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Abstract. Traditional retrieval models assume that query terms are in-
dependent and rank documents primarily based on various term weight-
ing strategies including TF-IDF and document length normalization.
However, query terms are related, and groups of semantically related
query terms may form query aspects. Intuitively, the relations among
query terms could be utilized to identify hidden query aspects and pro-
mote the ranking of documents covering more query aspects. Despite
its importance, the use of semantic relations among query terms for
term weighting regularization has been under-explored in information re-
trieval. In this paper, we study the incorporation of query term relations
into existing retrieval models and focus on addressing the challenge, i.e.,
how to regularize the weights of terms in different query aspects to im-
prove retrieval performance. Specifically, we first develop a general strat-
egy that can systematically integrate a term weighting regularization
function into existing retrieval functions, and then propose two specific
regularization functions based on the guidance provided by constraint
analysis. Experiments on eight standard TREC data sets show that the
proposed methods are effective to improve retrieval accuracy.

1 Introduction

It has been a long standing challenge to develop robust and effective retrieval
models. Many retrieval models have been proposed and studied including vector
space models [19], classic probabilistic models [18,23,7], language models [15,25]
and recently proposed axiomatic models [5]. These retrieval models rank doc-
uments based on the use of various term weighting strategies including term
frequency, inverse document frequency and document length normalization [4].

Although these retrieval models rank documents differently, they may fail to
return relevant documents for the same reasons. In the previous studies [8,2],
researchers conducted failure analysis for the state-of-the-art retrieval models
and showed that one of the common failures is that the retrieval models fail
to return documents covering all the query aspects. This failure, in a way, is
caused by the underlying assumption that query terms are independent to each
other. Traditional retrieval models often ignore query term relations in term
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weighting and treat every query term as a query aspect. However, such an as-
sumption is not always true. Query terms could be related to each other, and
multiple semantically related query terms may form a query aspect. Intuitively,
query term relations are useful to identify different aspects in the query and can
provide guidance on the term weighting. For example, consider query “stolen
or forged art” (i.e., topic 422 in TREC8). The query contains two aspects, i.e.,
“stolen or forged” and “art”. Intuitively, documents covering both aspects should
be ranked higher than those covering only one aspect. Thus, a document talk-
ing about “stolen or forged money” should not be ranked higher than the one
talking about “stolen art”. Unfortunately, a query aspect may contain one or
multiple terms. Since existing retrieval models treat query terms independently,
they may assign lower relevance scores to the documents covering more query
aspects. In particular, Buckley [2] reported that all the analyzed retrieval models
over-emphasized one aspect of the query, i.e., “stolen or forged”, while missing
the other aspect, i.e., “art”. Clearly, it is important to exploit query aspect in-
formation to regularize term weighting and incorporate the term regularization
into existing retrieval functions. Despite its importance, the use of query term
relations for term weighting regularization has been under-explored in the IR
literature. It remains unclear how to regularize term weighting based on query
term relations and how to systematically incorporate the term weighting regu-
larization functions into existing retrieval functions.

In this paper, we study the problem of incorporating query term relations into
existing retrieval functions. Specifically, we discuss how to utilize term semantic
similarities to identify query aspects and how to systematically exploit the query
aspect information to regularize term weighting in existing retrieval functions.
We first present a general strategy based on the recently proposed inductive
definition scheme [5]. We show that the inductive definition provides a natu-
ral way of extending an existing retrieval function with the aspect based term
weighting regularization - all we need to do is to generalize the query growth
function of a retrieval function to incorporate an aspect-based term regulariza-
tion function. We then propose two term weighting regularization functions that
can utilize the query term relations such as query aspects in order to avoid favor-
ing documents that cover fewer query aspects. To evaluate the effectiveness of
the proposed methods, we integrate them into four representative retrieval func-
tions (i.e., pivoted normalization retrieval function [21], Okapi BM25 retrieval
function [18], Dirichlet prior retrieval function [25] and axiomatic retrieval func-
tion [5]), and conduct experiments over eight representative TREC data sets.
Experiment results show that, for verbose queries, the proposed methods can
significantly and consistently improve the retrieval accuracy on almost all the
data sets we experimented with. The rest of the paper is organized as follows. We
discuss related work in Section 2 and briefly review the basic ideas of inductive
definition and axiomatic approaches in Section 3. We then present our work on
aspect-based term weighting regularization in Section 4, and discuss experiment
results in Section 5. Finally, we conclude in Section 6.
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2 Related Work

