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Abstract. Empirical studies of information retrieval methods show that good retrieval performance is closely
related to the use of various retrieval heuristics, such as TF-IDF weighting. Any effective retrieval formula,
no matter how it is originally motivated, also often boils down to an explicit or implicit implementation of
these heuristics. One basic research question is thus what are exactly these “necessary” heuristics that seem
to cause good retrieval performance. In this paper, we present a formal study of these retrieval heuristics. We
formally define a set of basic desirable constraints that any reasonable retrieval function should satisfy, and
check these constraints on a variety of representative retrieval functions. We find that none of these retrieval
functions satisfies all the constraints unconditionally. Empirical results show that when a constraint is not
satisfied, it often indicates non-optimality of the method, and when a constraint is only satisfied for a certain
range of parameter values, its performance tends to be poor when the parameter is out of the range. In general,
we find that the empirical performance of a retrieval formula is tightly related to how well they satisfy these
constraints. Thus the proposed constraints can provide a good explanation of many empirical observations
and make it possible to evaluate any existing or new retrieval formula analytically.

1 Introduction

The study of retrieval models is central to information retrieval. Many different retrieval models have been
proposed and tested, including vector space models (Salton et al., 1975; Salton and McGill, 1983; Salton,
1989), probabilistic models(Robertson and Sparck Jones, 1976; van Rijbergen, 1977; Turtle and Croft, 1991;
Fuhr, 1992; Ponte and Croft, 1998; Lafferty and Zhai, 2003), and logic-based models(van Rijsbergen, 1986;
Wong and Yao, 1995; Fuhr, 2001). Despite this progress in the development of formal retrieval models,
good empirical performance rarely comes directly from a theoretically well-motivated model; rather, heuris-
tic modification of a model is often necessary in order to achieve optimal retrieval performance. Indeed,
many empirical studies show that good retrieval performance is closely related to the use of various retrieval
heuristics, especially TF-IDF weighting and document length normalization. Many empirically effective re-
trieval formulas tend to boil down to an explicit or implicit implementation of these retrieval heuristics, even
though they may be motivated quite differently (Voorhees and Harman, 2001). Even the language modeling
approach has been shown to be connected with these heuristics (Zhai and Lafferty, 2001b). It thus appears
that these heuristics are somehow necessary for achieving good retrieval performance. However, it is unclear
at all what are exactly these “necessary heuristics” mathematically. A basic research question is then how can
we formally define or characterize these necessary retrieval heuristics.
In this paper, we present a formal study of retrieval heuristics. We formally define a set of basic desirable
constraints that any reasonable retrieval function should satisfy, and check these constraints on a variety of
representative retrieval functions, representing the vector space model (pivoted normalization), the classic
probabilistic retrieval model (Okapi), and the recently proposed language modeling approach (Dirichlet prior
and KL-divergence). We find that none of the retrieval functions we studied satisfies all the constraints
unconditionally, though some models violate more constraints or violate some constraints more seriously
than others. Experimental results show that whether a retrieval formula satisfies these constraints is tightly
related to its empirical performance behavior. More specifically, we find that when a retrieval method does



not satisfy a certain constraint, it often indicates non-optimality of the method, and when a constraint is only
satisfied for a certain range of parameter values, the method’s performance would tend to be poor when the
parameter is out of the range. Thus the proposed constraints provide a good explanation of many empirical
observations about some retrieval methods. Moreover, these constraints make it possible to evaluate any
existing or new retrieval formula analytically and shed light on how to further improve a retrieval formula.
The rest of the paper is organized as follows. We first present the four formal constraints in Section 2. We
then apply these constraints to a variety of retrieval functions in Section 3. Finally, we discuss our findings
and the future research directions in Section 4.

