
A study of statistical methods for function prediction of protein motifs

Tao Tao1, ChengXiang Zhai1, Xinghua Lu2, and Hui Fang1

1Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, IL 61801

2Department of Biometry and Epidemiology
135 Cannon St., Stuite 303

Medical University of South Carolina
Charleston, SC 29524

Email: {taotao,czhai}@cs.uiuc.edu, lux@musc.edu,hfang@cs.uiuc.edu

Abstract
Automatic discovery of new protein motifs (i.e., amino acid patterns) is one of the major
challenges in bioinformatics. Several algorithms have been proposed that can extract sta-
tistically significant motif patterns from any set of protein sequences. With these methods,
one can generate a large set of candidate motifs that may be biologically meaningful. In
this paper, we study several statistical methods to automatically predict the functions of
these candidate motifs, including a popularity method, a mutual information method, and
statistical translation models. These methods capture, from different perspectives, the cor-
relations between the matched motifs of a protein and its assigned Gene Ontology(GO)
terms, which characterize the function of the protein. We evaluate these different methods
using the known motifs in the Interpro database. Each method is used to rank candidate
terms for each motif. We, then, use mean reciprocal rank(MRR) to evaluate the perfor-
mance. The results show that in general, all these methods perform well, suggesting that
they can all be useful for predicting an unknown motif’s function. Among all the methods
tested, a statistical translation model with popularity prior performs the best.

1 Introduction

Protein motifs are conserved amino acid sequence patterns that characterize the functions of
proteins. In terms of amino acid sequences, a motif can be regarded as a pattern that spec-
ifies a typical subsequence of amino acids, often with “gaps” of fixed or various lengths
between amino acids. We will use the term motif and pattern interchangeably in this paper.
Knowing the exact pattern and function of a motif is crucial for understanding the structure
and function of related proteins. For example, a precise knowledge of motifs of certain



family of proteins would make it much easier to recognize new proteins of the same fam-
ily, and knowing what motifs match a protein also reveals a lot of information about the
function of the protein.
There are many known protein motifs available through several databases such as PROSITE
(Bairoch et al., 1996), ProDom (Corpet et al., 1999), CDD (Marchler-Bauer et al., 2002),
BLOCKS, PRINTS, PFAM, and InterPro(Apweiler et al., 2001). These databases are usu-
ally constructed by studying the set of protein sequences that are known to have certain
functions and extracting the conserved motifs (among the sequences) that are believed to
be responsible for their functions. However, the number of motifs that can be extracted in
this way is quite limited; indeed, these existing databases represent only a small fraction of
all the motifs, and it remains a great challenge to identify many undiscovered motifs. The
current process for curating these databases is mostly manual and labor-intensive, thus can
not scale up to the rapid explosion of data in genomic repositories (Hart et al., 2000).
Several methods have been proposed to automate the process of motif discovery, includ-
ing MEME (Bailey and Elkan, 1995), the Gibbs Sampler (Lawrence et al., 1993), Pratt
(Jonassen et al., 1995), EMOTIF (Huang and Brutlag, 2001), SPLASH (Califano, 2000),
and Teiresias (Rigoutsos and Floratos, 1998). See (Brazma et al., 1998) and (Brejova et al.,
) for a survey of these techniques. A typical way of discovering protein motifs with these
methods is to start with a set of protein sequences that either belong to some known family
or simply are similar to each other through alignments, and extract amino acid patterns that
are shared by many sequences. This can be called “supervised” discovery – “supervised”
in the sense that the “seed” set of proteins are constructed with some prior knowledge
about these proteins. Being used in such a supervised way, these algorithms are able to
not only successfully identify some known motifs, but also to suggest some more specific
(presumably better) patterns (see e.g., (Hart et al., 2000; Rigoutsos et al., 2000)).
A major limitation of supervised pattern discovery is that it is difficult to discover the con-
served functional and structural patterns that cross protein family boundaries. This is a
serious problem, especially because many undiscovered motifs may be of this nature. For
this reason, “unsupervised” pattern discovery has been paid much attention recently. The
idea is to treat the largest possible database as an indivisible entity, and perform pattern
discovery on such a database. This can be expected to help discover many more signals
that are still conserved at the sequence level (Rigoutsos et al., 2000). If we treat proteins as
the biological analog of sentences in natural languages such as English, then any recurrent
functional and structural signals whose traces remain at the level of the amino acid sequence
should be observable as pattern-words that are being re-used (Rigoutsos et al., 2000). By
doing massive pattern mining in this way, we can expect to build a “bio-dictionary” that
contains many potentially useful motifs. This is a very promising direction that can poten-
tially help discover many new motifs. An essential task involved in the compilation of such
a dictionary is to determine the function (the meaning) of newly identified motifs, which is
a problem that we study in this paper.
Our basic idea for predicting a motif’s function is based on the observation that the function
of a motif is reflected through the function of proteins that match the motif. Specifically,
we can expect to infer a motif’s function based on the functions of all the matched proteins.
For example, in an ideal case when all the proteins match a given motif (M ) share the same



