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Abstract Due to the heavy use of gene synonyms in biomedical text, people have tried

many query expansion techniques using synonyms in order to improve performance in

biomedical information retrieval. However, mixed results have been reported. The main

challenge is that it is not trivial to assign appropriate weights to the added gene synonyms

in the expanded query; under-weighting of synonyms would not bring much benefit, while

overweighting some unreliable synonyms can hurt performance significantly. So far, there

has been no systematic evaluation of various synonym query expansion strategies for

biomedical text. In this work, we propose two different strategies to extend a standard

language modeling approach for gene synonym query expansion and conduct a systematic

evaluation of these methods on all the available TREC biomedical text collections for ad

hoc document retrieval. Our experiment results show that synonym expansion can sig-

nificantly improve the retrieval accuracy. However, different query types require different

synonym expansion methods, and appropriate weighting of gene names and synonym

terms is critical for improving performance.
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1 Introduction

The growing amount of scientific literature in genomics and related biomedical disciplines

has led to an increasing need of using effective retrieval systems to access relevant

information from biomedical literature. Many information needs in this domain center

around genes, such as ‘‘the function of a gene’’ and ‘‘the interaction of two genes in some

disease.’’ However, a gene can be described with many variants, such as gene name, gene

symbols and its acronyms. For example, gene ‘‘prion protein’’ can be described with

‘‘prnp’’, ‘‘Prn-p’’, ‘‘CD230’’, ‘‘PrPL-P1-like’’, ‘‘prion protein PrP’’, etc., in the biomedical

literature. Unfortunately, most existing retrieval models rely on exact term matching,

which makes it hard to retrieve relevant documents that contain the synonyms but not the

one mentioned in the query. Thus, with the omnipresence of gene synonyms in biomedical

literature (Buttcher et al. 2004), it is clear that we need to consider the synonyms in order

to achieve optimal retrieval performance.

Due to its importance, this problem has attracted much attention recently in the TREC

genomic track (Hersh 2003, 2004, 2005, 2006, 2007). Many groups have explored how to

use synonym resources such as Entrez Gene1 to improve retrieval accuracy. However, this

body of previous work has mixed findings and experiment conditions are not controlled,

making it impossible to compare different results. In particular, expanding queries directly

with synonyms often leads to negative results (Goldberg et al. 2006; Divoli et al. 2006;

Buttcher et al. 2004), while performance improvement is often achieved by manual syn-

onym selection (Huang et al. 2006) or the use of special heuristics (Zhou et al. 2006).

Thus, it is still unclear (1) whether automatic gene synonym expansion helps and (2) what

is the best way to perform gene synonym expansion.

In general, synonym expansion is often achieved through query expansion. Unfortu-

nately, the performance improvement of query expansion based on only hand-crafted

thesaurus is often limited (Voorhees 1994; Stairmand 1997). The major challenge is how to

assign appropriate weights to the synonyms.

In this paper, we conduct a systematic study of the gene synonym expansion problem in

the language modeling framework. The language modeling framework provides a prin-

cipled way to model retrieval problems and has also been shown to perform well

empirically (Ponte and Bruce Croft 1998; Bruce croft and Lafferty 2003; Zhai and Lafferty

2004, 2006). We propose two methods for synonym expansion: single query language

model (SQLM) and multiple query language models (MQLM). The idea of SQLM is

similar to the traditional query expansion in the sense that synonyms are combined with the

original query terms and documents are ranked based on the combined (i.e., expanded)

query, but it provides flexibility to systematically adjust the weights of different aspects in

the combined query. SQLM does not capture the disjunctive semantics of synonyms and

the original genes, so in order to explicitly model the disjunctive relation among synonyms,

we propose another method, i.e., MQLM, which combines results returned by using dif-

ferent gene variants to formulate queries including both gene information in the original

query and other synonymous terms. We further propose and study several synonym

weighting strategies. We perform a comprehensive evaluation of these methods on all

available TREC Genomics data collections. Experiment results show that (1) Both SQLM

and MQLM have the potential to significantly improve the retrieval performance (e.g.,

from 9.55% to 38.14% in MAP). (2) It is important to adjust weights on different aspects in

verbose queries. (3) The proposed synonym weighting methods are more effective for

1 http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene.
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gene-only queries than for verbose queries, though they can also increase recall without

hurting MAP performance for verbose queries. (4) Applying pseudo relevance feedback

after synonym expansion for verbose queries can further improve performance.

The rest of the paper is organized as follows. In Sect. 2, we survey the synonym

expansion strategies explored in previous work on biomedical information retrieval. In

Sect. 3, we briefly overview the language modeling approach for retrieval. We discuss two

proposed synonym expansion methods in Sect. 4 and then evaluate their effectiveness over

TREC Genomic collections in Sect. 5. Finally, we conclude in Sect. 6.

2 Related work

Query expansion is a commonly used strategy to improve retrieval performance. The main

challenge of synonym expansion in both general and biomedical domains is how to assign

appropriate weights to the synonyms. Recent studies (Fang and Zhai 2006; Fang 2008)

used axiomatic approach to provide guidance on the weighting of expanded terms, and the

results showed that the performance can be significantly improved with appropriate term

weighting strategy. However, it is unclear whether their approach would work in bio-

medical domain.