2 Formal Definition of Heuristic Retrieval Constraints

In this section, we formally define four desirable intuitive constraints that any reasonable retrieval function
should satisfy. They capture the commonly used retrieval heuristics, such as TF-IDF weighting, in a formal
way so that we can analytically apply them to any retrieval formula.
These four constraints are motivated by the following observations on some common characteristics of typical
retrieval formulas. First, most retrieval methods assume a “bag of words” (more precisely, “bag of terms”)
representation of both documents and queries. Second, a highly effective retrieval function typically involves
a TF part, an IDF part, and document length normalization. The TF part intends to give a higher score to
a document that has more occurrences of a query term, while the IDF part is to penalize words that are
popular in the whole collection. Document length normalization is to avoid favoring long documents; long
documents generally have more chances to match a query term simply because they contain more words.
Finally, different retrieval functions do differ in their way to combine all these factors, even though their
empirical performances may be similar.
These observations suggest that there are some “basic requirements” that all reasonable retrieval functions
should follow. For example, if a retrieval function does not penalize common words, then it somehow violates
the “IDF requirement”, thus can be regarded as “unreasonable.” However, some of these requirements may
compromise each other. For example, while the TF heuristics intends to assign a high score to a document
that has more occurrences of a query term, the document length normalization mechanism may cause a long
document with high TF to receive a lower score than a short document with a lower TF. Similarly, if two
documents match precisely one single, but different query term, the IDF heuristics may allow a document
with a lower TF to “beat” the other with a much higher TF. So how can we regulate such interactions so that
they will all be “playing a fair game?” Clearly, in order to answer this question, we must define what is a
“fair game,” i.e., we must define what is exactly a reasonable retrieval function.
Our idea is to characterize a reasonable retrieval function by listing the desirable constraints that any reason-
able retrieval function must satisfy. We now formally define four such desirable constraints. Note that they
should not be regarded as the only constraints that we want a retrieval function to satisfy; indeed, it is not
hard to come up with additional constraints that may also make sense. However, we focus on these four basic
constraints in this paper because they seem to capture the major known IR heuristics, particularly the TF-IDF
weighting and length normalization.
Let us first introduce some notations. We use di to denote a document, and q to denote a query. w or wi

represents a term, and c(w, d) is the counts of word w in document d. |d| denotes the length of document d.
f denotes a retrieval function, and f(d, q) gives the score of document d with respect to query q. We are now
ready to present the four constraints:

2.1 Term Frequency Constraint (TFC)

TFC: Let q = w be a query with only one term w. If c(w, d1) > c(w, d2) and |d1| ≤ |d2| + c(w, d1) −
c(w, d2), then f(d1, q) > f(d2, q).
This constraint ensures that document d1, which has a higher TF for the query term, should have a higher
score than d2 which has a lower TF, as long as d1 is not too much longer than d2. As a minimum, if d1 were
generated by adding more occurrences of the query term to d2, the score of d1 should be higher than d2; if
the length of d1 is shorter than this hypothesized d1, then we have more reason for giving d1 a higher score.
Thus it captures the TF heuristic in a conservative way.



2.2 Term Discrimination Constraint (TDC)

TDC: Let q be a query and w1, w2 ∈ q be two query terms. Assume |d1| = |d2|, c(w1, d1) + c(w2, d1) =
c(w1, d2) + c(w2, d2) and c(w, d1) = c(w, d2) for all other words w. If idf(w1) ≥ idf(w2) and c(w1, d1) ≥
c(w1, d2), then f(d1, q) ≥ f(d2, q).
This constraint ensures that, given a fixed number of occurrences of query terms, we should favor a document
that has more occurrences of discriminative terms (i.e., high IDF terms). Note that this constraint regulates
the interaction between TF and IDF, and accurately describes the effect of using IDF in scoring. Clearly,
weighting each term with an IDF factor does not imply that this constraint is satisfied. When applying this
constraint, IDF can be any reasonable measure of term discrimination value (usually based on term popularity
in a collection).

2.3 Length Normalization Constraints (LNC)

LNC1: Let q be a query and d1, d2 be two documents. If for some word w /∈ q, c(w, d2) = c(w, d1) + 1 but
for all other word w, c(w, d2) = c(w, d1), then f(d1, q) ≥ f(d2, q).
LNC2: Let q = w be a query. If ∀k > 1, |d1| = k · |d2| and c(w, d1) = k · c(w, d2),then f(d1, q) ≥ f(d2, q).
The first constraint says that the score of a document should decrease if we add one extra occurrence of a
“non-relevant word”, thus intends to penalize long documents. The second constraint intends to avoid over-
penalizing long documents, since it says that if we copy a document k times to form a new document. then
the score of the new document should not be lower than the original document.

