An Incremental Approach to Efficient Pseudo-Relevance
Feedback

Hao Wu
Department of Electrical and Computer
Engineering
University of Delaware
Newark, DE USA
haow@udel.edu

ABSTRACT

Pseudo-relevance feedback is an important strategy to im-
prove search accuracy. It is often implemented as a two-
round retrieval process: the first round is to retrieve an ini-
tial set of documents relevant to an original query, and the
second round is to retrieve final retrieval results using the
original query expanded with terms selected from the previ-
ously retrieved documents. This two-round retrieval process
is clearly time consuming, which could arguably be one of
main reasons that hinder the wide adaptation of the pseudo-
relevance feedback methods in real-world IR systems.

In this paper, we study how to improve the efficiency of
pseudo-relevance feedback methods. The basic idea is to re-
duce the time needed for the second round of retrieval by
leveraging the query processing results of the first round.
Specifically, instead of processing the expand query as a
newly submitted query, we propose an incremental approach,
which resumes the query processing results (i.e. document
accumulators) for the first round of retrieval and process the
second round of retrieval mainly as a step of adjusting the
scores in the accumulators. Experimental results on TREC
Terabyte collections show that the proposed incremental ap-
proach can improve the efficiency of pseudo-relevance feed-
back methods by a factor of two without sacrificing their
effectiveness.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Search and Retrieval]: Search process, Relevance feed-
back

General Terms: Performance; Experimentation

Keywords: Pseudo-relevance Feedback; Incremental Ap-
proach; Efficiency; Query Expansion

1. INTRODUCTION

Pseudo-relevance feedback is an important technique that
can be used to improve the effectiveness of IR systems. Dif-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions @acm.org.

SIGIR’13, July 28—August 1, 2013, Dublin, Ireland.

Copyright 2013 ACM 978-1-4503-2034-4/13/07 ...$15.00.

553

Hui Fang
Department of Electrical and Computer
Engineering
University of Delaware
Newark, DE USA
hfang@udel.edu

ferent pseudo-relevance feedback methods have been pro-
posed and studied for various retrieval models [8,19, 2628,
37,41], but they all boil down to the problem of expanding
an original query with useful term selected from a certain
number of pseudo-relevant documents, i.e., top-ranked doc-
uments from an initial retrieval run. In particular, the im-
plementation of pseudo-relevance feedback methods always
require two rounds of retrieval, with the first round retriev-
ing an initial set of documents with respect to an original
query and the second round retrieving documents based on
an expanded query, which is generated by expanding the
original query with relevant terms selected from the previ-
ously retrieved document set.

Although pseudo-relevance feedback methods can lead to
large performance gain in terms of effectiveness, there is one
major downside that limits their usability in real retrieval
application: its low efficiency [6,13,18]. In particular, the
second round of retrieval could significantly slow down the
performance due to the time spent on selecting terms for
expansion and on executing the expanded query that are
often much longer than the original one [13,18]. It is clear
that such drastically increased execution cost limits the ap-
plicability of pseudo-relevance feedback methods in real IR
applications.

Compared with continual efforts on improving the effec-
tiveness and robustness of pseudo feedback methods in the
past decades [8,10, 11, 14,15,19-21, 21, 22, 24, 26-28, 32, 37,
38,41], less attention has been paid to make these methods
more efficient [6,13,18]. Billerbeck and Zobel [6] proposed a
summary based method for efficient term selection from the
feedback methods. Lavrenko and Allan [18] proposed a fast
relevance model, and Cartright et. al. [13] studied approx-
imation methods to reduce the storage and computational
cost for the fast relevance model. These proposed methods
were designed for either a specific feedback method [13,18]
or a bottleneck in the feedback implementation, i.e., how
to efficiently select expansion terms from the feedback doc-
uments [6]. However, it remains unclear whether there is
a general solution to address other bottlenecks for efficient
pseudo-relevance feedback implementation.

In this paper, we propose a general solution that can
improve the efficiency of pseudo-relevance feedback meth-
ods. The basic idea is to reduce the execution cost for
the expanded query by using the the query processing sta-
tus of the original query. Existing IR systems often imple-
ment the pseudo-feedback methods as a two-round retrieval,
where the second round is processed independently to the

first round. However, since the query used in the second
round retrieval is an expanded version of the original query
used in the first round, it would be beneficial to leverage
the results of the first round of retrieval to reduce the query
processing time for the second round. Although this is an
intuitive idea, we are not aware of any previous work that
successfully implemented the idea. Experimental results on
TREC Terabyte collections show that the proposed strat-
egy can improve the efficiency by a factor of 2 to 4 without
sacrificing the effectiveness.

The remainder of this paper is organized as follows. We
first discuss related work on pseudo-relevance feedback in
Section 2, and then provide background knowledge about
indexing and query processing in Section 3. We then de-
scribe the motivation and details of the proposed incremen-
tal approach in Section 4. We explain the experiment set
up, present experiment results and summarize our findings
in Section 5. Finally, we conclude and discuss the future
work in Section 6.

2. RELATED WORK
2.1 Pseudo-Relevance Feedback Methods

Pseudo-relevance feedback is an effective technique for
improving retrieval accuracy. The commonly used feed-
back method for vector space models is the Rocchio algo-
rithm [27,28]. In classical probabilistic models, the feedback
method is based on the Robertson/Sparck-Jones weight-
ing [26]. Two representative feedback methods for the lan-
guage modeling approaches are the relevance model [19] and
the model-based feedback [41].

Despite the difference in selecting expansion terms (i.e.,
estimating relevance models in language modeling frame-
work), all these methods share similar implementation strate-
gies, i.e., initial retrieval to find documents relevant to an
original query; term selection to identify useful expansion
terms from the feedback documents; and second-round re-
trieval to return documents relevant to the expanded query.
This commonality in implementation makes it possible to
derive a general optimization strategy that can improve the
efficiency of these pseudo-relevance feedback methods, which
is the focus of our paper.