Most traditional retrieval models assume that query terms are independent. To
improve retrieval accuracy, many studies have recently tried to exploit the re-
lations among query terms. They range from the early studies on the use of
phrases in document retrieval [3,14,12] to the recent work on query segmenta-
tion [9,16,10], term proximity [22], and term dependencies [13]. Previous stud-
ies on the use of phrases in retrieval models [3,14,12] often identified phrases
using either statistical or syntactic methods, scored documents with matched
phrases, and then heuristically combined the term-based and phrase-based rel-
evance scores. Recent studies [1,11] focused on using supervised learning tech-
niques to support verbose queries. In particular, Bendersky and Croft [1] pro-
posed a probabilistic model for combining the weighted key concepts with the
original queries. Query segmentation refers to the problem of segmenting a query
into several query concepts. The commonly used methods are based on term
co-occurrences [9,16]. Similar to previous work [9,16,6], we assume that term co-
occurrences such as mutual information can be used to compute term semantic
similarity. But our work focuses on aspect-based term weighting regularization
instead of query aspect identification. Kumaran and Allan [10] proposed to inter-
act with users and allow them to extract the best sub-queries from a long query.
However, they did not study how to utilize the sub-queries or segmented queries
to regularize term weighting. Our work is also related to the studies of term
dependencies and term proximity [13,22]. For example, Metzler and Bruce [13]
proposed a term dependence model, which can model different dependencies be-
tween query terms. However, the proposed model affects the retrieval efficiency,
and it remains unclear how to incorporate term dependencies into other retrieval
models. Tao and Zhai [22] studied how to exploit term proximity measures, but
our work focuses on the semantic relations among query terms.

Although the motivation is similar, our work differs from the previous work
in that (1) we attempt to systematically integrate aspect based term weighting
regularization into a variety of existing retrieval models; (2) we propose to use
constraint analysis to provide guidance on the implementation of term weighting
regularization functions; (3) our methods do not rely on the use of external
resources and are less computational expensive than the method proposed in
the previous study [1]. Moreover, as shown in Section 5, the performance of our
methods are comparable to the performance reported in the previous study [1].

3 Axiomatic Approaches to IR

Axiomatic approaches have recently been proposed as a new way of analyzing
and developing retrieval functions [4,5]. The basic idea is to search in a space
of candidate retrieval functions for the ones that can satisfy a set of desirable
retrieval constraints. Retrieval constraints are often defined by formalizing var-
ious retrieval heuristics that any reasonable retrieval functions should satisfy.
Previous studies proposed several retrieval constraints for TF-IDF weighting,



Query Aspect Based Term Weighting Regularization 347

document length normalization, semantic term matching and term proximity
[4,5,6,22]. These constraints are shown to be effective to provide guidance on
how to improve the performance of an existing retrieval function and how to
develop new retrieval functions.

To constrain search space of retrieval functions, an inductive definition of
retrieval functions was proposed [5]. The inductive definition decomposes a re-
trieval function into three component functions: (1)primitive weighting function,
which gives the relevance score of a one-term document for a given one-term
query; (2)document growth function, which captures the change of relevance
scores when a term is added to a document; and (3)query growth function,
which captures the score change when a term is added to a query. There are
multiple ways of instantiating each of these component functions. In general,
different instantiations of the three component functions would lead to different
retrieval functions.