An early study on biomedical information retrieval (Hersh et al. 2000) shows that

retrieval performance does not improve from adding even manually selected synonyms.

Recently, most work on biomedical information retrieval appeared in the Genomics Track

of TREC 2003–2007 (Hersh 2003, 2004, 2005, 2006, 2007). To address the problem of

synonymous terms in biomedical text, participating groups take different kinds of

approaches. Most groups (Huang et al. 2007; Stokes et al. 2007; Cohen et al. 2007; Huang

et al. 2006; Buttcher et al. 2004; Zhou et al. 2007; Ruiz 2006; Demner-Fushman et al.

2006; Lin et al. 2006; Dorff et al. 2006; Wan et al. 2006; Tsai et al. 2005; Abdou et al.

2005; Guo et al. 2004; Fujita 2004) automatically query gene synonyms from existing

knowledge bases, such as Entrez Gene, MeSH, UMLS, AcroMed; some (Buttcher et al.

2004; Abdou et al. 2005; Huang et al. 2006) use heuristics to generate lexical variants for

gene names; some (Stokes et al. 2007; Huang et al. 2006; Demner-Fushman et al. 2006)

manually select appropriate synonyms from knowledge bases. After that, some groups

(Jimeno and Pezik 2007; Buttcher et al. 2004; Guo et al. 2004) connect those synonyms

with original gene name using disjunctive query semantics; others just add those synonyms

to the set of original query terms. Most groups give synonyms same weights as gene

names, while a few others (Guo et al. 2004; Buttcher et al. 2004) arbitrarily discount the

weights of synonyms or boost the weights of gene names. And the results are mixed: some

groups (Fautsch and Savoy 2007; Stokes et al. 2007; Cohen et al. 2007; Huang et al. 2006;

Buttcher et al. 2004; Zhou et al. 2007; Ruiz 2006) report positive results of query

expansion with synonyms, while others do not see significant improvement (Huang et al.

2007; Lin et al. 2006; Dorff et al. 2006; Wan et al. 2006; Tsai et al. 2005; Guo et al. 2004;

Fujita 2004) or even report detrimental results (Huang et al. 2007; Jimeno and Pezik 2007;

Demner-Fushman et al. 2006; Abdou et al. 2005). Since the previous work used different

retrieval models, different synonym databases, and different heuristics, it is difficult to

draw conclusions on the effectiveness of different methods. More importantly, none of

them has studied how to automatically weight the added synonyms with respect to the

original query and how to weight the synonyms among themselves.

Our work extends the previous work in two ways: (1) We propose general methods in

the language modeling framework to perform synonym expansion; most strategies
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explored in previous studies have more or less been covered by our general strategies. (2)

We systematically compare and evaluate the major gene synonym expansion methods

using all the existing TREC genomic collections.

3 Language models for information retrieval

KL-Divergence (Zhai and Lafferty 2001) is one of the most effective retrieval models

derived in the language modeling framework. In the KL-Divergence retrieval model,

queries and documents are all represented by unigram language models, which are

essentially multinomial word distributions. Assuming that these language models can be

appropriately estimated, KL-divergence retrieval model scores a document D with respect

to a query Q by computing the Kullback-Leibler divergence between the query language

model hQ and the document language model hD as follows:

�DKLðhQjjhDÞ ¼ �
X

w2V

pðwjhQÞlog
pðwjhQÞ
pðwjhDÞ

where V is the set of all words in the vocabulary.

What remains to be solved is how to appropriately estimate the query language model

hQ and the document language model hD. hD can be estimated from the document D with

Dirichlet prior smoothing method (Zhai and Lafferty 2004) as shown below:

pðwjDÞ ¼ cðw;DÞ þ l � pðwjCÞ
jDj þ l

ð1Þ

where cðw;DÞ is the number of occurrences of word w in document D, pðwjCÞ is the

empirical word distribution in the whole collection C, and l is a parameter that controls the

degree of smoothing.

The simplest way to estimate the query language model hQ is to use maximum likeli-

hood estimation which equals the empirical distribution:

pðwjhQÞ ¼ pðwjQÞ ¼ cðw;QÞ
jQj ð2Þ

where cðw;QÞ is the number of occurrences of word w in query Q, and jQj is the length of

query Q.

Clearly, the estimation of the query language model directly affects the retrieval per-

formance. We will discuss a few methods to improve the query model estimation based on

gene synonyms in the next section.