particular function (F ) which is not shared by any protein that does not match the motif, we
clearly can infer that motif M is very much related to function F . In reality, such an ideal
case rarely exists, and we propose three statistical methods to measure such correlation
and make predictions accordingly based on the popularity of terms, the mutual information
between GO terms and motifs, and probabilistic translation models.
We exploit the Gene Ontology (GO) database to obtain the functions of known proteins.
The Gene Ontology project (the Gene Ontology Consortium 2001) is a concerted effort by
the bioinformatics community to develop a standardized controlled vocabulary (GO terms)
and to annotate biological sequences with the vocabulary. For example, the FlyBase gene
18 wheeler is assigned two function terms: GO:0004888 (transmembrane receptor) and
GO:0005194 (cell adhesion molecule). Both the number of annotated sequences and the
number of GO terms associated with individual sequences in the Gene Ontology database
are increasing very rapidly. Moreover, natural language processing techniques are also
being used to automatically annotate gene products with GO terms (Xie et al., 2002). Thus,
it can be foreseen that the annotations of protein sequences in the Gene Ontology database
will become more and more detailed, and have a great potential to be used as an enriched
knowledge base of proteins.
We evaluated our model using the known motifs from the InterPro database (Apweiler et al.,
2001) by comparing the predicted GO terms for each motif with the manually assigned GO
terms to the same motif. The results show that in general, all these methods perform well,
suggesting that they can all be useful for predicting an unknown motif’s function. Among
all the methods tested, a statistical translation model with popularity prior performs the
best.
The rest of the paper is organized as follows. In Section 2, we describe the data set that we
work on. In Section 3, we formulate the problem of motif function prediction as assigning
GO terms to a motif, and then present the common basic ideas. We present the popularity
method and mutual information method in Section 4 and probabilistic translation models
in Section 5. Experiment results and analysis are discussed in Section 6. Section 7 gives
our conclusions and future work.

2 The Data Set

We use the February 2003 release of Gene Ontology sequence database 1. In this database,
there are 13,214 protein sequences with annotations of GO terms and matched motifs.
The motifs are in different format, such as the PROSITE format, Pfam format, and the
InterPro format. We used all the InterPro motifs as the test motifs to evaluate our model,
because InterPro database is meant to be an integration of other most commonly used motif
databases, so is presumably relatively more complete than other motif databases (Apweiler
et al., 2001). For each sequence, we identify the assigned GO terms and the matched
InterPro motifs from the GO database. The following is an example.

Example 1 The FlyBase sequence FBgn0026616 (the “α-Man-IIb” gene/protein) is as-
signed three terms, i.e., GO:0004559 (“alpha-mannosidase”), GO:0004572 (“mannosyl-
oligosaccharide 1,3-1,6-alpha-mannosidase”), and GO:0005794 (“Golgi apparatus”), and

1It is available at http://www.godatabase.org/dev/database/archive/2003-02-01



two InterPro motifs, i.e., InterPro:IPR000602 (“Glycoside hydrolase”)
and InterPro:IPR001992 (“Bacterial type II secretion system protein”).

