance and favors documents
containing more of the query terms (i.e., larger sum of all query term occurrences).

All query term growth test (TG3). We perform the internal term growth perturbation
for all query terms.

For every D ∈ D
for every t ∈ Q, if t ∈ D, perform aT(t, D, K).

This test is to examine whether the increase of TF can compensate for the score
loss caused by the length penalization. A retrieval function with higher PR value can
balance the TF and LN parts better.

The proposed tests and their interpretations are summarized in Table XIV.

5. DIAGNOSTIC TESTS ON REPRESENTATIVE RETRIEVAL FUNCTIONS

In this section, we perform the proposed diagnostic tests on the same four state-of-the-
art retrieval functions defined earlier in Eqs. (1)–(4), that is, pivoted normalization,
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Table XIV. Tests and Corresponding Interpretations

Test Interpretation of higher value in the results Label
length variance reduction have less gain on length normalization. LV1

length variance amplification be more robust to larger document variance. LV2
length scaling better at avoiding over-penalizing long documents. LV3

term noise addition penalize long documents more appropriately. TN
single query term growth favor documents with more distinct query terms. TG1

majority query term growth favor documents with more query terms. TG2
all query term growth balance TF and LN more appropriately. TG3

Table XV. Optimal Performance of Representative Functions
(short keyword queries)

Trec7 Trec8 Web AP DOE FR

Pivoted 0.176 0.244 0.288 0.227 0.179 0.218
Okapi 0.186 0.251 0.310 0.226 0.185 0.230

Dirichlet 0.186 0.257 0.302 0.224 0.180 0.202
PL2 0.183 0.257 0.314 0.222 0.185 0.216

Table XVI. Length Variation Robustness Test Results

Test Pivoted Okapi Dirichlet PL2 Desirable Value and Interpretation
LV1 0.914 0.845 0.883 0.864 Low → better implementation of LN

LV2 0.829 0.822 0.811 0.739 High → more robust in a collection
with higher length variance

LV3 0.850 0.927 0.826 0.928 High → better at avoiding
over-penalizing long documents

Okapi, Dirichlet prior, and PL2. The tests are conducted on the six datasets used in
Section 3. With the traditional Cranfield evaluation methodology, the optimal perfor-
mances of the four functions are similar on these datasets as shown in Table XV. Thus
these MAP values alone cannot help us understand the relative strengths and weak-
nesses of these four functions, making it hard to gain insights to further improve any
of them. We will show that the diagnostic tests are able to help us better understand
their underlying differences, diagnose their weaknesses, and gain insights about how
to improve their retrieval performance.

5.1. Length Variation Sensitivity Tests

Table XVI shows the results of three length variation sensitivity tests. Every value is
the average PR (i.e., performance ratio) on the six datasets. For the variance reduction
test (i.e., LV1), pivoted has the highest PR value, which means that it is least sensitive
to this test. On the other hand, Okapi has the lowest PR value, which means that
it loses the most when we “turned off” its length normalization part, indicating that
the length normalization part of Okapi is implemented more reasonably than other
functions.

For the length variance amplification test (i.e., LV2), pivoted has the highest PR
value, which means that it is the most robust one if we increase the length variances
in the collection. Thus, it means that the pivoted normalization function might be the
best choice if the document lengths vary a lot in the collection.

For the length scaling test (i.e., LV3), both Okapi and PL2 have the highest PR val-
ues, indicating that they are the most robust retrieval functions for this test. Since
this test has the same intuition as the LNC2 constraint, it can be regarded as a test to
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Table XVII. Additional Length Scaling Test Results

Pivoted Okapi Dirichlet PL2 Desirable value and interpretation
LV3-nonrel 0.11 0.20 0.89 0.61 Low → better at avoiding

over-penalizing long documents

LV3-rel 0.17 2.09 1.19 1.99 High → balance TF and LN better

Fig. 7. Additional length scaling tests:LV3-nonrel(Left), LV3-rel(Right).

examine how well a retrieval function avoids over-penalizing long documents. Thus,
the lower PR values of Dirichlet and pivoted indicate that these two functions might
not do a good job at avoiding over-penalizing long documents. Although this result is
similar to what we have already obtained through analytical checking of the LNC2
constraint, these tests can be applicable to any retrieval function to perform such
diagnostic analysis, whereas for some retrieval functions, we may not easily obtain
analytical conclusions regarding whether they satisfy LNC2.

To further verify our results of LV3, we design and perform two additional length
scaling tests. Instead of scaling all documents, we conduct two tests where we scale
only nonrelevant documents (i.e., LV3-nonrel) and only relevant documents (i.e., LV3-
rel), respectively. The results are shown in Table XVII and Figure 7. In the LV3-
nonrel test, all the nonrelevant documents become longer. We would expect that a
retrieval function that penalizes long documents more harshly to have a higher PR
value. Dirichlet has the highest PR value, followed by PL2, indicating that they both
tend to penalize long documents more harshly than Okapi or pivoted normalization.
In the LV3-rel test, both term frequency and document length grow in all relevant
documents. We expect that a retrieval function that balances TF and LN well would
get a higher PR value. The lowest PR value of pivoted indicates that it does not balance
the growth of TF and LN as well as the other functions, whereas Okapi and PL2 seem
to be the best in balancing TF and LN.

5.2. Term Noise Resistance Tests

Table XVIII and Figure 8 show the results of term noise resistance tests where noisy
terms are added to all the documents. The lowest PR value of Dirichlet indicates that
Dirichlet does not penalize long documents as appropriately as others.

