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Abstract Traditional retrieval models may provide users with less satisfactory search

experience because documents are scored independently and the top ranked documents

often contain excessively redundant information. Intuitively, it is more desirable to

diversify search results so that the top-ranked documents can cover different query sub-

topics, i.e., different pieces of relevant information. In this paper, we study the problem of

search result diversification in an optimization framework whose objective is to maximize

a coverage-based diversity function. We first define the diversity score of a set of search

results through measuring the coverage of query subtopics in the result set, and then

discuss how to use them to derive diversification methods. The key challenge here is how

to define an appropriate coverage function given a query and a set of search results. To

address this challenge, we propose and systematically study three different strategies to

define coverage functions. They are based on summations, loss functions and evaluation

measures respectively. Each of these coverage functions leads to a result diversification

method. We show that the proposed coverage based diversification methods not only cover

several state-of-the-art methods but also allows us to derive new ones. We compare these

methods both analytically and empirically. Experiment results on two standard TREC

collections show that all the methods are effective for diversification and the new methods

can outperform existing ones.
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1 Introduction

Traditional retrieval models rank documents based on only their relevance scores and ignore

the redundancy among the returned documents. As a result, the top ranked documents may

contain the same piece of relevant information. It has been noticed that a large fraction of

search queries are short and thus ambiguous or under-specified (Clarke et al. 2009a;

Radlinski et al. 2009). For these queries, the targeted information for the same query can be

quite different given different users. Search results covering different pieces of relevant

information (i.e., subtopics of a query) are less risky and more desirable because they can

provide diversified information that satisfies different information needs of users. For

example, different users issuing the same query ‘‘java’’ may look for different information,

such as java programming language and java coffee. A user searching for ‘‘cloud computing’’

may want to conduct a survey and learn different research topics related to cloud computing.

It is clear that search result diversification can benefit ambiguous queries, under-specified

queries and exploratory queries in general which account for a large portion of search queries

(Clarke et al. 2009a; Radlinski et al. 2009; White and Roth 2009).

Search result diversification has recently attracted a lot of attentions (Clarke et al. 2009a;

Radlinski et al. 2009; Zhai et al. 2003; Macdonald et al. 2011). The goal of result diversifi-

cation is to return a list of documents which are not only relevant to a query but also cover

many subtopics of the query. Here a query subtopic corresponds to a representative infor-

mation need associated with the query, which is also referred to as a nugget (Clarke et al. 2008)

or query aspect (Clarke et al. 2009b) in previous work. Using query subtopics for result

diversification has received much attention. In particular, most of the commonly used eval-

uation measures, including a-nDCG (Clarke et al. 2008), Precision-IA (Agrawal et al. 2009),

NRBP (Clarke et al. 2009) and ERR-IA (Chapelle et al. 2009), are all based on the coverage of

query subtopics in the documents. Moreover, a few recent studies tried to diversify search

results explicitly based on the query subtopics (Agrawal et al. 2009; Carterette and Chandar

2009; Santos et al. 2010b, c; Yin et al. 2009). However, none of existing studies has sys-
tematically studied and compared different subtopic-based diversification methods. Thus, the

underlying commonalities of these methods are not well understood, and there is no guidance

that can be used to derived new and possibly more effective diversification methods.

In this paper, we study the search result diversification problem in a coverage-based

optimization framework. Following previous studies, we define the optimization objective

function as a linear combination of relevance and diversity scores and then use a greedy

algorithm to iteratively select results to maximize the object function. In particular, we

propose to model the diversity scores of search results based on their coverage of query

subtopics, i.e., how much relevant information of query subtopics is contained in the

documents. The diversity score is directly related to the relevance of these results with

respect to the subtopics and the importance of these subtopics. Moreover, with the

assumption that all the query subtopics are independent, the diversity score is computed as

the weighted sum of its coverage for every query subtopic. Thus, the key challenge is how

to define appropriate coverage functions given a query subtopic and a set of search results.

To address this challenge, we explore three different strategies. The first summation-based

strategy is to compute the coverage score of a document set by summing up those of

individuals in the set. The second strategy defines a coverage function through a loss

function (e.g., squared loss) over a set of selected documents. The last one is to derive
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coverage functions based on a few commonly used evaluation measures. With these three

strategies, different variants of coverage functions are defined and each of them can lead to

a potentially different coverage-based diversification method. We analyze the similarity

among these methods and select five representative ones to study in this paper. Among the

derived diversification methods, two of them are variants of some existing diversification

methods (Agrawal et al. 2009; Santos et al. 2010c; Yin et al. 2009) and three of them are

new diversification methods that have not been studied before. We first analytically

compare the characteristics of these five methods from the following aspects: diminishing
return, favoring diversity, and novelty emphasis, and then conduct experiments over two

standard TREC collections. Experimental results show that most of the diversification

methods derived in the optimization framework are effective. Furthermore, one of the new

derived methods, i.e., SQR, can consistently outperform the state-of-the-art methods over

different collections and with different retrieval models.

The rest of the paper is organized as follows. We discuss the related work in Sect. 2. We

review the main idea of optimization framework for result diversification in Sect. 3. We

then propose and study different coverage functions and corresponding diversification

methods in Sect. 4. We analytically compare these diversification methods in Sect. 5 and

empirically compare their results in Sect. 6. Finally, we conclude in Sect. 7.

2 Related work

The study of search result diversification can be traced back to early sixties (Goffman

1964). Since then, many studies have tried to rank documents based on not only relevance

but also diversity (Agrawal et al. 2009; Boyce 1982; Carbonell and Goldstein 1998;

Carterette and Chandar 2009; Chen and Karger 2006; Gollapudi and Sharma 2009;

McCreadie et al. 2009; Radlinski et al. 2009; Radlinsk and Dumais 2006; Santos et al.

2010c; Yin et al. 2009; Yue and Joachims 2008; Zhai et al. 2003). Roughly speaking, the

proposed methods can be classified into two categories (Santos et al. 2010b, c).

The first category implicitly models diversity through the relations among documents in

order to minimize the redundant information among the selected documents (Carbonell and

Goldstein 1998; Chen and Karger 2006; Craswell et al. 2009; Demidova et al. 2010; Gollapudi

and Sharma 2009; Santos et al. 2010b;Yue and Joachims 2008; Zhai et al. 2003). Carbonell

and Goldstein (1998) proposed the maximal marginal relevance (MMR) ranking strategy to

balance the relevance and the redundancy. Motivated by this work, Zhai et al. (2003) com-

bined both relevance and novelty in the statistical language modeling framework. Chen and

Karger (2006) presented a sequential document selection algorithm to optimize an objective

function that aims to find at least one relevant document for all users. Yue and Joachims (2008)

treated the diversification as a process to learn the function of choosing the optimum set of

diversified documents, which is a learning problem. Their learned function can sequentially

select documents which cover maximally distinct words. Craswell et al. (2009) removed the

redundant documents based on the host information of the documents. Gollapudi and Sharma

(2009) proposed an axiomatic approach to characterize the problem of result diversification

and studied several redundancy functions in their axiomatic framework. The main difference

among different methods is how to model the redundancy between a new document and the

previous selected documents without an explicit modeling of query subtopics.

The second category of search result diversification explicitly model diversity among

documents through their relation to the subtopics of the queries (Agrawal et al. 2009;

Carterette and Chandar 2009; Radlinsk and Dumais 2006; Santos et al. 2010a, b, c; Yin
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et al. 2009). Subtopics are often identified using topic modeling (Carterette and Chandar

2009), existing taxonomy (Agrawal et al. 2009), query suggestions (Santos et al. 2010b) or

frequent patterns (Zheng and Fang 2010). Most of the state-of-the-art diversification

methods often formalize the problem in an optimization framework, where the objective

function is defined based on the combination of relevance and diversity scores. Since it is

an NP-hard problem to select an optimum document set in general, a greedy algorithm is

often used to iteratively select documents. In particular, Carterette and Chandar (2009)

proposed a probabilistic set-based approach that maximizes the likelihood of capturing all

of the query subtopics. Agrawal et al. (2009) formalized the problem as the one that

maximizes average user satisfaction based on a classification taxonomy over queries and

documents. Santos et al. (2010b, c) proposed a probabilistic framework that estimates the

diversity based on the relevance of documents to query subtopics and the importance of

query subtopics. Yin et al. (2009) derived a diversification method using the language

modeling approach. Since these existing diversification methods were proposed and

studied in different work, the connection of these methods remains unclear. It is difficult to

analytically compare these methods although there are empirical comparisons among them

(Zheng and Fang 2011). Moreover, there is no systematic way of developing new diver-

sification methods. Finally, almost all of the existing diversification methods are based on

probabilistic models, and it remains unclear how to diversify search results for non-

probabilistic retrieval models.