4 Gene synonym query expansion methods

We first introduce the notations that will be used in the paper. A query Q in biomedical

domain often contains two aspects: gene aspect G and non-gene aspect NG, i.e., Q ¼
G [ NG: The gene aspect includes all query terms related to genes and is represented as

G ¼ fg1; . . .; gng. For each gi, we can retrieve a set of synonyms Si from the knowledge

databases. The synonym set of the whole query is S ¼ fS1; . . .; Sng. Note that both S and G
include information related to genes.
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For example, assume we have query ‘‘what is the role of prnp in mad cow disease’’. The

gene aspect is G ¼ fprnpg, the non-gene aspect is NG ¼ fwhat; is; the; role; of; in;mad;
cow; diseaseg, and the synonym set would be S ¼ ffPrnp; PrPLP1like;CD230gg:

Our main idea of performing gene synonym expansion in the KL-divergence retrieval

model is to use the synonyms S to estimate a potentially more informative (effective) query

language model hQ than the maximum likelihood estimate shown in Eq. 2. We now

propose two general ways of constructing a query language model based on S.

4.1 Single query LM

The idea of single query language model (SQLM) is to combine the original query with

synonym information and then estimate a language model from the combined information.

Conceptually, this is to ‘‘expand’’ the original query with synonym terms, which is pre-

cisely the strategy adopted in most existing work. However, SQLM goes beyond existing

work to offer a general probabilistic model that allows us to vary the weights of different

components systematically as will be further discussed.

An expanded query logically includes two aspects: gene aspect G [ S and non-gene

aspect NG, and there are two types of information in the gene aspect: gene information in

the original query G and the synonym sets S. Thus, we would like to estimate the query

language model using three sources of information: NG (non-gene aspect), G (gene

description in the query), and S (synonyms):

pðwjhQÞ ¼ pðwjQ; SÞ ¼ pðwjG;NG; SÞ
One natural way to combine all the three sources of information is to define the query

language model as the following mixture model, which gives us a linear combination of three

unigram language models estimated using the three sources of information, respectively:

pðwjhQÞ ¼ ð1� bÞpðwjNGÞ þ b½ð1� aÞpðwjGÞ þ apðwjSÞ�; ð3Þ

where b 2 ½0; 1� is used to balance the gene aspect and non-gene aspect and a 2 ½0; 1� is the

weight of balancing original gene information with its synonyms.

This mixture model can be interpreted as to capture the following process of sampling a

word according to hQ: We first determine which part of the expanded query to use to

generate a word, and then sample a word using the corresponding component language

model to the part chosen. Specifically, with probability 1� b, we would use the non-gene

part (NG) and generate a word according to pðwjNGÞ. With probability b, we would use the

gene part, but still need to decide whether to use G or S. With probability a, we would use S
and generate a word according to pðwjSÞ; and with probability 1 - a, we would use G and

generate a word according to pðwjGÞ: Clearly, if we set a = 0 and b ¼ jGj
jGjþjNGj ; we

basically get the baseline as in Eq. 2 where no expansion of synonym is applied and

maximum likelihood estimation is used to estimation the query model.

The estimated model shown in Eq. 3 can then be used directly in the KL-Divergence

model to score documents in the collection, achieving the effect of query expansion based

on synonyms. The estimation of the three component models will be discussed in Sect. 4.3.

4.2 Multiple query LMs

Although SQLM can naturally combine synonyms with the original query, it does not

capture the desired disjunctive relationship between the original gene and its synonyms. As
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a result, a document matching many synonym terms, but not the non-gene part may be

scored higher than one matching one synonym term plus the non-gene part of the query.

Intuitively, however, since the original gene and its synonyms represent exactly the same

semantic aspect, matching any one of them would already imply matching the semantic

aspect, thus matching multiple synonyms on top of that should not further contribute too

much to the score.

To capture the disjunctive semantics in query expansion, we propose another way to

incorporate synonyms into the KL-divergence retrieval model, called multiple query lan-

guage models (MQLM). The main idea of MQLM is to generate multiple query models,

corresponding to multiple ways of describing a gene in the query, and then combine the

ranking lists from all these models in a certain way to generate the final ranking for the

documents. Each query model can be regarded as modeling one query variant. A query

variant Qij is generated by replacing an original gene query term gi with one of its

synonyms sijðsij 2 SiÞ: More formally,

Qij ¼ fQngig
[
fsijg ð4Þ

where Qngi means the set of query terms excluding gi.

Now let sðD; QijÞ be the relevance score of D w.r.t. query variant Qij and sðD; QÞ the

relevance score of D w.r.t. the original query Q. We use RSðD; Q; SÞ to denote the fol-

lowing set of adjusted relevance scores of document D w.r.t. the original query and all the

query variants generated using S:

RSðD; Q; SÞ ¼ fð1� aÞ � sðD; QÞg [ ð
[

sij2S

fa� kij � sðD; QijÞgÞ;

where a 2 ½0; 1� is a parameter to balance the trust on the original gene query terms and

their synonyms, kij 2 ½0; 1� measures the reliability of synonym sij 2 S and pðwjQijÞ is

estimated as

pðwjQijÞ ¼ ð1� bÞpðwjNGÞ þ bpðwjsijÞ ð5Þ

where b balances the weight of gene aspect and that of the non-gene aspect.

In order to combine the results returned by these multiple query models, we propose to

compute the relevance score of D as follows:

sðD; Q; SÞ ¼ FðRSðD; Q; SÞÞ;

where F is an aggregation function that can combine a set of values. In the paper, we

consider two types of F, i.e., MAX and AVG. MAX returns the maximal values in the set,

while AVG returns the average. Intuitively, MAX better captures the disjunctive semantics

while AVG is less aggressive than MAX.