More recently, continuous efforts have been put on im-

proving the effectiveness and robustness of the pseudo-feedback

methods [8,10,11,14,15,20-22,24, 32, 38]. For example, Tao
and Zhai [32] extended model-based feedback methods using
a regularized EM algorithm to reduce the parameter sensi-
tivity, and Lv and Zhai [21] extended the relevance model
to exploit term proximity.

2.2 Efficient Pseudo-Relevance Feedback

Compared with the effectiveness of an IR system, its ef-
ficiency is equally important. In particular, high query la-
tency can decrease user satisfaction significantly [23]. Un-
fortunately, only a few previous studies focused on efficient
pseudo-relevance feedback methods [5,6,13,18].

Billerbeck and Zobel [5,6] examined the bottlenecks of the
pseudo-relevance feedback implementation and proposed to
leverage tf-idf document summaries to reduce the cost of se-
lecting expansion terms from the feedback documents. They
also explored other approaches such as query association, us-
ing reduced-size collections and carrying accumulator infor-
mation from the first round of retrieval to the second round,

554

but all of them were unsuccessful. Our approach is in the
same line of the third unsuccessful strategy they mentioned
in the paper. However, we reach a different conclusion with
our implementation, i.e., our method can improve the ef-
ficiency without obvious sacrificing the effectiveness. The
main reason behind this fact is that our method allows the
expanded terms to incrementally evaluate the accumulators
in the initial retrieval rather than merely re-rank the top
documents of the initial runs.

Lavrenko and Allan [18] proposed a fast relevance model
which computes the original relevance-based ranking based
on the cross-entropy between two documents (i.e., one rep-
resenting the relevance model and the other representing
the document to be scored). The re-arrangement used in
the derivation makes it possible to shift the main computa-
tional cost from the query processing time to indexing time.
Their experiment results show that the new method can re-
duce the query execution time significantly. However, the
downside is the time taken to compute the document simi-
larity matrix could be rather long (e.g., 90 hours for a small
collection), which could makes it impractical for larger col-
lections. Cartright et. al. [13] took one step further and
propose approximation methods to reduce the storage and
computational cost of this offline computing. Since these
methods are specifically designed for relevance models, it
remains unclear whether similar strategy can be leveraged
for other feedback methods.

Cartright and Allan [12] have focused on optimizing the
efficiency for interpolating subqueries. In particular, they
investigated four cases of such an interpolation with varying
amounts of accessibility for the original queries and expan-
sion terms, and then proposed methods for each case. Our
problem formulation is similar to the case when having ac-
cess to both original queries and expansion terms, and our
proposed approach bears similarity to the proposed Rewind
algorithm. However, we use a different query processing
technique, i.e,. score at a time (SAAT), from the one used
in the previous study, i.e., document at a time (DAAT).
Since SAAT makes it easier to resume the ranking status
and adjust the document scores based on new terms, the
improvement of our results is more significant than observed
in the previous study.

Pseudo-relevance feedback is a specific type of query ex-
pansion methods where expansion terms are selected from
highly-ranking documents. We now describe a couple of
efforts on efficient query expansion [33,35]. Theobald et.
al. [33] proposed an optimization strategy for query expan-
sion methods that are based on term similarities such as
those computed based on WordNet. Their pruning method
was designed based on a similarity based scoring function,
and it remains unclear how to generalize it to other query
expansion methods. Wang et. al. [35] proposed a solution
for efficient query expansion for advertisement search. They
focused on solving a domain specific challenge, i.e., the place-
ment of similar bid phrases. The proposed strategies in these
studies are very problem-specific, and can not be directly
applied to pseudo-relevance feedback methods.

3. BACKGROUND ON INDEXING
AND QUERY PROCESSING

Most current IR systems are based on inverted indexes
[42]. An inverted index contains one inverted list for each
term in the document collection. An inverted list of a term

contains a list of postings, and each posting describes the
information of a document containing the term such as doc-
ument ID and the term occurrence in the document. Query

processing involves traversing the inverted lists of query terms,

computing the relevance score for each document based on
a retrieval function and then ranking the documents based
on their scores.

Significant efforts have been made on making this process
more efficient over the past decade [1-4,7,9,17,25,29,30,42].
Due to the limited space, we mainly provide some back-
ground about a few influential studies including those used
in our system [1-4,25,29,30].

3.1 Index Organization

Traditional inverted indexes are document sorted indexing,
where the postings of an inverted list are sorted based on
the document IDs [36]. The inverted lists of common terms
could consist a huge number of postings. To enable faster
access to the lists, various compression techniques such as
delta encoding for document IDs have been used [42]. As
the document IDs are usually sorted based on an increasing
order, the delta codes are usually much smaller than the
original IDs. It is therefore possible to reduce the space
usage by storing delta codes instead of the original document
IDs. Indexing compression not only saves the usage of disk
and memory, but also improves the efficiency by minimizing
cache/memory misses.

Another commonly used indexing organization strategy is
impact-sorted indexing, where the postings are sorted based
on their impact, i.e., their contribution to the relevance score
of a document [1-4,29]. With the impact-sorted indexing,
the retrieval score of a document D for query () can be eval-
uated by summing up the impact scores of D in the inverted
lists of all the terms in Q). To further improve the efficiency,
the impact scores are binned into a smaller number of dis-
tinct values and only the binned integer values are stored
in the index. This strategy brings two benefits. First, the
impact score can be stored using a very small number of bits
(e.g., 6 bits for 64 distinct binned integers) instead of using
32 or 64 bits for a floating point variable. Second, with the
binned scores, the number of documents with the same score
is pretty large so that we can separate an inverted list into
segments, one for each distinct value of the impact scores.
Within each segment, documents are then ranked based on
their document IDs, and the compression techniques used
for document-sorted indexing can be applied here to achieve
high level of compression. Formally, the retrieval score of
document D for query @ is computed as follows,

Sq,p = Z Bu,p,

weQ

(1)

where B, p is the binned integer score representing the im-
pact of query term w in D. Previous studies have shown
that such binning strategy would not significantly affect the
retrieval accuracy [3,29].