To further understand the results, we design one additional test (i.e., TN-nonrel).
Instead of performing the test on all the documents, we perform it only on nonrele-
vant documents. Thus, when we do more perturbation, the length of a nonrelevant
document would become longer, and we expect that a retrieval function penalizing
long documents more harshly would perform much better when we do more perturba-
tion. Figure 9 shows the results for TREC7. The curve for other datasets are similar.
The performance of Dirichlet grows more quickly, indicating that it penalizes the long
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Table XVIII. Noise Resistant Test Results

Pivoted Okapi Dirichlet PL2 Desirable value and interpretation

TN (constant) 0.940 0.932 0.896 0.882 High → penalize long documents better
TN (linear) 1 1 0.826 1 High → penalize long documents better

TN-nonrel 1.19 1.26 2.94 1.79 Low → better at avoiding
(constant) over-penalizing long documents

TN-nonrel 1.49 1.66 4.03 2.67 Low → better at avoiding
(linear) over-penalizing long documents

Fig. 8. Term noise addition tests (TN).

Fig. 9. Additional term noise tests (TN-nonrel).

documents more harshly, which is consistent with our findings in the nonrelevant doc-
ument length scaling test (i.e., LV3-nonrel).

5.3. TF-LN Balance Tests

The results of TF-LN balance tests are summarized in Table XIX. It is clear that PL2
has the highest scores for most of the tests, indicating that in general, PL2 can balance
TF and LN better than the other three functions.

However, there appears to be no clear pattern among pivoted normalization, Okapi,
and Dirichlet prior. After looking into the trends of performance (as we make more
perturbations) for these tests, we found that Dirichlet prior behaves differently from
the other three functions. In Figure 10, we show the trend curves on TREC 7 for
the single term growth and majority term growth tests. Here we see that while in
general the performances of all the methods drop as we increase K (i.e., the amount
of perturbation), the performance of Dirichlet prior drops much more quickly after K
becomes larger than 1,000.

There are two possible causes of this sudden drop: either some relevant documents
ended up being penalized or some nonrelevant documents ended up being rewarded
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Table XIX. TF-LN Balance Test Results (Larger value is better)

Pivoted Okapi Dirichlet PL2

single constant 0.840 0.854 0.85 0.864
(TG1) linear 0.827 0.881 0.875 0.932

majority constant 0.802 0.798 0.823 0.838
(TG2) linear 0.775 0.773 0.817 0.914

all constant 0.730 0.721 0.694 0.703
(TG3) linear 0.793 0.897 0.870 0.932

Fig. 10. Single and majority term growth tests.

Fig. 11. Single and majority term growth + Equal Len.

as a result of the perturbation. Based on the analysis from previous length-related
tests, we know that Dirichlet tends to penalize long documents more harshly, thus one
possible explanation for this sudden drop is that when K is very large, the potential
increase in the score of a document due to the increased occurrences of query terms
cannot compensate for the decrease caused by the increase of document length. Since
relevant documents tend to have more query terms, they get penalized more than
nonrelevant documents, leading to the quick degradation of performance.

To further look into this hypothesis, we perform another set of tests, that is, after
performing query term growth tests, we perform a length variance reduction test again
to make all the document lengths equal. In this way, we hope to factor out the effect
of length normalization. The results are shown in Figure 11. We see that Dirichlet
prior still has a quick drop for the single term growth test, which means that the drop
was probably not caused by penalizing relevant documents (due to length normaliza-
tion). Thus it is more likely that the reason was because some nonrelevant documents
were rewarded because of excessive occurrences of a single query term. This prob-
lem appears to be less serious in the case of majority term growth, which may be be-
cause when more query terms are repeated simultaneously in the documents, relevant
documents will likely benefit more than nonrelevant documents. Thus Dirichlet prior
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Fig. 12. All query term growth tests.

Table XX. Additional TF-LN Balance Test Results
(Perturb Nonrelevant Docs Only)

Pivoted Okapi Dirichlet PL2

single constant 0.455 0.680 1.29 1.21
(TG1) linear 0.383 0.624 1.41 1.19

majority constant 0.417 0.637 1.58 1.36
(TG2) linear 0.292 0.517 1.93 1.34

all constant 0.222 0.425 1.93 0.839
(TG3) linear 0.113 0.284 2.39 0.967

appears to differ from other methods in that it tends to rely more on the overall counts
of terms, including repeated occurrences of the same term, when scoring a document,
while others may put more emphasis on the matching of more distinct query terms.
This distinct characteristic of Dirichlet prior is likely related to the independence as-
sumption about multiple occurrences of the same term made in the Dirichlet prior
method (which means that we would treat multiple occurrences of the same term as
independent evidences).

For the all query term growth test, the results for constant growth and linear growth
are not conclusive, as shown in Figure 12 and Table XX. In the linear growth test,
pivoted has the smallest PR value, which means that it cannot balance TF and LN
very well in these cases, because the increase of TF in pivoted cannot compensate for
the penalty caused by the document length. This observation is also consistent with
our analysis of the relevant document length scaling test.

5.4. Summary of Diagnostic Evaluation Results

All the results presented in the previous subsection clearly demonstrate that the pro-
posed diagnostic tests can help pinpoint the weaknesses and strengths of the four
functions. Here we briefly summarize our findings in Table XXI. Instead of presenting
results measured by PR, we give a confidence score to every pairwise comparison. The
confidence score is computed by the percentage of the datasets supporting the conclu-
sion. For example, if 5 out of 6 datasets show that A performs better than B for test T,
we have 83.3% confidence to say that A performs better than B for test T.

Comparing the findings from constraint analysis (as shown in Table VI) with those
from diagnostic tests (as shown in Table XXI), we observe that many findings from
these two strategies are consistent. First, constraint analysis shows that Okapi is
the only retrieval function that satisfies both LN constraints, which is consistent with
the results of LV1 test, that is, the implementation of LN in Okapi is better. Second,

ACM Transactions on Information Systems, Vol. 29, No. 2, Article 7, Publication date: April 2011.