Developing effective evaluation measures has also attracted a lot of attention. Most

commonly used evaluation measures, including Precision-IA (Agrawal et al. 2009),

ERR-IA (Chapelle et al. 2009), a-nDCG (Clarke et al. 2008) and NRBP (Clarke et al. 2009b),

are all based on the coverage of query subtopics. We review them briefly in this section.

Intent-aware precision at retrieval depth k (Precision-IA@k) is based on a weighted

average of precision at depth k across different subtopics (Agrawal et al. 2009; Clarke

et al. 2009a). The Precision-IA@k in a query q can be computed as

Precision�IA@k ¼
X

s2SðqÞ
weightðs; qÞ � 1

k

Xk

j¼1

rðdj; sÞ; ð1Þ

where S(q) is the subtopic set of query q, weight(s, q) is the importance weight of a

subtopic s in the query and is computed as 1
jSðqÞj ; k is the depth and r(s, dj) is the relevance

judgment of the document dj to the subtopic s. Precision-IA@k uses the binary relevance

score as r(s, dj).

Intent-aware expected reciprocal rank at retrieval depth k (ERR-IA@k) uses cascade-

style user browsing model to estimate the expected reciprocal length of time for the user to

find a relevant document. It is computed as follows (Chapelle et al. 2009):

ERR�IA@k ¼
X

s2SðqÞ
weightðs; qÞ

Xk

j¼1

r0ðdj; sÞ
j

Yj�1

i¼1

ð1� r0ðdi; sÞÞ; ð2Þ

where r0(dj, s) is the probability of relevance mapped from relevance grade of dj to s.

Another commonly used evaluation measure is a-nDCG (Clarke et al. 2009a). It inte-

grates the novelty of subtopic into normalized discounted cumulative gain measure. It is

computed as:

a�nDCG@k ¼ a�DCG@k

a�DCG0@k
; ð3Þ
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where

a�DCG@k ¼
Xk

j¼1

P
s2SðqÞ rðdj; sÞð1� aÞ

Pj�1

i¼1
rðdi;sÞ

log2ð1þ jÞ ð4Þ

and a-DCG0@k is the maximum value of a-DCG@k given the ideal order of the returned

document list.

Novelty- and Rank-Biased Precision (NRBP) is a measure that combines user browsing

model, intent aware and a-nDCG. The function is as follows:

NRBP ¼ 1� ð1� aÞb
N

X1

j¼1

bj�1
X

s2SðqÞ
rðdj; sÞð1� aÞ

Pj�1

i¼1
rðdi;sÞ ð5Þ

where a is the parameter to describing user’s ability to judge the relevance of document

given the subtopic and b is the parameter to estimate user’s interest in reading more

documents after finding one relevant document.

Intuitively, these evaluation measures can provide guidance on how to derive subtopic-

based diversification methods. As mentioned in a recent study (Chapelle et al. 2009), a

state-of-the-art diversification method, i.e., IA-SELECT (Agrawal et al. 2009), is similar to

a standard evaluation measure, i.e., ERR-IA (Chapelle et al. 2009). Sakai and Song ( 2011)

compared the existing evaluation measures and analyzed the advantages of each method in

queries with different types of subtopics. They found that a-nDCG is one of the best

evaluation measures in the existing measures. However, to our best knowledge, none of the

existing work studied how to derive new diversification methods based on the evaluation

measures for diversity.

Our work is similar to previous studies (Agrawal et al. 2009; Santos et al. 2010b) in the

sense that we also formulate the problem as an optimization problem and use a greedy

algorithm to select documents. However, our framework is more general that provides a

systematically way of deriving and analyzing new diversification methods. Under the guid-

ance of the framework, we define different functions measuring the coverage of the document

on subtopics and systematically derive five diversification methods, three of which are new

diversification methods. We then analytically and empirically compare these methods.

3 An optimization framework for result diversification

The goal of result diversification is to return a set of relevant search results that can cover

diverse pieces of relevant information. The problem is often formulated as an optimization

problem that aims to maximize an objective function related to both the relevance and

diversity of the search results (Agrawal et al. 2009; Carbonell and Goldstein 1998; Santos

et al. 2010b, c; Zhai et al. 2003).

Formally, given a query q, a set of documents D and an integer k, the goal is to find D,

i.e., a subset with k documents from the document set, that can maximize the following

objective function:

GðDÞ ¼ k � relðq;DÞ þ ð1� kÞ � divðq;DÞ; ð6Þ

where D � D. The objective function is based on both rel(q, D), which measures the

relevance score of document set D with respect to the query q, and div(q, D), which

measures the diversity score of D for q. It is similar to the ideas of existing methods
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(Carbonell and Goldstein 1998; Santos et al. 2010b, c). k 2 ½0; 1� is a parameter that

controls the tradeoff between diversity and relevance. When k = 1, the optimization goal

is to select top k documents ranked based on their relevance scores, which is consistent

with the traditional retrieval models.

Finding the optimal solution for the above problem is in general NP-hard since it can be

reduced from Maximum Coverage Problem (Agrawal et al. 2009). Fortunately, if G(D) is a

submodular function, a greedy algorithm which sequentially selects a document that

maximizes the marginal gain of the submodular function can achieve (1� 1
e) approxima-

tion of the optimal solution and has been shown to be almost optimal in practices (Agrawal

et al. 2009; Khuller et al. 1999; Leskovec et al. 2007).

Specifically, the greedy algorithm starts with an empty document set D = [, and then

iteratively selects a local optimal document, which is defined as follows (Agrawal et al.

2009; Santos et al. 2010b):

d� ¼ arg max
d2DnD

ðGðD [ fdgÞ � GðDÞÞ ð7Þ

The local optimal document is then added to document set D until the number of docu-

ments in D is k. The order that the documents are selected gives us a ranked list and it only

depends on the definition of the objective function.

We now discuss how to define an objective function. The objective function is related to

rel(q, D) and div(q, D), as shown in (6). rel(q, D) measures how much relevant infor-

mation is contained in the document set with respect to the query. One possible way of

computing rel(q, D) is

relðq;DÞ ¼
X

d2D

relðq; dÞ; ð8Þ

where rel(q, d) is the relevance score of document d for query q and can be computed

using any existing retrieval functions.

Existing studies mainly differ in how to compute div(q, D), which measures the

diversity score of document set D with respect to query q. One strategy is to compute the

diversity score based on the redundancy of the document set D (Carbonell and Goldstein

1998; Zhai et al. 2003). The diversity score is smaller when there is more redundant

information in the document set. One major limitation of this approach is that the diversity

is query-independent. Thus, the diversity score can be arbitrarily boosted by the non-

relevant information of the search results and may not be used to effectively diversify

relevant search results (Santos et al. 2010b). An alternative strategy is to compute the

diversity score based on the query subtopics. (Note that query subtopics are also referred to

as nuggets or query aspects in previous studies (Clarke et al. 2008; Santos et al. 2010b, c).)

Most existing studies adopt probabilistic methods. For example, Agrawal et. al. (2009)

proposed an objective function based on only the diversity score, which is estimated with

the probability that the document set would satisfy the user who issues the query. The

probabilities are estimated based on a classification taxonomy. Santos et. al. (2010b)

proposed an objective function based on the relevance of documents to query subtopics and

the importance of query subtopics in a probabilistic framework. However, it is difficult to

derive more diversity functions using these methods and analytically compare different

methods. It remains unclear whether it is feasible to define a diversity function using a

more general approach that can be used to guide the derivation of new diversification

functions.
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4 Coverage-based diversification methods

In this paper, we aim to explore a general way of computing the diversity score, i.e.,

div(q, D). In this section, we first describe the general idea of modeling diversity based on

the coverage of query subtopics, and then propose three strategies for defining coverage

functions. The coverage measures the relevant information of the query subtopics con-

tained in the documents. After that, we explain how to derive the diversification methods

based on the coverage functions.