Skipping is another mechanism for fast accessing the in-
formation from the postings. Skips are forward pointers
within an inverted list, and make it possible to pass over
non-promising information on the postings with minimal ef-
forts. They are often inserted into the indexes and stored
as additional information. With the help of the skips, the
system can jump to required records without going through
the posting list one record by one record.

555

3.2 Query Processing

When processing a query, there are three different tech-
niques to traverse the indexes and compute the relevance
score for each document.

e Document-At-A-Time (DAAT) [7,31,34]: It assigns
a document its final score before the next document
is considered. In particular, the inverted lists of all
query terms are processed in parallel. The iterators of
the inverted lists need to frequently compare with each
other to make sure they keep the same pace. Once all
the postings of a document are accessed and processed,
the system can forward the iterators to deal with the
next document.

o Term-At-A-Time (TAAT) [9,25,42]: It starts with the
inverted list of a query term, and would finish evalu-
ating all the documents in the list before it moves to
the next query term. As a result, an accumulator is
required for each document to store and accumulate
the retrieval scores. Once lists of all the query terms
are processed, the documents with the K largest accu-
mulated scores are returned as the retrieval results.

o Score-At-A-Time (SAAT) [4,29,30]: This strategy is
only suitable for impact-based indexing. It fetches all
inverted lists first (as in DAAT) and processes the
postings in the decreasing order of the impact values
instead of document IDs as used in TAAT. Document
accumulators are still needed to accumulate partial
score contributions from the different inverted lists.
Since SAAT places the most promising postings close
to start of the lists, early termination techniques are
often used to improve the efficiency [4,16,39].

To reduce the computational efforts, pruning has been
introduced to all these three strategies [4,9, 34] with the
goal of limiting the number of accumulators and the scan
depth on the index lists. The main idea is that the process
can be terminated once the system identifies that further
processing will not change the ranking of top k documents.

3.3 What We Use in This Paper

We follow the previous studies [4,29] and use a state-of-
the-art four-stage SAAT query processing strategy with the
impact-based indexing since it can achieve very good per-
formance in many cases. Note that we use query generation
model with Dirichlet prior smoothing as the basic retrieval
model [40] (i.e., the one without using feedback) and the rel-
evance model [19] as the pseudo-relevance feedback method.
However, our proposed incremental approach can be applied
to other retrieval functions and feedback methods and we
plan to study it as one of our future work.

To compute the impact scores (i.e., By,p in Equation (1),
we use the derived equation from previous study [29]:

Bu,p = | (logP(w|D) = Cw)],

n
M +log(s)
where n is the number of distinct values used to represent
impact scores and set to 64. Cy is the minimum value of
P(w|D) in the collection (i.e., C\, = minp logP(w|D)). M
is used to ensure that the binned score is within the range,
and s is a saturation parameter which makes sure that all
the bin values, i.e., [0,n], can be fully utilized. The details

of the derivation can be found in the references [29]. More-
over, the term probability is estimated using Dirichlet Prior
smoothing [40], i.e.,

c(w; D) 4 pe(w; C)/|C|
|D[+p '

P(w|D) =

The parameter p is set to 2,500 and the skip length is set to
128 bytes.

For query processing, we use the SAAT with a four-stage
pruning. The four stages are: OR, AND, REFINE and IG-
NORE. The processing begins with the OR stage by process-
ing the postings in the inverted lists based on the decreasing
order of the impact values. Document accumulators are cre-
ated whenever it is necessary, i.e., when a new document is
seen in one of the inverted lists. The processing switches to
AND stage when we can prove that we have created accumu-
lators for all the documents that could possibly enter the top
n. In AND stage, we ignore all the documents without an
accumulator. The processing continues and we update the
scores for the existing accumulators with newly processed
information. The processing switches to REFINE stage as
soon as we know exactly what the top n documents are with-
out knowing their exact ranking. REFINE stage works with
the accumulators of the top n documents. Once we can de-
termine that rank order of the top n documents, the process
enters the final IGNORE stage, which means that all the
remaining information from the inverted list can be ignored.

The basic idea of the pruning strategy is to gradually re-
duce the number of active accumulators when we gain more
confidence on knowing that other accumulators would not
change the final top-k search results. In particular, OR stage
is the only one that can add accumulators, AND stage only
updates existing accumulators, and REFINE stage only pro-
cess accumulators that can make to the top k results. More-
over, we further speed up the process by using skipping and
accumulator trimming [29]. Skipping enables fast processing
of long postings, while accumulator trimming can reduce the
computational cost in the AND stage by dynamically reduce
the number of enabled accumulators.

4. EFFICIENT PSEUDO-RELEVANCE
FEEDBACK

4.1 Overview of Existing Implementation
Strategy

As described in Section 2.1, many pseudo-relevance feed-
back methods have been proposed and studied. Despite the
differences on how to exploit feedback information, they all
require the following three-step implementation:

1. Initial retrieval: finding documents relevant to an
original query;

2. Term selection: identifying useful expansion terms
(i.e., relevant information in language modeling frame-
work) from the feedback documents;

3. Second-round retrieval: returning documents rele-
vant to the expanded query (i.e., updated query model
in the language modeling framework).

We now provide more details on how each of these three
steps is implemented in existing IR systems.

556

Figure 1: Processing time of the three steps in

pseudo-relevance feedback implementation

Initial
R Term
Retrieval, Selection
29.6ms — !

43.2 ms

The initial retrieval step can be implemented with any
existing top-k query processing techniques as described in
Section 3. There have been significant efforts on optimizing
the efficiency for this step [14,7,9,17,25,29,30,42].