Diagnostic Evaluation of Information Retrieval Models 7:29

Table XXI. Summary of Diagnostic Results I (>> Means More Desirable, ? Represents Uncertainty)

Tests P vs. D O vs. D O vs. P O vs. L L vs. P L vs. D
LV1 D >> P O >> D O >> P O >> L L >> P L >> D

(66.7%) (83.3%) (100%) (66.7%) (100%) (66.7%)
Okapi has better implementation of LN

LV2 D << P D << O O << P O >> L L?P L?D
(83.3%) (83.3%) (66.7%) (66.7%) (50%) (50%)

Piv. performs better in high-variance collections

LV3 P >> D O >> D O >> P O?L L >> P L >> D
(83.3%) (100%) (66.7%) (50.0%) (83.3%) (83.3%)

Dir.&PL2 over-penalize long documents

LV3-nonrel P >> D O >> D P >> O O >> L L << P L >> D
(100%) (100%) (100%) (83.3%) (100%) (83.3%)

Dir.&PL2 over-penalize long documents
LV3-rel D >> P O >> D O >> P O?L L >> P L >> D

(100%) (83.3%) (100%) (50%) (100%) (100%)
Piv. does not balance TF and LN well

TN constant P >> D O >> D P >> O O >> L L << P L << D
(83.3%) (66.7%) (66.7%) (100%) (100%) (83.3%)

linear P >> D O >> D P = O O = L L = P L >> D
(100%) (100%) (100%) (100%) (100%) (100%)

Dir. over-penalizes long documents
TN constant P >> D O >> D P >> O O >> L L << P L >> D

-nonrel (83.3%) (100%) (66.7%) (100%) (100%) (100%)
linear P >> D O >> D P >> O O >> L L << P L >> D

(100%) (100%) (66.7%) (100%) (100%) (100%)
Dir. over-penalizes long documents

TG1 constant P >> D O >> D O >> P O << L L >> P L >> D
(100%) (100%) (66.7%) (83.3%) (83.3%) (66.7%)

linear P >> D O >> D O >> P O << L L >> P L >> D
(66.7%) (83.3%) (66.7%) (66.7%) (100%) (83.3%)

Okapi favors documents with more distinct query terms; PL2 balances TF-LN well
TG2 constant D >> P D >> O P >> O O << L L >> P L?D

(66.7%) (83.3%) (66.7%) (100%) (83.3%) (50%)
linear D >> P D >> O P >> O O << L L >> P L >> D

(100%) (100%) (66.7%) (100%) (100%) (100%)
Dir. favors documents with more query terms; PL2 balances TF-LN well

TG3 constant D?P O >> D O >> P O >> L L << P L >> D
(50%) (66.7%) (66.7%) (83.3%) (83.3%) (83.3%)

linear D >> P D >> O O >> P O << L L >> P L >> D
(100%) (66.7%) (66.7%) (66.7%) (100%) (100%)

Piv. does not balance TF and LN well; PL2 balances TF-LN well

P denotes pivoted, O denotes okapi, D denotes Dirichlet and L denotes PL2

Dirichlet is diagnosed to over-penalize long documents based on both constraint
analysis (i.e., LNC2) and diagnostic tests (i.e., LV3, LV3-nonrel, TN, and TN-nonrel).
Finally, pivoted does not balance the TF and LN well based on the TF-LNC, LNC2,
LV3-rel test, and TG3 test.
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Table XXII. Weaknesses of Functions and Supporting Constraints/Tests

Weaknesses Constraints Diagnostic tests

Piv. can not balance TF and LN well TF-LNC LV3 (rel), TG3
penalizes long documents more harshly LNC2 LV3

does not favor documents with more query terms — TG2

Ok. does not favor documents with more query terms — TG2
Dir. penalizes long documents more harshly LNC2 LV3, LV3-nonrel,

TN, TN-nonrel
under-rewards matching more distinct query terms — TG1

PL2 overly-penalizes noise-dominated long documents — TN, TN-nonrel

Although these findings from both constraint analysis and diagnostic tests are sim-
ilar, the diagnostic tests are complementary with constraint analysis. Depending on
the form of a retrieval function, it may be mathematically challenging to draw a clear
conclusion from formal constraint analysis, thus constraint analysis alone may not be
sufficient; in contrast, the diagnostic tests can be applied to any retrieval function to
experimentally analyze how well it satisfies various properties. Moreover, diagnostic
tests can also provide additional information that can not be found using constraint
analysis. For example, we could identify the unique advantage of pivoted, that is, it
performs better when the document collection has larger length variance. Also, con-
straint analysis was unable to reveal subtle differences in the implementations of TF in
the analyzed retrieval functions, but diagnostic tests can reveal the unique strengths
and weaknesses of TF implementation in these retrieval functions. In particular, the
diagnostic tests show that PL2 can balance the TF and LN better than the other three
functions while the constraints analysis cannot show it.

Based on the results from constraint analysis and diagnostic tests, we summa-
rize the weaknesses of every function in Table XXII. In the next section, we will
show how we can leverage these findings to improve the state-of-the-art retrieval
functions.

6. IMPROVING RETRIEVAL FUNCTIONS

We now present several ways to modify existing retrieval functions based on the re-
sults of diagnostic tests, and compare the performance (i.e., MAP) of the modified
functions with the existing retrieval functions. In addition to evaluating the modi-
fied retrieval functions on the datasets that we used to diagnose the original retrieval
functions (which can indicate whether our diagnostic evaluation method can indeed
provide useful guidance for improving the performance of a retrieval function on the
same datasets), we also evaluate the modified functions on the following two addi-
tional standard TREC collections to see whether our improvement can be generalized
to other collections.

— Robust04. TREC disk45 (minus congressional record) with 249 official topics of
Robust track in 2004.

— Robust05. AQUAINT data with 50 official topics used in Robust track 2005.