Previous study [5] showed that most existing “bag of words” representation
based retrieval functions can be decomposed with the proposed inductive defi-
nition, and they have similar instantiations of query growth function as follows.

S(Q ∪ {q}, D) = S(Q, D) + S({q}, D) × Δ(c(q, Q)) (1)

where D denotes a document, Q denotes a query, and Q ∪ {q} denotes a new
query generated by adding a term q to query Q, S(Q, D) denotes the relevance
score and c(q, Q) is the term occurrence of q in query Q. Four existing retrieval
functions differ in the implementation of Δ(c(q, Q)). In particular, Okapi imple-
ments it as Δ(x) = (k3+1)×(x+1)

k3+x+1 − (k3+1)×x
k3+x , where k3 is the parameter in the

Okapi BM25 retrieval function, and other functions including Pivoted, Dirichlet
and axiomatic retrieval functions implement it as Δ(x) = 1. Note that these
query growth functions are only related to query term frequency and do not
consider the semantic relations among query terms.

4 Aspect-Based Query Term Regularization

4.1 Problem Formulation

It is known that terms are semantically related. For example, the occurrence
of a term in a document may indicate the occurrences of its related terms in
the document. Within a query, groups of semantically related terms may form
different query aspects. In general, we define a query aspect as a group of query
terms that are semantically similar to each other. A query may contain one or
more query aspects, and a query aspect may contain one or more query terms.
For example, query “ocean remote sensing” has two aspects, i.e., “ocean” and
“remote sensing”. Formally, let Q = {q1, q2, ..., qn} be a query with n terms.
A(q) ⊆ Q denotes the aspect of query term q. If the aspect of term q1 has
two terms, i.e., q1 and q2, then A(q1) = {q1, q2}. s(t1, t2) ∈ [0, +∞] denotes
the semantic similarity between two terms t1 and t2. If A(q1) = A(q2) and
A(q1) �= A(q3), then s(q1, q2) > s(q1, q3) and s(q1, q2) > s(q2, q3). The underlying
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assumption is that terms within a query aspect should be more semantically
similar than those from different query aspects.

Indeed, the definition of query aspects suggests that one possible way of identi-
fying query aspects is to cluster query terms based on a term semantic similarity
function. We explore a single-link hierarchical clustering algorithm in the paper.
Specifically, we start with each term in a query as a cluster, and then keep com-
bining two clusters when there exist two terms, one from each cluster, whose
similarity is higher than a threshold. The threshold can be set as the average
similarity of all term pairs for the query. The algorithm stops when no clusters
can be further combined. As a result, every cluster can be regarded as a query
aspect.

s(t1, t2) may be any given term semantic similarity function. Following the
previous studies [20,24,6], we assume that co-occurrences of terms reflect un-
derlying semantic relations among query terms, and adopt the expected mutual
information measure (EMIM) [23,24] as the term semantic similarity function.
Formally, the term semantic similarity function is defined as follows.

s(t1, t2) = I(Xt1 , Xt2) =
∑

Xt1 ,Xt2∈{0,1}
p(Xt1 , Xt2) log

p(Xt1 , Xt2)

p(Xt1)p(Xt2)
. (2)

Xt is a binary random variable corresponding to the presence/absence of term
t in each document. We compute the mutual information for query term pairs
using the test collection itself and leave other possible term semantic similarity
functions and other aspect identification methods as our future work.

Note that most traditional retrieval models [19,23,7,15,25,5] assume that query
terms are independent, and each query term corresponds to a query aspect, i.e.,
∀q ∈ Q,A(q) = {q}. As shown in the previous studies [2,8], the assumption often
leads to non-optimal retrieval performance because the retrieval models may in-
correctly assign higher relevance scores to the documents that cover fewer query
aspects. For example, for the query “ocean remote sensing” mentioned earlier,
all the analyzed retrieval models over-emphasized one aspect “remote sensing”
and failed to return documents covering both aspects.