3 Apply constraints to different retrieval models

In the previous section, four necessary retrieval constraints have been proposed according to some commonly
used retrieval heuristics. In this section, we apply these formally defined constraints to some specific retrieval
functions that represent the vector space model, the classical probabilistic retrieval model, and the language
modeling approach, and check whether they satisfy all these constraints. Through such analysis and some
empirical evaluation, we show two benefits of these constraints: (1) They can provide an approximate bound
for the parameters in a retrieval formula. (2) They can explain the performance difference in various retrieval
models.

3.1 Pivoted Normalization Method

The pivoted normalization retrieval formula (Singhal, 2001) is one of the best performing vector space re-
trieval functions. In the vector space model, text is represented by a vector of terms. Documents are ranked by
the distance, which is considered as “similarity”, between the query vector and the document vector. Given
a query, a document’s score is proportional to its similarity to the query. According to (Singhal, 2001), the
pivoted normalization retrieval function is

∑

t∈Q,D

1 + ln(1 + ln(tf))

(1 − s) + s dl
avdl

· qtf · ln
N + 1

df

where,
tf is the term’s frequency in document
qtf is the term’s frequency in query
N is the total number of documents in the collection
df is the number of documents that contain the term
dl is the document length
avdl is the average document length
The results of constraint analysis for the pivoted normalization method are summarized in Table 1. “Yes”
means a constraint is satisfied. “No” means it is not satisfied. “Cond” means the constraint is satisfied
conditionally for any range of parameter; “Cond.∗” means the constraint is satisfied for a particular range of
parameter values. We now examine some of the constraints that are not trivially satisfied in some detail.



Table 1. Constraints in Pivoted

TFC TDC LNC1 LNC2
Cond. Cond. Yes Cond.∗

First,let us consider TFC constraint. Let δ = c(w, d1)− c(w, d2). Consider a common case when d1 = avdl.
It can be shown that the TFC constraint is equivalent to the following constraint on the parameter s:

s ≤ l(c(w, d1), δ) × avdl

where

l(x, δ) =
g(x) − g(x − δ)

(1 + g(x)) × δ

and g(x) = ln(1 + ln(x)).
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Figure 1. Plot for function l(x, 2)

This means that the TFC is satisfied only if s is below certain upper bound. To have some sense of what
this bound is, we show the plot of l(x,2) (i.e., δ = 2) in Figure 1. It is clear that when c(w, d1) is larger,TF
constraint may provide an upper bound for s, that is s ≤ l(c(w, d1), 2) × avdl. On the other hand, when
c(w, d1) is small, TF constraint does not provide any effective bound for s,since s ≤ 1.
Next, we check the TDC constraint. Let c = c(w1, d1) + c(w2, d1). It can be shown that, when idf(w1) and
idf(w2) are close, the TDC is equivalent to h(c(w1, d1) − h(c(w1, d2)) ≥ 0, where

h(x) = ln(x) + ln(c − x) + ln(x) × ln(c − x)

By analyzing h(x), we see that when x ≤ c/2, h(x) monotonically increases; when x ≥ c/2, however, h(x) is
monotonically decreasing. A plot of h(x) for c = 10 is shown in Figure 2. This means that when idf(w1) and
idf(w2) are close, the TDC is satisfied only if c(w1, d1) ≤ c(w2, d1). It is interesting to see that the TDC,
which is essentially capturing the IDF heuristics, is not unconditionally satisfied even for a highly effective
TF-IDF scoring formula!
Finally, we show that the LNC2 leads to an upper bound for parameter s. The LNC2 is equivalent to

1 + ln(1 + c(w, d))

1 − s + s dl
avdl

qtf(w)idf(w) ≤
1 + ln(1 + kc(w, d))

1 − s + sk dl
avdl

qtf(w)idf(w)

Therefore, the upper bound of s can be derived as:

s ≤
tf2 − tf1

(k dl
avdl

− 1)tf1 − ( dl
avdl

− 1)tf2

(1)
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Figure 2. Plot for function h(x) when assume c=10

where

tf2 = 1 + ln(1 + kc(w, d)),

tf1 = 1 + ln(1 + c(w, d)).