In all the result tables, and indicate that the improvement is statistically
significant according to Wilcoxon signed rank test at the level of 0.05 and 0.1,
respectively.
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Table XXIII. Improvement of LN Modifications

Trec7 Trec8 Web AP DOE FR Robust04 Robust05

Piv. 0.176 0.244 0.288 0.227 0.179 0.218 0.241 0.200
MPln 0.181 0.250 0.306 0.227 0.180 0.231 0.245 0.201

Dir. 0.186 0.257 0.302 0.224 0.180 0.202 0.251 0.196

MDln 0.187 0.260 0.318 0.225 0.182 0.205 0.251 0.196

Table XXIV. LV test results for Modified
Functions (over Six Datasets)

Tests LV1 LV2 LV3
Desirable value Low High High

Pivoted 0.914 0.829 0.850
MPln 0.888 0.839 0.930

Dirichlet 0.883 0.811 0.826
MDln 0.869 0.816 0.906

6.1. Improving Length Normalization

Both constraint analysis and diagnostic tests indicate that pivoted and Dirichlet suffer
the problem of penalizing long documents too harshly. Thus one way to improve them
is to modify their length normalization components heuristically as follows.

MPln : S(Q, D) =
∑

t∈Q∩D

c(t, Q) × TFPiv(t, D) × IDFPiv (t)
LNPiv(D)λ

MDln : S(Q, D) =
∑

t∈Q∩D

c(t, Q) × TFIDFDir(t, D) − |Q| × LNDir(D)λ

where 0 < λ ≤ 1 and

IDFPiv (t) = ln(
N + 1
df (t)

)

TFPiv(t, D) = 1 + ln(1 + ln(c(t, D)))

LNPiv(D) = 1 − s + s
|D|
avdl

TFIDFDir(t, D) = ln(1 +
c(t, D)

μ × p(t|C)
)

LNDir(D) = ln(1 +
|D|
μ

)

A comparison of the upper-bound performance (i.e., optimized performance) of the
modified functions and the original functions is shown in Table XXIII. It shows
that such length normalization modification indeed improves the performance in both
cases. We also perform the diagnostic tests for these modified functions over the same
six datasets that we used for such analysis earlier. Table XXIV shows that the PR val-
ues of these modified functions are now more desirable (i.e., lower for LV1 and higher
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Table XXV. Improvement of TF Modifications

Trec7 Trec8 Web AP DOE FR Robust04 Robust05

Piv. 0.176 0.244 0.288 0.227 0.179 0.218 0.241 0.200
MPtf1 0.182 0.248 0.293 0.227 0.185 0.222 0.245 0.201

MPtf2 0.182 0.250 0.297 0.227 0.187 0.216 0.246 0.200

Dir. 0.186 0.257 0.302 0.224 0.180 0.202 0.251 0.196
MDtf1 0.190 0.261 0.313 0.229 0.183 0.227 0.254 0.204

MDtf2 0.188 0.257 0.313 0.229 0.185 0.218 0.252 0.203

for other tests) than the original ones in all the LV tests, which indicates that the
modified functions have better implementation of the length normalization part.

6.2. Improving TF Implementations

The diagnostic results show that the TF implementation of Dirichlet and that of
Okapi/pivoted represent two extreme cases: one is to favor documents with more query
terms (i.e., larger sum of all query term occurrences), one is to favor documents with
more distinct query terms. An ideal TF can be hypothesized to lie in somewhere be-
tween the two extremes. Based on this intuition, we heuristically modify the pivoted
and Dirichlet as follows.

MPtf1 : S(Q, D) =
∑

t∈Q∩D

c(t, Q) × tf idf1(t, D)
LNPiv(D)

MPtf2 : S(Q, D) =
∑

t∈Q∩D

c(t, Q) × tf idf2(t, D)
LNPiv(D)

MDtf1 : S(Q, D) =
∑

t∈Q∩D

c(t, Q) × tf idf1(t, D) − |Q| × LNDir(D)

MDtf2 : S(Q, D) =
∑

t∈Q∩D

c(t, Q) × tf idf2(t, D) − |Q| × LNDir(D)

where

tf idf1(t, D) = α × TFPiv(t, D) × IDFPiv(t) + (1 − α) × TFIDFDir(t, D)
tf idf2(t, D) = α × TFOk(t, D) × IDFPiv(t) + (1 − α) × TFIDFDir(t, D)

TFOk(t, d) =
2.2 × c(t, D)
1.2 + c(t, D)

and μ = 2000 in TFIDFDir(t, d), 0 ≤ α ≤ 1 and other notations are the same as
explained at the beginning of the section.

The optimal performance of the modified retrieval functions and that of the original
retrieval functions are compared in Table XXV. The results show that the modification
can indeed improve performance. In addition, Table XXVI shows that the PR values
of these modified functions are higher than the original ones in TG1 and TG2 tests,
which means that the modification corresponds to better implementation of the TF
component.
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Table XXVI. TG (constant) Test Results for
Modified Functions (over Six Datasets)

Tests TG1 TG2 TG3
Desirable value High High High

Pivoted 0.840 0.802 0.730
MPtf1 0.861 0.836 0.723
MPtf2 0.866 0.844 0.721

Dirichlet 0.85 0.823 0.694
MDtf1 0.857 0.828 0.697
MDtf2 0.862 0.835 0.690

Table XXVII. Additivity of TF and LN Modifications

Trec7 Trec8 Web AP DOE FR Robust04 Robust05

Piv. 0.176 0.244 0.288 0.227 0.179 0.218 0.241 0.200
MPln 0.181 0.250 0.306 0.227 0.180 0.231 0.245 0.201

MPtf2 0.182 0.250 0.297 0.227 0.187 0.216 0.246 0.200
MPtf2ln 0.186 0.257 0.314 0.228 0.187 0.236 0.251 0.204

Dir. 0.186 0.257 0.302 0.224 0.180 0.202 0.251 0.196

MDln 0.187 0.260 0.318 0.225 0.182 0.205 0.251 0.196
MDtf2 0.188 0.257 0.313 0.229 0.185 0.218 0.252 0.203

MDtf2ln 0.190 0.263 0.322 0.230 0.185 0.228 0.255 0.203

Okapi 0.186 0.251 0.310 0.226 0.185 0.225 0.248 0.201
PL2 0.183 0.257 0.314 0.212 0.188 0.216 0.252 0.196

6.3. Additivity of Modified TF and LN Implementations

Since both LN and TF modifications are effective, we can combine them in the
following way.