In this paper, we aim to study how to utilize the semantic relations among
query terms, such as query aspect information, to regularize term weighting in
order to improve the retrieval performance of an existing retrieval function.

4.2 General Strategy

The occurrence of a query term often indicates the occurrences of its semantically
related terms. If a query term has many semantically related terms in a query,
this term and its query aspect might be over-emphasized because of the matching
of these related terms. To solve this problem, we now propose a general strategy
that can regularize term weighting based on semantic relations among query
terms for existing retrieval functions. Specifically, we first define a constraint for
term weighting regularization based on query term relations and integrate the
regularization function into existing retrieval functions through the inductive
definition scheme under the guidance of constraint analysis [4,5].
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The basic idea is to adjust the weights of a query term based on its semantic
relations with other query terms so that the documents covering more query
aspects would be ranked higher than those covering fewer aspects. We can for-
malize this idea as a retrieval constraint. Let us first introduce some notations.
Q denotes a query and A(q) ⊆ Q denotes the query aspect of query term q.
Query terms q1 and q2 belong to different query aspects if A(q1) �= A(q2). Let
td(t) denote any reasonable measure of term discrimination value of term t (usu-
ally based on term popularity in a collection), such as IDF. The term weighting
regularization constraint can be defined formally as follows.

Regularization Constraint: Let Q = {q1, q2, q3} be a query with three query
terms q1,q2 and q3, where td(q2) = td(q3). We assume that A(q1) = A(q2) and
A(q1) �= A(q3), or equivalently s(q1, q2) > s(q1, q3) and s(q1, q2) > s(q2, q3)
based on the definition of query aspects. Let D1 and D2 be two documents, and
c(t, D) denotes the count of term t in document D. If c(q1, D1) = c(q1, D2) > 0,
c(q2, D1) = c(q3, D2) > 0, c(q3, D1) = c(q2, D2) = 0, and |D1| = |D2|, then
S(Q, D1) < S(Q, D2).

The constraint requires a retrieval function to assign a higher relevance score
to the document that covers more query aspects. Thus, even though both D1

and D2 match two query terms with the same term discrimination values, we
would like D2 to have a higher score because the matched query terms in D1

(i.e., q1 and q2) are from the same aspect while the matched query terms in D2

(i.e., q1 and q3) are from different aspects.
We analyze four representative retrieval functions with the constraint. The

functions are pivoted normalization function derived from vector space mod-
els [19,21]), Okapi BM25 derived from classical probabilistic models [23,7,18],
Dirichlet prior derived from language models [15,25] and F2-EXP derived from
axiomatic retrieval models [5]. The constraint analysis results show that none of
the functions satisfies the constraint because they ignore the query term relations
and would assign the same scores to both documents.

To make the retrieval functions satisfy the constraint, we need to incorporate
semantic relations among query terms into retrieval functions. As reviewed in
Section 3, the inductive definition makes it possible to decompose a retrieval
function into three component functions. Clearly, a natural way of incorporating
semantic relations among query terms into retrieval functions is to generalize the
query growth function so that it is related to not only the query term frequency
but also the semantic relations between a query term and other terms in the
query. Thus, we propose to define the following generalized query growth function
by extending Equation (1) with a function f(q, Q, s(·)) that regularizes the query
term weighting based on the semantic relations between term q and query Q.

S(Q ∪ {q}, D) = S(Q, D) + S({q}, D) × Δ(c(q, Q)) × f(q, Q, s(·)) (3)

where s(·) is a term semantic similarity function such as Equation (2).
To integrate term regularization function f(q, Q, s(·)) into a retrieval function,

we can first decompose the retrieval function into three component functions,
and then combine its original primitive weighting function and original document
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growth function with the generalized query growth function as shown in Equation
(3). Thus, the new retrieval function is an extension of the original retrieval
function, and it uses the regularization function f(·) to regularize term weighting
based on the semantic relations among query terms. The extended versions for
the analyzed four retrieval functions are shown as follows.

