
A Study of Entity Search in Semantic Search Workshop

Xitong Liu
Department of Electrical and Computer

Engineering
University of Delaware

xliu@ece.udel.edu

Hui Fang
Department of Electrical and Computer

Engineering
University of Delaware

hfang@ece.udel.edu

ABSTRACT
The paper describes the system we developed for the En-
tity Search Track of Semantic Search 2010 Workshop. The
problem of entity search is to retrieve relevant results from a
semantic data set about entities. Our general goal is to study
how we may apply existing Information Retrieval (IR) tech-
niques to solve the problem. Specifically, we focus on how
to utilize the IR systems to store the semantic data about
entities and how to leverage the IR models to retrieve the
entities. We evaluate the proposed system with the sample
queries and report the results.

1. INTRODUCTION
The InfoLab from University of Delaware participated in

the Entity Search Track of the Semantic Search 2010 Work-
shop. The task of entity search is to retrieve relevant entities
from a semantic data set for a given query, where the data
set contains semi-structured information about different en-
tities and the query is a keyword query.

Entity search is an important problem and has recently
started attracting attention from research communities. Many
problems centering around entity search, such as expert find-
ing problem [3, 8, 1] and related entity finding problem [2]
have been proposed and studied, but the setups of these
problems are different. In particular, expert finding is to re-
trieve entities (i.e., experts) from a unstructured data set
(i.e., a document collection) given a keyword query, related

entity finding is to retrieve entities from a unstructured data
set given a structured query, and the entity search problem
that we study in this paper is to retrieve entities from a
semi-structured data set given a keyword query.

The problem of entity search track can be formulated
as a keyword search problem over a semi-structured data
set. Since most studies on keyword retrieval utilize IR tech-
niques, a straightforward solution is to leverage existing IR
techniques and adapt them to solve the entity search prob-
lem, which is the main focus of our study. The main chal-
lenges include (1) how to convert the semantic data set to
a format that existing IR systems can process, and (2) how
to model the relevance based on the query and the data set.

To address the first challenge, we explore two options and
discuss the trade-off for each option. Based on the discus-
sions, we then decide to convert the semantic data set into
a document collection, where each document corresponds to
the profile of an entity. To address the second challenge, we

Copyright is held by the author/owner(s).
WWW2010, April 26-30, 2010, Raleigh, North Carolina.
.

need to understand the semantic meaning of an entity query.
Unfortunately, since this is the first year of the entity search
track, the semantic meaning of a query is not well defined
and understood. Thus, we decide to directly apply existing
retrieval models to rank the results this year, and leave the
futher study of the second challenge as our future work.

The paper is organized as follows. We describe the devel-
oped system in Section 2, report the experiment results for
sample queries in Section 3, and conclude in Section 4.

2. SYSTEM DESCRIPTION
We now describe an overview of the system that we de-

veloped for the entity search track. The system can be de-
composed into two components: entity profile building and
entity retrieval. Specifically, we first construct an entity pro-
file collection based on the given semantic data set, and then
discuss how to retrieve relevant entities based on their pro-
files for a given query.

2.1 Entity Profile Building
In order to retrieve entities that are relevant to a query,

we propose to build a profile for every entity so that each
entity profile contains all the information about the entity
based on the data set.

The data set used for the track is Billion Triple Chal-
lenge 2009 dataset 1, which contains the semantic informa-
tion about entities. An entity is described with a set of at-
tributes and their values. For example, a movie entity may
be described with the following attributes, i.e., entity name,
director, release date, actors, country and language. Each
line of the data set describes the information of an attribute
for a particular entity in the following N-Quads format 2:

<subject> <predicate> <object> <context>.

N-Quads format is a line-based plain text presentation of
RDF graph. The subject field includes the entity name or
URI for the entity, the predicate field indicates the attribute
type, and the object field contains the attribute value. The
fourth element, i.e. the context field, is the URI of the graph
that provides the context information of other fields. Thus,
if two lines have the same subject field values, it means
that these two lines contain the information about the same
entity.

