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ABSTRACT
A common limitation of many retrieval models, including
the recently proposed axiomatic approaches, is that retrieval
scores are solely based on exact (i.e., syntactic) matching of
terms in the queries and documents, without allowing dis-
tinct but semantically related terms to match each other
and contribute to the retrieval score. In this paper, we
show that semantic term matching can be naturally incor-
porated into the axiomatic retrieval model through defining
the primitive weighting function based on a semantic simi-
larity function of terms. We define several desirable retrieval
constraints for semantic term matching and use such con-
straints to extend the axiomatic model to directly support
semantic term matching based on the mutual information
of terms computed on some document set. We show that
such extension can be efficiently implemented as query ex-
pansion. Experiment results on several representative data
sets show that, with mutual information computed over the
documents in either the target collection for retrieval or an
external collection such as the Web, our semantic expansion
consistently and substantially improves retrieval accuracy
over the baseline axiomatic retrieval model. As a pseudo
feedback method, our method also outperforms a state-of-
the-art language modeling feedback method.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Search and Retrieval]: Retrieval models
General Terms: Experimentation
Keywords: Axiomatic model, retrieval heuristics, constraints,
query expansion, feedback

1. INTRODUCTION
The axiomatic approach to information retrieval was pro-

posed recently as a new retrieval framework, in which rele-
vance is modeled by term-based retrieval constraints [5, 6].
Several new retrieval functions have been derived by using
this approach and shown to be less sensitive to parameter
setting than existing retrieval functions with comparable op-
timal performance; using a fixed parameter value can often
achieve near-optimal performance in most test sets [6].
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However, like most traditional retrieval models, these new
axiomatic retrieval functions also have the limitation that
retrieval scores are solely based on exact (i.e., syntactic)
matching of terms in the query and documents, without
allowing distinct but semantically related terms to match
each other and contribute to the retrieval score. Since it
is unlikely that the authors of relevant documents always
use exactly the same terms as a user would use in a query,
such a limitation makes the retrieval performance of existing
models non-optimal. For example, given the query “car”,
intuitively, a single-term document with the term “vehicle”
should have a higher score than a single-term document with
the term “fish” because “car” is semantically more related
to “vehicle” than “fish”. However, existing retrieval models
do not directly support such semantic matching and would
treat both documents equally as not matching the query.
Although techniques such as query expansion and pseudo-
relevance feedback can support semantic term matching to
certain extent, query expansion purely based on semantic re-
lations between terms have so far not been very successful,
presumably because of the difficulty in assigning appropri-
ate weights to the new terms [26, 14]. Pseudo feedback is
much more successful, but the semantic matching exploited
is restricted by the top-ranked documents and it does not
allow us to incorporate external resources.

In this paper, we show that there is a natural way to
incorporate semantic term matching to the inductively de-
fined axiomatic retrieval functions – all we need to do is to
generalize the primitive weighting function to incorporate
the semantic similarity of terms. Specifically, we follow the
spirit of axiomatic approaches [5, 6] and formally define sev-
eral constraints on semantic term matching. We then use
these constraints to provide guidance on how to compute the
term semantic similarity and how to regularize the weights
of the original terms and the semantically related terms. We
show that our method can be implemented as query expan-
sion in the axiomatic framework, and when term similarity
is computed using feedback documents, it can also be re-
garded as a method for pseudo feedback in the axiomatic
approaches. We conduct experiments over several represen-
tative data sets. The results show that the proposed seman-
tic expansion works well for all the six inductively defined
axiomatic retrieval functions, significantly improving the re-
trieval accuracy over the original baseline axiomatic retrieval
functions on all the data sets we experimented with. More-
over, the analysis of semantic term matching constraints can
predict parameter boundaries that are consistent with the
empirically discovered optimal ranges of parameters. Fur-



thermore, as a pseudo feedback method, our method out-
performs a state-of-the-art language modeling approach for
pseudo feedback [30] due to its capability of selecting better
terms for query expansion.

The rest of the paper is organized as follows. We discuss
related work in Section 2 and briefly review the existing
axiomatic approach to IR in Section 3. We then present
our work on incorporating semantic term matching to the
axiomatic framework in Section 4, and discuss experiment
results in Section 5. Finally, we conclude in Section 6.

2. RELATED WORK
Many studies have tried to bridge the vocabulary gap be-

tween documents and queries in traditional retrieval models,
mostly based on either co-occurrence-based thesaurus [11,
24, 18, 20, 10, 29, 23, 2] or hand-crafted thesaurus [26, 12].
Some researchers used both [14, 4]. Although our general
strategy would be applicable to exploit both types of the-
sauri, in this paper, we focus on the use of co-occurrence-
based thesaurus and leave other possibilities as future work.