4.1 General idea

Let S(q) denote a set of subtopics of the query q. We propose to compute the diversity

score as follows:

divðq;DÞ ¼
X

s2SðqÞ
weightðs; qÞ � covðs;DÞ; ð9Þ

where weight(s, q) measures the importance of the subtopic s of the query q and cov(s, D)

measures the coverage of a specific subtopic s in the document set D. It assumes that the

subtopics are covering different relevant information of the query and are independent of

each other. Intuitively, the more subtopics that D covers and the more important that the

covered subtopics are, the higher diversity score that D has. Our definition is consistent

with existing methods (Santos et al. 2010b, c; Yin et al. 2009) and more general.

Given the coverage-based diversity function, we can re-write the objective function

shown in (6) as follows:

GðDÞ ¼ k � relðq;DÞ þ ð1� kÞ �
X

s2SðqÞ
weightðs; qÞ � covðs;DÞ: ð10Þ

As described in Sect. 3, it is NP-hard problem to find the optimum set of diversified

documents. Given an objective function G(D), we need to prove that the objective function

is submodular in order to use the greedy algorithm to approximate the solution of the

optimization problem. With a submodular function, the benefit of adding an element to a

document set is not larger than adding the element to a subset of the document set. Thus, in

order to prove that a function G(D) is a submodular function with respect to D, we need to

show that, for all sets A; B � D such that A � B, and d 2 D n B, we have

ðGðA [ fdgÞ � GðAÞÞ � ðGðB [ fdgÞ � GðBÞÞ� 0:

As shown in (10), the objective function G(D) is a linear combination of two components,

i.e., rel(q, D) and cov(q, D). It is clear that the relevance score, i.e., rel(q, D) in (8), is a

submodular function with respect to D:

ðrelðq;A [ fdgÞ � relðq;AÞÞ � ðrelðq;B [ fdgÞ � relðq;BÞÞ

¼
X

d2A[fdg
relðq; dÞ �

X

d2A

relðq; dÞ

0
@

1
A�

X

d2B[fdg
relðq; dÞ �

X

d2B

relðq; dÞ

0
@

1
A

¼ 0:

ð11Þ

Since the linear combination of submodular functions is still a submodular function

(Nemhauser et al. 1978), G(D) is a submodular function if cov(q, D) is a submodular

function. In order to prove cov(q, D) is a submodular, we need to show
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ðcovðs;A [ fdgÞ � covðs;AÞÞ � ðcovðs;B [ fdgÞ � covðs;BÞÞ� 0:

In summary, in order to prove G(D) is a submodular function with respect to D, for all sets

A;B � D such that A � B, and d 2 D n B, we need to show

DIFFðs; d;AÞ � DIFFðs; d;BÞ� 0; ð12Þ

where

DIFFðs; d;DÞ ¼ covðs;D [ fdgÞ � covðs;DÞ: ð13Þ

Therefore, in each diversification method, we need to prove that (12) holds in order to use

the greedy algorithm described in Sect. 3 that diversifies search results by iteratively

selecting local optimal documents. According to (7), (10) and (13), the local optimal

document d* can be selected based on:

d� ¼ arg max
d2DnD

ðk � relðq; dÞ þ ð1� kÞ �
X

s2SðqÞ
weightðs; qÞ � DIFFðs; d;DÞÞ: ð14Þ

4.2 Coverage functions

We now discuss how to define the coverage function, i.e., cov(s, D), which measures

how well a document set D covers the information of the query subtopic s. Intuitively,

cov(s, D) is related to the subtopic coverage of each document in the set, i.e., cov(s, d),

where d 2 D. Furthermore, as discussed in the previous subsection, we require that

cov(s, D) should be a submodular function. Thus, the problem is how to combine the

coverage of individual documents in D so that cov(s, D) is submodular, i.e., the dif-

ference function defined in (13) satisfies the requirement shown in (12). We explore

three set of methods to compute the coverage of D based on the coverage of documents

in D, the coverage of documents that are not included in D, and following the idea of

evaluation measures.

4.2.1 Summation-based coverage functions

A simple strategy of computing the coverage score of a document set is to sum up the

coverage scores of its individual documents. We explore the following two ways of

combining the individual coverage scores.

– SUM: It assumes that the coverage of a document set on a subtopic increases linearly

with the coverage of each document on the subtopic. Therefore, we combine the

coverage of each document in the document set by taking the summation over them.

covSUMðs;DÞ ¼
X

d2D

covðs; dÞ ð15Þ

Thus, we have

DIFFSUMðs; d;DÞ ¼ covSUMðs;D [ fdgÞ � covSUMðs;DÞ
¼ covðs; dÞ:

ð16Þ

We prove that covSUM(s, D) and its diversification function in (9) are submodular functions

in Theorem 1 in the appendix.
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– LOG: It is similar to SUM but with a log transformation to ensure the decrease of

gain when adding a document covering the subtopic that has already been well

covered. In (16), the increase of coverage on the subtopic s by adding the same

document covering s is the same no matter whether the subtopic has been well

covered by D, which may tend to rank redundant documents in the top of the results

(Santos and Ounis 2011). However, the benefit of adding a document covering s
should be smaller if the subtopic has already been well covered by D and this is

desired from end users’ viewpoints (Clarke et al. 2009a). We therefore propose LOG
to solve the problem. The coverage of the document set grows sublinearly with the

coverage of each document as follows:

covLOGðs;DÞ ¼ log 1þ
X

d2D

covðs; dÞ
 !

ð17Þ

So, we have

DIFFLOGðs; d;DÞ ¼ log 1þ
X

d02D[fdg
covðs; d0Þ

0
@

1
A� log 1þ

X

d02D

covðs; d0Þ
 !

¼ log 1þ covðs; dÞ
1þ

P
d02D covðs; d0Þ

� �
;

ð18Þ

We prove that covLOG(s, D) is a submodular function in Theorem 2.

4.2.2 Loss-based coverage functions

In the second strategy, we propose to define coverage functions of a document set based on

the coverage of documents that are not included in the document set covðs;DÞ. Without

loss of generality, we assume the values of cov(s, d) in each subtopic are normalized so

that cov(s, d) and cov(s, D) are between 0 and 1.

– PCOV: We follow the idea of derivation based on probability model in xQuAD
(Agrawal et al. 2009) to derive PCOV which stands for ‘‘probabilistic coverage’’.

covPCOVðs;DÞ ¼ 1� covðs;DÞ ¼ 1�
Y

d2D

ð1� covðs; dÞÞ; ð19Þ

and

DIFFPCOVðs; d;DÞ
¼ ð1�

Y

d02D[fdg
ð1� covðs; d0ÞÞÞ � ð1�

Y

d02D

ð1� covðs; d0ÞÞÞ

¼
Y

d02D

ð1� covðs; d0ÞÞ � ð1� covðs; dÞÞ
Y

d02D

ð1� covðs; d0ÞÞ

¼ covðs; dÞ �
Y

d02D

ð1� covðs; d0ÞÞ;

ð20Þ

In fact, if cov(s, d) is treated as the probability that document d is relevant to the query

subtopic s, covPCOV(s, D) can also be interpreted as the probability that at least one doc-

ument from D is relevant to s (Agrawal et al. 2009; Santos et al. 2010b).
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– SQR: SQR is a loss-based method which is not restricted to probability model and uses

the squared loss to define coverage function.

covSQRðs;DÞ ¼ 1� 1�
X

d2D

covðs; dÞ
 !2

ð21Þ

Squared loss functions have been widely used in regression problems (Hastie et al. 2009).

In our case, more generally, we can define the loss function based on any power c.

covPOWðs;DÞ ¼ 1� 1�
X

d2D

covðs; dÞ
 !c

ð22Þ

When c = 1, the coverage function is the same with SUM where the coverage of a document

set on a subtopic increases linearly with the coverage of each document. The power c provides

flexibility to model non-linear relationship of the coverage as described in Sect. 4.2.1. For any

c C 1, the defined function can be proved to be submodular. In our paper, we focus our study

on SQR where c = 2 and leave other settings as future work. For SQR, we have

DIFFSQRðs; d;DÞ

¼ 1� 1�
X

d02D[fdg
covðs; d0Þ

0
@

1
A

2

� 1� ð1�
X

d02D

covðs; d0ÞÞ2
 !

¼ 1�
X

d02D

covðs; d0Þ
 !2

� 1� covðs; dÞ �
X

d02D

covðs; d0Þ
 !2

¼ covðs; dÞ � 2� 2 �
X

d02D

covðs; d0Þ � covðs; dÞ
 !