Again, in order to get a sense of what the bound is exactly, let us consider a common case when |d2| = avdl.
We have

s ≤
1

k − 1
× (

tf2

tf1
− 1)

It can be shown that the bound becomes tighter when k increases or when the TF is larger. A plot of the
bound for k = 2 (i.e., double the document) is shown in Figure 3. This bound shows that in order to avoid
over-penalizing a long document, reasonable value for s should be generally small – it should be below 0.4
even in the case of a small k (k = 2), and we know that for large k the bound would be even tighter. This
analysis thus suggests that the performance can be bad for a large s.
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Figure 3. Upper bound of parameter s.

In order to verify this hypothesis, we tested the method on several different collections and for several differ-
ent types of queries. To cover different types of queries, we follow (Zhai and Lafferty, 2001b) , and vary two
factors: query length and verbosity, which gives us four different combinations : short-keyword (SK, keyword
title), short-verbose(SV, one sentence description), long-keyword(LK, keyword list), and long-verbose(LV,
multiple sentences). The number of queries is usually larger than 50.To cover different types of documents,
we construct our document collections by varying several factors, including (1) the type of documents; (2)
document length; (3) collection size(varies from 165K documents to 528K documents); and (4) collection



Table 2. Optimal s (for average precision) in Pivoted Normalization Method

AP DOE FR ADF Web Trec7 Trec8
lk 0.2 0.2 0.05 0.2 — — —
sk 0.01 0.2 0.01 0.05 0.01 0.05 0.05
lv 0.3 0.3 0.1 0.2 0.2 0.2 0.2
sv 0.2 0.3 0.1 0.2 0.1 0.1 0.2

homogeneity. Our choice of document collection has been decided to be news articles (AP),technical re-
ports (DOE), government documents (FR), a combination of AP, DOE, and FR (ADF), the Web data used in
TREC8(Web), the ad hoc data used in TREC7(Trec7) and the ad hoc data used in TREC8(Trec8).
Under this carefully designed experiment setting, the optimal value of s for average precision has been found
to be indeed quite small in all cases (shown in Table 2). Moreover, we also see that when s is large, that is
out of the range where the method satisfies the LNC2 constraint, the performance is significantly worse. In
Figure 4, we show how the average precision is influenced by the parameter value in pivoted normalization
method on AP document set and long-keyword query; the curves are similar in all other cases.
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Figure 4. Performance of Pivoted for AP-LK.

Therefore,it seems that the constraints could provide an empirical bound for the parameter in the retrieval
formula and the methods’s performance would tend to be poor when the parameter is out of the bound.

3.2 Okapi

The Okapi retrieval function is another highly effective retrieval formula that represents the classical proba-
bilistic retrieval model (Robertson and Walker, 1994). The Okapi retrieval function as presented in (Singhal,
2001) is

∑

t∈Q,D

ln
N − df + 0.5

df + 0.5
×

(k1 + 1)tf

k1((1 − b) + b dl
avdl

) + tf
×

(k3 + 1)qtf

k3 + qtf

where k1 (between 1.0-2.0), b (usually 0.75), and k3 (between 0-1000) are constants.
We check all the constraints on the Okapi formula and summarize the results in Table 3.

Table 3. Summary of Constraints in Okapi

Query Type TFC TDC LN1 LN2
Any Cond. Cond. Yes Yes

Verbose No Cond. Yes Yes
Keyword Yes Cond. Yes Yes
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Figure 5. IDF score in Okapi.