The earliest study of co-occurrence-based thesaurus can
be traced back to the early sixties. Lesk [11] studied term
expansion in the vector space model, where term similarity
is computed based on the cosine coefficient [22]. Smeaton
et al. [24] studied query expansion based on classical proba-
bilistic model. These previous studies suggested that query
expansion based on term co-occurrences is unlikely to sig-
nificantly improve performance [18]. Qiu et al. [20] showed
that adding terms that have the greatest similarity to the
entire query, rather than individual terms, can obtain more
improvement. Xu et al. [29] showed that the analysis of
word occurrences and relationships on a local set of docu-
ments (i.e. the top ranked documents retrieved by the origi-
nal query) yields better performance than on the whole cor-
pus. In language modeling approaches, Berger et al. [3] pro-
posed a translation model to incorporate term relationship
into language modeling approaches. Cao et al. [4] extended
the translation model to integrate both co-occurrence and
hand-crafted thesaurus and achieve reasonable performance
improvement. Bai et al. [2] showed that query expansion
based on co-occurrences can improve the performance in lan-
guage modeling approaches.

Although the motivation is similar, our work differs from
the previous work in that (1) we attempt to integrate term
semantic relationship as a component in our retrieval model;
(2) we take an axiomatic approach and define constraints to
guide us in the incorporation of semantic term matching.
Similar to previous work [11, 24, 18, 20, 23, 2], our method
can also be implemented as query expansion. Thus, when
we compute term similarity based on the documents in the
collection, it bears some similarity to traditional feedback
methods [21, 30, 19, 16], which also select terms from doc-
uments as to expand the query. But our method selects
terms that are semantically related to each individual query
term and relies on the axiomatic approaches to combine
them, while feedback methods select terms that discriminate
the feedback documents, which are not necessarily related
to any individual query term. Because of this difference,
our method is complementary to the traditional feedback
method. Indeed, our experiment results show that they can
be combined to further improve performance.

3. AXIOMATIC RETRIEVAL MODEL
The basic idea of the axiomatic approach to information

retrieval is to search in a space of candidate retrieval func-
tions for one that can satisfy a set of reasonable retrieval
constraints; the assumption is that if a retrieval function
satisfies all the desirable retrieval constraints, it would likely
be effective empirically [5, 6]. Compared with other retrieval
models, this approach has the advantage of connecting rele-
vance more directly with terms through formalized retrieval
constraints.

In [6], several interesting new retrieval functions have been
derived using formalized retrieval constraints and an induc-
tive decomposition of the function space. These new func-
tions are shown to perform as well as traditional retrieval
functions but with much more robust parameter setting.
The inductive definition decomposes a retrieval function into
three component functions: primitive weighting function,
document growth function and query growth function.

The primitive weighting function gives the score of a one-
term document {d} and a one-term query {q}. It is usually
instantiated as

S({q}, {d}) =

{

ω(q) q = d
0 q 6= d

(1)

where ω(q) is an IDF-like function of q [6].
The query growth function describes the score change

when we add a term to a query and is instantiated as

S(Q ∪ {q},D) = S(Q, D) + S({q},D).

The document growth function describes the score change
when we add a term to a document, and is instantiated
based on some existing retrieval functions. The instantiation
corresponding to Okapi 1 is

S(Q, D ∪ {d}) =
∑

t∈D∪Q−{d}

S(Q, {t})λ(|D| + 1, c(t, D))

+S(Q, {d}) · λ(|D| + 1, c(d, D) + 1).

where λ(x, y) = y
b

avdl
x+b+y

, 0 ≤ b ≤ 1, |D| is document

length, and c(t, D) is the count of term t in D.
In general, a different instantiation of these component

functions would result in a different retrieval function. In
[6], several such inductively defined axiomatic retrieval func-
tions are derived, and they are all shown to be effective. The
following function (F2-EXP) is one of the best performing
functions, which will be used in this paper as an example ax-
iomatic retrieval function to illustrate how we can incorpo-
rate semantic term matching; however, the proposed method
can be easily applied to all the other derived functions.

S(Q, D) =
∑

t∈Q∩D

c(t, Q) · (
N

df(t)
)0.35 ·

c(t, D)

c(t, D) + b + b·|D|
avdl

4. INCORPORATING SEMANTIC TERM
MATCHING

In this section, we show how we can naturally incorpo-
rate semantic term matching into the inductively defined ax-
iomatic retrieval model proposed in [6]. Following the spirit
of axiomatic approaches, we first define three constraints on
semantic term matching.
1 The instantiation of the document growth function is more
general than the one given in [6], which is S(Q, D ∪ {d}) =
∑

t∈D∩Q−{d} S(Q, {t})λ(|D| + 1, c(t, D)) + S(Q, {d}) · λ(|D| +

1, c(d, D) + 1). Given q 6= d, S({q}, {d}) = 0, these two instantia-
tions are equivalent.