:

ð23Þ

We prove covSQR(s, D) is a submodular function in Theorem 4.

4.2.3 Measure-based coverage functions

Another possible way of defining coverage functions is based on evaluation measures for

diversity, since most of them are designed based on query subtopics as well. In particular,

we study four commonly used measures, i.e., Precision-IA, ERR-IA, a-nDCG and NRBP.

In the following, we assume that the relevance judgment r(s, d) in (1)–(5) can be estimated

using cov(s, d), where 0 B cov(s,d) B 1.

– EVAL1: Intent-aware precision at retrieval depth k (Precision-IA@k) is based on a

weighted average of precision at depth k across different subtopics (Agrawal et al. 2009;

Clarke et al. 2009a). Since the measure is a set-based measure, it is straightforward to

follow the same intuition of the measure and define the coverage function as follows:

covEVAL1ðs;DÞ ¼
1

jDj
X

d2D

covðs; dÞ:

Unfortunately, covEVAL1(s,D) is not a submodular function as shown in Theorem 5.

However, it is still interesting to see that dropping off 1
jDj could lead to a submodular

function, which is the same as covSUM(s, D).
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– EVAL2: Intent-aware expected reciprocal rank at retrieval depth k (ERR-IA@k) is a

ranking list based measure, which can not be directly used to define the coverage

function cov(s, D) since D should be a set. However, this measure suggests a way for

computing the contribution of the document ranked at |D| ? 1, which is exactly what

DIFF(s, d, D) models. Thus, we can directly define DIFFEVAL2(s, d, D) based on the

function of ERR-IA@k:

DIFFEVAL2ðs; d;DÞ ¼
covðs; dÞ
jDj þ 1

Y

d02D

ð1� covðs; d0ÞÞ: ð24Þ

The coverage function based on DIFFEVAL2 is a submodular function as described in

Theorem 6. We can drop off 1
jDjþ1

in DIFFEVAL2(s, d, D) since it does not affect the

document selection in the greedy algorithm. It is the same as the DIFFPCOV.

– EVAL3: a-nDCG and NRBP are also commonly used evaluation measures (Clarke

et al. 2009a, 2008, 2009b). They are ranking-list based measures, and can be used to

compute the coverage difference as follows:

DIFFEVAL3ðs; d;DÞ ¼ covðs; dÞ � ð1� aÞ
P

d02D
covðs;d0Þ; ð25Þ

where k = |D|, and a is a parameter. The larger a is, the more impact that cov(s, d) has on

the coverage score.

We prove that EVAL3 is a submodular function in Theorem 7. As seen in (12) and (14),

a diversification method is directly determined by DIFF(s, d, D). Thus, even if we can

not explicitly define a coverage function based on this measure, the derived

DIFFEVAL3(s, d, D) is enough to be used to derive a new diversification method.

Plugging the DIFF functions [as shown in (16)–(25)] into (14), we can derive different

diversification methods as shown in Table 1.

4.3 Discussions

The objective function in (10) has a few component, i.e., rel(q, d), weight(s, q) and

cov(s, d), that we need to discuss how to compute. These components can be instantiated

Table 1 Coverage-based diversification methods

Names Coverage
functions

Diversification methods

SUM DIFFSUM and
DIFFEVAL1

k � relðq; dÞ þ ð1� kÞ �
P

s2SðqÞðweightðs; qÞ � covðs; dÞÞ

LOG DIFFLOG k � relðq; dÞ þ ð1� kÞ �
P

s2SðqÞðweightðs; qÞ � logð1þ covðs;dÞ
1þ
P

d02D
covðs;d0 ÞÞÞ

PCOV DIFFPCOV and
DIFFEVAL2

k � relðq; dÞ þ ð1� kÞ �
P

s2SðqÞðweightðs; qÞ � covðs; dÞ �
Q

d02Dð1� covðs; d0ÞÞÞ

SQR DIFFSQR k � relðq; dÞ þ ð1� kÞ �
X

s2SðqÞ
ðweightðs; qÞ � covðs; dÞ

� ð2� 2 �
X

d02D

covðs; d0Þ � covðs; dÞÞÞ

EVAL DIFFEVAL3 k � relðq; dÞ þ ð1� kÞ �
P

s2SðqÞðweightðs; qÞ � covðs; dÞ � ð1� aÞ
P

d02D
covðs;d0 ÞÞ
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using different retrieval models. For example, rel(q, d) and cov(s, d) can be computed

using any retrieval models by treating q or s as a query. In fact, this is one major advantage

of the framework because the derived diversification methods are general and can be

combined with any existing retrieval functions.

Since most existing diversification methods are based on probabilistic models, we now

describe how to instantiate the component functions using language modeling approaches

(Lafferty and Zhai 2001; Ponte and Croft 1998) and discuss the connections between our

derived methods and the state-of-the-art methods.

In language modeling framework, the relevance score of a document d given query

q, P(d|q), is usually estimated as follows (Lafferty and Zhai 2001):

PðdjqÞ / PðqjdÞPðdÞ;

where P(q|d) is the query likelihood (Zhai and Lafferty 2001) and P(d) is the prior of d.

Since
P

s2SðqÞ weightðs; qÞcovðs; dÞ is used to compute the diversity in our framework, one

natural way of instantiating weight(s, q) and cov(s, d) in the probabilistic models is as

follows:

weightðs; qÞ ¼ PðsjqÞ
covðs; dÞ ¼ PðdjsÞ

where P(s|q) is the probability that the subtopic s is relevant to q and P(d|s) is the prob-

ability that d is relevant to s (Agrawal et al. 2009; Santos et al. 2010b). Both probabilities

can be estimated in a similar way as P(d|q). We compute these probabilities using Dirichlet

method (Zhai and Lafferty 2001).

With these instantiations, it is interesting to see that the diversification method SUM
is similar to the existing method WUME (Yin et al. 2009) and PCOV is similar to

IA-Select and xQuAD methods (Agrawal et al. 2009; Santos et al. 2010b). The main

differences between our methods and these existing methods are the subtopic extraction

and component estimation. For example, we estimate P(s|q) and P(d|s) based on

Dirichlet method (Zhai and Lafferty 2001). The existing methods estimate P(s|q) based

on the query suggestion scores from web search engines (Yin et al. 2009), relevance

between s and q (Agrawal et al. 2009), popularity of subtopics in the collection (Santos

et al. 2010b) and the coherence between retrieval results of query and subtopics (Santos

et al. 2010b). They also used different similarity measures to estimate P(d|s), i.e.,

BM25, DPH (Divergence From Randomness) model and language modeling (Agrawal

et al. 2009, Santos et al. 2010b; Yin et al. 2009). The other difference between PCOV
and IA-Select is that IA-Select does not consider the relevance score of the documents

given the query in their diversification function while PCOV integrates the relevance

score in (14).

5 Analytical comparison of diversification methods

In this section, we describe the desirable properties of the diversification method and

analytically compare the proposed diversification methods based on these properties.

1. Diminishing return. Intuitively, if the document d covers the subtopics that have been

better covered by previously selected documents in D, the gain of selecting this
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document should be smaller. Thus, it is desirable to include the coverage of previously

selected documents in the diversification methods. Among the five analyzed methods,

SUM is the only function that ignores the relationship between a document d and the

documents that have been selected, i.e., the documents in D. It cannot satisfy the

diminishing return property. Thus, we predict that SUM diversification method

performs worse than the other functions.

2. Favoring diversity. The underlying assumption of this property is that we should

favor documents that cover more subtopics (Santos et al. 2010b). From our analysis,

we find that SQR and LOG favor documents that cover more subtopics while the

other functions may not have such a desirable property. This can be clearly seen in

the following situation. When we start selecting the first document, i.e., D = [, SQR
and LOG are strictly concave functions, so they favor documents that cover more

subtopics. In the example of Table 2, q has 3 subtopics with equal weights. d2 covers

only one subtopic while d1 covers two subtopics. Moreover, the degree of coverage

is the same for these two documents, i.e., cov(s2, d2) = cov(s1, d1) ? cov(s2, d1). In

the result of diversification methods, Yes means the methods always select the

desired document on current position, No means it will not select the desired

document, Poss means it will either select the desired document or other documents,

and Cond means the method will select desired document if its parameter value

satisfies the condition. With SQR and LOG, d1 would be always selected first, which

is clearly what we want because d1 covers more subtopics. However, the other

functions may select d2 first.