– Extended Pivoted Normalization:

S(Q, D) =
∑

t∈D∩Q

1 + log(1 + log(c(t, D)))

1 − b + b |D|
avdl

× c(t, Q) × log
N + 1

df(t)
× f(t, Q, s(·)) (4)

– Extended Okapi BM25:

S(Q, D) =
∑

t∈Q∩D

log
N − df(t) + 0.5

df(t) + 0.5
· (k3 + 1) · c(t, Q)

k3 + c(t, Q)
· (k1 + 1) · c(t, D)

k1((1 − b) + b |D|
avdl ) + c(t, D)

·

f(t, Q, s(·)) (5)

– Extended Dirichlet Prior:

S(Q, D)=
∑

t∈Q∩D

c(t, Q) · log(1+
c(t, D)

μ × p(t|C)
) · f(t, Q, s(·)) + log

μ

|D| + μ
·

∑

q∈Q

f(q, Q, s(·))(6)

– Extended Axiomatic:

S(Q, D) =
∑

t∈Q∩D

c(t, Q) × (
N

df(t)
)
0.35 × f(t, Q, s(·)) × c(t, D)

c(t, D) + b + b×|D|
avdl

(7)

c(t, D) is the count of term t in document D, c(t, Q) is the count of term t in
query Q, df(t) is the number of documents with term t, |D| is the length of
document d, avdl is the average document length of the document collection,
and p(t|C) is the probability of term t in collection C. k1 is set to 1.2 and k3

is set to 1000. μ and b are parameters in the original retrieval functions. Note
that the original retrieval functions are the special cases of their corresponding
extensions when f(q, Q, s(·)) = 1, ∀q ∈ Q.

The proposed general strategy provides a systematical way of incorporating
query term relations into any retrieval functions that can be decomposed with the
inductive definition scheme. Moreover, although we discussed how to compute
term semantic similarity and how to identify aspect, the proposed strategy is
generally applicable for any other reasonable term semantic similarity functions
and aspect identification methods.

The remaining challenge of the proposed general strategy is to select ap-
propriate implementation for function f(q, Q, s(·)), which regularizes the term
weighting based on the semantic relations among query terms so that the ex-
tended retrieval functions satisfy the defined constraint. We discuss two term
weighting regularization functions in the next subsection.

4.3 Term Weighting Regularization Functions

To make extended retrieval functions satisfy the constraint, we need to imple-
ment the regularization function f in a way so that it would demote the weights
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of terms that either belong to large query aspects or have many semantically
related terms. Thus, we propose the following two term weighting regularization
functions, with the first one explicitly capturing the query aspect information
and the second one implicitly capturing aspect information through the semantic
relations among query terms.

Aspect size based regularization: The proposed regularization constraint is
to avoid over-favoring documents covering fewer aspects. One possible solution
is to penalize terms from larger aspects. The rationale is that a larger query
aspect needs to be penalized more harshly because the aspect is more likely to
be over-favored due to the larger number of query terms in the aspect. Thus, we
propose an aspect size based regularization function, fsize, which explicitly uses
the query aspect information and regularizes the term weighting based on the
size of its aspect. Formally,

fsize(q, Q, s(·)) = 1 − α + α ·
( |As(q)|

|Q|
)−β

(8)

where |As(q)| is the number of terms in query aspect As(q) identified based
on term similarity function s(·) and |Q| is the number of terms in query Q.
Clearly, the value of fsize for a query term q is inversely correlated with the size
of its query aspect. It means that if a query term is in a larger query aspect,
the weights of the query term should be penalized more because the matching
of its semantic related terms may also contribute to the relevance score. There
are two parameters in the regularization function: β controls the curve shape of
the regularized function, and α balances the original and the regularized term
weighting. We will examine the parameter sensitivity in the experiment section.