4.1 Semantic Term Matching Constraints
Let s(t, u) ∈ [0, +∞] be any given semantic similarity

function between two terms t and u. Without loss of gen-
erality, we assume that term t is semantically more similar
to term u than to term v if and only if s(t, u) > s(t, v), i.e.,
a large value of s indicates a high similarity. Since intu-
itively a term has the highest similarity to itself, we assume
∀u 6= t, s(t, t) > s(t, u). We also assume that s is symmet-
ric, i.e., ∀t, u, s(t, u) = s(u, t). Based on such a semantic
similarity function, we now define three constraints that we
would like any reasonable retrieval function to satisfy.
STMC1: Let Q = {q} be a query with only one term q.
Let D1 = {d1} and D2 = {d2} be two single-term docu-
ments, where q 6= d1 and q 6= d2. If s(q, d1) > s(q, d2), then
S(Q, D1) > S(Q, D2).

STMC1 requires a retrieval function to give a higher score
to a document with a term that is more semantically related
to a query term. Thus, even though D1 and D2 do not match
the query Q syntactically, we would like D1 to have a higher
score because term d1 is more semantically related to query
term q than term d2 is. Clearly, STMC1 directly constrains
the primitive weighting function.
STMC2: Let Q = {q} be a single term query and d be
a non-query term such that s(q, d) > 0. If D1 and D2 are
two documents such that |D1| = 1, c(q, D1) = 1, |D2| =
k and c(d, D2) = k (k ≥ 1), where c(q, D1) and c(d, D2)
are the counts of q and d in D1 and D2 respectively, then
S(Q, D1) ≥ S(Q, D2).

STMC2 requires that matching an original query term q
exactly should always contribute no less to the relevance
score than matching a semantically related term d, no mat-
ter how many times term d occurs in the document.
STMC3: Let Q = {q1, q2} be a query with only two query
terms and d be a non-query term such that s(q2, d) > 0.
Let D1 and D2 be two documents. If |D1| = |D2| > 1,
S({q1}, {q1}) = S({q2}, {q2}), c(q1, D1) = |D1|, c(q1, D2) =
|D2| − 1 and c(d, D2) = 1, then S(Q, D1) ≤ S(Q, D2).

STMC3 intends to capture the following intuition: Sup-
pose we have a query with two equally important terms q1

and q2. Suppose a document D1 matches q1 n (> 1) times,
but does not match q2 or any of its semantically related
terms. If we change one of the occurrences of q1 in D1 to a
term semantically related to q2 to form a document D2, D1

should not have a lower score than D2, because D2 covers
more distinct query terms than D1.

4.2 Extension based on STMCs
The constraints defined above provide some guidance on

how to extend the inductively defined axiomatic retrieval
functions to incorporate semantic term matching.

First, it is clear that these existing axiomatic functions
violate all the three constraints we defined, simply because
the semantic similarity function s is not part of the retrieval
function. For example, based on the primitive weighting
function shown in Equation (1), any single-term document
will be assigned a zero score if the term in the document is
not matching exactly the query term, which clearly violates
STMC1.

To make the primitive weighting function satisfy STMC1,
a natural solution is to define the following generalized prim-

itive weighting function based on a given similarity function
s.

S({q}, {d}) = ω(q) × f(s(q, d)),

where f is a monotonically increasing function. Note that it
is reasonable to require ∀q ∈ Q, f(s(q, q)) = 1 for any query
Q, because the score of generalized primitive weighting func-
tion should be comparable with the score of the original one
when the two terms match exactly. One way to ensure such
property is to define f in terms of normalized similarity.

f(s(q, d)) =
s(q, d)

s(q, q)
× λ(q, d)

where

λ(q, d) =

{

1 q = d
β q 6= d

(2)

β is used to regulate the weighting of the original query
terms and the semantically similar terms. The value of β

should satisfy 0 < β < s(q,q)
s(q,d)

, because f(s(q, d)) < f(s(q, q))

= 1) when d 6= q.
The generalized primitive weighting function clearly sat-

isfies STMC1, and if we combine it with any existing in-
stantiations of document growth function and query growth
function, the derived retrieval functions would also satisfy
STMC1 unconditionally. We further analyze STMC2 and
STMC3 on such derived functions and find that these con-
straints are satisfied when β is within a certain range. Specif-
ically, the analysis of STMC2 provides a tighter upper bound
for β, while the analysis of STMC3 provides a tighter lower
bound. The actual values of these bounds depend on the
instantiation of document growth function. As an example,
the lower and upper bounds for F2-EXP is:

b

2 + b
×

s(q, q)

s(q, d)
≤ β ≤

1

b + 1
×

s(q, q)

s(q, d)
(3)