The Gene Ontology has three types of GO terms describing molecular functions, cellular
components, and biology process, respectively. We focus on the functional terms. Thus we
excluded sequences with no matched motif in the InterPro database and sequences with no
functional GO terms. This gives us a total of 5770 sequences. The annotations involve a
total number of 1520 distinct GO terms and 1917 distinct InterPro motifs. The distribution
of the number of GO terms per sequence has a mean of 1.285 with a standard deviation
of 0.650. The distribution of the number of Interpro motifs per sequence The frequency
is similar, and has a mean of 1.768 with a standard deviation of 1.138. Thus in most
cases there is just one term and two motifs. However, the maximum number of GO terms
assigned to a sequence is 7, and the maximum number of Interpro motifs is 12. We assume
that all these 1917 InterPro motifs as our candidate motifs and use all these annotated
sequences to predict each motif’s function by ranking GO terms for each motif. We use the
mappings from InterPro motifs to GO terms in the InterPro database as our “gold standard”
to evaluate the accuracy of our prediction method 2. A majority of the InterPro motif in our
annotations (1358 motifs) have been judged in the InterPro database, and they serve as our
test motifs.

3 Problem formulation

As discussed in Section 1, many pattern discovery algorithms (e.g., Teiresias) can now be
used to mine a large set of protein sequences and generate a set of candidate motif patterns
that may be biologically meaningful. Our goal is to automatically predict functions of these
candidate motifs. The basic idea for predicting a motif’s function is to exploit the known
functions of the proteins that match the motif. Gene Ontology (GO) provides a standardized
way of describing the functions of a protein or motif in terms of the GO terms. A protein
is typically assigned several GO terms which characterize the protein biologically, and our
goal is to assign appropriate GO terms to a motif based on the GO terms assigned to the
proteins matching the motif. To see how this may be possible, consider an ideal scenario
where a particular GO term has been assigned to all the proteins matching our motif, but not
to any proteins that do not match the motif. In this case, the assignment of this GO term
is very strongly correlated with the matching of the motif, so it would be reasonable to
infer that the GO term may characterize the function of the motif very well. This example
shows that through proteins we can connect the GO terms with motifs, and the correlation
between the motifs and GO terms can be exploited to assign appropriate GO terms to a
motif. In this section, we formally formulat the problem of motif function prediction as
one involving assigning appropriate Gene Ontology (GO) terms to a motif.
Let M = {m1, ..., m|M|} be a set of candidate motifs whose functions to be predicted. Let
S = {s1, ..., s|S|} be a set of protein sequences with known functions that are described
using GO terms selected from the set of all GO terms T = {t1, ..., t|T |}. Given a particular
protein sequence si in S, there will be a subset of motifs matching the sequence, which we

2The mappings are available at ftp://ftp.ebi/ac.uk/pub/databases/interpro/



denote by Mi, and there will also be a subset of terms assigned to the protein according
to the GO database, which we denote by Ti. For each motif mi, our goal is to exploit the
correlation between Mi and Ti and to find a subset of terms T (mi) ⊂ T that best describe
the functions of mi. This is actually similar to the problem of information retrieval, where
a user wants to find a subset of documents that best satisfy the user’s information need,
which is often expressed in terms of a query. Here, a motif is our “query”, and a GO term
is a “document”.
We further assume that we will obtain T (mi) by ranking all the terms in T . This is also a
strategy often used in information retrieval and can be justified based on statistical decision
theory (Robertson, 1977; Zhai, 2002). A natural way of generating a ranking of terms is
to compute a “goodness” score for each term and then rank all terms accordingly. Under
these assumptions, the problem of predicting motif functions now becomes essentially one
to define an appropriate scoring function f : M × T → < that can generate a score for
each term with respect to a motif.
In general, such scoring functions are inferred based on the correlation between Mi’s and
Ti’s. We now discuss several different methods to measure such correlation.