Semantic similarity based regularization: The aspect size based regular-
ization function requires us to explicitly identify query aspects. However, the
accuracy of aspect identification may greatly affect the retrieval performance for
the regularization based retrieval function. To overcome the limitation, we pro-
pose a semantic similarity based regularization function, i.e., fsim, which does
not require the explicit aspect identification. Specifically, fsim exploits the se-
mantic similarity between term q and its query Q, which is computed by taking
the average of the semantic similarity between q and other query terms in Q.
Formally, we have

fsim(q, Q, s(·)) = 1 − α + α × (− log(

∑
q′∈Q−{q} s(q, q′)

|Q| − 1
)) (9)

where |Q| is the number of terms in query Q and α is a parameter that balances
the original term weighting and the regularized term weighting. If a query term is
more semantically related to the query, fsim would decrease the term weighting
so that the term and its related terms would not be over-emphasized by the
retrieval functions. fsim does not require the identification of query aspects.
Instead, it implicitly assumes that the relations between query aspects can be
approximated by the relations between query terms.
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Summary: We incorporate the proposed regularization functions, fsize(·) or fsim

(·), into the four extended retrieval functions shown in Equation (4)-(7). After
analyzing the extended retrieval functions, we can show that all of them satisfy
the defined retrieval constraint because both regularization functions satisfy

f(q2, Q, s(·)) < f(q3, Q, s(·)),

which leads to S(Q, D1) < S(Q, D2) for all extended retrieval functions. It means
that the proposed regularization functions can demote the weights of terms that
are from a larger query aspect or have more semantically related terms in the
query.

5 Experiments

5.1 Experiment Setup

We evaluate the proposed methods on eight representative TREC data sets:
the ad hoc data used in the ROBUST track of TREC 2004 (Robust04), the ad
hoc data used in the ROBUST track of TREC 2005 (Robust05), the ad hoc
data used in TREC7 (Trec7), the ad hoc data used in TREC8 (Trec8), the Web
data used in TREC8 (Web), news articles (Ap88-89), technical reports(Doe) and
government documents (Fr88-89). We use two types of queries: keyword queries
(i.e., title-only) and verbose queries (i.e., description-only). Table 1 shows some
statistics of the test sets, including the collection size, the number of documents,
the number of queries and average number of terms per keyword query, and
average number of terms per verbose query.

The preprocessing only involves stemming with Porter’s stemmer. No stop
words is removed for two reasons: (1) A robust retrieval model should be able to
discount the stop words appropriately; (2) Removing stop words would introduce
at least one extra parameter, i.e., the number of stop words into the experiments.
The performance is measured in terms of MAP (mean average precision).

We now explain the notations for different methods. BL is the original re-
trieval function without regularization. fsize and fsim denote the aspect size
based and semantic similarity based regularization functions respectively. As
shown in Equation (4)-(7), we can integrate the proposed functions into four
retrieval functions, i.e., Pivoted (Piv.), Okapi BM25 (Okapi), Dirichlet Prior
(Dir.) and axiomatic function (AX). Okapi is known to perform poorly for ver-
bose queries [17,4], so instead we report the performance of the modified Okapi
(Mod. Okapi) [4], which is a stronger baseline for verbose queries. Each of

Table 1. Statistics of Test Collections

Collection Size #d #q #t/kq #t/vq Collection Size #d #q #t/kq #t/vq
Robust04 2GB 528K 249 2.75 15.5 Robust05 3GB 1,033K 50 2.7 17.5

Trec7 2GB 528K 50 2.5 14.3 Trec8 2GB 528K 50 2.42 15.8
Web 2GB 247K 50 2.42 15.8 Ap88-89 491MB 165K 146 3.76 18.1
Doe 184MB 226K 35 3.69 18.8 Fr88-89 469MB 204K 42 3.5 19.6
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these retrieval functions has one retrieval parameter, and we tune the retrieval
parameters as well as the new parameters introduced in the proposed methods
and report the optimal performance. In all the tables, ‡ and † indicate that the
improvement is statistically significant according to the Wilcoxin signed rank
test at the level of 0.05 and 0.1 respectively.