3. Novelty emphasis. This property captures the intuition that we should favor

documents with subtopics that are not well covered by the previously selected

documents. Our analysis suggests that SQR and EVAL are more effective than the

other functions in implementing this property. This can be seen in the same example in

Table 2. Assume all the methods have selected d1 and D = {d1}. Intuitively, d3 is

more preferred than d2 because d3 covers a novel subtopic from the previously selected

document d1. The diversity functions would favor documents with higher

DIFF(q, d, D). For SQR,

Table 2 An illustrative example (top) for comparing coverage-based diversification methods and the
ranking results (bottom) of diversification methods

Subtopics cov(s, d) weight(s, q)

d1 d2 d3

s1 0.1 0 0 0.33

s2 0.1 0.2 0 0.33

s3 0 0 0.18 0.33

Document ranking Methods

SUM LOG PCOV SQR EVAL

Select d1 first? Poss. Yes Poss. Yes Poss.

Select d3 (if already No No Poss. Yes Cond. (a[ 0.651)

selected d1)?
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diffSQR ¼ DIFFðq; d3; fd1gÞ � DIFFðq; d2; fd1gÞ
/ covðs3; d3Þ � ð2� 2 � covðs3; d1Þ � covðs3; d3ÞÞ
� covðs2; d2Þ � ð2� 2 � covðs2; d1Þ � covðs2; d2ÞÞ

/ ð1� covðs3; d3Þ þ covðs2; d2Þ
2

Þ � ð�bÞ þ covðs2; d2Þ � covðs2; d1Þ

where b = cov(s2, d2) - cov(s3, d3).

The requirement of selecting d3 is diffSQR [ 0. According to the above equation, we can

find that the requirement is:

– SQR: b\ covðs2;d2Þ�covðs2;d1Þ
1�0:5�ðcovðs3;d3Þþcovðs2;d2ÞÞ

Similarly, we can get the requirement of selecting d3 in other methods as follows:

– SUM: b \ 0

– LOG: b\covðs2; d1Þ � covðs3; d3Þ
– PCOV: b\covðs2; d1Þ � covðs2; d2Þ
– EVAL:

covðs3;d3Þ
covðs2;d2Þ [ ð1� aÞcovðs2;d1Þ

We assume that the values of cov(s2,d2) and cov(s3,d3) are unknown and compare the

requirements in different methods. When cov(s3, d3) [ cov(s2, d2), all of these requirement

are satisfied and all functions select d3 first. When cov(s3, d3) = cov(s2, d2), the methods

LOG, PCOV, EVAL and SQR can select d3 first while SUM may not. When

cov(s3, d3) \ cov(s2, d2), the requirement of SUM is not satisfied. The upper bound of

EVAL varies with different value of a. In the other methods, the upper bound of b in SQR is

the largest, the upper bound in PCOV is smaller than that in SQR and the upper bound in

LOG is smaller than that in PCOV. Given the data in Table 2, SUM, LOG will select d2

before d3, PCOV may select either d2 or d3, EVAL will select d3 when a[ 0.651 and SQR
will select d3. Therefore, SQR and EVAL are more effective in favoring documents relevant

to novel subtopics.

As we discussed in Sect. 4.3, WUME (Yin et al. 2009) is similar to SUM, and IA-Select
(Agrawal et al. 2009) and xQuAD (Santos et al. 2010b) are similar to PCOV. These

existing methods have the same properties with the corresponding methods proposed in

this paper. The reason is that the properties listed above are only related to the relationships

between different components in the functions while not related to the method of com-

puting each component.

In summary, our analysis suggests that SQR is the most effective diversification method

while SUM is the least effective one. Experiment results shown in Sect. 6 are consistent

with our analysis.

6 Empirical comparison of diversification methods

6.1 Experiment setup

We evaluate the effectiveness of the proposed framework over two standard collections

used for the diversity task in the TREC Web track (Clarke et al. 2009a, 2010). The first

collection is denoted as TREC09, which contains 50 queries and uses the ClueWeb09
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Category B as the document collection. The second collection is denoted as TREC10,

which contains 48 valid queries with judgment files and uses the ClueWeb09 Category A

collection as the document collection. The average number of subtopics per query is 4.83

for TREC09 and 4.36 for TREC10. The preprocessing involves stemming with Porter

stemmer, stop word removal and deleting spam documents from the collection (Cormack

et al. 2010). The performance is measured with several official measures including

a-nDCG, where a is set to be 0.5, and ERR-IA at two retrieval depths, top 10 and top 20

documents. a-nDCG@10 is used as the primary measure.

The baseline systems include: (1) NoDiversity which ranks documents based on their

original relevance scores computed using Dirichlet method (Zhai and Lafferty 2001) as

retrieval function; (2) MMR which uses Maximal Marginal Relevance method (Carbonell

and Goldstein 1998) to re-rank documents.

We have derived five diversification methods as shown in Table 1. As discussed in Sect.

4.3, SUM is similar to the WUME (Yin et al. 2009). PCOV is similar to xQuAD (Santos

et al. 2010b)1 and IA-SELECT (Agrawal et al. 2009). The main differences between these

two methods and PCOV are that they rely on external resources to extract subtopics and

use different methods to instantiate the components in the function. Therefore, PCOV
and SUM can be regarded as two strong baselines because they are similar to the state-

of-the-art techniques.

The proposed optimization framework assumes that the subtopics of a query have been

identified. We conduct two sets of experiments. In the first set of experiments, we use

subtopics extracted from the collection to test the performances of the methods in real

diversification systems. However, the effectiveness of the subtopic extraction method may

affect the performance comparison. We therefore use the real query subtopics for diver-

sification in the second set of experiments.

6.2 Performance comparison with extracted subtopics

We now report the performance when we extract query subtopics from the collection. The

existing diversification methods use the topic mining method (Carterette and Chandar

2009) to extract query subtopics from the collection or external resources to extract sub-

topics (Santos et al. 2010b). However, the topic mining method is very time-consuming.

External resources, i.e., query suggestions from search engines, are independent of the

collection and the subtopics may not represent the relevant information of the query in the

collection. Therefore, we use a pattern-based method (Zheng et al. 2011) to extract sub-

topics of the query. It extracts each group of terms that frequently co-occur in the retrieved

documents of the query as a subtopic candidate of the query. It then computes the semantic

similarity between the subtopic candidate and the query based on the average mutual

information between the subtopic terms and query terms. The top-ranked subtopic can-

didates are selected as the subtopics of the query.

We first compare the performance of different diversification methods when using

Dirichlet method (Zhai and Lafferty 2001) as retrieval function. The parameter l is set to

be 500. Table 3 shows the optimal performance of different diversification based on

a-nDCG at different retrieval depths. The Wilcoxon signed rank tests compare the new

functions with the existing methods, i.e., NoDiversity, MMR, SUM and PCOV. Table 4

shows the parameter values corresponding to the performances in Table 3. SUPP is the

1 In fact, a variant of xQuAD achieves the best TREC performance (Clarke et al. 2009; McCreadie et al.
2009).
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minimum number of documents that each subtopic candidate must appear (Zheng et al.

2011), SUB is the number of extracted subtopics, TERM is the number of terms to use in

each subtopic, DOC is the number of re-ranked documents using diversification functions

and k is the parameter of functions in Table 1. EVAL has another parameter a in Equation

(25) whose optimal values are 0.4 on TREC09 and 0.6 on TREC10. These parameter

values are the best possible values in each method. We have the following observations:

– All the subtopic-based diversification methods are effective to diversify search results,

and they are more effective than MMR. Similar observations were reported in studies of

Santos et al. (2010b).

– SQR outperforms all other diversification methods. This provides empirical supports

for the analysis in Sect. 4 The significance tests show that the optimal performance of

SQR is significantly better, i.e., with p-value smaller than 0.05, than the existing

Table 3 Optimal performances when using extracted subtopics. ?, *, m and r means improvement over
NoDiversity, MMR, SUM and PCOV, respectively, are statistically significant (p = 0.05 in Wilcoxon test)

Collections Methods a-nDCG@10 a-nDCG@20 ERR-IA@10 ERR-IA@20

TREC09 NoDiversity 0.2122 0.2462 0.1414 0.1494

MMR 0.2168 0.2538 0.1436 0.1523

SUM 0.2511 0.2758 0.1749 0.1809

PCOV 0.2540 0.2768 0.1764 0.1822

LOG 0.2520? 0.2767? 0.1758? 0.1819 ?