Let us check the TFC constraint first. The major difference between Okapi and other retrieval formulas is the
possibly negative value of the IDF part in the formula, which has been discussed in (Robertson and Walker,
1997). Figure 5 shows the IDF score in Okapi formula when we assume the number of documents in the
whole collection to be 20, 000. The x-axis is the number of documents that contain the term. The y-axis is
the score of the Okapi IDF function. It is clear that when the document frequency is large, the IDF value
would be negative.
When the IDF part is negative, Okapi formula would definitely violate the TFC constraint. However, this
would have an impact only when a query term has a very high document frequency, i.e., when the query is
verbose or somehow uses some general terms. When the IDF part is positive (usually for keyword query),
the TFC constraint is shown to be equivalent to

s ≤
1

1 − |d1|−c(w,d1)
avdl

Since d1 ≥ c(w, d1), so it is equivalent to s ≤ 1, which is obviously satisfied. Therefore, the TFC is satisfied
as long as the IDF value is positive. This analysis suggests that the performance of Okapi may be worse for
verbose queries than for keyword queries.
Next, we consider the TDC constraint. Again, by making the assumption that idf(w1) and idf(w2) are
very close, we can show that the TDC constraint is equivalent to c(w2, d2) − c(w1, d1) ≥ 0. Although this
constraint is also conditionally satisfied, unlike in the pivoted normalization method, it does not provide a
bound for the parameter b. Therefore, the performance of Okapi can be expected to be more stable than
pivoted normalization method.
To see if these hypotheses motivated by the constraint analysis are consistent with Okapi’s actual perfor-
mance, we test the Okapi method under the same experimental settings as in pivoted normalization. We
assume k1 = 1.2, k3 = 1000 and b changes from 0.1 to 1.0. The performance of Okapi is indeed more stable
compared with pivoted normalization. We also see that for keyword query, the performances of these two
methods are similar. However, for verbose query, the performance of Okapi is much worse, which may be
caused by the negative IDF score for common words. To see if this is true, we replace the IDF part in Okapi
with the IDF part of the pivoted normalization formula, and the performance is improved significantly for the
verbose queries. See Figure 6 and Figure 7 for plots of these comparisons.
It is clear from Figure 7 that satisfying more constraints appear to be correlated with a better performance.
Moreover, by checking the constraints, we have not found any particular bound for the parameter, which may
explain why the performance is much less sensitive to the parameter value than in the pivoted normalization
method where a bound for parameter s is implied by the LNC2 constraint.

3.3 Dirichlet Prior Method

The Dirichlet prior retrieval method is one of the best performing language modeling approaches (Zhai and
Lafferty, 2001b). This method uses the Dirichlet prior smoothing method to smooth a document language
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model and then ranks documents according to the likelihood of the query according to the estimated language
model of each document. With a notation consistent with those in the pivoted normalization and Okapi
formulas, the Dirichlet prior retrieval function is

∑

t∈Q,D

qtf · ln(1 +
tf

µ · p(t|C)
) + ql · ln

µ

dl + µ

where, ql is the query length, and p(t|C) is the probability of term t given by the collection language model.
p(t|C) indicates how popular term t is in the whole collection, thus is quite similar to the document frequency
df .
After checking all constraints on Dirichlet Prior method, we summarize the results in Table 5
It is straightforward to verify that the TFC and LN1 are both satisfied. The LNC2 can be shown to be equiv-
alent to c(w, d) ≥ |d| · p(w|C), which is usually satisfied for content-carrying words. For non-informative
high-frequency words, even if the constraint is not satisfied, slightly over-penalization may not hurt retrieval
performance. Thus, compared with pivoted normalization, Dirichlet prior appears to have a more robust
length normalization mechanism, even though both satisfy the LNC2 constraint conditionally.
Another interesting observation is the TDC constraint leads to some interesting lower bound for parameter µ,
which is derived as follows.
Assume p(w1|C) ≤ p(w2|C) (roughly equivalent to idf(w1) > idf(w2) ). TDC implies

ln(1 +
c(w1, d1)

µp(w1|C)
) + ln(1 +

c(w2, d1)

µp(w2|C)
) + 2ln

µ

µ + |d1|
≥

ln(1 +
c(w1, d2)

µp(w1|C)
) + ln(1 +

c(w2, d2)

µp(w2|C)
) + 2ln

µ

µ + |d2|



Table 4. Optimal µ (for average precision) in Dirichlet Prior Method

AP DOE FR ADF Web Trec7 Trec8
lk 2000 2000 20000 1000 — — —
sk 2000 2000 5000 2000 4000 2000 800
lv 3000 1000 15000 3000 8000 3000 2000
sv 8000 4000 20000 3000 10000 8000 5000

avdl 454 117 1338 372 975 477 477

Table 5. Summary of Constraints in Dirichlet

TFC TDC LNC1 LN2
Yes Cond.∗ Yes Cond.