We see that the bounds of β depend on both the query and
semantic similarity function s. In our experiments, on each
data set, the lower bound of β is determined by the lowest

value of s(q,q)
s(q,d)

for all the query terms while the upper bound

of β is determined by the highest value of s(q,q)
s(q,d)

, which are

the minimal requirements of β.
Since a term can potentially have a huge number of se-

mantically related terms, the computation of the generalized
retrieval functions can be expensive. To reduce the compu-
tation cost, we can reasonably restrict our attention to the
most similar terms for each query term. Such simplification
is not expected to affect the retrieval score significantly, be-
cause the dropped terms would contribute little to the score
anyway. Thus we redefine the generalized primitive weight-
ing function as follows:

Sgen({q}, {d}) =

{

ω(q) · s(q,d)
s(q,q)

· λ(q, d) d ∈ ε(q)

0 otherwise
(4)

where ε(q) is the set of K most semantically similar terms
of q according to the similarity function s, ω(q) is as in
Equation (1) and λ(q, d) is defined in Equation(2).

Even with this simplification, the computation can still
potentially involve enumerating all the combinations of query
terms and document terms. Fortunately, there is an efficient
way to compute such a retrieval function based on query ex-
pansion as shown in the next section.

4.3 As Query Expansion
Let us first introduce some notations. S(Q, D) is the scor-

ing function of the original inductively defined axiomatic re-



trieval function, where only syntactic term matching is con-
sidered. Sgen(Q, D) is the generalized inductively defined
axiomatic retrieval function obtained by combining the gen-
eralized primitive weighting function with the original doc-
ument growth and query growth function.

The generalized primitive weighting function (i.e., Equa-
tion (4)) can be re-written as follows.

Sgen({q}, {d}) =







ω(q) d = q
ω(q : d) d ∈ ε(q)/{q}
0 otherwise

where ω(q : d) = ω(q) × β × s(q,d)
s(q,q)

.

Let ε′(q) be the set of K most semantically similar terms
of q excluding itself, i.e., ε′(q) = ε(q)/{q}. Let P be the
set of the K most similar terms of all query terms, i.e.,
P =

⋃

q∈Q
(ε′(q)). ∀t ∈ P , let ρ(t) be the set of query

terms that are semantically similar to t. Define S′ such that

∀t ∈ P ,S′({t}, {t}) = ω(ρ(t) : t) =
∑

u∈ρ(t) ω(u:t)

|Q|
; otherwise

S′(Q, D) = S(Q, D).
Theorem: ∀Q, D, Sgen(Q, D) = S′(Q ∪ P, D).
Proof:

Sgen(Q, D) =
∑

q∈Q

Sgen(q, D)

=
∑

q∈Q

(Sgen(q, Dq) +
∑

t∈ε′(q)∩D

Sgen(t, Dt))

=
∑

q∈Q

(S(q, Dq) +
∑

t∈ε′(q)∩D

S′(t, Dt))

= S(Q, D) +
∑

q∈Q

∑

t∈ε′(q)∩D

S′(t, Dt)

= S(Q, D) +
∑

t∈P

S′(t, Dt)

= S′(Q, D) +
∑

t∈P

S′(t, D)

= S′(Q ∪ P, D)

where Dt is the part of the document D that only contains t.

(i.e., |Dt| = c(t, D) = c(t, Dt)).

The first step is based on query growth function. The
second step assumes that the relevance score of a document
can be computed as the sum of the disjoint subsets of the
document, which holds for all the inductively defined ax-
iomatic retrieval functions. The third step is based on the
fact that Sgen and S′ use the same document growth func-
tion and the fact that S′({t}, {t}) = ω(ρ(t) : t) is consistent
with generalized primitive function when t ∈ P .

The theorem shows that scoring a document using Sgen

can be reduced to scoring using S′ with an expanded query
formed by adding, for each query term, K most similar terms
to the query. Note that the weight of a similar term t is
computed from ω(ρ(t) : t) instead of ω(t) as used in the
traditional query expansion methods.

4.4 Term Semantic Similarity Function
The remaining challenge is to define s(t1, t2) in STMC1.

In general, we may exploit any knowledge and resources
available to us to compute term similarity and there are
many ways to compute it. For example, co-occurrences of
terms obtained from the analysis of a document collection
usually reflect underlying semantic relationships that exist
between terms [23, 3, 4, 2], and we may use measures such as

Dice similarity [1] and mutual information [25, 15, 9, 8, 13,
7] to compute term similarity. In this paper, we adopt the
mutual information as the basic semantic similarity metric,
leaving other choices for future work.