For example, the following N-Quads statements contain
the information of two entities, i.e., a movie “Forrest Gump”

1http://vmlion25.deri.ie/
2http://sw.deri.org/2008/07/n-quads/

Table 1: Statistics of top 10 attribute types

Attribute Type Occurrences
wikilink 156448093
title 37923223
name 23372231
weblog 23266489
subject 22144813
has-author 19567160
links to 19157151
label 16835111
interest 16715068
description 15211377

(first three statements) and a book “Pride and Prejudice”
(last three statements).

<Forrest Gump> <director> <Robert Zemeckis> <LINK1> .

<Forrest Gump> <actor> <Tom Hanks> <LINK1> .

<Forrest Gump> <release_date> <July 6, 1994> <LINK1> .

<Pride and Prejudice> <author> <Jane Austen> <LINK2> .

<Pride and Prejudice> <country> <United Kingdom> <LINK2> .

<Pride and Prejudice> <genre> <novel of manners> <LINK2> .

where LINK1 and LINK2 are the URIs of the graphs that
contain each statement. We can see that a movie is described
with three attributes, i.e., director, actor and release date,
and a book is described with three attributes, i.e., author,
country and genre. The first field describes the entity name,
the second describes the attribute type, the third describes
the attribute value, and the fourth describes the context
information of the statement.

Since an entity may contain multiple attributes and each
attribute is described in one line (i.e., one N-quads state-
ment), the information of an entity could be distributed in
multiple lines. Clearly, given an entity, we may construct
its profile by merging the information of all the attributes
of the entity, i.e., by merging all lines whose subject field
values are the name or the URI of the entity. Thus, an
entity profile contains the information of its attributes and
corresponding attribute values.

Given an entity profile, we explore two options to rep-
resent the information of the profile. The first option is
to store the profiles as XML documents [6]. A commonly
used existing strategy is to store the information of each
attribute separately, retrieve the information based on each
attribute, and then combine the retrieval results based on
all the attributes of an entity. The second option is to store
the profiles as a unstructured document, where we simply
merge all the information of an entity (i.e., attribute types
and attribute names) together and represent them as “bag-
of-terms”.

The advantage of the first option is to allow us to utilize
the semantic meaning of the data. Unfortunately, our pre-
liminary results suggest that this option may not be feasible
for the given data set due to a wide variety of entities and
entity attributes. We find that there are 117,383 different
attribute types in the data set, and the most frequent at-
tribute types are shown in Table 1. Thus, we choose the
second option to represent the profile in our system.

To construct an entity profile, we propose to merge all the
useful information of an entity together into a document.
Specifically, we extract the predicate fields and object fields
associated with the same subject fields and merge them to-

gether. We do not utilize the context fields because they
only provide the origins of the RDF graphs and do not con-
tribute additional information of an entity.

For the object fields (i.e., attribute values), we include all
the information of the fields into the entity profiles. For the
predicate fields, we find that they have the following two
formats:

1. <http://dbpedia.org/property/abstract>, in which
the attribute type is located in the last part of URI,
i.e. abstract.

2. <http://www.aktors.org/ontology/portal#year-of>,
in which the type is located in the string after #, i.e.
year-of.

Since we are more interested in the attribute type, the entity
profile only includes the attribute type information rather
than the whole predicate fields. The extraction of the at-
tribute types is done based on the regular expression match-
ing for the above two formats.

Moreover, since there are blank nodes in the data set, we
need to discuss how to process them in our profile building
process. We use the data set preprocessed by the organizers,
in which the blank node is encoded into
http://example.org/URLEncode(BNID),
where BNID is a unique ID in the dataset. In the data set, a
blank node is either a subject field or an object field whose
value is encoded with BNID. Note that a blank node serves
as a bridge that connects two N-quads statements. If the
subject field value of one statement contains the same BNID
as the object field value of the other statement, the former
statement provides additional information for the entity re-
lated to the later statement. Thus, when building the profile
for the entity, we need to include the information from both
statements. This process will be done iteratively until all
the statements with the blank nodes as their subject fields
are merged into the entity profiles.