The term selection step is to select important terms from
the feedback documents with the expectation that the se-
lected terms can bring more relevant documents in the sec-
ond round of retrieval. Traditionally, these terms are se-
lected directly from the top ranked documents. However,
this step could takes lots of time when the documents are
long and the information about the documents need to be
read from the disk. To solve this problem, Billerbeck and
Zobel [6] proposed to generate a short tf-idf based summary
for each document and select expansion terms from the sum-
maries of the feedback documents. These summaries are
small enough to be pre-loaded into the memory, and can
lead to more efficient term selection. Their experimental
results showed that this strategy is efficient with ignorable
loss in terms of the effectiveness. In this paper, we use this
strategy for term selection. One difference is that we use
term probability p(¢|D) instead of tf-idf weighting to gen-
erate document summaries because the retrieval function
used is based on language modeling approach. And we set
the length of document summary to 20 terms.

The second round retrieval step aims to retrieve final re-
trieval results with the expanded query. The expanded query
is often formulated as a linear interpolation of the origi-
nal query and the expansion terms selected from the second
step. As an example, in the relevance model [19], this step
is to retrieve documents with an updated query model (i.e.,
65°") by linearly combining the original query model (i.e.,
0q) with the relevance model estimated from the feedback
documents (i.e., 0r) as follows:

05" =X-0g+(1—X)-0F, (2)
where the original query model fg is estimated using the
maximum likelihood estimation of query @, the relevance
model 07 estimated from the feedback documents F using

Figure 2: Computational flows for different implementations of pseudo-relevance feedback methods

Conventional

Top-K Re-Rank | —OR-. =AND-—

effective but
not efficient

efficient but
not effective

Py

Top |
—Docs_|

Incremental

Initial Round

the methods described in previous study [19], and X is to
control the amount of feedback.

In the second round of retrieval, existing IR systems such
as Indri would process the expanded query in the same way
as a newly submitted query. In other words, the two rounds
of retrieval are processed independently.

Figure 1 shows how much time each step takes when us-
ing the existing implementation methods described above
for the relevance feedback method with 20 expansion terms.
It is clear that the third step takes the most of computa-
tional time while the other two stages share a very small part
the time usage. Thus, the key to efficient pseudo-relevance
feedback methods is to reduce the execution time for the
second-round retrieval, which is the focus of our paper.

4.2 Analyzing the second round retrieval

Compared with the initial retrieval, the expanded query
processed in the second round is often much longer than the
original query because it has much larger number of query
terms to be processed. For example, the average length of
Web queries is around 3, while the number of expansion
terms is often set to 20. As a result, the computational cost
for expanded query is significantly higher than that for the
basic retrieval. Take the implementation used in our paper
as an example, a longer query means that each accumulator
needs to collect more postings to produce a final result and
more accumulators would be created and evaluated. As a
result, the system performs much more index accesses and
computing, which leads to extremely long processing time
compared with that for shorter queries.

One limitation of existing implementation for feedback
methods is that the two rounds of retrieval are processed
independently. Each round starts with an empty set of ac-
cumulators and gradually adds new accumulators in the OR
stage. When switched to AND stage, accumulators can be
updated but no new accumulated can be added. When
switched to REFINE stage, only top k accumulators are
processes. And in the final IGNORE stage, all the infor-
mation from the inverted lists can be ignored. Note that
the accumulators used the two rounds of retrieval are com-
puted from the scratch separately. This implementation is
illustrated in the upper part of Figure 2

Add

S ——

Query Expansion

557

efficient and
effective

Second Round Output

However, unlike processing a new query, the expanded
query in the second round retrieval is related to the query
used in the initial retrieval. In particular, the query terms in
the initial retrieval is a subset of those in the second round of
retrieval, and these terms will be processed twice in this two
rounds of retrieval process. Moreover, the results of these
two rounds of retrieval might have a great overlap. Thus, it
would be interesting to study how to leverage the results of
the first round of retrieval to reduce the computational cost.
But how to leverage them? This is not a simple problem
without significant challenges.

The idea of exploiting the results of initial retrieval to
improve the efficiency of the second round retrieval was dis-
cussed in previous study [6], but was not found useful. In
the next subsection, we re-visit this basic idea and propose
an incremental approach that is shown to be both efficient
and effective based on the experimental results.

4.3 The Proposed Incremental Approach

Our basic idea is that the initial retrieval process should
be treated as part of the query processing for the second
round retrieval. Instead of processing the expanded query
in the second round from the scratch, we should be able to
resume the query processing results of the initial query, and
continue the processing for the expanded query terms. But
how to resume the results?

One possible strategy is to resume the last ranking-related
stage, i.e., REFINE, in the query processing results of the
initial retrieval. Recall that REFINE stage is designed to
process only the accumulators of top K ranked documents.
Thus, if we resume the status from the REFINE stage in
the second round retrieval, it is equivalent to re-ranking
those top K ranked documents using the expanded query.
This strategy is illustrated in the middle part of Figure 2.
Since the number of accumulators used in REFINE stage is
very small, this re-ranking method would be quite efficient.
However, it would suffer significant loss in terms of the ef-
fectiveness because one of the major benefits of feedback
methods is to find relevant documents that were not among
top ranked results for the initial retrieval and the re-ranking
strategy seems to disable this nice benefit. Clearly, this is
not an optimal solution. Can we do better?

Intuitively, if more document accumulators can be in-
cluded in re-ranking process, the retrieval effectiveness could
be improved. On the extreme case, when all the documents
are considered for the re-ranking, the cost would be the same
as submitting a new query. Thus, the main challenge here
is how to select a set of documents to be re-ranked so that
we can increase the efficiency without sacrificing the effec-
tiveness.

Recall that the pruning technique consists of four stages:
OR, AND, REFINE and IGNORE. The number of active
accumulators becomes smaller as the system switches from
one stage to the other. As discussed earlier, resuming from
the REFINE stage is equivalent to re-ranking only top k
documents, which hurts the effectiveness. On the contrary,
resuming from the OR stage would not hurt the effective-
ness. However, since the number of expanded terms is much
larger than the number of original query terms, we might not
be able to reduce the number of accumulators significantly.
Thus, we propose to resume from the AND stage.