4 Popularity method and mutual information method

In this section, we describe briefly two simple methods for measuring the motif-term cor-
relation based on a “popularity count” and mutual information respectively.
The most straightforward method is to use the number of sequences in which a term co-
occurs with a motif as a measure of correlation. Terms are thus ranked based on how
many times they co-occur with the motif under consideration. We call this method the
popularity method, since terms with high co-occurrences will be ranked above those with
low co-occurrences.

Example 2 Given S = {s1, s2}, s1 includes M1 = {m1, m2} and T1 = {t1, t2} while s2

includes M2 = {m1} and T2 = {t1}. Motif m1 co-occurs with t1 twice, and with t2 once.
Therefore, for m1, the ranking of terms are: t1 t2.

One possible deficiency of the popularity method is that a term can have high co-occurrences
just because the term is generally popular. This deficiency can be addressed by using the
Mutual Information (M.I.), whcih is a commonly used statistic measure to evaluate the
correlation between two discrete random variables: X and Y . It is formally defined by
I(X : Y ) =

∑

x,y p(X = x, Y = y)log p(X=x,Y =y)
p(X=x)p(Y =y)

. A larger mutual information indi-
cates a stronger association between X and Y ; I(X : Y ) = 0 if and only if X and Y are
independent. For our purpose, we regard the assignment of a term T to a sequence and
the matching of a sequence with a motif M as two binary random variables. The involved
probabilities can be estimated based on the number of sequences matching a motif M , the
number of sequences assigned a term T , the number of sequences both matching M and
assigned T , and the total number of sequences in the database.

5 A probabilistic translation model for motif function prediction

There is another interesting way to look at such a correlation. Both the motifs matching
a protein and the terms assigned to a protein can be regarded as a description of the pro-



tein’s functions, but in different “languages”. Our goal is to figure out how to “translate”
a description in terms of the “motif language” to one based on “GO term language” by
examining the co-occurrence patterns of motifs and GO terms.
To implement this idea with a probabilistic translation model, let us use two random vari-
ables M ∈ M (for motif) and T ∈ T (for term) to represent the observation of a motif and
the assignment of a term in a protein, respectively. The conditional probability p(M |T )
indicates the probability that a term T would be translated into a motif M . Thus we would
expect p(M |T ) to be high if T characterizes some functional aspect of M , and low if oth-
erwise. Given a sequence si, we regard its motif set Mi as the results of applying this
translation model |Mi| times, each time picking a (potentially different) term t from its
term set Ti and “generating” a motif according to p(M |T = t). We thus have a generative
probabilistic model for Mi conditioned on Ti. This allows us to estimate the translation
model parameters p(M |T ) by maximizing the conditional likelihood of the Mi given the
corresponding Ti, for all the sequence si in S. Once the model parameters are estimated,
for any motif mi, we can rank terms based on the posterior probability that a term t has
been used to “generate” mi, i.e., p(T = t|M = mi). We now describe our probabilistic
translation model in more detail.

5.1 Term-motif translation model

Given a sequence si ∈ S, we are interested in defining the conditional probability p(Mi|Ti, si),
i.e., the probability of “generating” all the motifs in Mi from terms in Ti. We make two
assumptions to make the model more tractable. Note that none of the two assumptions
holds in reality; we introduce them purely for the sake of simplification.
Assumption 1: Given Ti, each motif in Mi is generated independently.

With this assumption, we have

p(Mi|Ti, si) =
∏

m∈Mi

p(m|Ti, si) (1)

(2)

Assumption 2: Each motif in Mi is generated using one of the terms in Ti.
With this assumption, we would first pick a term t from Ti and then generate a motif
m ∈ Mi according to our translation model p(m|t)3. This means, p(m|Ti, si) is given by
the following mixture model:

p(m|Ti, si) =
∑

t∈Ti

p(t|si)p(m|t) (3)

where, p(t|si) is the probability of selecting term t to generate a motif for sequence si, and
p(m|t) is our basic translation model, i.e., the probability of generating motif m given that
term t is picked.