Since the relevance scores computed with KL-Divergence function are negative and

query dependent, we can not combine these scores directly in MQLM. In order to solve this

problem, we use the normalized KL-Divergence results to score documents in the fol-

lowing way:

sðD; QÞ ¼ Hð�DKLðhQjjhDÞÞ;

where H is a function to transform the original relevance score to a positive value. We

consider two transformation functions. The first is a simple exponential transformation

function, i.e., HðxÞ ¼ expðxÞ: However, the results of this transformation are still not

comparable because the scale of scores may vary from a query variant to another. We thus
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further normalize the exponential transformation function into the range of [0,1] with a

‘‘min-max normalizer’’:

HðxÞ ¼ expðxÞ � a

b� a
;

where a and b are the minimal and maximal relevance score of the corresponding ranking

list respectively. The normalized score would be a value between 0 and 1, thus becomes

comparable across different ranking lists. Since the values of the second transformation

function are more comparable, the results with this function are expected to be better,

which has been confirmed in the experiments.

4.3 Parameter estimation

We use the maximum likelihood estimator to estimate pðwjNGÞ and pðwjGÞ; which gives

us normalized frequencies of words in NG and G, respectively:

pðwjNGÞ ¼ cðw;NGÞ
jNGj

pðwjGÞ ¼ cðw;GÞ
jGj

We now discuss how to estimate pðwjSÞ. Note that S is the synonym set that includes the

synonyms of all gene aspects in the original query. Intuitively, all the synonyms in the set

are not equally important for improving retrieval performance. Some of them might be

more reliable than others. For example, a gene has different synonyms in different species.

Given a query, appropriate synonym weighting might be able to give synonyms in the

correct species higher weights. Assuming S ¼ fs11; . . .; snmg, we propose the following

general mixture model to estimate pðwjSÞ.

pðwjSÞ ¼
X

sij2S

kijpðwjsijÞ s:t:
X

sij2S

kij ¼ 1

where pðwjsijÞ is estimated with MLE. Note that sij is a synonym, which may contain

multiple words. A synonym with higher kij means that this synonym is more reliable. If kij

is the same, all the synonyms in S receive equal weights.

SQLM is similar to the query expansion concept in the sense that expanded terms are

combined with the original query. However, it is different from existing query expansion

method in the way of query model estimation. None of the existing work has considered

the three aspects we discussed above.

There are three types of parameters in both proposed methods: (1) a balances the

weights of original gene term with its synonyms; (2) b controls the weights between gene

aspect and non-gene aspect; and (3) ks are the weights for different synonyms.

Both a and b are set empirically, and the performance sensitivity for these parameters

will be discussed in next section. We now focus our discussion on how to estimate the

weight kij for a synonym sij 2 S:
In the previous work, people have tried to validate the synonyms by some heuristics,

e.g. exclude synonyms with short length because they are more likely to be ambiguous, or

avoid using synonyms that do not co-occur with the gene in the query frequently enough.

Here, we propose a more general way to estimate the reliability of a synonym. Intuitively, a

reliable synonym should be able to replace the gene information in the original query
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without changing the meaning of the query. A good indicator of such ‘‘replaceability’’ is

the similarity of their contexts; if two terms are interchangeable, the language used around

them (we call it context) can be expected to be similar.

Formally, given a gene gi in the original query, we define its context CðgiÞ as the

language model learned from top K documents returned based on the original query Q.

Given a synonym sij 2 Si for gi in query Q, its context CðsijÞ is defined as the language

model learned from top K documents returned based on the query variant Qij. We introduce

a ‘‘context similarity weighting strategy’’ by defining the weight kij of synonym sij as the

cosine similarity of the contexts of sij and gi:

kij ¼ cosineðCðgiÞ;CðsijÞÞ ð6Þ

¼

P
w2V

pðwjCðgiÞÞpðwjCðsijÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
w2V

pðwjCðgiÞÞ2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

w2V

pðwjCðsijÞÞ2
r ð7Þ

However, a problem with the method above is that it might over-weight synonyms that

frequently co-occur with the original gene term. One way to address this problem is to

define a novelty context C0ðsijÞ by excluding documents included in CðgiÞ from CðsijÞ: This

method is referred to as ‘‘novelty similarity weighting strategy’’. In this strategy, the

weight kij is the cosine similarity of the novel context of sij and the context of gi:

kij ¼ cosineðCðgiÞ;C0ðsijÞÞ ð8Þ

¼

P
w2V

pðwjCðgiÞÞpðwjC0ðsijÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
w2V

pðwjCðgiÞÞ2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

w2V

pðwjC0ðsijÞÞ2
r ð9Þ

Clearly, this strategy measures not only the context similarity of two terms, but also the

novelty of the synonym, i.e. the ability of bringing in documents which original gene terms

fail to retrieve.