The main idea of our incremental approach is shown in the
lower part in Figure 2. REFINE is the last ranking-related
stage in the initial retrieval. Thus, in order to resume from
the AND stage of the initial retrieval, we have to first rewind
the query processing results from the end of REFINE stage
back to the end of the AND stage. This new stage is referred
to as RECOVERY stage in our system. The RECOVERY
stage has two tasks: (1) re-enable the accumulators that
were disabled at the REFINE stage; and (2) turn back the
inverted list pointers to the positions where they were at the
end of AND mode. Our experimental results show that this
stage takes a very short ignorable time. After the RECOV-
ERY stage, we will switch to the new AND stage to update
the accumulators based on the expanded terms, and then
continue to the other two stages as usual.

4.4 Discussions

Our proposed incremental approach can improve the effi-
ciency because of the following two reasons.

First, query processing results of the original query terms
can provide useful information for effective pruning in the
second round retrieval. Specifically, accumulator trimming
is used in the AND stage to dynamically reduce the num-
ber of active accumulators, and a threshold is used to de-
cide whether an accumulator should be kept active or not.
The threshold is to estimate a lower bound of the relevance
scores for the top K ranked documents. This threshold is
set to —inf at the beginning of the retrieval process, and
will be updated at the later stage of the retrieval when more
information is gathered. Since initial value of the threshold
is rather small, little pruning is applied at the early stage of
the retrieval process. If the system could be informed with
the range of the threshold, more pruning can be done, which
would lead to shorter processing time. Since resuming the
process of the initial retrieval can provide a much larger ini-
tial value for the pruning threshold, the proposed approach
can reduce the query processing time.

Second, the efficiency is closely related to the number
of accumulators that need to be processed. Long queries
usually lead to a huge number of accumulators, which sig-
nificantly hurt the efficiency. However, when resuming the
query processing results of the initial query, we are able to
start with a much smaller set of accumulators. Note that
this strategy is not ranking safe when the expanded query is

558

Table 1: Efficiency comparison using TREC Ter-
abyte ad hoc queries (i.e., average query processing
time (ms) to retrieve 1K documents)

Data sets | NoFB | FB-BL | FB-Incremental
TB04 105 5,522 3,023
TB05 7 1,502 2,462
TBO06 71 4,542 2,082

Table 2: Comparison of the average size of accumu-
lator lists per query

FB-BL | FB-Incremental
TB04 | 2,368K 370K
TBO05 | 1,805K 252K
TBO06 | 1,901K 240K

significantly different from the initial query (i.e., when A in
Equation 2 is very small). However, as shown in Section 5,
the optimal value of A is often large and this strategy does
not affect the effectiveness significantly.

5. EVALUATION

5.1 Experiment Design

In our study, we use three standard TREC data sets which
were created for TREC Terabyte tracks in 2004 to 2006.
These three sets are denoted as TB04, TB05 and TBO06 in
this paper. All the data sets use Gov2 collection as the
document set, and the collection consists of 25.2 million
web pages crawled from the .gov domain. All experiments
were conducted on a single machine with dual AMD Lisbon
Opteron 4122 2.2GHz processors, 8GB DDR3-1333 memory
and four 2TB SATA2 disks.

The basic retrieval model used in our experiments is the
Dirichlet Prior smoothing method [40], where the parame-
ter u was set empirically to 2500. This method is labeled
as NoFB. We use the relevance model [19] as the pseudo-
relevance feedback method. This model is chosen because
of the following two reasons. First, it is a state-of-the-art
pseudo-relevance feedback method that has been shown to
be both effective and robust. Second, it is implemented in
the Indri ! toolkit, which makes it possible to verify the cor-
rectness of our implementation. This method is labeled as
FB.

The implementation of our basic retrieval system (i.e.,
NoFB) is described in Section 3.3. Based on the basic re-
trieval system, we implemented two pseudo-relevance feed-
back systems: (1) FB-BL: traditional method of imple-
menting pseudo-relevance feedback methods, i.e., the ex-
panded query is processed independently to the original query;
(2) FB-Incremental: our proposed approach that exploits
the query processing results of the original query to speed
up the processing of the expanded query.

Although we implemented our own indexing and query
processing modules, we did not build the impact-based in-
dexing directly from the collection. Instead, we built an
initial index using Indri toolkit and use Indri API to trans-
fer the indri index to our impact-sorted index. The size of
the impact-based index for Gov2 collection is about 11.8GB
with 442MB for term lookup, 7.5GB for inverted lists and

"http: //www.lemurproject.org/indri/

Table 4: Impact of the expansion weight (i.e., \) on the efficiency (the average execution time (ms) per query)

Data sets Methods A

0.5 0.6 0.7 0.8 0.9

TB04 FB-BL 6,125 | 5,522 | 4,435 | 2,723 | 1,597
FB-Incremental | 3,798 | 3,023 | 2,130 | 1,221 | 826

TBO05 FB-BL 5,146 | 4,502 | 3,577 | 2,466 | 1,323
FB-Incremental | 3,071 | 2,462 | 1,762 | 1,113 | 845

TBO06 FB-BL 5,281 | 4,542 | 3,571 | 2,412 | 1,114
FB-Incremental | 2,664 | 2,082 | 1,406 | 778 560

Table 3: Effectiveness comparison using TREC Ter-
abyte ad hoc queries (MAP@1000)

Data sets | NoFB | FB-BL | FB-Incremental
TB04 0.246 0.256 0.255
TB05 0.309 0.334 0.334
TB06 0.275 0.285 0.284

3.8GB for document summaries that are needed for the term
selection step in the feedback methods. We decided to lever-
age the Indri index because (1) it saves our unnecessary
efforts on writing codes to parse documents and count the
term statistics; and (2) it enables direct comparison between
our system and Indri since they now use the same infor-
mation about the collection. When evaluating a query, we
also leveraged Indri API to handle the tasks of converting
terms/documents to their IDs.