After some simplification, with the help of the constraint c(w1, d1)+ c(w2, d1) = c(w1, d2)+ c(w2, d2), we
can obtain a lower bound for µ:

µ ≥
c(w1, d1) − c(w2, d2)

p(w2|C) − p(w1|C)

In order to have a sense of how low this bound could be, let us consider a common case of w2 , such that
p(w2|C) = 1

avdl
(i.e. w2 is expected to occur once in a document). Thus, we have

µ >
c(w1, d1) − c(w2, d2)

p(w2|C)

= avdl × (c(w1, d1) − c(w2, d2))

It means that for discriminative words with a high term frequency in a document, µ needs to be sufficiently
large in order to balance TF and IDF. In general, the analysis shows that µ has some lower bound, and a very
small µ might cause poor retrieval performance.
In order to test this hypothesis, once again, we use the same experimental setting as in the previous sections.
The optimal values of µ in Dirichlet are shown in Table 4. We see that these optimal values are all greater
than the average document length, also shown in the same table. We further plot how the average precision is
influenced by the parameter value in Figure 8. Clearly, when µ is larger than a specific value, the performance
keeps stable. However, when µ is small, the performance is noticeably worse. Thus, just like what we have
found in the experimental part of pivoted normalization method, the constraint analysis here also suggests
some bound for the retrieval parameter, and the methods’s performance would be poor if the parameter is out
of the bound.
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3.4 Divergence retrieval formulas

Since the emerging language modeling approaches to information retrieval have led to several interesting new
effective retrieval formulas, we further examine a few more retrieval functions that use language models. In
particular, we assume that a query and a document are both generated by a hidden unigram model, and the
retrieval task is to estimate the generative models and then to compare the model similarity between a query
model and document models. In general, many different similarity functions are possible. In (Lafferty and
Zhai, 2001; Zhai and Lafferty, 2001a), the Kullback-Leibler (KL) divergence has been used. However, the
(asymmetric) KL divergence is only of the many divergence-based measures (Lin, 1991). In this section,
we use our constraints to evaluate some of these alternative divergence functions. We also present some
preliminary experimental results using these divergence functions for retrieval. It is interesting to see that
the constraint analysis can suggest which function is unlikely to perform well, and this prediction is indeed
consistent with the empirical results.
We first give the definition of the basic KL divergence as other divergence functions can all be expressed in
terms of it. Given two probability mass functions p1(x) and p2(x), D(p1||p2), the KL divergence (or relative
entropy) between p1 and p2 is defined as

D(p1||p2) =
∑

x

p1(x) log
p1(x)

p2(x)

It is easy to show that D(p1||p2) is always non-negative and is zero if and only if p1 = p2 (Cover and Thomas,
1991). In retrieval, p1 and p2 usually correspond to the query language model and the document language
model.
Assume that a query q is generated by a unigram language model θQ) and a document d is generated by a
unigram model θD. For any word w, its probability in the query is p(w|θQ), and its probability in a document
is p(w|θD). Dirichlet prior smoothing is applied to estimate θD , giving the following probabilities.

{

p(w|θD) = c(w,d)+µp(w|C)
|d|+µ

w is seen

p(w|θD) = µp(w|C)
µ+|d| w is unseen

where c(w, d) is the counts of word w in document d, µ is a parameter, and p(w|C) is the probability of w
in the whole collection. To make the analysis more tractable, we further make a simplification assumption
that when taking the sum in any divergence formula, we only consider the query terms (as if they are the only
terms in the term space). This also allows us to use the maximum likelihood estimator to estimate the query
model θQ. While this may lead to a non-optimal retrieval formula, it is unlikely to affect the performance
significantly, and the constraint analysis would still be interesting.
We consider and evaluate the following four different divergence functions.

1. KL divergence

KL(q, d) = D(θQ||θD)

2. J divergence

J (q, d) = D(θQ||θD) + D(θD ||θQ)

It is the symmetric form of the KL divergence.