EVAL 0.2510? 0.2771 0.1759 0.1813

SQR 0.2693?*m r 0.2907?, m, r 0.1886?* 0.1943?

TREC10 NoDiversity 0.2269 0.2634 0.1735 0.1833

MMR 0.2339 0.2746 0.1756 0.1868

SUM 0.2858 0.3034 0.2253 0.2304

PCOV 0.2924 0.3084 0.2305 0.2353

LOG 0.2884?* 0.3058?* 0.2282?* 0.2334?*

EVAL 0.2903?*m 0.3063?*m 0.2287?*m 0.2334?*m

SQR 0.2939?* 0.3252?* 0.2357?* 0.2447?*

Bold values are best performances in different measures

Table 4 Optimal values of parameters when using extracted subtopics

Collections Methods SUPP SUB TERM DOC k

TREC09 SUM 4 5 30 20 0.6

PCOV 4 5 10 20 0.6

LOG 3 3 20 20 0.7

EVAL 20 5 30 20 0.6

SQR 3 4 10 20 0.3

TREC10 SUM 2 3 15 20 0.6

PCOV 2 3 15 20 0.6

LOG 2 3 15 20 0.6

EVAL 2 3 20 20 0.6

SQR 2 6 20 70 0.3
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methods based on a-nDCG@10 on TREC09 collections. However, it cannot

significantly outperform the existing methods on TREC10 collections. We will

analyze these methods in detail in the rest of this section.

– SUM often performs worse than the other methods. This is expected because SUM does

not consider the subtopic coverage of previously selected documents. Again, this

confirms our analytical results in the previous section.

We also compare our results with the top runs of TREC here. The performance of SQR is

better than the 4th best run of TREC09 whose a-nDCG@10 value is 0.250 on TREC09

collection and is close to the 6th best run of TREC10 whose ERR-IA@20 value is 0.248.

However, they are not directly comparable because we use different baseline functions to

retrieve and use different parameter tuning processes. Another observation is that PCOV
result in this paper is worse than xQuAD, whose a-nDCG@10 value is 0.282, on TREC09

collection, although they have similar diversification function. This is because that they use

different baseline functions, component estimation methods and subtopic extraction

methods.

The results in Table 3 are the best performances of each method. We then test the

robustness of these methods. Table 5 shows the 5-fold cross-validation results based on

a - nDCG@10 on TREC09 and TREC10 collections. It tunes the values of all parameters

shown in Table 4 and the parameter a in EVAL. It shows that SQR is more robust than

existing functions, i.e., SUM and PCOV, on both collections. What’s more, LOG and EVAL
also outperform the existing functions on TREC09 and TREC10 collection, respectively.

The diversification methods have different diversification properties as we analyzed in

Sect. 5 The queries also have different diversification features. For example, some queries

have more subtopics while other queries have less subtopics. It is interesting to see the

effect of different methods in different kinds of queries. We compare the average per-

formance of each method in queries with different number of real subtopics and report the

results in Table 6. Queries are divided into 5 bins according to the number of subtopics. An

interesting observation is that when the number of subtopics becomes large, i.e., the

relevant documents are more diverse, SQR performs the best among all the diversification

methods. However, SQR does not perform best when the number of subtopics is 3 or 5.

This indicates there is some potential to combine different diversification methods based

on the number of subtopics and we leave this as future work.

Table 5 Cross-validation results
of the diversification methods on
a-nDCG@10 over all parameters
when using Dirichlet and extrac-
ted subtopics

Bold values are best
performances in test results

Collections Methods Train Test

Average Deviation Average Deviation

TREC09 SUM 0.2529 0.0144 0.2266 0.0682

PCOV 0.2570 0.0161 0.2296 0.0599

LOG 0.2526 0.0149 0.2309 0.0637

EVAL 0.2525 0.0114 0.2294 0.0539

SQR 0.2697 0.0137 0.2627 0.0587

TREC10 SUM 0.2867 0.0196 0.2792 0.0795

PCOV 0.2947 0.0213 0.2731 0.0977

LOG 0.2899 0.0213 0.2738 0.0986

EVAL 0.2910 0.0197 0.2842 0.0830

SQR 0.2948 0.0202 0.2829 0.0871
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As discussed earlier, one advantage of the derived diversification methods is that they

can be combined with any retrieval functions. In order to evaluate the effectiveness of

these diversification methods for different retrieval functions, we use four state-of-the-art

retrieval functions and report the optimal performance of five diversification methods for

these four retrieval models on both collections in Table 7. These retrieval functions include

pivoted normalization method (Singhal et al. 1996), Dirichlet (Zhai and Lafferty 2001),

axiomatic retrieval function, i.e., F2exp (Fang and Zhai 2005), and Okapi (Robertson and

Walker 1999) which was also applied in xQuAD (Santos et al. 2010b). When using one

retrieval function, we use the same retrieval function to compute components in

Table 6 Performance comparison (a-nDCG@10) on queries with different number of subtopics

Collections Methods Number of groundtruth subtopics

3 4 5 6 C 7

TREC09 SUM 0.4691 0.2562 0.2386 0.2061 0.0671

PCOV 0.4632 0.2586 0.2428 0.2133 0.070

LOG 0.4075 0.2605 0.2443 0.2308 0.0671

EVAL 0.4496 0.2437 0.2586 0.2216 0.0383

SQR 0.4434 0.2901 0.2442 0.2435 0.0765

Number of queries 6 16 13 11 4

TREC10 SUM 0.3435 0.2566 0.3465 0.2252 0.0538

PCOV 0.3575 0.2573 0.3622 0.2206 0.0856

LOG 0.3464 0.2580 0.3523 0.2266 0.0538

EVAL 0.3495 0.2582 0.3539 0.2271 0.0867

SQR 0.3358 0.2692 0.3178 0.2838 0.1173

Number of queries 11 18 10 8 1

Bold values are best performances in different categories of queries

Table 7 Optimal performance of the diversification methods using different traditional retrieval functions
based on a-nDCG@10 (extracted subtopics). ?, m and r means improvement over NoDiversity, SUM and
PCOV, respectively, are statistically significant (p = 0.05 in Wilcoxon test)

Collection Methods Pivot Okapi Dirichlet F2exp

TREC09 NoDiversity 0.1530 0.2495 0.2122 0.2351

SUM 0.2571 0.2642 0.2511 0.2609

PCOV 0.2633 0.2593 0.2540 0.2448

LOG 0.2608? 0.2627? 0.2520? 0.2599?

EVAL 0.2651? 0.2585? 0.2510? 0.2607?

SQR 0.2688? 0.2720? 0.2693?mr 0.2779?r

TREC10 NoDiversity 0.2084 0.2252 0.2269 0.2240

SUM 0.2721 0.2905 0.2858 0.2938

PCOV 0.2761 0.3065 0.2924 0.2992

LOG 0.2767 0.2892 0.2884? 0.2938

EVAL 0.2786 0.2905 0.2903?m 0.2938

SQR 0.2828 0.3213?m 0.2939? 0.3163?

Bold values are best performances in different measures
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diversification functions and normalize these scores as the probability in the functions of

Table 1. We tuned the parameters in these retrieval functions. The parameters values are:

(1) the values of s are 0.1 on TREC09 collection and 0.2 on TREC10 collection in Pivot;

(2) k1, b and k3 are set to be 1.2, 0.75 and 1000, respectively in Okapi; (3) l is set to be 500

in Dirichlet and (4) the values of s are set to be 0.8 on TREC09 and 0.9 on TREC10, and k
is set to be 0.35 in F2exp. We can see that SQR is the most robust diversity function and

can perform best when using any traditional retrieval models. Note that the diversity

performance is closely related to the retrieval function. If we use a stronger baseline that

considers factors other than keyword matching, such as the methods used by top runs by

TREC participants (Clarke et al. 2009a, 2010), the diversity performance would be

expected to increase.

Table 8 Optimal performances when using real subtopics. ?, m and r means improvement over NoDi-
versity, SUM and PCOV, respectively, are statistically significant (p = 0.05 in Wilcoxon test)

Collections Methods a-nDCG@10 a-nDCG@20 ERR-IA@10 ERR-IA@20

TREC09 NoDiversity 0.2122 0.2462 0.1414 0.1494

SUM 0.2731 0.2915 0.1901 0.1952

PCOV 0.2813 0.2927 0.1902 0.1948

LOG 0.2736? 0.2911? 0.1896? 0.1947?