5 Experiments

5.1 Experiment design

We construct three evaluation collections from all the available TREC Genomics Track

collections (from 2003 to 2007). Since we only focus on the problem of gene synonym

expansion, we filter out the topics that do not contain gene or protein names. The three

collections are:

1. G03: 1-year medline abstract collection and 50 topics from TREC 2003;

2. G0405: 10-year medline abstract collection and 41 topics from TREC 2004 and 2005;

3. G0607: full text collection and 29 topics from TREC 2006 and 2007.

Table 1 shows the statistics of the three collections. The query type used in TREC 2003 is

different from other collections. The 50 topics from TREC 2003 consist of only gene

names and aim at finding all MEDLINE references that focus on the basic biology of the

gene or its protein products from the designated organism. However, the topics from TREC

2004–2007 are often verbose in the sense that they contain non-gene terms and common
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English words in the query, such as ‘‘Find articles about Ferroportin-1, an iron transporter,

in humans.’’

Since we are only interested in comparing different synonym expansion methods

instead of optimizing the overall performance, preprocessing is minimized: we did not

perform stemming or stop word removal; only some basic tokenization techniques have

been applied, e.g. replacing hyphens with spaces. The gene names in the queries are

manually labeled, and synonyms are looked up in NCBI Entrez Gene table for each gene

names identified. The Dirichlet prior smoothing parameter l in Eq. 1 is set to 1000,

according to our earlier experiments. And we empirically use top K = 100 documents to

estimate the context language model.

The results are evaluated with document mean average precision (MAP). MAP has so

far been the standard measure used to evaluate ad hoc retrieval results and has also been

used in the TREC Genomics Track evaluation (Hersh 2003, 2004, 2005, 2006, 2007). It has

the advantage of being sensitive to the rank of every relevant document, thus it rseflects the

overall ranking accuracy. We also report the results evaluated by P@30 (i.e, precision at

top 30 documents), and R@1000 (Recall at top 1000 documents). Note that in TREC

Genomics 2006 and 2007, the official tasks focus on passage retrieval, but we focus on

document performance in this paper. Since the choice of retrieval unit is presumably

orthogonal to the query expansion method, we may expect our conclusions to be applicable

to passage retrieval as well. We thus leave further experiments with passage retrieval as a

future work.

The specific goals of our experiments include: (1) evaluate the effectiveness of the two

synonym expansion methods, i.e. SQLM and MQLM; (2) check whether synonym

weighting helps improve performance and whether our weighting scheme is effective; (3)

examine how sensitive the performance is to the settings of parameters, and try to provide

some guidance of parameter setting; (4) recommend the most effective synonym expansion

method for each different type of query; (5) compare and combine synonym weighting

with pseudo relevance feedback, which is another commonly used strategy to improve

retrieval performance.

5.2 Result analysis

5.2.1 Comparison of SQLM and MQLM

Table 2 shows the optimal performance of single query LM (SQLM) and multiple query

LMs (MQLM) with different estimation strategies. The results are measured with MAP,

precision at 30 (P@30) and recall at 1000 (R@1000). As discussed in Sect. 4.3, there are

two parameters, i.e., a and b, that need to be set empirically. They are set based on the

optimal performance measured by MAP in this table.

BL denotes the baseline method using MLE to estimate the query model without

synonym expansion as shown in Eq. 2. NoExp denotes the proposed models discussed in

Table 1 Description of three evaluation collections

Collection Documents # Docs Query type # Queries

G03 Medline abstracts (April 2002–2003) 525,938 Gene-only 50

G0405 10 year Medline abstracts (1994–2003) 3,479,798 Verbose 41

G0607 Full text biomedical corpus 162,259 Verbose 29
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Eqs. 5 and 3 with a = 0, i.e., gene information in the original query is weighted and no

synonym is used for expansion. UniformExp denotes the proposed models where ks are

set to the same value. NoveltyExp denotes the proposed models where ks are set by using

novelty similarity weighting strategy as shown in Eq. 9. The percentage of improvement of

NoveltyExp over BL is also presented in parentheses. An asterisk indicates that the per-

formance improvement is statistically significant at the 95% confidence level based on

Wilcoxon test. Note that queries in G03 contain only gene aspect, so b is always 1 for G03.

The table brings us the following interesting messages:

1. Compared with the baseline, both of the proposed models (SQLM and MQLM) have

the potential to improve the retrieval accuracy significantly.

2. The performance comparison between BL and NoExp shows that even before

expansion with synonyms the performance can be improved by tuning b, the weight of

gene aspect.

3. Comparing UniformExp and NoveltyExp with NoExp shows that gene synonym

expansion is effective for improving retrieval performance on all collections.

4. Given appropriate gene aspect b value, weighting synonyms in the expansion helps

short gene-only queries, but not the verbose queries.

5. SQLM outperforms MQLM on gene-only queries, but they perform comparably on

verbose queries.