Since we have to work with two indexes (the original Indri
index and new Impact-sorted index) and all the information
are read directly from disk rather than memory, our system
could be slower than those using similar strategies. How-
ever, this should not affect our comparison on the two FB
systems since they are implemented using the same strategy.
Moreover, even working with two indexes, our developed sys-
tem is still much faster than the Indri toolkit (version 5.1),
which takes about 1 minute to process a query when using
the relevance model on the Gov2 collection.

5.2 Experimental Results

The first two sets of experiments were conducted with the
ad hoc queries used in TREC Terabyte tracks. Each data
set has 50 queries, and we use title only field to formulate
queries. The third set of experiments was conducted with
the efficiency queries used in TREC Terabyte tracks. One
data set has 50K queries while the other has 100K queries.

5.2.1 Efficiency and Effectiveness

We first examine whether the incremental approach can
improve the efficiency. In particular, we set the number of
feedback documents to 10, the number of expansion terms
to 20 and the expansion weight A is set to 0.6. These pa-
rameters are chosen because they can lead to near-optimal
performance in terms of the effectiveness. Table 1 shows the
average processing time (ms) for each query when 1000 doc-
uments are retrieved. The trends on the three collections
are similar. Both FB systems are slower than the NoFB
system. It takes around 5 seconds for FB-BL to process a
query, and takes around 2.5 seconds for FB-Incremental to
do so. Clearly, FB-Incremental can achieve a speed up of 2
compared with FB-BL, which shows that the proposed in-
cremental approach can improve the efficiency. Note that

559

we also evaluate the efficiency of the Indri toolkit, a widely
used open source IR system. It takes around 1 minute for
the Indri toolkit to process a query on the same collection.
This suggests that the baseline system we implemented, i.e.,
FB-BL, is very efficient.

As discussed earlier, the speed up of FB-Incremental is
achieved for two reasons. First, FB-Incremental leverages
the query processing results of the initial retrieval, which
avoids processing the original query terms twice. Second,
the accumulator list inherited from the initial retrieval by
FB-Incremental is much smaller. Table 2 shows the compar-
ison of the accumulator list size between the two methods.
Our incremental method creates only about 1/7 accumu-
lators as those of baseline method. As a result, the new
method avoids a lot of unnecessary index access and com-
puting for those accumulators it does not include. Note that
our baseline system, i.e., FB-BL, is a very strong baseline
since it applied the accumulator trimming techniques which
can reduce unnecessary accumulators during the process.

We also conduct experiments to examine whether the pro-
posed approach would hurt the performance. Since our in-
cremental approach leverages the accumulators used in the
AND stage of the initial retrieval, it is possible that we may
miss some relevant documents because they were not rele-
vant to the original query and thus were not included in its
accumulator lists. As a result, it is possible that the incre-
mental approach might hurt the effectiveness, but it only
happens when the expanded query is very different from
the original query. Recall that the optimal value of A is 0.6
which indeed indicates that the original query and expanded
query are similar. Table 3 shows the results measured with
MAP@1000. To ensure the correct implementation of our
system, we compare the baseline performance with the ones
reported in the previous study [30] and find that the results
are similar, which confirms our implementation of NoF B
is correct. Moreover, we find that both FB methods can
improve the retrieval accuracy about 4% to 8%, which is
also similar to the performance improvement of the feedback
method implemented in Indri. One interesting observation
is that the effectiveness of the two FB systems are similar,
which indicates that our proposed approach improve the ef-
ficiency without sacrificing the effectiveness.

5.2.2 Impact of Parameter Values

There are multiple parameters in the pseudo-relevance
feedback methods such as the number of expansion terms,
the number of feedback documents and the expansion weight
(i.e., A in Equation (2)). Since we use impact based docu-
ment summary for term select, the impact of the number
of feedback documents on efficiency is not very significant.
Thus, we only focus on the other two parameters.

Table 5: Impact of the

expansion weight (i.e., \) on the effectiveness (M AP@1000)

Data sets Methods A
0.5 0.6 0.7 0.8 0.9
TB04 FB-BL 0.254 | 0.256 | 0.257 | 0.255 | 0.252
FB-Incremental | 0.252 | 0.255 | 0.256 | 0.255 | 0.252
TB05 FB-BL 0.333 | 0.334 | 0.332 | 0.328 | 0.321
FB-Incremental | 0.333 | 0.334 | 0.332 | 0.327 | 0.321
TBO06 FB-BL 0.284 | 0.285 | 0.285 | 0.284 | 0.281
FB-incremental | 0.282 | 0.284 | 0.283 | 0.282 | 0.280

Table 6: Average query execute time (ms) based on different expansion weights (top

query)
NoFB FB Methods A

0.5 0.6 0.7 0.8 0.9

TB04 69 FB-BL 4,731 | 4,016 | 2,786 | 1,756 | 933

FB-Incremental | 1,295 [915 578 437 | 403

TB05 53 FB-BL 3730 | 2,923 | 1,999 | 1,131 | 547

FB-Incremental | 983 709 451 341 310

TB06 46 FB-BL 3909 | 3,060 | 2,167 | 1,317 | 573

FB-Incremental | 921 669 447 319 | 284

10 documents for each

Figure 3: The speed-up rate on different expansion
weight A (top 1000 documents returned)

3.2 T

—O— TBo4 - A
- TBOS - B
—[>-TBO6 - \

.
0.65 0.7 0.75
Expansion Weight (Lamda)

As discussed earlier, the expansion weight is an important
parameter and we should examine the impact of its value on
both efficiency and effectiveness. The results are shown in
Table 4 and Table 5. We see that the optimal value of A is
around 0.6, which means that we should put more weights
to the original query terms. According to Equation (2), the
higher value of A means that we put more trust on the orig-
inal query and less weights to the expansion terms. Given
the characteristics of SAAT pruning technique, postings of
terms with smaller weights are more likely to be pruned. As
a result, we can observe a clear trend that both methods can
improve the efficiency more when the value X is larger.

Figure 3 shows how the speed-up rate of F' B—Incremental
compared with F'B changes with the expansion weight. The
higher expansion weight we choose, the more the original
query determines the final ranking list and the more time
the incremental method can save. However when the ex-
pansion weight is too high (e.g. 0.9), SAAT pruning tech-
nique is rather efficient and leave small room for further im-
provement. As a result, the speed-up rate at high expansion
weight decreases.