The mutual information (MI) of two terms t and u in a
set of documents can be computed as follows [25]:

I(Xt, Xu) =
∑

Xt,Xu∈{0,1}

p(Xt, Xu) log
p(Xt, Xu)

p(Xt)p(Xu)

Xt and Xu are two binary random variables corresponding
to the presence/absence of term t and term u in each docu-
ment or segment.

Mutual information is a principled way to measure term
correlations, and it satisfies our requirements about the sim-
ilarity function s. The next choice we have to make is which
corpus to use when computing the mutual information. A
natural choice would be the document collection from which
we retrieve documents. However, such a choice may not be
ideal because an ambiguous term can have multiple senses
in a large corpus. As a result, the semantically related terms
found by mutual information could be a mix of terms corre-
sponding to different senses of the original term, introducing
noise in query expansion. Thus, it is crucial to compute mu-
tual information over a “clean” corpus, where ideally only
one (correct) sense of the query term occurs. How can we
find such a “clean” corpus? One possibility is to use the
top-M documents returned by the retrieval systems for the
query. The rational is that we can reasonably assume there
is only one sense of a query term in the set of relevant doc-
uments, and the top-M documents are reasonable approxi-
mations of the set of relevant documents. This is indeed in
line with what previous work in query expansion has found
– local document analysis tends to be more effective than
global document analysis [29].

However, the top-M documents would clearly be a biased

corpus, and in this sense, it is not a good corpus for com-
puting mutual information. For example, it is likely that a
query term occurs in all the top-M documents. The abun-
dance of a query term would then cause popular terms in
the top-M documents to generally have a high mutual infor-
mation. In particular, a common term (e.g., “can”) would
have a high mutual information, even if it also occurs in
many other documents where the query term does not oc-
cur. To solve this problem, we need to supplement the top-
M documents with some additional documents that do not
necessarily contain any query term. Thus we will randomly
choose r × M documents from the collection and combine
them with the top-M documents as a mixed corpus for com-
puting mutual information.

Clearly, the choice of r may also affect the mutual infor-
mation results. How do we choose a good value for r? Once
again, constraint analysis can provide some guidance. The
following notations will be used in defining the constraints:
N is the total number of documents in the document col-
lection. df(t) is the number of documents that contain t in
the collection. W is the working set containing r × M ran-
dom documents plus the top M documents returned by the
system; since the r×M documents are chosen from the doc-
uments ranked below the top-M documents, we clearly have
M + M × r ≤ N . df(t1, t2|W ) is the number of documents
that contain both t1 and t2 in the working set W . df(t|W )
is the number of documents that contain t in the working
set W .



Intuitively, the value of r should not be very small, be-
cause we need enough number of random documents to pe-
nalize the common terms. Consider the scenario in Figure
1(a), where t1 is a “truly” semantically related term, while
t2 is a common term. t1 is semantically more similar to q
than t2, although t2 co-occurs with q in more documents
than t1. This intuition can be captured by the following
Term Semantic Similarity Constraint(TSSC).
TSSC1: Let q be a query term and t1 and t2 be two
non-query terms. If df(q, t1|W ) = M

2
, df(t1|W ) = M

2
,

df(q|W ) = M , df(q, t2|W ) = M , df(t2|W ) = M + r×M
2

,
then s(q, t1) > s(q, t2).

(b) TSSC2

),(),( 21 tqstqs >

Top M docs

r * M random docs

Top M docs

r * M random docs

(a) TSSC1

q t1 t2 q t1

t2
2

M

2

Mr ⋅ Mr ⋅⋅α

),(),( 21 tqstqs >

Figure 1: TSSC

On the other hand, the value of r should not be very
large because we want to ensure that the dominant sense
of a query term is the one determined by the whole query.
Consider the scenario in Figure 1(b). Suppose a query term
q has two senses. The first sense is the one determined by
the whole query (i.e., in the top M documents), and a term
t1 is semantically related to this sense of q (i.e., they co-
occur in the top M documents). Now suppose another term
t2 is semantically related to another sense of q (i.e., they co-
occur in the random documents). Intuitively, t1 should have
a higher similarity score than t2. The following constraint
captures this intuition.
TSSC2: Let q be a query term and t1 and t2 be two non-
query terms. If 0 < α < 1, df(q, t1|W ) = M , df(t1|W ) = M ,
df(q|W ) = M + α × r × M and df(t2|W ) = df(q, t2|W ) =
α × r × M , then s(q, t1) > s(q, t2).
α is the percentage of the documents that contain q in a
random sample of the whole collection after the top M doc-

uments excluded, i.e., α = df(q)−M

N−M
.