Table 2 Performance comparison of SQLM and MQLM

BL NoExp UniformExp NoveltyExp

G03 SQLM Optimal parm a = 0, b = 1 a = 0.6, b = 1 a = 0.7, b = 1

MAP 0.1193 0.1193 0.1562 0.1648 (38.14%)*

P@30 0.0653 0.0653 0.0833 0.08 (22.51%)*

R@1000 0.6852 0.6852 0.8245 0.8411 (22.75%)*

MQLM Optimal parm a = 0, b = 1 a = 0.3, b = 1 a = 0.4, b = 1

MAP 0.1193 0.1193 0.1274 0.1396 (17.02%)*

P@30 0.0653 0.0653 0.0773 0.0793 (21.44%)*

R@1000 0.6852 0.6852 0.8008 0.8266 (20.64%)*

G0405 SQLM Optimal parm a = 0, b = 0.2 a = 0.4, b = 0.3 a = 0.4, b = 0.3

MAP 0.2992 0.3653 0.3656 0.367 (22.66%)*

P@30 0.3732 0.4398 0.4358 0.4374 (17.20%)*

R@1000 0.6372 0.6673 0.6813 0.682 (7.03%)*

MQLM Optimal parm a = 0, b = 0.2 a = 0.2, b = 0.2 a = 0.4, b = 0.2

MAP 0.2992 0.3653 0.3692 0.3673 (22.76%)*

P@30 0.3732 0.4398 0.4325 0.4293 (15.03%)*

R@1000 0.6372 0.6673 0.6798 0.6871 (7.83%)*

G0607 SQLM Optimal parm a = 0, b = 0.3 a = 0.6, b = 0.5 a = 0.5, b = 0.5

MAP 0.2755 0.2986 0.3199 0.3127 (13.50%)

P@30 0.3264 0.3609 0.3494 0.3483 (6.71%)

R@1000 0.7288 0.6791 0.718 0.6838 (-6.18%)*

MQLM Optimal parm a = 0, b = 0.3 a = 0.2, b = 0.3 a = 0.4, b = 0.3

MAP 0.2755 0.2986 0.2997 0.3018 (9.55%)

P@30 0.3264 0.3609 0.3609 0.3632 (11.27%)*

R@1000 0.7288 0.6791 0.683 0.7015 (-3.75%)
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5.2.2 Analysis of SQLM

We now further analyze SQLM for different types of queries.

Gene-only queries: The previous subsection shows that SQLM outperforms MQLM on

short gene-only queries. Here we further examine the details of SQLM expansion on G03

gene-only queries. With gene-only queries (b = 1), there is only one parameter a that

controls the contribution of the synonyms in SQLM.

We examine three variations for estimating the values of k: UniformExp, ContextExp

and NoveltyExp. ContextExp and NoveltyExp denote that proposed models where ks are

set by using context similarity and novelty similarity weighting strategies and discussed in

Eqs. 7 and 8 respectively. We plot the performance of these three variations over different

values of a as shown in Fig. 1. It shows that (1) Synonym expansion always improves

performance compared with NoExp (i.e., a = 0). (2) Both proposed synonym weighting

strategies (i.e., ContextExp and NoveltyExp) are effective. NoveltyExp is better than

ContextExp, and when optimized, it improves over NoExp by 38%. (3) NoveltyExp is

robust in the sense that it improves over the baseline by 33% to 38% when a is set between

0.4 and 0.8.

Verbose queries: SQLM synonym expansion is more complicated in verbose queries

than in gene-only queries, because both parameters, a and b, are involved. We plot MAP

performance curves of SQLM expansion without synonym weighting for different b values

on both G0405 and G0607 in Fig. 2. The x axis is the value of a, the degree that we trust

synonyms.

Recall that in SQLM the query model is estimated using Eq. 3. It seems that perfor-

mance is more sensitive to b than a, because the performance for curves mostly stay at the

same level. The only exception is when b is small (b = 0.2) in which case the retrieval

performance decreases quickly as a goes bigger, i.e. the gene aspect does not receive

enough weight (bð1� aÞ is too small). From another perspective, even if we do not expand

queries with synonyms by setting a = 0, we can still get near-optimal performance by

setting an appropriate b value ([0.2, 0.4]). All these evidences point to the conclusion that it

is very important to assign an adequate weight b to the gene aspect in order to achieve

good performance. After achieving a strong baseline by choosing the optimal b, it is

difficult to further improve performance by synonym expansion with SQLM. Further study

is needed to understand why this is the case.
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In order to further examine the effectiveness of synonym weighting, we report optimal

performance for different weighting strategies of verbose queries in Table 3. It shows that

our context similarity weighting (ContextExp) performs similarly to novelty similarity

weighting scheme (NoveltyExp), but they do not help for verbose queries. However, there

seem to be some differences between the two data sets. In order to deeply understand the

differences between the two data sets, we perform some analysis experiments based on

‘‘gold standard weighting.’’ In ‘‘gold standard weighting’’, each synonym sij is weighted

based on the MAP or recall performance of its corresponding query variant Qij (Eq. 4). It

is called ‘‘gold standard weighting’’, because the performance of Qij is evaluated on gold

standard relevance judgement and in some sense is a good indicator of the best we could

do in estimating the reliability of sij. We use MapExp and RecallExp as the abbreviation

for gold standard weighting based on MAP and recall at 1000. They could be used to

estimate the upper bound of synonym weighting on the given data set. As shown in

Table 3, even gold standard MAP weighting could gain only 3.28% MAP improvement

on G0405 data, which indicates that there is indeed little potential for improvement. On

the contrary, there could be 19.46% increase in MAP by using gold standard MAP

weighting in G0607 data. This clearly shows that our weighting scheme is not optimal on

verbose queries.
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Fig. 2 SQLM analysis a SQLM expansion on G0405 data b SQLM expansion on G0607 data