3. K divergence

K(q, d) = D(θQ||θ q+d

2

)

where p(w|θ q+d

2

) = (p(w|θQ) + p(w|θD))/2. It takes KL divergence between query model and the
average model of the query and the document.



4. Jensen-Shannon divergence

JSπ(q, d) = πD(θQ||θπq+(1−π)d) + (1 − π)D(θD ||θπq+(1−π)d)

where π ∈ (0, 1) is a parameter to adjust the weights of averaging. θπq+(1−π)d is an average model of
the query and document such that p(w|θπq+(1−π)d) = πp(w|θQ) + (1 − π)p(w|θD).

All divergence functions are nonnegative. They reach the value 0 if and only if the two distributions are
identical. In order to give relevant documents larger values, we use negative divergence −KL, −J , −K, and
−JS as the scores.
Table 6 shows the results of applying the constraints to all these divergence functions.

Table 6. Constraint results for divergence retrieval model

Retrieval model TFC TDC LNC1 LNC2
KL Yes Cond. Yes Cond.
J Yes - Yes Cond.
J S No - No Cond.
K Yes Cond. Yes Cond.

The table shows that the three divergence measures KL, and K share the same properties. They all satisfy
TFC and LNC1 constraints and conditionally satisfy TDC and LNC2 constraints. J shares the properties
with KL and K except that its TDC constraint is hard to verity. We leave its TDC constraint for further
exploration in the future. However, the JS divergence is quite different; it failed to satisfy the very basic TFC
and LNC1. Some details about the analysis of the JS divergence are given below. Note that we use −JS for
scoring.
First, consider a single term query, p(w|θq) = 1. Let p = p(w|θQ), and π1 = π, π2 = 1 − π. We get
f(q, d) = −JS(q, d) = π2p log p−(π1+π2p) log(π1+π2p). Since ∂f

∂p
= π2 log p−π2 log(π1+π2p) <= 0.

, we see that f(q, d) is a monotonically decreasing function in terms of p. Thus the negative JS divergence
violates TFC as well as LNC1. Second, in order to check the LNC2 constraint, we set |d2| = k · |d1|. Since
the function is monotonically decreasing in terms of p, in order to make f(q, d2) ≥ f(q, d1), we need to let
p(w|d2) ≤ p(w|d1). Thus we have the following derivation:

p(w|d2) ≤ p(w|d1)

⇔
k · c(w, d1) + µp(w|C)

k · |d1| + µ
≤

c(w, d1) + µp(w|C)

|d1| + µ

⇔ it is monotonically decreasing in terms of k

⇔
∂

∂k
(
k · c(w, d1) + µp(w|C)

k · |d1| + µ
) ≤ 0

⇔ c(w, d1) ≤ |d1| · p(w|C)

The last condition is seen to be precisely the opposite of the condition derived in the analysis of the Dirichlet
prior method. Since a content word usually satisfies c(w, d1) ≥ |d1| · p(w|C), the JS divergence generally
would not satisfy the LNC2 constraint for content words. It is hard to give a theoretical analysis of the TDC
constraint for J S. However, since it does not satisfy the two basic constraints (TFC and LNC1), the analysis
suggests that the JS divergence is likely to perform very poorly and significantly worse than the other three,
which are expected to perform similarly.
We ran experiments on four different types of queries as mentioned in the analysis of the pivoted normaliza-
tion method. The average precision of each divergence function is shown in Table 7.
It is interesting to note that the results indeed confirm the predictions given by our theoretical analysis.
Specifically, KL, J , JS satisfy the same constraints requirement, and they perform similarly. On the other
hand, the JS divergence cannot satisfy two basic constraints (TFC and LNC2), and it performs much
worse than the other three.