We further test the impact of number of expansion terms
on efficiency. Table 4 shows the speed up rate of FB —

560

Figure 4: The speed-up rate on different number of
expansion terms

25

—5—TB04
— % —TBOS
—[> TBO6 S

Speed Up

.
5 10 15 20
Number of Expansion Terms

Incremental compared with FFB — BL. It shows that our
new method benefits more when the system adds more ex-
pansion terms into the original query. The main reason of
this trend is that our method efficiently controls the grows
of accumulator list size when the query becomes longer.

Another important factor that could affect the retrieval
speed is the number of documents retrieved for each query.
Figure 5 shows how the number of retrieved documents af-
fect the speed up of FFB — Incremental over FB — BL.
The results indicate that the new method can achieve more
speed-up when the system returns fewer results to users.
We believe it is due to the reason that returning fewer doc-
uments brings higher cut-off threshold. And in our method,
the high cut-off threshold which is got from the initial run
provides a strong and efficient guidance on the accumulator
selections in the resumed retrieval. As a result, the pool of
candidate documents/accumulators is kept in a very small
size and final result is generated soon. In opposite, the base-
line method which does the second round retrieval indepen-
dently cannot get the benefit from the high cut-off threshold
and it still generates large number of accumulators in which
most of them are unnecessary.

Figure 5: The speed-up rate on different number of

retrieved documents per query

5
49}

o

4

Speed Up Rate
©
w o

N
o

N

15 L
10 10 10
Number of return documents per query

Figure 6: The speed-up rate on different expansion
weight \ (top 10 documents returned)

I I
0.75 0.8
Expansion Weight (Lamda)

5 I I I I
0.5 0.55 0.6 0.65 0.7 0.85 0.9

We also report the efficiency when retrieving only 10 doc-
uments for each query in Table 6. It is clear that when
retrieving fewer documents, FB-Incremental can achieve a
higher speed up, i.e., around four. This indicates that this
method could be very useful for Web search domain since
search users only need to look at 10 results per page. Fi-
nally, Figure 6 shows impact of the expansion weight on the
speed-up when only 10 documents are retrieved. The trend
is very similar to Figure 3.

5.2.3 Scalability

To further test the scalability of the incremental method
and study how original query length affects the pseudo feed-
back system speed, we test both methods on 50k 2005 effi-
ciency queries and 100k 2006 efficiency queries. For each
query, 5 expansion terms are added and it only returns
top 10 documents. The results show that the incremental
method can stably improve the efficiency at a rate more than
2 at different original query length. For short queries, the
baseline is fast and it leaves less space for further improve-
ment. For long queries, the processing time is dominated

Table 7: Average query processing time (ms) on dif-
ferent query length (2005 50K queries)

Avg | 1 2 3 4 5 >b

NoFB 35 4 10 | 26 55 91 175
FB-BL 297 | 38 | 94 | 302 | 526 | 749 | 1,102

FB-Incremental | 124 | 18 | 43 97 | 204 | 316 540

Speed-up 24 | 2112231 (26| 24 2.0

561

Table 8: Average query processing time (ms) on dif-
ferent query length (2006 100K queries)

Avg | 1 2 3 4 5 >5

NoFB 103 3 12 | 39 81 132 275
FB-BL 739 | 39 | 99 | 357 | 690 | 1,030 | 1,642

FB-Incremental | 300 | 26 | 43 | 110 | 248 441 797

Speed-up 25 [15]23| 32| 28 2.3 2.0

by the original query terms and the optimizations in pseudo
feedback part will not affect the total time too much. As a
result, it is reasonable to observe a speed up rate summit at
medium length query (i.e., 3-4 terms).

6. CONCLUSIONS

This paper focuses on efficient implementation of pseudo-
relevance feedback methods, an important yet under-studied
problem. Motivated by the fact that original query terms
are often processed twice in the two-round retrieval process,
we proposed an incremental approach that can exploits the
query processing results of the first round retrieval for com-
puting the document scores in the second round. Although
similar idea was mentioned in a previous study [6], it was
concluded as a unsuccessful strategy. On the contrary, our
method has been shown to be useful and can achieve a speed
up of 2 over TREC collections. This paper is one of a few
studies that try to bring the gap between the continuous re-
search efforts on improving the effectiveness of the pseudo-
relevance feedback methods and the increasing efforts on
efficient IR systems.

There could be many interesting directions for our future
work. First, we plan to implement other pseudo feedback
methods including both basic models such as model-based
feedback [41] and more sophisticated models such as posi-
tional relevance model [22], and evaluate whether the pro-
posed approach can improve their performance. Second, it
would be interesting to study how to leverage the incremen-
tal approach to improve the efficiency of query processing
for long queries. Finally, our system is built on impact-
sorted indexing with SAAT traverse. We plan to continue
our efforts and study whether it is possible to improve the
efficiency for feedback methods when using other query pro-
cessing strategies such as DAAT and TAAT .

7. ACKNOWLEDGMENTS

This material is based upon work supported by the Na-
tional Science Foundation under Grant Number I1S-1017026.
We thank the anonymous SIGIR reviewers for their useful
comments.

8. REFERENCES

[1] V. N. Anh, O. de Kretser, and A. Moffat. Vector-space
ranking with effective early termination. In
Proceedings of SIGIR’01, 2001.
V. N. Anh and A. Moffat. Impact transformation:
efffective and efficient web retrieval. In Proceedings of
SIGIR’02, 2002.
V. N. Anh and A. Moffat. Simplified similarity scoring
using term ranks. In Proceedings of SIGIR’05, 2005.
V. N. Anh and A. Moffat. Pruned query evaluation
using pre-computed impacts. In Proceedings of
SIGIR’06, 2006.