Although representing an entity profile as a unstructured
document is simple and straightforward, it merges all the at-
tribute types and values together and ignores the semantic
information of an entity. However, intuitively, we may need
to utilize these semantic information to improve search accu-
racy. For example, if a user wants to retrieve all the books
written by Jane Austin, the system with the current pro-
file representation may return the movie “Becoming Jane”
to the user due to the loss of the semantic meaning of the
data. We plan to explore other ways of representing pro-
file that would better suit for semantic search in our future
work.

2.2 Entity Retrieval
After building the entity profiles, each profile can be re-

garded as a document including all the information of an
entity. As a result, the problem of entity search over the
original semantic data set is the same as document retrieval
over the newly constructed entity profile collection. Moti-
vated by this observation, we can then leverage the existing
IR techniques. Specifically, we first build index over the en-
tity profile collection, and then run existing retrieval models
to retrieve relevant entities based on the corresponding pro-
files.

We apply three existing retrieval functions, i.e., Okapi,
Dirichlet Prior and axiomatic retrieval function. We now

define the notations used in the functions. S(Q, D) denotes
the scoring function. c(t, D) is the count of term t in docu-
ment D and c(t, Q) is the count in query Q. N is the number
of documents in the collection. |D| is the document length,
and avdl is the average document length of the collection.
df(t) is the number of documents containing term t. p(t|C)
is the probability of a term t given by the collection.

• Okapi [7] (a retrieval function derived from the classi-
cal probabilistic retrieval model):

S(Q, D) =
X

t∈Q∩D

ln
N − df(t) + 0.5

df(t) + 0.5

×
2.2 × c(t, Q)

1.2 + c(t, Q)

×
1001 × c(t, D)

1000 × ((1 − b) + b
|D|
avdl

) + c(t, D)
, (1)

where b is a parameter.

• Dirichlet Prior [9] (a retrieval function derived using
language modeling approach):

S(Q, D) =
X

t∈Q∩D

c(t, Q) · ln(1 +
c(t, D)

µ · p(t|C)
)

+|Q| · ln
µ

|D| + µ
, (2)

where µ is a parameter.

• Axiomatic retrieval function [4] (a retrieval function
derived using axiomatic approach):

S(Q, D) =
X

t∈Q∩D

c(t, Q) ×
c(t, D)

c(t, D) + s + s · |D|
avdl

× (
N + 1

df(t)
)0.35

, (3)

where s is a parameter.

3. EXPERIMENTS

3.1 Data Sets
We now report the statistics of the data sets. There

are 1,464,829,200 lines in the Billion Triple Challenge 2009
dataset, and 79,272,352 distinct entities in the entity profile
dataset. The document length distribution of entity profile
dataset is shown in Figure 3.1. Obviously most of the docu-
ments are short and nearly half of them are shorter than 50
terms. The average document length is 115 terms and the
maximum document length (i.e., MaxDocLen) is 3,244,241
terms.

3.2 Preliminary Results
We use the sample queries provided by the organizer as the

training set to measure the performance of different models
under different parameter settings. Before we conduct the
experiments, we construct the judgements for the sample
queries using the pooling strategy [5]. Specifically, we treat
a retrieval model with a parameter setting as a run, and
merge the top 5 documents from all the runs into a pool.
For each query, all the documents in the pool are judged as
either relevant or non-relevant.

 0

 0.2

 0.4

 0.6

 0.8

 1

0-100
100-500

500-1000

1000-2000

2000-M
axDocLength

pe
rc

en
ta

ge

doc length

Percentage

Figure 1: Profile Document Length Distribution.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0-100
100-500

500-1000

1000-2000

2000-M
axRelDocLen

pe
rc

en
ta

ge

QREL doc length

Percentage

Figure 2: QREL Document Length Distribution.