Table 7. Constraint results for divergence retrieval model

KL J JS K
SK 0.1926 0.1925 0.0349 0.1926
LK 0.3191 0.3195 0.0757 0.3191
SV 0.1617 0.1613 0.0082 0.1617
LV 0.2474 0.2472 0.0102 0.2473

Table 8. Comparison between different retrieval models

Retrieval model TFC TDC LNC1 LNC2
Pivoted C1 C2 Yes C∗

3

Dirichlet Yes C∗
4 Yes C5

Okapi C6 C7 Yes Yes
KL Yes C∗

4 Yes C5

J Yes - Yes C5

JS No - No ¬C5

K Yes C∗
4 Yes C5

3.5 Summary

We have applied our four constraints to seven different scoring functions. The results are summarized in
Table 8. where a “Yes” means the corresponding model satisfies the particular constraint, a “No” means the
corresponding model DOES NOT satisfy the particular constraint, a “Cx” means corresponding model sat-
isfies the particular constraint under some particular conditions (irrelevant to parameter setting), and a “C∗

x”
means the model satisfies the constraint only when the parameter is in some range. The specific conditions
are

C1 ⇔ s ≤ f(c(w, d1), δ) × avdl

C2 ⇔ c(w1, d1) ≤ c(w2, d1)

C∗
3 ⇔ s ≤

tf2 − tf1

(k dl
avdl

− 1)tf2 − ( dl
avdl

− 1)tf1

C∗
4 ⇔ µ ≥

c(w1, d1) − c(w2, d2)

p(w1|C) − p(w2|C)

> avdl × (c(w1, d1) − c(w2, d2))

C5 ⇔ c(w, d) ≥ |d| · p(w|C)

¬C5 ⇔ c(w, d) ≤ |d| · p(w|C)

C6 ⇔ w ∈ content words

C7 ⇔ c(w1, d1) ≤ c(w2, d2)

We can make several interesting observations:

• All the language modeling approaches (i.e., Dirichlet and all divergence methods), except the JS diver-
gence, satisfy all the constraints in the same way.

• It is somehow surprising to see that the seemingly reasonable JS divergence formula actually fails to
satisfy some basic constraints and performs poorly.

• It is even more surprising that all the methods, including a highly effective TF-IDF model, fail to satisfy
the TDC constraint (essentially the IDF heuristics) unconditionally.



• Among all the methods that we examined, the Okapi formula (with the IDF replaced by the normal
IDF) appears to satisfy most of the constraints, and empirically, it also appears to have a more sta-
ble performance which is often better than or comparable to the best performance achieved by other
methods.

4 Conclusions and Future work

In this paper, we study the problem of formalizing the necessary heuristics for good retrieval performance.
Motivated by some observations on common characteristics of typical retrieval formulas, we formally define
four basic constraints that any reasonable retrieval function should satisfy, corresponding to three desirable
intuitive constraints – term frequency constraint, term discrimination constraint and length normalization
constraint. We check the four constraints on eight representative retrieval functions analytically and derive
specific conditions when a constraint is conditionally satisfied. The constraint analysis suggests many in-
teresting hypotheses about the expected performance behavior of all these retrieval functions. We design
experiments to test these hypotheses using different types of queries and different document collections, and
find that in many cases these hypotheses are indeed consistent with the empirical results. Specifically, when a
constraint is not satisfied, it often indicates non-optimality of the method. This is most clear from the analy-
sis of the divergence functions, which successfully predicts the non-optimality of the JS divergence function.
In some other cases, when a method only satisfies a constraint for a certain range of parameter values, its
performance tends to be poor when the parameter is out of the range, as shown in the analysis of the pivoted
normalization and the Dirichlet prior. In general, we find that the empirical performance of a retrieval formula
is tightly related to how well they satisfy these constraints. Thus the proposed constraints can provide a good
explanation of many empirical observations (e.g., the good performance of the Okapi formula) and make it
possible to evaluate any existing or new retrieval formula analytically, which is extremely valuable for testing
new retrieval models.
There are several interesting future research directions based on our work. First, since our constraints do
not cover all the desirable properties , it would be interesting to explore additional necessary heuristics for
a reasonable retrieval formula. This will help us further understand the performance behavior of different
retrieval methods. Second, we may apply these constraints to many other retrieval methods proposed in the
literature, especially those using language models (e.g., different smoothing methods). Finally, the fact that
none of the existing formulas that we have analyzed can satisfy all the constraints unconditionally suggests
that it would be very interesting to see how we can improve the existing retrieval methods so that they would
satisfy all the constraints, which presumably would perform better empirically than these existing methods.
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