3To make our presentation more concise, we often omit the random variables in a probability formula.
Thus, p(m|t) actually means p(M = m|T = t).



Intuitively, p(t|si) is related to our knowledge about the motif set Mi, which has been
assumed to be given. For example, if we know (based on whatever prior knowledge we
have) that most of those candidate motifs patterns are unlikely to be related with certain
functions, then p(t|si) should assign low probabilities to those terms that characterize these
“unlikely functions”. Since we do not assume any such prior knowledge, a reasonable
choice for p(t|si) is to let it be uniform, i.e., each term in Ti is equally likely to be selected.
Thus, we have

p(m|Ti, si) =
1

|Ti|

∑

t∈Ti

p(m|t) (4)

Thus, the log-likelihood for the whole set of sequences S is

L(θ|S) =

|S|
∑

i=1

∑

m∈Mi

[log
∑

t∈Ti

p(m|t) − log |Ti|] (5)

where, θ = {p(mi|tj)} (1 ≤ i ≤ |M|, 1 ≤ j ≤ |T |) are the translation model parameters,
and they satisfy the following constraints:

|M|
∑

i=1

p(mi|tj) = 1, for j = 1, ..., |T |

This term-motif translation model can also be interpreted as a clustering model. Specif-
ically, we can regard each GO term t as representing one cluster, and treat each motif m
as an observed data point. The translation model p(m|t) can thus be interpreted as the
(discrete) density function of the distribution of data points in cluster t. Since we allow
overlapping clusters, a data point (i.e., a motif) can belong to mulitple clusters. Our goal is
to determine what clusters the motif belongs to, i.e., to determine which GO terms should
be assigned to the motif.

5.2 Parameter estimation

With the setup given above, we can use the current GO database as our data set (i.e., S), and
estimate parameters using the Maximum Likelihood (ML) estimator. That is, our estimate
of parameters is given by

θ̂ = arg max
θ

|S|
∑

i=1

∑

m∈Mi

[log
∑

t∈Ti

p(m|t) − log |Ti|] = arg max
θ

|S|
∑

i=1

∑

m∈Mi

log
∑

t∈Ti

p(m|t) (6)

The solution of this maximization problem can not be found analytically, so we rely on nu-
merical algorithms. Since our model is a simple mixture model, we can use the Expectation-
Maximization (EM) algorithm (Dempster et al., 1977) to compute θ̂. Specifically, starting
from some arbitrary estimate θ(0), the EM algorithm iteratively alternates between two
steps:



• E-step: Given the current estimate of parameters θ(n), compute the expected com-
plete likelihood, which essentially requires computing the distribution of the hidden
variables, i.e., p(zij|θ

(n)) given by

p(zij = tk|θ
(n)) =

{

p(mj |tk)
�

t∈Ti
p(mj |t)

if tk ∈ Ti

0 otherwise
(7)

• M-step: Compute a new estimate of parameters θ(n+1) by maximizing the expected
complete likelihood under the distribution of the hidden variables. The estimation is:

p
(n+1)(mj|tk) =

∑

1≤i≤|S|,mj∈Mi
p(zij = tk|θ

(n))
∑|M|

j′=1

∑

1≤i≤|S|,mj′∈Mi
p(zij′ = tk|θ(n))

(8)

The computational complexity of each EM iteration is on the order of O(|S||M̄||T̄ |),
where |M̄| and |T̄ | are the average size (over all sequences) of Mi and Ti, respectively.