EVAL 0.2740? 0.2915? 0.1902? 0.1953?

SQR 0.2819? 0.2981? 0.1970? 0.2013?

TREC10 NoDiversity 0.2269 0.2634 0.1735 0.1833

SUM 0.3643 0.3761 0.2813 0.2858

PCOV 0.3648 0.3785 0.2846 0.2894

LOG 0.3643? 0.3769? 0.2826? 0.2873?

EVAL 0.3643? 0.3761? 0.2813? 0.2858?

SQR 0.3681? 0.3799? 0.2852? 0.2898?

Bold values are best performances in different measures

Table 9 Cross-validation results
of the diversification methods on
a-nDCG@10 over all parameters
when using Dirichlet and real
subtopics

Bold values are best
performances in test results

Collections Methods Train Test

Average Deviation Average Deviation

TREC09 SUM 0.2752 0.0199 0.2644 0.0796

PCOV 0.2831 0.0179 0.2649 0.0826

LOG 0.2754 0.0201 0.2635 0.0802

EVAL 0.2758 0.0201 0.2629 0.0811

SQR 0.2843 0.0207 0.2660 0.0814

TREC10 SUM 0.3652 0.0171 0.3564 0.0745

PCOV 0.3656 0.0176 0.3584 0.0750

LOG 0.3643 0.0171 0.3643 0.0733

EVAL 0.3652 0.0171 0.3549 0.0734

SQR 0.3683 0.0165 0.3658 0.0708
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6.3 Performance comparison using real subtopics

We also compare different diversification methods using real subtopics. This would allow

us to factor out the effects of subtopic quality and directly compare the effectiveness of

different diversification methods.

Table 8 shows the optimal performance of all the five diversification methods when we

use real subtopics from judgment file as the subtopics of the query and use Dirichlet

method (Zhai and Lafferty 2001) to retrieve documents. We can see that the performance

of these different diversification methods are similar, and SQR performs slightly better than

the other four diversification methods. Table 9 shows the cross-validation results of these

methods when tuning parameters k and a. We can see that SQR consistently outperform the

existing functions, i.e., SUM and PCOV, on both collection. LOG can also outperform

existing functions on TREC10 collection.

We also examine the performance sensitivity with respect to parameter values of the

diversification functions. All of the derived diversification methods as shown in Table 1

have the same parameter, k, which controls the balance between relevance and diversity
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scores. In addition, EVAL has one more parameter a, which controls the impact of the

individual documents in the coverage function.

Figure 1 shows the performance sensitivity curve for k. When k is 1, all the methods

have the same performance since the documents are selected based on only relevance

scores. We can also see that, when k is 0, the performance is much better than the

performance when k is 1. The reason is that when k is 0, the objective function is only

related to the diversity score which is computed based on the relevance score between

documents and query subtopics. Since the subtopics are chosen from judgment file, they

have real good quality, which would lead to better performance. We can imagine that,

when the quality of query subtopics decreases, the performance when k is 0 would be

worse than the one shown on the plot. Moreover, it is interesting to see that the lines of

SQR and PCOV have different trends with other methods. However, the performances of

SUM and EVAL in Fig. 1 are very close to each other when we use real subtopics. The

results in Table 9 also shows that EVAL does not work well. These results indicates that the

component ð1� aÞ
P

d02D
covðs;d0Þ

in (25) is not effective in diversification.

Figure 2 shows the results of diversity function EVAL with different values of a. We can

see that EVAL is not sensitive to the parameter when a is smaller than 1 and the
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performance change is small when using different values. The result of EVAL is the same

as NoDiversity when a is 1.

7 Conclusions

The task of search result diversification is to return a list of documents that are not only

relevant to a query but also diverse to cover multiple subtopics of the query. In this paper,

we propose to study this problem in a coverage-based optimization framework based on

explicit query subtopic modeling. In this framework, we propose to model diversity scores

based on the coverage of query subtopics and then discuss three strategies to define

coverage functions. Not every function can be coverage function. A coverage function

needs to be a submodular function so that we can use a greedy algorithm to iteratively

select documents for diversity. Each coverage function corresponds to a diversification

method. We derive five diversification methods in this paper, and show that the obtained

methods include not only several existing methods, but also new ones which have not been

studied before. One of the method, i.e., SQR, not only has the desired favoring diversity
and novelty emphasis properties that the existing methods do not have, but also can

consistently outperform the existing methods in the experiments.

Our work opens up many interesting future research directions. First, we plan to define

more coverage functions in our framework and thus derive effective retrieval functions.

For example, we can use better evaluation measures (Sakai and Song 2011) to derive

diversification functions with desired properties. We can also combine different types of

coverage functions (e.g., linear combination) to define more sophisticated ones in our

framework. Second, it would be interesting to derive reasonable coverage functions based

on a set of desirable properties such as the three we discuss in this paper.
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Appendix

Theorem 1 divSUM(q, D) is a submodular function with respect to D.

Proof In order to prove that divSUM(q, D) is submodular, we need to prove that 12 holds

according to the analysis in Sect. 4.1 Based on 16,

DIFFSUMðs; d;AÞ � DIFFSUMðs; d;BÞ ¼ covðs; dÞ � covðs; dÞ ¼ 0:

Therefore, divSUM(q, D) is a submodular function.

Theorem 2 divLOG(q, D) is a submodular function with respect to D.

Proof Based on (18),

DIFFLOGðs; d;AÞ � DIFFLOGðs; d;BÞ

¼ log 1þ covðs; dÞ
1þ

P
d02A covðs; d0Þ

� �
� log 1þ covðs; dÞ

1þ
P

d02B covðs; d0Þ

� �
:

It is clear that
P

d02A covðs; d0Þ �
P

d02B covðs; d0Þ. Therefore,
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log 1þ covðs; dÞ
1þ

P
d02A covðs; d0Þ

� �
� log 1þ covðs; dÞ

1þ
P

d02B covðs; d0Þ

� �
;

and DIFFSUM(s, d, A) - DIFFSUM(s, d, B) C 0. covLOG(s, D) is a submodular function.

Theorem 3 divPCOV(q, D) is a submodular function with respect to D

Proof Based on (20),

DIFFPCOVðs; d;AÞ � DIFFPCOVðs; d;BÞ
¼ covðs; dÞ �

Y

d02A

ð1� covðs; d0ÞÞ � covðs; dÞ �
Y

d02B

ð1� covðs; d0ÞÞ

¼ covðs; dÞ � 1�
Y

d02BnA
ð1� covðs; d0ÞÞ

0
@

1
A �

Y

d02A

ð1� covðs; d0ÞÞ

� 0:

Thus, covPCOV(s, D) is a submodular function.

Theorem 4 divSQR(q, D) is a submodular function with respect to D

Proof Based on (23),

DIFFPCOVðs; d;AÞ � DIFFPCOVðs; d;BÞ
¼ covðs; dÞ � 2 �

X

d02BnA
ðcovðs; d0ÞÞ� 0:

Thus, covSQR(s, D) is a submodular function.

Theorem 5 divEVAL1(q,D) is not a submodular function with respect to D

Proof Based on (24),

DIFFEVAL1ðs; d;AÞ � DIFFEVAL1ðs; d;BÞ

¼ 1

jAj þ 1
� covðs; dÞ �

P
d02A covðs; d0Þ
jAj

� �

� 1

jBj þ 1
� covðs; dÞ �

P
d02B covðs; d0Þ
jBj

� �

¼ covðs; dÞ � 1

jAj þ 1
� 1

jBj þ 1

� �
þ
P

d02BnA ðcovðs; d0Þ
jBj � ðjBj þ 1Þ

� 1

jAj � ðjAj þ 1Þ �
1

jBj � ðjBj þ 1Þ

� �
�
X

d02A

covðs; d0Þ;

and this may be smaller than 0. Thus, covEVAL1(s,D) is not a submodular function.

Theorem 6 divEVAL2(q,D) is a submodular function with respect to D

Proof Based on (24),

DIFFEVAL2ðs; d;AÞ � DIFFEVAL2ðs; d;BÞ

¼ covðs; dÞ �
Q

d02A ð1� covðs; d0ÞÞ
jAj þ 1

�
Q

d02B ð1� covðs; d0ÞÞ
jBj þ 1

� �
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We know that
Q

d02A ð1� covðs; d0ÞÞ�
Q

d02B ð1� covðs; d0ÞÞ since

Y

d02A

ð1� covðs; d0ÞÞ �
Y

d02B

ð1� covðs; d0ÞÞ

¼
Y

d02A

ð1� covðs; d0ÞÞ � ð1�
Y

d02BnA
ð1� covðs; d0ÞÞÞ

� 0;

and |A| B |B|. Therefore DIFFEVAL2(s, d, A) - DIFFEVAL2(s, d, B) C 0. Thus, covE-

VAL2(s,D) is a submodular function.