MPtf2ln : S(Q, D) =
∑

t∈Q∩D

c(t, Q) × tf idf2(t, D)
LNPiv(D)λ

MDtf2ln : S(Q, D) =
∑

t∈Q∩D

c(t, Q) × tf idf2(t, D) − |Q| × LNDir(D)λ

The performance is reported in Table XXVII. Indeed, the combined modifications
perform better than not only the original retrieval functions but also the individual
modifications in almost all the cases based on comparisons of their optimal perfor-
mances. As a reference, we also include the optimal performance of Okapi and PL2
in the last two rows of the table; we see that both of our new functions (MPtf2ln and
MDtf2ln) also perform better than Okapi and PL2 in most cases. The additivity of
performance improvement of LN and TF presumably comes from the fact that they
capture different weaknesses in a retrieval function (i.e., length normalization and TF
implementation), which once again confirms the usefulness of the diagnostic tests for
obtaining insights to improve a retrieval function.

6.4. Further Evaluation of MPtf2Ln and MDtf2Ln

The results in Table XXVII show that the two derived new functions, MPtf2Ln and
MDtf2Ln, perform better than all the existing retrieval functions not only on the
datasets used to derive them but also on the two new datasets (i.e., Robust04 and
Robust05). However, these results are based on the optimal performances of all the
involved retrieval functions. Since the two new functions both have two additional
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Fig. 13. Parameter sensitivity: λ(Left), α(Right).

Fig. 14. Comparison of new functions with their corresponding original functions (left: MPtf2ln; right:
MDtf2ln).

parameters, that is, α and λ, we now look into the sensitivity of performance to these
parameters. In both functions, α controls the degree of TF modification, while λ con-
trols the degree of LN modification.

To examine the sensitivity to each parameter, we plot their sensitivity curves com-
puted on the TREC7 dataset in Figure 13. Since α only affects the TF implementation,
we plot its sensitivity curves using functions MPtf1, MPtf2, MDtf1, and MDtf2; sim-
ilarly, λ only affects length normalization, thus we plot its sensitivity curves using
functions MPln and MDln.

From these curves, we see that the performance is less sensitive to parameter α
than parameter λ, which may be because our modification of TF is more conservative
than the modification of length normalization. But it clearly shows that the optimality
of the length normalization component in a retrieval function can affect the retrieval
performance significantly. It appears that the optimal value of α is around 0.3 while
that of λ is around 0.7, and if they are set nonoptimally, the modifications may not
improve performance.

To compare our modified functions with the original functions more fairly, we set
α = 0.3 and λ = 0.7 in both MPtf2ln and MDtf2ln. With these two parameters fixed,
these two functions now both have precisely one parameter just like their correspond-
ing original functions (i.e., s for MPtf2Ln and μ for MDtf2ln). We tune this single
parameter for both the original functions and the new functions and compare their sen-
sitivity curves on Robust04 and Robust05 in Figure 14. Since these two functions have
been developed based on the other six datasets, comparing them with their original
retrieval functions over these two new datasets would indicate well whether the new
functions are generally more effective than the original functions. From this figure,
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Table XXVIII. Performance with Fixed Parameter Values

Trec7 Trec8 Web AP DOE FR Robust04 Robust05

Piv. 0.163 0.225 0.200 0.219 0.179 0.168 0.222 0.170
MPtf2ln 0.178 0.245 0.255 0.225 0.186 0.210 0.244 0.193

(+9%) (+8%) (+28%) (+3%) (+4%) (+25%) (+10%) (+14%)

Dir. 0.186 0.251 0.301 0.224 0.180 0.189 0.246 0.196
MDtf2ln 0.187 0.258 0.320 0.229 0.183 0.214 0.250 0.200

(+0.5%) (+3%) (+6%) (+2%) (+2%) (+13%) (+2%) (+2%)

it is clear that both new functions improve over their corresponding original existing
functions for essentially the entire range of the parameter values.

We further show a detailed comparison of these two new functions with their corre-
sponding original functions on all the eight datasets in Table XXVIII. We set α = 0.3
and λ = 0.7 for both MPtf2ln and MDtf2ln, and set s = 0.2 and μ = 2000 for all
the functions, which are the default values suggested in the previous studies [Singhal
2001; Zhai and Lafferty 2001a].

The results show that both MPtf2ln and MDtf2ln consistently improve over their
original functions on all the datasets. The improvement of MPtf2ln over the pivoted
normalization baseline is generally greater than that of MDtf2ln over the Dirichlet
prior baseline, which is consistent with the upper-bound performance comparison
shown in Table XXVII. Also, for both functions, the improvement on the two datasets
known to have high variances in document lengths (i.e., Web and FR) appears to be
more significant than on other datasets. This is likely because on those two datasets,
the gain from improved document length normalization is more significant.

Thus, all these results show that MPtf2ln and MDtf2ln (with α = 0.3 and λ = 0.7)
can be recommended as improved versions of the original pivoted length normalization
and Dirichlet prior retrieval functions.