2]

3]

(4]

[5]

9

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

23]

(24]

B. Billerbeck and J. Zobel. Techniques for efficient
query expansion. In Proceedings of String Processing
and Information Retrieval Symposium, 2004.

B. Billerbeck and J. Zobel. Efficient query expansion
with auxiliary data structures. Information Systems,
31(7):573-584, 2006.

A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, and
J. Zien. Efficient query evaluation using a two-level
retrieval process. In Proceedings of CIKM’03, 2003.

C. Buckley. Automatic query expansion using
SMART: Trec-3. In D. Harman, editor, Querview of
the Third Text Retrieval Conference (TREC-3), pages
69-80, 1995. NIST Special Publication 500-225.

C. Buckley and A. F. Lewit. Optimization of inverted
vector searches. In Proceedings of SIGIR’85, 1985.

C. Buckley and S. Robertson. Relevance feedback
track overview: Trec 2008. In Proceedings of
TREC’08, 2008.

G. Cao, J.-Y. Nie, J. Gao, and S. Robertson. Selecting
good expansion terms for pseudo-relevance feedback.
In Proceedings of SIGIR’08, 2008.

M.-A. Cartright and J. Allan. Efficiency optimizations
for interpolating subqueries. In Proceedings of the
CIKM’11, 2011.

M.-A. Cartright, J. Allan, V. Lavrenko, and

A. McGregor. Fast query expansion using
approximations of relevance models. In Proceedings of
the CIKM’10, 2010.

K. Collins-Thompson and J. Callan. Estimation and
use of uncertainty in pseudo-relevance feedback. In
Proceedings of SIGIR’07, 2007.

J. V. Dillon and K. Collins-Thompson. A unified
optimization framework for robust pseudo-relevance
feedback algorithms. In Proceedings of CIKM’10, 2010.
S. Ding and T. Suel. Faster top-k document retreival
using block-max indexes. In Proceedings of SIGIR’11,
2011.

R. Fagin. Combining fuzzy information: an overview.
ACM SIGMOD Record, 31(2), 2002.

V. Lavrenko and J. Allan. Real-time query expansion
in relevance models. Technical Report TR-473,
University of Massachusetts Amherst, 2006.

V. Lavrenko and B. Croft. Relevance-based language
models. In Proceedings of SIGIR’01, pages 120-127,
Sept 2001.

K.-S. Lee, W. B. Croft, and J. Allan. A cluster-based
resampling method for pseudo-relevance feedback. In
Proceedings of SIGIR’08, 2008.

Y. Lv and C. Zhai. Positional relevance model for
pseudo-relevance feedback. In Proceedings of
SIGIR’10, 2010.

Y. Lv, C. Zhai, and W. Chen. A boosting approach to
improving pseudo-relevance feedback. In Proceedings
of SIGIR’11, 2011.

M. Mayer. Scaling google for every user. In Seattle
Conference on Scalability, 2007.

J. Miao, J. Huang, and Z. Ye. Proximity-based
rocchio’s model for pseudo relevance. In Proceedings of
SIGIR’12, 2012.

562

(25]

[26]

27]

28]

29]

(30]

(31]

32]

(33]

34]

(35]

(36]

37]

(38]

39]

(40]

[41]

42]

A. Moffat and J. Zobel. Self-indexing inverted files for
fast text retrieval. ACM Transactions on Information
Systems, 14(4):349-379, 1996.

S. Robertson and K. Sparck Jones. Relevance
weighting of search terms. Journal of the American
Society for Information Science, 27:129-146, 1976.

J. Rocchio. Relevance feedback in information
retrieval. In The SMART Retrieval System:
Ezxperiments in Automatic Document Processing,
pages 313-323. Prentice-Hall Inc., 1971.

G. Salton and C. Buckley. Improving retrieval
performance by relevance feedback. Journal of the
American Society for Information Science,
44(4):288-297, 1990.

T. Strohman. Efficient processing of complex features
for information retrieval. PhD thesis, University of
Massachusetts Ambherst, 2007.

T. Strohman and W. B. Croft. Efficient document
retrieval in main memory. In Proceedings of SIGIR’07,
2007.

T. Strohman, H. Turtle, and W. B. Croft.
Optimization strategies for complex queries. In
Proceedings of SIGIR’05, 2005.

T. Tao and C. Zhai. Regularized estimation of mixture
models for robust pseudo-relevance feedback. In
Proceedings of SIGIR’06, 2006.

M. Theobald, R. Schenkel, and G. Weikum. Efficient
and self-tuning incremental query expansion for top-k
query processing. In Proceedings of the SIGIR’05,
2005.

H. Turtle and J. Flood. Query evaluation: strategies
and optimizations. Information Processing &
Management, 31(1):831-850, 1995.

H. Wang, Y. Liang, L. Fu, G. rong Xue, and Y. Yu.
Efficient query expansion for advertisement search. In
Proceedings of SIGIR’09, 2009.

I. H. Witten, A. Moffat, and T. C. Bell. Managing
Gigabytes: Compressing and Indexing Documents and
Images. Morgan Kaufmann, 1999.

J. Xu and W. B. Croft. Improving the effectivness of
information retrieval with local context analysis. ACM
Transactions on Information Systems, 18:79-112,
2000.

Y. Xu, G. J. F. Jones, and B. Wang. Query dependent
pseudo-relevance feedback based on wikipedia. In
Proceedings of SIGIR’09, 2009.

H. Yan, S. Shi, F. Zhang, T. Suel, and J.-R. Wen.
Efficient term proximity search with term-pair
indexes. In Proceedings of CIKM’10, 2010.

C. Zhai and J. Lafferty. The dual role of smoothing in
the language modeling approach. In Proceedings of the
Workshop on Language Modeling and Information
Retrieval, 2001.

C. Zhai and J. Lafferty. Model-based feedback in the
KL-divergence retrieval model. In Tenth International
Conference on Information and Knowledge
Management (CIKM 2001), pages 403-410, 2001.

J. Zobel and A. Moffat. Inverted files for text search
engines. ACM Computing Surveys, 38(2), 2006.