5.3 Inference (Ranking GO terms for a motif)

Once we have all the parameters in our translation model estimated, we can use the model
to infer which GO terms are associated with, and thus should be assigned to a given motif.
Specifically, given a motif m, we can rank all GO terms based on p(t|m). Recall that, in
Section 3, we have framed the problem of predicting functions of a motif as one to define
a scoring function f : M× T → <. Our translation model suggests that the most natural
way to rank GO terms for a given motif is to define f as p(t|m).
With the translation model, p(t|m) can be computed using Bayes rule as follows:

p(T = t|M = m) =
p(T = t)p(M = m|T = t)

∑

t′∈T p(T = t′)p(M = m|T = t′)

This equation requires prior probabilities for every term p(T ), which presumably represent
our knowledge about which term is more likely to describe any motif’s function before we
are given any particular motif. There are several different choices, which we illustrate with
the following example:

Example 3 We have two sequences. Sequence 1 is assigned two terms t1, t2 and matches
three motifs m1, m2,m3. Sequence 2 is assigned two terms t2, t3 and matches four motifs
m1, m2,m4, m5.

1. Uniform distribution(Prioruni): we consider every term has equal probability. p(ti) =
1
|T |

. In Example 3. p(ti) = 1/3

2. Counts of co-occurred motifs (Priormotif1): We estimate the priors from the orig-
inal sequence data set, and let the prior on a term to be proportional to the counts of
motifs that have co-occurred with the term. That is, we count every motif-term pair
as an entry, and have 2 × 3 + 2 × 4 = 14 entries for Example 3, so p(t1) = 3/14 ,
p(t2) = 7/14, and p(t3) = 4/14.



3. Counts of distinct co-occurred motifs (Priormotif2): This is similar to Priormotif1,
but we let the prior to be proportional to the counts of distinct motifs that have co-
occurred with the term. In our example, t1 co-occurs with three distinct motifs (i.e.,
m1, m2, m3), t2 with five (i.e., m1, m2, m3, m4, m5), and t3 with four (i.e., m1, m2,
m4, m5). Thus, we have 3 + 5 + 4 = 12 entries, and p(t1) = 3/12, p(t2) = 5/12 and
p(t3) = 4/12.

5.4 Comparison with popularity and mutual information

It is instructive to compare this translation model with the other two methods (i.e., the
popularity and mutual information methods). In particular, let us take a closer look at what
statistics are shared by these methods. First, all methods would favor a term with high
co-occurrences, which intuitively makes sense. In fact, this is the only information that
the popularity method uses. Mutual information differs from the popularity method in that
it would penalize a term with high global frequency. The probabilistic translation model
favors terms with high P (t|m), which is proportional to P (m|t)P (t). High co-occurrences
clearly contribute to a high P (m|t). However, since p(m|t) must sum to one over all
the motifs, a term appearing in many sequences tends to be associated with more motifs,
which would reduce the conditional probability for each motif. Thus the “competition”
among motifs for a given term essentially achieves the effect of penalizing a common term
just as in mutual information. The translation model also introduces another competition
among terms assigned to the same sequence, due to the fact that we assume that each motif
is generated from precisely one of the terms assigned to the sequence. Intuitively, this
causes discounting of the co-occurrences when multiple terms are assigned to a sequence
and each term is only given “partial” credit. In summary, the major difference between the
translation model and mutual information lies in the compilation among motifs and terms,
while the major difference between popularity and the other two methods is the punishment
of common terms. A comparison of the empirical performance of these methods would
reveal the influence of these factors on the performance.

6 Experiments

We evaluated all three methods using the Gene Ontology database and Interpro database.
Specifically, we use the Gene Ontology database to compute a ranking of GO terms for each
Interpro motif, and use the known functions of the Interpro motifs as the gold standard to
evaluate the performance of a method. Through comparing the results of these different
methods, we hope to answer the following questions:

• Does penalizing globally popular terms help improve predicion accuracy?

• Do the “competitions” introduced in the translation model help improve performance?

• How do different priors in the translation model affect the performance?