7. DISCUSSION

A fundamental assumption made in our overall diagnostic methodology is that a good
understanding of the weaknesses of a retrieval function is required in order to im-
prove the function, and it is possible to discover and characterize the weaknesses of
a retrieval function through examining how well it satisfies some desirable properties
that we would expect a good retrieval function to satisfy. In this article, we proposed
two synergistic ways to achieve this.

First, we can formally define constraints that we want a retrieval function to satisfy
based on major retrieval heuristics such as TF-IDF weighting and document length
normalization, and check analytically whether a retrieval function satisfies each con-
straint. These constraints are meant to capture general “universal” properties that
we want every reasonable retrieval function to satisfy, thus they are defined inde-
pendently of specific relevance judgments for a query. A significant advantage of
defining the constraints independently of relevance judgments is that we can study
and compare retrieval functions analytically without needing experimentation. How-
ever, because of their generality, the defined constraints tend to be loose and far from
sufficient. Thus, while violation of a constraint implies weakness of a function and
poor empirical performance, satisfying all the constraints does not guarantee good
performance.

In the second way, we design diagnostic tests to experimentally check whether a re-
trieval function exhibits desirable empirical behaviors on test collections. Specifically,
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we will perturb a test collection to artificially vary certain statistical characteristics of
documents and queries and check how a retrieval function responds to such perturba-
tion. While both aim at revealing specific behavior of a retrieval function, the second
way complements the first way in that: (1) the diagnostic tests can reveal differences
between retrieval functions even when they satisfy the same set of constraints, and (2)
the diagnostic tests can be applied to any retrieval function while analytical analysis of
constraints may be mathematically challenging for some retrieval functions. The diag-
nostic tests can also help researchers discover new constraints to enhance constraint
analysis, while constraint analysis can provide guidance on what diagnostic tests may
be useful.

Our study has demonstrated the usefulness of both ways of analyzing a retrieval
function. Some of the state-of-the-art retrieval functions that we analyzed have been
proposed for a long time. The fact that they still represent the state-of-the-art today
suggests the difficulty in further improving them.3 Thus the consistent improvement
of our modified retrieval functions over the original functions on all the datasets is
quite encouraging. Since our modification is directly guided by the results from the
diagnostic tests, this indicates that the proposed diagnostic evaluation methodology
can be used to effectively diagnose weaknesses and strengths of retrieval functions
and generate insights about how to improve them; without such guidance, it would
have been difficult to generate a new robust function that can consistently perform
better than these state-of-the-art functions.

However, our study also has some limitations. First, although we have shown that
the results of diagnostic evaluation of retrieval functions provide direct guidance for
improving a retrieval function, our way of modifying the existing retrieval functions
is somewhat ad hoc. It would be much more interesting to further explore more prin-
cipled ways to address the weaknesses of these retrieval functions revealed through
diagnostic evaluation. Second, the TF part and LN part in the Okapi and the TF
part and IDF part in the PL2 cannot be separated easily, which makes it harder to
address the weaknesses of each component separately. Although the results in Ta-
ble XXVII show that both MPtf2ln and MDtf2ln can potentially perform better than
Okapi and PL2, it is still unclear how we can directly modify Okapi and PL2 to address
its weakness. Another limitation is that the constraints and diagnostic tests defined in
this article are restricted to the bag-of-words representation. Although the proposed
general diagnostic evaluation methodology is potentially applicable to analyzing re-
trieval functions based on other representations, how to further develop additional
constraints and tests is, in general, challenging.

8. RELATED WORK

Many different retrieval models have been proposed, including vector space mod-
els [Salton 1989; Salton and McGill 1983; Salton et al. 1975], probabilistic models
[Amati and Rijsbergen 2002; Fuhr 1992; Lafferty and Zhai 2003; Ponte and Croft
1998; Robertson and Sparck Jones 1976; Turtle and Croft 2003; van Rijbergen 1977],
and logic-based models [Fuhr 2001; van Rijsbergen 1986; Wong and Yao 1995]. Our
work provides a general methodology for diagnosing weaknesses and strengths of dif-
ferent retrieval models so as to gain insights about how to improve them. We have
shown that the proposed diagnostic evaluation method can allow us to better under-
stand four representative state-of-the-art models (i.e., the pivoted length normaliza-
tion model [Singhal et al. 1996a, 1998], the Okapi/BM25 retrieval model [Robertson

3There are improved models (e.g., those based on pseudofeedback) that can outperform these basic models,
but those models generally use additional information and are computationally more expensive.
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and Walker 1994], the Dirichlet prior language model [Zhai and Lafferty 2001a]), and
the PL2 model [Amati and Rijsbergen 2002; He and Ounis 2005], and further derive
improved versions of some of them.

Evaluation of an information retrieval system has been extensively studied (see,
e.g., Sparck Jones and Willett [1997] and Voorhees [2007]). Some recent studies have
focused on how to create a better pool and how to reduce the pool size while main-
taining the confidence of the evaluation results [Carterette and Allan 2005; Carterette
et al. 2006; Cormack et al. 1998; Sanderson and Joho 2004; Soboroff et al. 2001; Zobel
and Moffat 1998]. These studies mainly aim at establishing an evaluation methodology
to evaluate a retrieval system from the perspective of the utility to users. As a result,
the evaluation results are not always informative enough to directly explain perfor-
mance differences among retrieval functions or provide guidance on how to improve
the performance of a retrieval function. This is especially true when two retrieval
functions perform similarly. The proposed diagnostic evaluation method in this article
extends the traditional evaluation methodology to enable diagnosis of weaknesses of
retrieval functions through constraint analysis and diagnostic tests.