The above two constraints are satisfied only when the
value of r is within a certain range. Indeed, TSSCs pro-
vide a lower and an upper bounds for r.

1 < r <
N

df(q)
(5)

The value of r is collection and query dependent. For each
collection, we use the median of the document frequency of
all query terms to compute the upper bound of r.

4.5 Summary
We briefly summarize the high-level steps involved in the

proposed method for incorporating semantic term matching:

1. Construct a working set where term semantic similar-
ity can be computed.

2. For every query term, find the top L most similar terms
based on the working set.

3. Gather the top L similar terms for all the query terms,
then select the top K ranked terms based on
ω(ρ(t) : t).

4. Expand the original query with the K terms. Note
that the weight of an expansion term is computed
based on ω(ρ(t) : t) instead of ω(t).

In the first step, the working set can be constructed over
any reasonable resources in the following way: Given any
collection of documents and a query, we first use the origi-
nal inductively defined axiomatic retrieval function to rank
the documents. We then merge the top M returned doc-
uments with r × M random documents selected from the
same collection to form a working set for computing term
similarity. The collection to be used can be either the tar-
get collection for retrieval (called internal expansion) or any
other collections (called external expansion). To form a large
pool of terms, L is usually fixed to 1000. Four parameters
need to be tuned: the number of expansion terms (i.e., K),
the number of top documents (i.e., M), the number of ran-
dom documents (i.e., r) and the scaling parameter β. The
optimal values of β and r are expected to be within a certain
range based on Equation (3) and Equation(5), which is also
supported by our experiment results.

5. EXPERIMENTS

5.1 Experiment Design
We conduct three sets of experiments. First, we evaluate

the effectiveness of the semantic term matching. Second,
we examine the parameter sensitivity of the method. Fi-
nally, we compare it with a model-based feedback method
in language modeling approaches [30].

All experiments are conducted over two collections used
in recent Robust track [28, 27]: (1) TREC Disk 4&5 (mi-
nus Congressional Record) with 249 official topics of Ro-
bust track in 2004. The document set has 1908MB text
and 528,000 documents. This is labeled as “ROBUST04”.
(2)AQUAINT data with 50 official topics of Robust track
in 2005. The document set has 3GB text and 1,033,461
documents. This is labeled as “ROBUST05”. Some experi-
ments are also conducted over six other data sets used in
the previous studies [5, 6, 31]: news articles (AP88-89),
technique reports (DOE), government documents (FR88-
89), Web data (WEB2g), and the ad hoc data in TREC
(TREC7 and TREC8). In all the experiments, we use the
title-only queries, because short keyword query is the most
frequently used query type by web users and semantic term
matching is necessary for such short queries.

The performance is measured using the official measures
in Robust track: MAP (mean average precision) and gMAP
(geometric mean average precision). gMAP [27, 28] is a vari-
ant of the traditional MAP measure that uses a geometric
mean rather than an arithmetic mean. This measure em-
phasizes the performance of poorly-performing topics.

The preprocessing only involves stemming with Porter’s
stemmer. As pointed out in the previous work [6], using a
fixed parameter value (b = 0.5), F2-EXP can often achieve
near-optimal performance in many test sets. Thus, we fix
b to 0.5 in our experiments. We use the optimal value of
b for the other five inductively defined axiomatic retrieval
functions. In the first and third sets of experiments, M and
K are both fixed to 20 and r is fixed to 29, so that we
will get a total of 600 documents in the working set. We



Table 1: Performance of different axiomatic func-
tions.