Table 3 SQLM expansion on verbose queries

NoExp UniformExp ContextExp NoveltyExp RecallExp MapExp

G0405 Optimal a a = 0 a = 0.4 a = 0.4 a = 0.4 a = 0.4 a = 0.4

Optimal b b = 0.2 b = 0.3 b = 0.3 b = 0.3 b = 0.3 b = 0.3

MAP 0.3653 0.3656 0.3659 0.367 0.3729 0.3773

P@30 0.4398 0.4358 0.4398 0.4374 0.4415 0.4463

R@1000 0.6673 0.6813 0.6824 0.682 0.7062 0.6914

G0607 Optimal a a = 0 a = 0.6 a = 0.6 a = 0.6 a = 0.4 a = 0.7

Optimal b b = 0.3 b = 0.5 b = 0.5 b = 0.5 b = 0.4 b = 0.5

MAP 0.2986 0.3199 0.3061 0.3127 0.321 0.3567

P@30 0.3609 0.3494 0.3483 0.3483 0.3563 0.369

R@1000 0.6791 0.718 0.7098 0.7077 0.7145 0.7884
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5.2.3 Analysis of MQLMs

Synonym expansion with MQLM on gene-only queries is not as successful as with SQLM,

so we will only discuss verbose queries in this subsection. As discussed in Sect. 4.2, there

are multiple ways to combine the results of multiple query models, which depends on the

choices of F and H, where F can be either exponential transformation or min-max nor-

malization and H can be either MAX or AVG.

We now examine the effectiveness of these four variations. We fix b in Eq. 5 to the

optimal value for the corresponding collection (i.e., b = 0.2 on G0405 and b = 0.3 on

G0607). Since the performance decrease significantly if we trust synonyms more than the

gene information in the query by setting a[ 0:5; we only report the result on a 2 ½0; 0:5�:
Figure 3 shows the performance sensitivity of all variants for the parameter a on G0405

and G0607 collections. We can clearly see that MAX with min-max normalization is the

best combination among all, which means that it is important to capture the disjunctive

semantics among synonyms by using MAX and to make the scores comparable by

normalization.

We further check different weighting schemes using the best performing variation on

verbose queries, i.e. minmax normalization ? MAX, in Figs. 3, 4. It can be observed that

although synonym weighting cannot improve MAP performance, it makes the MAP per-

formance more robust, less sensitive to parameter settings. Furthermore, synonym

expansion significantly increases recall performance and with our weighting schemes, the

recall improvement is more robust in the sense that recall performance keeps going up even

if we ‘‘over’’-trust synonyms by setting a large a value. Note that although the uniform

weighting achieves higher recall on G0607 data (Fig. 4) when a 2 ½0:35; 0:4�; the corre-

sponding MAP performance is falling below optimal when a is in such range (Fig. 4). So

using our synonym weighting strategies is a good way to balance precision and recall and it

saves the trouble of controlling the parameter value.

5.2.4 Pseudo relevance feedback

Pseudo feedback is another widely used strategy to expand queries with feedback infor-

mation estimated from top K ranked documents. We conduct experiments to examine

whether we can combine both synonym expansion and feedback methods to further

improve performance. We use the model-based feedback method (Zhai and Lafferty 2001).
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Fig. 3 Variations of MQLM a Variations of MQLM on G0405 b Variations of MQLM on G0607
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In Table 4, we report the evaluation results of (1) FB on baseline: directly applying

pseudo relevance feedback on the no expansion baseline (2) Syn-Exp: one of our repre-

sentative synonym expansion run (i.e., SQML ? NoveltyExp) (3) FB on Syn-Exp:

applying pseudo relevance feedback after our representative synonym expansion run. We

use top 10 documents and a maximum of 50 terms in the pseudo relevance feedback

estimation. We also mark the best performance in bold font for each measure in each data

set.
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Fig. 4 MQLM analysis a MAP of MQLM on G0405 b MAP of MQLM on G0607 c Recall@1000 of
MQLM on G0405 d Recall@1000 of MQLM on G0607

Table 4 Comparison of synonym expansion with pseudo relevance feedback

Run MAP P@30 R@1000

G03 FB on baseline 0.1211 0.0673 0.6936

Syn-Exp 0.1648 0.0800 0.8411

FB on Syn-Exp 0.1540 0.0827 0.8393

G0405 FB on baseline 0.3428 0.4106 0.6834

Synonym Exp 0.3670 0.4374 0.6820

FB on Syn-Exp 0.3824 0.4358 0.7228

G0607 FB on baseline 0.3144 0.3540 0.7298

Synonym Exp 0.3127 0.3483 0.6838

FB on Syn-Exp 0.3231 0.3483 0.6927
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In the gene-only query data set (i.e., G03), the synonym expansion method significantly

outperforms pseudo relevance feedback expansion in all measures. And further applying

pseudo relevance feedback after synonym expansion does not help. Since there is only the

gene aspect in the query, the results indicate that the terms brought in by pseudo feedback

is not as reliable as our weighted synonyms.