Table 2: Performance comparison of different func-

tions with different parameters

Retrieval Model MAP
Okapi, b=0.05 0.4915
Okapi, b=0.1 0.4912
Okapi, b=0.2 0.5130

Okapi, b=0.5 0.4487
Okapi, b=0.7 0.3372

Dirichlet Prior, µ=500 0.4599
Dirichlet Prior, µ=1000 0.4714

Dirichlet Prior, µ=2000 0.4591
Dirichlet Prior, µ=5000 0.3967
Dirichlet Prior, µ=10000 0.3465

Axiomatic, s=0.05 0.4746

Axiomatic, s=0.1 0.4180
Axiomatic, s=0.2 0.4085
Axiomatic, s=0.5 0.4520
Axiomatic, s=0.7 0.4316

Figure 3.2 shows the document length distribution over
the relevant documents based on the judgements we con-
struct for the sample queries. The average relevant docu-
ment length is 2,933 terms and the maximum relevant doc-
ument length (i.e., MaxRelDocLen) is 15,594 terms.

It is interesting to see that the document length distribu-
tion for relevant documents is not consistent with the dis-
tribution of the dataset. Since most of the documents in
the dataset are short documents, the relevant document are
usually much longer. An intuitive explanation is that longer
documents have higher term frequency of the terms in the
entity search queries. This observation suggests that we do
not need to penalize longer documents as harshly as for doc-
ument retrieval. As a result, we make the hypothesis that
the parameters should be set to smaller values than the ones
used for the document retrieval task. In fact, the retrieval
performance confirms our hypothesis as shown in Table 2.
The default parameter values used for document retrieval
are 0.75 for Okapi, 2000 for Dirichlet Prior and 0.5 for ax-
iomatic retrieval function. However, the optimal values for
the entity search track are 0.2 for Okapi, 1000 for Dirichlet
Prior, and 0.05 for the axiomatic retrieval function.

3.3 Submitted Runs
Based on the results shown in Table 2, we use the following

strategies for the three submitted runs.

• UdelOkapi: Use the Okapi as the retrieval function
and the value of parameter b is set to 0.2.

• UdelDir: Use the Dirichlet Prior as the retrieval func-
tion and the value of parameter µ is set to 1000.

• UdelAX: Use the axiomatic retrieval function and the
value of parameter s is set to 0.05.

4. CONCLUSION
We describe the system that we developed for the en-

tity search track. The main focus is to study whether we
could adapt existing IR techniques to solve the problem. We
propose to construct a unstructured entity profile collection
based on the semantic data set, and then apply existing IR

retrieval models to retrieve relevant entities based on their
profiles.

In our future work, we plan to revisit the two challenges
and explore how to adapt the current strategies to improve
the search accuracy. In particular, with the availability of
the official judgement files, we will be able to understand
the semantic meaning of the entity queries and utilize such
information to study how to better build the entity profiles
and how to better model the relevance for the entity queries.

5. REFERENCES
[1] P. Bailey, N. Craswell, A. P. de Vries, and I. Soborof.

Overview of the trec 2007 enterprise track. In
Proceedings of Text Retrieval Conference, 2007.

[2] K. Balog, A. P. de Vries, P. Serdyukov, P. Thomas, and
T. Westerveld. Overview of the trec 2009 entity track.
In Proceedings of Text Retrieval Conference, 2009.

[3] N. Craswell, A. P. de Vries, and I. Soboroff. Overview
of the trec 2005 enterprise track. In Proceedings of Text

Retrieval Conference, 2005.

[4] H. Fang and C. Zhai. An exploration of axiomatic
approaches to information retrieval. In Proceedings of

the 28th annual international ACM SIGIR conference

on Research and development in information retrieval,
pages 480–487, 2005.

[5] D. Harman. Overview of the fourth text retrieval
conference (trec-4). In Proceedings of Text Retrieval

Conference, 1995.

[6] M. Lalmas. XML Retrieval. Morgan & Claypool, 2009.

[7] S. Robertson, S. Walker, S. Jones,
M. Hancock-Beaulieu, and M. Gatford. Okapi at trec-3.
In Proceedings of Text Retrieval Conference, pages
109–126, 1996.

[8] I. Soborof, A. P. de Vries, and N. Craswell. Overview of
the trec 2006 enterprise track. In Proceedings of Text

Retrieval Conference, 2006.

[9] C. Zhai and J. Lafferty. A study of smoothing methods
for language models applied to information retrieval.
ACM Transactions of Information Systems,
22(2):179–214, 2004.