Method ROBUST04 ROBUST05
MAP gMAP MAP gMAP

BL 0.241 0.138 0.200 0.131
F1-LOG docAX 0.261 0.150 0.241 0.126

8.3%‡ 8.7%‡ 21%‡ -3.8%‡
segAX 0.267 0.148 0.256 0.134

11%‡ 7.3%‡ 28%‡ 2.3%‡
BL 0.240 0.137 0.199 0.128

F1-EXP docAX 0.262 0.150 0.246 0.126
9.2%‡ 9.5%‡ 24%‡ -2.4%‡

segAX 0.266 0.148 0.252 0.128
11%‡ 8.0%‡ 27%‡ 0.0%

BL 0.251 0.141 0.196 0.125
F2-LOG docAX 0.278 0.157 0.270 0.131

11%‡ 11%‡ 38%‡ 4.8%‡
segAX 0.284 0.156 0.281 0.135

13%‡ 11%‡ 43%‡ 8.0%‡
BL 0.248 0.142 0.192 0.122

F2-EXP docAX 0.285 0.157 0.258 0.136
15%‡ 11%‡ 34%‡ 11%‡

segAX 0.288 0.158 0.267 0.137
16%‡ 11%‡ 39%‡ 12%‡

BL 0.240 0.138 0.200 0.131
F3-LOG docAX 0.259 0.146 0.241 0.138

7.9%‡ 5.8%‡ 21%‡ 5.3%‡
segAX 0.267 0.149 0.253 0.131

11%‡ 7.9%‡ 27%‡ 0.0%
BL 0.239 0.137 0.198 0.127

F3-EXP docAX 0.261 0.150 0.244 0.125
9.2%‡ 9.5%‡ 23%‡ -1.6%‡

segAX 0.265 0.148 0.254 0.130
11%‡ 8.0%‡ 28%‡ 2.4%‡

tune the value of β and report the best performance unless
otherwise stated. BL is the baseline method without expan-
sion (i.e., without semantic term matching). docAX and
segAX are semantic expansion methods with MI computed
based on co-occurrences in documents and 100-word seg-
ments, respectively. In all the result tables, ‡ and † indicate
that the improvement is statistically significant according
to Wilcoxin signed rank test at the level of 0.05 and 0.1
respectively.

5.2 Effectiveness of Semantic Term Matching
Table 1 shows the performance of the internal expansion

for all six functions. The semantic term matching consis-
tently and significantly outperforms the baseline on both
data sets in terms of MAP. But, gMAP decreases in a few
cases, which indicates that most of the performance im-
provement comes from the easy topics. F2-EXP is the best
of all the functions. We further test the semantic expansion
on top of F2-EXP on six other data sets, and found that
semantic expansion outperforms the baseline (i.e., F2-EXP)
significantly (Table 2) on all the data sets except FR88-89.
Due to the limit of space, we only report the performance
of F2-EXP in the remaining experiments.

Table 3 shows the performance when semantic similar-
ity is computed over the internal resource (i.e., collection
itself), the external resource (i.e., a pool of Google snip-
pets returned for a query), and both (i.e., first use external
expansion, then do another round of internal expansion).
We make the following observations. First, the expansion
method improves the performance significantly in all cases.
Second, the web-based external expansion method is consis-
tently more effective than the internal expansion method in
both measures. This indicates that the use of good exter-

Table 2: Performance of F2-EXP on more data sets.
Data MAP gMAP

BL docAX segAX BL docAX segAX
TREC7 0.186 0.236 0.247 0.083 0.098 0.098

27%‡ 33%‡ 18%‡ 18%‡
TREC8 0.250 0.277 0.278 0.147 0.172 0.167

11%‡ 11%‡ 17%‡ 14%‡
WEB2g 0.282 0.324 0.324 0.188 0.220 0.220

15%‡ 15%‡ 17%‡ 17%‡
FR88-89 0.217 0.227 0.224 0.058 0.062 0.069

4.6% 3.2% 6.9% 19%
AP88-89 0.220 0.266 0.267 0.074 0.088 0.086

21%‡ 21%‡ 19%‡ 16%‡
DOE 0.174 0.186 0.184 0.069 0.078 0.074

6.9%‡ 5.8%‡ 13%‡ 7.3%‡

Table 3: Performance when using different re-
sources.

Method ROBUST04 ROBUST05
MAP gMAP MAP gMAP

BL 0.248 0.142 0.192 0.122
Internal docAX 0.285 0.157 0.258 0.136

15%‡ 11%‡ 34%‡ 11%‡
Expansion segAX 0.288 0.158 0.267 0.137

16% 11%‡ 39%‡ 12%‡
External Expansion 0.300 0.196 0.270 0.196

21%‡ 38%‡ 41%‡ 61%‡
External docAX 0.300 0.178 0.289 0.203

+ 21%‡ 25%‡ 51%‡ 66%‡
Internal segAX 0.302 0.175 0.290 0.198

Expansion 22%‡ 23%‡ 51%‡ 62%‡

nal resources improves the effectiveness especially over the
poorly-performing topics, which is consistent with what oth-
ers have observed [27]. Finally, combining both internal and
external expansion further improves the accuracy.

5.3 Sensitivity Analysis
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Figure 2: Performance Sensitivity (r)

Next, we study the performance sensitivity for the four
parameters in the semantic expansion. Here we only show
plots on ROBUST05, but similar trends can be observed for
all the other data sets. Figure 2 shows the sensitivity curve
for r. Equation (3) gives 1 < r < 50 for the ROBUST05
data set. The performance is relatively stable when r is
within the range, while it decreases when r is out of the
range. Figure 3 shows the sensitivity curve for β. Equation
(5) gives 0.27 ≤ β ≤ 3.8 for the ROBUST05 data set. The
optimal value is indeed within the predicted range, although
docAX and segAX have different optimal value of β. Figure
4 shows the sensitivity curve for K. The performance is near
optimal when K is 20. The performance is relatively stable
when more terms are added. Figure 5 shows the curve for M .
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We observe the performance is optimal when M is around
20. The performance decreases when more documents are
used, likely because the assumption that top M documents
are all relevant is not true for larger values of M .