In the verbose query data sets (i.e., G0405 and G0607), compared with pseudo rele-

vance feedback, synonym expansion achieves higher MAP on G0405 data but similar MAP

on G0607 data. However, on these two verbose query data sets, combining two expansion

strategies always outperforms applying only one expansion method in terms of MAP

performance. The intuition is that that synonym expansion helps on the gene aspect while

pseudo relevance feedback further helps by bringing in terms related to the non-gene

aspect.

But again, there is some difference between two data sets. The MAP improvement of the

combined approach is significant on G0405 but not on G0607 according to Wilcoxon test.

So we further look into the G0607 data set. Since we use the top 10 documents to do pseudo

feedback; intuitively, if we apply pseudo feedback on a basic run that returns more relevant

documents among the top 10 (i.e. achieves a higher precision@10), we expect to get better

results. However, it is not the case. The average precision@10 for Syn-Exp is 0.4552 which

is a significant improvement compared with 0.4069 for baseline, but FB on Syn-Exp is not

significantly better than FB on baseline. Take topic 174 for example: applying pseudo

feedback on Syn-Exp reduces MAP from 0.2079 to 0.1252 while applying pseudo feedback

on baseline increases MAP from 0.1305 to 0.1880, even if Syn-Exp has a much higher

precision@10, i.e. 0.4 compared with 0.1 of baseline. We do not have a good explanation

for this observation. It is possible that some relevant documents contain distracting terms

which when used to expand the original query could decrease the retrieval performance.

Since G0607 is a full text data set, using the whole document for doing pseudo feedback

presumably brings in more distracting terms than if we use a data set of abstracts such as

G0405. But we need future experiments to test this hypothesis. For example, we may try to

locate the relevant part in the relevant document and then use the local context terms to

expand the query instead of using all the terms in the whole document.

5.2.5 Summary

From the comparison and analysis above, we can draw the following conclusions and

recommendations. For short gene-only queries, using synonym expansion and novelty

similarity weighting scheme can significantly improve performance based on all measures.

For verbose queries, in order to achieve good MAP performance, assigning an appropriate

weight for the gene aspect (i.e., b = 0.2 or 0.3) is of top importance. After achieving

optimal performance by setting the correct b, it is difficult to improve MAP with synonym

expansion. But recall can be improved with some price paid in precision. MQLM is more

robust than SQLM on verbose queries, because it is less sensitive to the parameter value.

Finally, applying pseudo relevance feedback after synonym expansion on verbose queries

could further improve retrieval performance.

Our recommendation for short gene-only queries is to use SQLM expansion (Eq. 3)

with novelty similarity weighting scheme where a 2 ½0:4; 0:8�: For verbose queries, it is

recommended that we first assign appropriate wights to the gene aspect (b 2 ½0:2; 0:3�) to

achieve strong MAP performance, and then apply MQLM (with min-max normalization

and MAX aggregation together with context similarity or novelty similarity weighting

scheme) to further increase recall.
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These recommendations, however, have to be taken cautiously with the understanding

that they are based on limited experiments and optimal performance comparisons. A major

limitation of our work is that we mostly compared optimal performance, which can show

the potential of a method. In practice, we will have to set each parameter to a specific

value. Thus an important future research direction is to further study how to set these

parameters.

6 Conclusions and future work

The variations of gene names, symbols and acronyms in biomedical literature, along with

the exact term matching characteristic of existing retrieval models, make it necessary to

leverage synonyms to improve information retrieval performance. In this paper, we pro-

pose two principled methods for synonym expansion in the language modeling framework,

i.e. single query language model (SQLM) and multiple query language models (MQLM).

We also propose several synonym weighting strategies, and perform a systematic evalu-

ation of these methods on all the available TREC Genomics data collections. Experiment

results show that both SQLM and MQLM have the potential to significantly improve the

retrieval performance. Our proposed synonym weighting scheme is effective for short

gene-only queries on all measures and is able to increase recall without hurting precision

for verbose queries.

There are many interesting future research directions worth exploring. First, in order to

focus on understanding gene synonym query expansion, we intentionally controlled all

other variables. It is known that the top performances in TREC were achieved through

some additional heuristics other than gene synonym expansion, such as stemming. So one

interesting future research direction would be to combine synonym expansion with other

heuristics to see if synonym expansion can further improve performance on top of those

other heuristics. In addition, our synonym weighting scheme cannot achieve optimal MAP

performance on verbose queries. Further studies are needed to develop a more effective

synonym weighting strategy for verbose queries. Another future direction is to test the

current methods on other biological entities and even in the general domain. Finally, our

evaluation is mostly based on optimal performance of the methods. In practice, we will

need to set the parameters, so an important future research direction is to further study how

to set the parameters.
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