Theorem 7 divEVAL3(q,D) is a submodular function with respect to D

Proof Based on (25),

DIFFEVAL3ðs; d;AÞ � DIFFEVAL3ðs; d;BÞ

¼ covðs; dÞ � ð1� aÞ
P

d02A
covðs;d0Þ � ð1� aÞ

P
d02B

covðs;d0Þ
� �

We can find that ð1� aÞ
P

d02A
covðs;d0Þ � ð1� aÞ

P
d02B

covðs;d0Þ
since

P
d02A covðs; d0Þ �P

d02B covðs; d0Þ. Therefore, EVAL3 is a submodular function since DIFFEVAL3(s, d, A) -

DIFFEVAL3(s, d, B) C 0. Thus, covEVAL3(s,D) is a submodular function.

References

Agrawal, R., Gollapudi, S., Halverson, A., & Ieong, S. (2009). Diversifying search results. In Proceedings of
WSDM’09.

Boyce, B. (1982). Beyond topicality: A two stage view of relevance and the retrieval process. Information
Processing and Management, 18(3), 105–109

Carbonell, J., & Goldstein, J. (1998). The use of MMR, diversity-based reranking for reordering documents
and producing summaries. In Proceedings of SIGIR’98, pp. 335–336.

Carterette, B., & Chandar, P. (2009). Probabilistic models of novel document rankings for faceted topic
retrieval. In Proceedings of CIKM’09.

Chapelle, O., Metzler, D., Zhang, Y., & Grinspan, P. (2009). Expected reciprocal rank for graded relevance.
In Proceedings of CIKM’09.

Chen, H., & Karger, D. R. (2006). Less is more: Probabilistic models for retrieving fewer relevant docu-
ments. In Proceedings of SIGIR’06.

Clarke, C. L. A., Craswell, N., & Soboroff, I. (2009). Overview of the trec 2009 web track. In Proceedings
of TREC’09.

Clarke, C. L. A., Kolla, M., & Vechtomova, O. (2009). An effectiveness measure for ambiguous and
underspecified queries. In Proceedings of ICTIR’09.

Clarke, C. L. A., Craswell, N., Soboroff, I., & Cormack, G. V. (2010). Preliminary overview of the trec 2010
web track. In Proceedings of TREC’10.

Clarke, C. L. A., Kolla, M., Cormack, G. V., Vechtomova, O., Ashkan, A., Buttcher, S. et al. (2008).
Novelty and diversity in information retrieval evaluation. In Proceedings of SIGIR’08.

Cormack G. V., Smucker, M. D., & Clarke, C. L. A. (2010). Efficient and effective spam filtering and
re-ranking for large web datasets. In http://arxiv.org/abs/1004.516

Craswell, N., Fetterly, D., Najork, M., Robertson, S., & Yilmaz, E. (2009). Microsoft research at trec 2009.
In Proceedings of TREC’09.

Demidova, E., Fankhauser, P., Zhou, X., & Nejdl, W. (2010). Divq: Diversification for keyword search over
structured databases. In Proceedings of SIGIR’10.

Fang, H., & , Zai, C. (2005). An exploration of axiomatic approaches to information retrieval. In Pro-
ceedings of SIGIR’05.

Goffman, W. (1964). A search procedure for information retrieval. Information Storage and Retrieval, 2,
73–78.

456 Inf Retrieval (2012) 15:433–457

123

http://arxiv.org/abs/1004.516


Gollapudi, S., & Sharma, A. (2009). An axiomatic approach for result diversification. In Proceedings of
WWW’09.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The element of statistical learning: Data mining, inference
and prediction. Berlin: Springer.

Khuller, S., Moss, A., & NaorJure, J. (1999). The generalized maximum coverage problem. Information
Processing Letters, 70(1), 39–45.

Lafferty, J., & Zhai, C. (2001). Document language models, query models, and risk minimization for
information retrieval. In Proceedings of SIGIR’01, Sept 2001.

Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., & Glance, N. (2007). Cost-effective
outbreak detection in networks. In Proceedings of KDD’07, 2007.

Macdonald, C., Wang, J., & Clarke, C. (2011). Ecir2011 ddr workshop proceedings. In Proceedings of
DDR’11, 2011.

McCreadie, R., Macdonald, C., Ounis, I., Peng, J., & Santos, R. (2009). University of glasgow at trec 2009:
Experiments with terrier. In Proceedings of TREC’09.

Nemhauser, G. L., Wolsey, L. A., & Fisher, M. L. (1978). An analysis of approximations for maximizing
submodular set functions. Mathematical Programming, 14(1), 265–294.

Ponte, J., & Croft, W. B. (1998). A language modeling approach to information retrieval. In Proceedings of
the ACM SIGIR’98.

Radlinsk, F., & Dumais, S. T. (2006). Improving personalized web search using result diversification. In
Proceedings of SIGIR’06.

Radlinski, F., Bennett, P. N., Carterette, B., & Joachims, T. (2009). Redundancy, diversity and interde-
pendent document relevance. In Proceedings of the IDR’09 Workshop.

Robertson, S. E., & Walker, S. (1999). Okapi/keenbow at TREC-8. In E. M. Voorhees & D. K. Harman
(Eds.), The eighth text REtrieval conference (TREC 8). NIST Special Publication 500-246.

Sakai, T., & Song, R. (2011). Evaluating diversified search results using per-intent graded relevance. In
Proceedings of SIGIR’11.

Santos, R. L., & Ounis, I. (2011). Diversifying for multiple information needs. In Proceedings of DDR’11.
Santos, R. L. T., Macdonald, C., & Ounis, I. (2010). Selectively diversifying web search results. In Pro-

ceedings of CIKM’10.
Santos, R. L. T., Macdonald, C., & Ounis, I. (2010). Exploiting query reformulations for web search result

diversification. In Proceedings of WWW’10.
Santos, R. L. T., Peng, J., Macdonald, C., & Ounis, I. (2010). Explicit search result diversification through

sub-queries. In Proceedings of ECIR’10.
Singhal, A., Buckley, C., & Mitra, M. (1996). Pivoted document length normalization. In Proceedings of the

1996 ACM SIGIR conference on research and development in information retrieval, pp. 21–29.
White, R. W., & Roth, R. A. (2009) Exploratory search: Beyond the query-response paradigm. San Rafael,

CA: Morgan and Claypool.
Yin, D., Xue, Z., Qi, X., & Davison, B. D. (2009). Diversifying search results with popular subtopics. In

Proceedings of TREC’09.
Yue, Y., & Joachims, T. (2008). Predicting diverse subsets using structural svms. In Proceedings of

ICML’08.
Zhai, C., Cohen, W., & Lafferty, J. (2003). Beyond independent relevance: Methods and evaluation metrics

for subtopic retrieval. In Proceedings of SIGIR’03.
Zhai, C., & Lafferty, J. (2001). A study of smoothing methods for language models applied to ad hoc

information retrieval. In Proceedings of SIGIR’01.
Zheng, W., & Fang, H. (2010). University of delaware at diverstiy task of web track 2010. In Proceedings of

TREC’10.
Zheng, W., & Fang, H. (2011). A comparative study of search result diversification methods. In Proceedings

of DDR’11.
Zheng, W., Wang, X., Fang, H., & Cheng, H. (2011). An exploration of pattern-based subtopic modeling for

search result diversification. In Proceedings of JCDL’11.

Inf Retrieval (2012) 15:433–457 457

123


	Coverage-based search result diversification
	Abstract
	Introduction
	Related work
	An optimization framework for result diversification
	Coverage-based diversification methods
	General idea
	Coverage functions
	Summation-based coverage functions
	Loss-based coverage functions
	Measure-based coverage functions

	Discussions

	Analytical comparison of diversification methods
	Empirical comparison of diversification methods
	Experiment setup
	Performance comparison with extracted subtopics
	Performance comparison using real subtopics

	Conclusions
	Acknowledgments
	Appendix
	References