Studies of the pivoted normalization function Singhal et al. [1996a, 1998] demon-
strate that a retrieval function can be improved if we could pinpoint its weakness.
[Singhal et al. 1996a] observed the deficiency of a particular length normalization
method, and proposed the pivoted normalization technique to modify the normaliza-
tion function. They later noticed the poor performance of the logarithmic tf-factor on
a TREC collection, found another deficiency of the implementation of the term fre-
quency part [Singhal et al. 1998], and modified the TF part accordingly. However,
their methods are not general and cannot be easily applied to identify weaknesses in
other aspects; in contrast, the proposed diagnostic methodology in this article is more
general and can be potentially applied to many retrieval heuristics.

Previous work [Salton and Buckley 1988; Zobel 1998] has also attempted to iden-
tify an effective retrieval formula through extensive empirical experiments, but the
results are generally inconclusive with some formulas performing better under some
conditions. Our diagnostic evaluation method offers more detailed and systematic un-
derstanding of how well a retrieval function implements various heuristics, directly
providing insights about how to improve a retrieval function.

The proposed perturbation-based diagnostic methodology assumes that retrieval
performance is closely related to the robustness of a retrieval function to noisy data,
which is in spirit similar to some previous work on noisy data [Lopresti and Zhou 1996;
Singhal et al. 1996b]. A similar idea has also been used to predict query performance
in Zhou and Croft [2006]. The RIA workshop [Harman and Buckley 2004] has resulted
in some interesting observations about the empirical behavior of retrieval functions
through a group effort on manually analyzing performance patterns of different re-
trieval functions. Wong and coauthors [Wong et al. 2001] proposed an inductive theory
for evaluation, but the proposed theory is too abstract to deal with term weighting.
On the contrary, our proposed methodology provides an effective way of evaluating
different term weighting strategies implemented in retrieval functions.

The formalization of retrieval constraints was initially reported in Fang et al. [2004].
In this article, we extended and restructured the constraints slightly, and we further
propose a supplementary diagnostic evaluation method based on collection perturba-
tion. Retrieval constraints have been leveraged to derive new robust and effective
retrieval functions (called the axiomatic approach) through searching in the “neigh-
borhood” of existing retrieval functions for a better function [Fang and Zhai 2005] and
accommodating semantic term matching [Fang 2008; Fang and Zhai 2006]; these re-
lated studies can be regarded as successful applications of the proposed diagnostic
evaluation methodology.

ACM Transactions on Information Systems, Vol. 29, No. 2, Article 7, Publication date: April 2011.



7:38 H. Fang et al.

9. CONCLUSIONS AND FUTURE WORK

Understanding weaknesses of state-of-the-art retrieval functions is essential to fur-
ther improve them. In this article, we propose a novel general methodology to diagnose
weaknesses and strengths of a retrieval function. The basic idea is to check how well a
retrieval function implements necessary retrieval heuristics. We propose two comple-
mentary ways to achieve this through analytical constraint analysis and experimental
diagnostic tests, respectively.

To analytically predict and compare the performance of a retrieval function, we
formally define seven basic constraints that any reasonable retrieval function should
satisfy, capturing several common heuristics, such as term frequency weighting, term
discrimination weighting, and document length normalization. We check these seven
constraints on four representative retrieval formulas analytically and derive specific
conditions when a constraint is conditionally satisfied. The results of constraint analy-
sis suggest several interesting hypotheses about the expected performance behavior of
these retrieval functions. We design experiments to test these hypotheses using dif-
ferent types of queries and different document collections. We find that in many cases
the empirical results indeed support these hypotheses. Specifically, when a constraint
is not satisfied, it often indicates nonoptimality of the method. This is most evident
from the analysis of Okapi and PL2, based on which we successfully predicted the
nonoptimality of these two functions for verbose queries. In some other cases, when
a method only satisfies a constraint for a certain range of parameter values, its per-
formance tends to be poor when the parameter is out of this range, which is shown in
the analysis of the pivoted normalization function and the PL2 function. In general,
we find that the empirical performance of a retrieval formula is tightly related to how
well they satisfy these constraints. Thus the proposed constraints can provide a good
explanation of many empirical observations (e.g., the relatively stable performance of
the Okapi formula) and make it possible to evaluate a retrieval function analytically,
which is extremely valuable for testing new retrieval models. Moreover, when a con-
straint is not satisfied by a retrieval function, it often also suggests a way to improve
the retrieval formula.

Since constraint analysis is insufficient if the analyzed retrieval function satisfies all
the constraints or analytical analysis of constraints is mathematically difficult, we fur-
ther propose a diagnostic evaluation methodology to evaluate experimentally how well
a retrieval function satisfies various retrieval heuristics and diagnose weaknesses and
strengths of the retrieval function. We formally define a set of relevance-preserving
collection perturbation operators which can change collection characteristics so as to
reveal the weaknesses and strengths of retrieval functions in their implementation of
a specific retrieval heuristic. These operators serve as basic tools for us to perform
diagnostic tests. We present a common procedure to design the diagnostic tests for re-
trieval models. Following the procedure, we design three sets of diagnostics tests and
perform the tests on six representative datasets. Experiments show that the proposed
methodology can: (1) identify the weaknesses and strengths of a retrieval function, (2)
explain the empirical differences among retrieval functions, and (3) give hints on how
a retrieval function should be modified to further improve the performance. Based
on the hints obtained from the diagnostic tests, we derived two new retrieval func-
tions MPtf2ln and MDtf2ln as improved versions of the pivoted length normalization
retrieval function and the Dirichlet prior retrieval function, respectively. Both have
been shown to outperform their corresponding original functions not only on the six
datasets used to derive them, but also on two new datasets.