5.4 Comparison with Feedback Methods
Both our semantic expansion and traditional feedback meth-

ods select terms for query expansion. Traditional feedback
methods [21, 30] select terms that have higher weight in the
feedback documents, while our method selects terms that
are semantically related to any query term. It would be in-
teresting to compare their performance. In Table 4, we re-
port the performance of the model-based feedback method
in language modeling approaches [30]. Internal PFB (IPFB)
is the pseudo feedback method. External PFB (EPFB) is
the feedback method where the feedback terms are obtained
from the Google snippets. We set µ to the optimal value for
each data set, the number of feedback terms to 20 and the
number of documents to 20. We tune the value of feedback
coefficient and the value of mixture noise [30] and report the
best performance. Comparing Tables 3 and 4 shows that

Table 4: LM Feedback & Additive Effect
Method ROBUST04 ROBUST05

MAP gMAP MAP gMAP
BL 0.251 0.140 0.196 0.131

Internal PFB 0.275 0.139 0.254 0.105
IPFB + docAX 0.284 0.151 0.269 0.133

3.3%‡ 8.6%‡ 5.9%† 27%†
IPFB + segAX 0.283 0.144 0.280 0.138

2.9%† 3.6%† 10%‡ 31%‡
External PFB 0.282 0.172 0.226 0.156

EPFB + docAX 0.293 0.170 0.278 0.168
3.9%‡ -1.2%‡ 23%† 7.7%†

EPFB + segAX 0.293 0.168 0.279 0.166
3.9%‡ -2.3%‡ 24%‡ 6.4%‡
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Table 5: Performance (MAP) of term selection
(segAX)

Data Weighting Term Selection
Function KL-Div. F2-EXP

ROBUST04 KL-Div. 0.275 0.288 (4.72%)‡
F2-EXP 0.285 0.288 (1.05%)

ROBUST05 KL-Div. 0.254 0.273 (7.48%)‡
F2-EXP 0.265 0.267 (0.755%)

the expansion method in axiomatic framework outperforms
the model-based feedback method for both internal and ex-
ternal feedback. More interestingly, as shown in Table 4,
our method can be combined with the traditional feedback
methods to further improve performance, which shows that
our method is complementary with the traditional feedback
method.

Finally, we design experiments to study whether the per-
formance gain of the semantic expansion comes from better
term selection or from better term weighting. Assume A
and B can be either our expansion method (i.e., F2-EXP)
or traditional method (i.e., KL-Div.). We use method A to
select terms for the method B, which means that we exclude
any terms that are not nominated by A when using B. How-
ever, these terms are still weighted using B. This way we
have four combinations shown in Table 5. The performance
of using the terms selected by F2-EXP is consistently bet-
ter than that of using the terms selected by KL-divergence
method. For example, on ROBUST05 data set, the per-
formance of KL-divergence method can be improved from
0.254 to 0.273 by using the terms selected by our method.
The results indicate that the performance improvement of
our method clearly comes more from better term selection.

6. CONCLUSION AND FUTURE WORKS
In this paper, we propose a natural way to incorporate se-

mantic term matching into axiomatic retrieval models. Fol-
lowing the previous work in axiomatic retrieval, several re-
trieval constraints are defined to capture intuitions on se-
mantic term matching. The advantage of this method is
that the constraints provide us guidance on the parameter
setting and on the choice of term semantic similarity mea-
sure. Our method can be efficiently implemented as a query
expansion method in the axiomatic framework.

The expansion based on semantic term matching was eval-
uated on several representative large retrieval collections.
The results show that our method is effective for all the six
inductively defined axiomatic retrieval functions. Further-
more, our method works for both internal resources (e.g.
collection itself) and external resources (e.g. the results re-



turned by Google). The parameter sensitivity confirms the
hypothesis that the constraint analysis can provide an up-
per bound and a lower bound for the optimal values of r
and β. The performance is relatively stable when the val-
ues of the parameters are set within the range derived from
the constraint analysis. As query expansion, our method
outperforms the model-based feedback method in language
modeling approach and is shown to be complementary to
the traditional feedback methods and can be combined with
them to further improve performance.

There are many interesting future research directions. First,
we can use more resources, such as WordNet [4, 26, 12,
14, 17], to compute term semantic similarity. Second, our
method can also be applied to cross-lingual retrieval task.
Finally, the term similarity between query terms are ignored
in our work. It would be interesting to study the expansion
based on query concepts instead of individual query term,
which is along the line of [16, 20].
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