6.1 Metrics

We use the mean reciprocal rank (MRR) to measure the performance of the prediction
results. Given a ranked list of GO terms, MRR is defined as ( 1

Rank1

+ 1
Rank2

+...+ 1
Rankk

)/k,
where k is the total number of correct GO terms for the motif and Ranki is the rank of the
ith correct GO term in the result list. We take the average over all the motifs and use it as
one single value to summarize the total performance.
MRR is bounded between 0 and 1; a higher value shows higher precision. The ranking
accuracy of top terms has more influence on the overall MRR performance than that of
lowly ranked terms, which is exactly what we want. Intuitively, the inverse of a MRR can
be interpreted as the average number of “wrong” terms we must examine before we see a
correct term.
Tied ranks (i.e., two or more terms have the same scores) occur frequently in our experiment
results. To reduce the sensitivity of the MRR to the random ordering of the tied terms, we
extend MRR to use the expected reciprocal of rank E[1/rank], instead of 1/rank, where
E is the expectation operation. For example, if the top two terms are tied, each of them
can be ranked as first or second. The expectation is (1/1 + 1/2)/2 = 0.75. Both terms
are assigned 0.75 instead of 1 or 0.5. We call this new measure expected mean reciprocal
rank(eMRR).

6.2 Experiment results

The eMRR results for the popularity method, mutual information method, and translation
models with different priors are shown in Table 1.

Table 1. Comparison of eMRR for three methods

Method Popularity Mutual Info. Translation Models
Prioruni Priormotif1 Priormotif2

eMRR 0.8510 0.8428 0.7947 0.8418 0.8367

From Table 1, we first see that all the methods achieved very high eMRR, which means
that they can all rank the correct terms at or near the top. Next, we see that different pri-
ors do affect the performance of the translation model. The uniform prior is the worst,
while the motif1 prior performs best. This observation is quite consistent in all our exper-
iments. This shows that the conditional probability P (m|t) alone is not quite accurate for
ranking terms; choosing a good prior is necessary for achieving good performance. Since
the motif1 prior is essentially the popularity method, these results suggest that the num-
ber of sequences in which a term and motif co-occur is perhaps the most important factor
that helps achieve good performance. This point is amplified by the fact that the simplest
popularity method surprisingly outperforms all the other methods.
Comparing the mutual information method with the popularity method, we see that mutual
information does not work as well as the popularity method, indicating that penalizing
globally common terms is harmful or it has over-penalized common terms. Using priors to



favor popular terms helps the translation model, but even with such help, it is still slightly
worse than the mutual information method.
To understand why the popularity works so well, we examined the actual results and judg-
ments for individual motifs. It turns out that our gold standard from Interpro is highly
incomplete; in many cases, a motif is just assigned one general GO term, even though
the known function is more specific. For example, considering the motif InterPro :
IPR000276, whose function is known to be in the Rhodopsin-like GPCR superfamily,
but it is only annotated with one term GO : 0016021 (integral to membrane), which means
that in our evaluation, all it matters is where this term is ranked. However, the top five terms
given by the translation model using motif1 prior, which are shown below, are actually all
good GO terms that describe this motif’s function. Thus they all should have been treated
as being correct.

1. GO:0004984 (olfactory receptor activity)

2. GO:0008188 (neuropeptide receptor activity)

3. GO:0008227 (amine receptor activity)

4. GO:0004995 (tachykinin receptor activity)

5. GO:0004993 (serotonin receptor activity)

Table 2. eMRR of three methods computed using complete judgments

Method Popularity Mutual Info. Translation Models
Prioruni Priormotif1 Priormotif2