5.2 Comparison of Proposed Methods

Table 2 shows the optimal performance comparison of the proposed methods
for verbose queries. Clearly, both proposed term regularization functions can
significantly and consistently improve the retrieval performance for all four re-
trieval functions over almost all of the eight data collections. Moreover, fsim

performs better than fsize. After analyzing the results, we find that the perfor-
mance difference might be caused by the fact that fsim is not as dependent to
the accuracy of aspect identification as fsize. The aspect identification method
used in this paper can correctly identify aspects for some queries but not for

Table 2. Performance Comparison for Verbose Queries (MAP)

Function Robust04 Robust05 Trec7 Trec8 Web Ap88-89 Doe Fr88-89

Piv. BL 0.2145 0.1406 0.1461 0.2032 0.2122 0.1931 0.1031 0.1424
fsize 0.2277‡ 0.1408 0.1706‡ 0.2208‡ 0.2481‡ 0.1931 0.1237‡ 0.1854‡
fsim 0.2422‡ 0.1517‡ 0.1782‡ 0.2336‡ 0.2555‡ 0.2047‡ 0.1216‡ 0.1637‡

(+13.1%) (+7.8%) (+21.9%) (+15.3%) (+20.8%) (+6.22%) (+17.3%) (+15.5%)
Mod. BL 0.2114 0.1391 0.1527 0.2014 0.2371 0.1812 0.1037 0.1526
Okapi fsize 0.2404‡ 0.1428 0.1785‡ 0.2311‡ 0.2758‡ 0.1821 0.1173 0.1942‡

fsim 0.2532‡ 0.1547 ‡ 0.1843‡ 0.2408‡ 0.2814‡ 0.1936‡ 0.1141‡ 0.1772‡
(+12.9%) (+8.4%) (+17.2%) (+12.0%) (+17.1%) (+5.91%) (+10.2%) (+13.3%)

Dir. BL 0.2326 0.1598 0.1811 0.2279 0.2693 0.1990 0.1253 0.1522
fsize 0.2448‡ 0.1598 0.1902‡ 0.2393‡ 0.2938‡ 0.1990 0.1253 0.1856‡
fsim 0.2578‡ 0.1623 0.1971‡ 0.2507‡ 0.2946‡ 0.1990 0.1270 0.1801‡

(+10.3%) (+1.25%) (+7.64%) (+10.1%) (+8.39%) (+0%) (+1.6%) (+13.9%)
AX BL 0.2421 0.1612 0.1864 0.2357 0.2715 0.2016 0.1161 0.1674

fsize 0.2531‡ 0.1612 0.1881 0.2434‡ 0.2896‡ 0.2016 0.1245 0.2013‡
fsim 0.2534‡ 0.1620 0.1904† 0.2446‡ 0.2866‡ 0.2071‡ 0.1232 0.1958‡

(+4.5%) (+1.24%) (+2.15%) (+3.81%) (+5.51%) (+4.55%) (+6.03%) (+17.4%)

Table 3. Performance Comparison for Keyword Queries (MAP)

Function Robust04 Robust05 Trec7 Trec8 Web Ap88-89 Doe Fr88-89
Piv. BL 0.2406 0.1999 0.1762 0.2438 0.2883 0.2267 0.1788 0.2183

fsim 0.2432‡ 0.1999 0.1780† 0.2442 0.2892 0.2267 0.1788 0.2205
Okapi BL 0.2477 0.2013 0.1857 0.2512 0.3105 0.2255 0.1847 0.2247

fsim 0.2507‡ 0.2013 0.1892‡ 0.2518 0.3105 0.2255 0.1847 0.2267

Table 4. Performance Comparison for Verbose Queries on Robust04

Function MAP Prec@5 Prec@10 Function MAP Prec@5 Prec@10

Piv. BL 0.2145 0.4610 0.3964 Dir. BL 0.2326 0.4554 0.4032
fsim 0.2422‡ 0.4956‡ 0.4241 ‡ fsim 0.2578‡ 0.4859‡ 0.4237