Improving existing retrieval models is known to be a hard, yet very important, fun-
damental problem. The proposed diagnostic evaluation methodology offers a new way
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to help researchers diagnose weaknesses and strengths of a retrieval function and
gain insights about how to improve the function. Our work opens up many interest-
ing future research directions. First, we have only managed to formalize three basic
retrieval heuristics (TF, IDF, and document length normalization) in this article; yet,
as we have shown, they are already very useful for analytically evaluating a retrieval
function. It should be very interesting to further explore, formalize, and test additional
retrieval heuristics (e.g., proximity [Tao and Zhai 2007]). With more constraints, con-
straint analysis would be even more powerful. Second, as in the case of constraints,
it is also very interesting to design more diagnostic tests to discover more interest-
ing characteristics of different retrieval functions. It is also interesting to study the
potential equivalence of a perturbation to a collection and a change to the functional
form of a retrieval function. For example, smoothing of a document language model
using a smoothing method such as Dirichlet prior may be regarded as perturbing a
collection by adding pseudocounts of terms to each document. Third, in this article,
we have used the insights obtained from diagnostic evaluation of retrieval functions
to heuristically improve some existing retrieval functions. Although the improved ver-
sions of these functions are shown to be more effective than the original functions, it
would be more interesting to study how to systematically address the weaknesses of a
retrieval function in a more principled way than simply introducing heuristic parame-
ters. Fourth, the analysis in this article is restricted to the four basic retrieval models
with no pseudofeedback; it would be interesting to apply the proposed method to an-
alyze and improve pseudofeedback methods and more advanced estimation methods
for language models (e.g., Lavrenko and Croft [2001] and Zhai and Lafferty [2001b]).
Finally, we plan to extend our diagnostic evaluation study by exploring more rigorous
mathematical formulations.

APPENDIX

Appendix: Constraint Analysis

We now provide more details for the constraint analysis results described in Section 3.
Instead of going through all constraints, we will focus on only a few as the representa-
tives ones.

The constraints analysis for the three TFCs are similar. We will use TFC1 as an
example to show how to get the constraint analysis results for TFC constraints. TFC1
requires that the first partial derivative of a retrieval function with respect to term
count, that is, c(t, D) should be positive when c(t, D) is larger than 0. With the notation
x = c(t, D), we can rewrite the first partial derivative of a retrieval function S as a
function of x, that is, fS(x).

fpiv(x) =
c(t, Q)log N+1

df (t)

1 − s + s |D|
avdl

× 1
(1 + ln(x)) × x

fokapi(x) =
k1 · (k1 + 1) · (1 − b + b |D|

avdl )

(k1 · (1 − b + b |D|
avdl ) + x)2

× ln
N − df (t) + 0.5

df (t) + 0.5
× (k1 + 1) × c(t, D)

k1((1 − b ) + b |D|
avdl ) + c(t, D)

fdir(x) =
c(t, Q)

(1 + x
μ·p(t|C) ) × 1

μ·p(t|C)

It is clear that fpiv and fdir are both larger than 0 when x is larger than 0. Thus,
it means that pivoted normalization and Dirichlet prior can satisfy the TFC1 uncondi-
tionally. Moreover, it is clear that whether the value of fokapi(x) is larger than 0 depends
on whether the value of lnN−df (t)+0.5

df (t)+0.5 is larger 0, so Okapi satisfies TFC1 conditionally.
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For the PL2 method, for the simplicity, we can take the derivative of tfnD
t instead of

c(t, D). Assuming x = tfnD
t , we get

fpl2(x) =
1

(1 + x)2 × (x + log(λt · x) +
1
2x

− log2(2π · x)
2

− log2e
a

).

When x = 1, we have fpl2(x) = 1 + log(λt) + 0.5 − log(2π) ∗ 0.5 − 1.44
lambda. Thus, fpl2(x) > 0

requires that λt ∗ log(λt) + 0.18 ∗ λt ≥ log2e. When x is larger, the lower bound of the
λt becomes smaller. Thus, in order for PL2 to satisfy TFC1, we need to set the value
satisfying λt ∗ log(λt) + 0.18 ∗ λt ≥ log2e.

We now discuss the constraint analysis results for TDC constraint. TDC requires
that the first partial derivative of a retrieval function with respect to the TD component
should be positive with the term distriminative value, such as log N+1

df (t) in the pivoted
normalization method. Let us denote y = TD(t), that is, term discrimination value of
term t, we can rewrite get the following first partial derivative of a retrieval function
S as a function of y, that is, gS(y).

gpiv (y) =
1 + ln(1 + ln(c(t, D)))

(1 − s) + s |D|
avdl

· c(t, Q)

gokapi(y) =
(k1 + 1) × c(t, D)

k1((1 − b ) + b |D|
avdl ) + c(t, D)

× (k3 + 1) × c(t, Q)
k3 + c(t, Q)

gdir(y) =
c(t, D) · c(t, Q)
1 + y · c(t, D)

gpl2(y) =
1

tfnD
t + 1

× (
tfnD

t

y
− log2e

y2 )

Note that in pivoted, y = ln N+1
df (t) ; in Okapi, y = lnN−df (t)+0.5

df (t)+0.5 ; in Dirichlet, y = 1
μ·p(t|C) ;

and in PL2, y = λt. It is clear that pivoted, Dirichlet, and Okapi can satisfy TDC
unconditionally because the corresponding g functions are always larger than 0. For
the PL2 method, with the notation tfnD

t = c(t, D) × log2(1 + c · avdl
|D| ), and the assumption

that |D| = avdl, gpl2(y) > 0 requires that c > 2
log2e

λt − 1.
Finally, we briefly explain how to analyze the PL2 method with the LNC2 con-

straint. The results for the other three methods have been described in Section 3.
Given the analysis results of TFCs for PL2, it can be easily shown that LNC2 is equiv-
alent to saying that tfnD

t increases when the values of c(t, D) and |D| increase. Assum-
ing x = c(t, D) and y = |D|, we can rewrite tfnD

t as a function of x and y.

tfnD
t = h(x, y) = x · log2(1 + c

avdl
y

)

Thus, LNC2 is equivalent to dh(x)
dx > 0 and dh(y)

dy > 0, which leads to c ≤ |D|
avdl .
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