eMRR 0.4734 0.4678 0.3899 0.4765 0.4608

This observation immediately brings up the question how reliable our evalution is given
that it is based on an extremely incomplete set of judgments. Presumably, a general term is
easier to be annotated, and therefore is more popular. Thus this incompleteness may favor
popularity method. To test this hypothesis, we extracted the top 5 terms for each motif from
all the methods, pooled them together, and had a biologist to manfully judge all of them.
We then used these new judgements to re-evaluate the results. The eMRR performance is
shown in Table 2
While these new judgments are complete judgments for the top 5 terms given by each
method, they are incomplete in some other sense, which is why the figures of eMRR are
all much lower than those in Table 1. It is very interesting to see that now the motif1 prior
outperforms both the mutual information method and the popularity method, though only
slightly. This suggests that the strategy of using only the Interpro known motifs as the gold
standard is problematic; it is indeed biased toward favoring the popularity method, just as
we hypothesized. The results in Table 2 can thus be regarded as more reliable.
The translation model seems to have benefited most from these complete judgments. Since
these judgments are on only the top 5 terms, we can envision that with even more complete
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Figure 1. Popularity method vs. mutual information method.

judgements on all terms, the translation model may show even more relative advantage.
The mutual information method, on the other hand, still performs worse than the baseline
popularity approach, and the motif1 prior is still the best prior. This strongly suggests that
it is very important to maintain the influence of the co-occurrence count in ranking the GO
terms.
The figures shown in Table 2 are the average performance among all motifs. Figure 1 and
Figure 2 show the performance comparison between two methods on individual motifs. We
see that different methods really “win” at different motifs.

Table 3. eMRR on all sequences vs. sequences with multiple terms

Method Popularity Mutual Info. Translation Models
Prioruni Priormotif1 Priormotif2

eMRR (all) 0.4734 0.4678 0.3899 0.4765 0.4608
eMRR (multiterm only) 0.5147 0.4962 0.4337 0.5308 0.5109

The improvement of the translation model over the popularity method comes from an ap-
propriate combination of the trained translation model p(m|t) with the popularity prior p(t).
To further examine to what extent the competitions introduced in the translation model re-
ally contribute to performance improvement, we compared all the methods on a subset of
sequences that have two or more GO terms assigned. This new set would allow us to see
more effect of “term competition” within a sequence. The results are shown in Table 3
together with the results on the complete set for easy comparison. The new results are
overall very similar to those obtained from the complete set, but the improvement of the
translation model over the popularity method is now more noticeable! This suggests that
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Figure 2. Popularity method vs. translation model.

the translation model is indeed better at handling multiple terms within a sequence and the
“competition” among the terms assigned to the same sequence does empirically contribute
to performance improvement.

7 Conclusions and future work

In this paper we propose three statistical methods for predicting motif functions by exploit-
ing the correlation between a motif matching a sequence and the Gene Ontology terms
assigned to the sequence. Given a motif, all three methods can generate a ranked list of GO
terms that may describe the function of the motif. We evaluated these methods using the
known motifs in the Interpro database with the Mean Reciprocal Rank (MRR) measure.
The results show that

1. Overall, all three methods achieve a high MRR around 0.8.

Even though the data set is biased due to the annotation procedure and may only
reflect the upper bound of the performance, the overall high MRR is still quite en-
couraging, suggesting the usefulness of our general methodology.

2. Using Interpro judgments as the gold standard for evaluation is problematic because
it is highly incomplete.

It is necessary to have more complete judgments at least on some subset of the results;
otherwise, the results may be misleading. As a by product of making additional
judgments, we notice that the results of our methods can help the Interpro annotators
significantly in providing more complete and precise annotations to these known
motifs.



3. The translation model with a popularity prior achieve the best performance.

This is shown with more complete judgments on some subset of the results. The
advantage of the translation model is seen to be amplified as we work on sequences
with more terms.

Probabilistic translation models were originally introduced for natural language translation
(Brown et al., 1993). We show that these models may also be useful for predicting motif
functions. However, it is also clear that a straightforward of applications of an existing
model is unlikely successful; careful consideration of the particular problem is necessary.
In our study, using an approriate prior has turned out to be important.
A natural direction of future work is to apply these methods to many new candidate motifs
whose functions are unknown. We also plan to build a system running on the Web to allow
a biologist to find GO terms for any interesting candidate motif. Such a system can also
be very useful to assist the Interpro annotators to provide a more complete and precise
annotation of motif functions.
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