Mod. Okapi BL 0.2114 0.4827 0.4068 AX BL 0.2421 0.4859 0.4253
fsim 0.2532‡ 0.5044‡ 0.4293‡ fsim 0.2534 ‡ 0.4956 0.4281
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all queries. Thus, the performance of fsize may be affected more by the inac-
curate aspect identification, which leads to the relatively worse performance of
fsize. Table 3 shows the results of two functions for keyword queries, and the
results for the other two functions are similar and not included due to the space
limit. Clearly, the performance improvement for keyword queries is not as sig-
nificant and consistent as for verbose queries. Our result analysis suggests that
the smaller improvement is caused by the smaller number of terms in keyword
queries, because the keyword queries often lead to the smaller query aspects and
incorrect aspect identifications for some short queries.

Table 4 shows the performance of the proposed fsim method for verbose
queries on ROBUST04. In addition to MAP, we also report the performance
measured with Prec@5 and Prec@10. We compare our results with the results
of another recently proposed retrieval method for verbose queries [1]. The MAP
of their baseline method for verbose queries is 0.2450, and the MAP of their
proposed method is 0.2620. Prec@5 of their baseline method is 0.4726 and the
Prec@5 of their proposed method is 0.4854. Due to the different pre-processing
strategies and different baseline functions, these numbers cannot be directly com-
pared with the results reported in this paper. However, it is quite encouraging to
see that our proposed methods can achieve comparable performance with much
less computational cost and without the use of external resources.

Finally, we conduct an additional set of experiments when stop words are re-
moved in the pre-processing stage. With the stop word removal, the performance
(MAP) of BL for the representative retrieval functions on Robust04 are 0.2196
(Piv.), 0.2351 (Mod. Okapi), 0.2323 (Dir.) and 0.2473 (AX) respectively. Clearly,
the results show that stopword removal can improve retrieval performance a lit-
tle bit but not that much, which suggests that the baseline method we used in
the performance comparison is a strong baseline.

5.3 Parameter Sensitivity

As indicated in Equation (8)-(9), fsim has one parameter α and fsize has two
parameters α and β. Figure 1 shows the sensitivity curve for these parameters on
Robust04. α = 0 means that no regularization is used. The better performance
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at larger values of α indicates that the proposed term regularization methods are
effective. We also observe that the performance is not very sensitive to the values
of β. We only show results on one data set due to the space limit. However, the
results are similar for other data sets. In general, setting α = 0.6 and β = 1
would lead to good performance for most data collections.

6 Conclusions and Future Work

In this paper, we study the problem of exploiting semantic relations among query
terms to regularize term weighting in retrieval functions. Assuming that groups of
semantically related query terms form query aspects, we present a general strat-
egy that can systematically incorporate a term weighting regularization function
into a variety of existing retrieval functions. Specifically, we propose two term reg-
ularization functions based on term semantic similarity, and then discuss how to
integrate the regularization functions into existing retrieval functions through the
inductive definition scheme. The proposed methods are incorporated into four
representative retrieval functions and evaluated on eight representative TREC
retrieval collections. Experiment results show that, for verbose queries, the pro-
posed methods can significantly improve the retrieval performance of all the four
retrieval functions across almost all the eight test collections. Note that the pro-
posed methods do not require training data and external resources, and the com-
putational cost is low when the MI values are stored in the index offline.

There are several interesting future research directions. First, we will explore
other aspect identification methods and compute term semantic similarity using
other resources, such as WordNet, query logs and external collections. Second,
the semantic relations among query terms could be different for different do-
mains. It would be interesting to explore whether the proposed methods work
well in some specific domains, such as biomedical literature search or legal doc-
ument search. Finally, we focus on only semantic relations among query terms
in this work. It would be interesting to study the combination of query term
semantic relations, semantic term matching between query and documents, the
proximity of different query terms and any other reasonable properties of terms.
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