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Goal of Tutorial

Introduce the “axiomatic approach” to development
of information retrieval models

Review the major research progress in this area
Discuss promising future research directions

You can expect to learn

— Basic methodology of axiomatic analysis and optimization
of retrieval models

— Novel retrieval models developed using axiomatic analysis

Prerequisite: basic knowledge about information
retrieval models is assumed
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Search accuracy matters!
# Queries /Day X 1 sec X 10 sec

Gougle 4,700,000,000  ~1,300,000 hrs ~13,000,000 hrs

< 1,600,000,000  ~440,000 hrs ~4,400,000 hrs

Pu blmed 2,000,000 ~550 hrs ~5,500 hrs

How can we improve all search engines in a general way?

Sources:
Google, Twitter: http://www.statisticbrain.com/
PubMed: http://www.ncbi.nlm.nih.gov/About/tools/restable stat pubmed.html
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Behind all the search boxes...
Google ©ING

number of queries search engines

[ Document collection

_ >
/
number of queries search engines %
\ /
Web Images Maps Shopping Moaore « Search tools
About 1,010,000,000 results (0.15 seconds)

Web search query - Wikipedia, the free encyclopedia @ Machine Lea rning
en.wikipedia.org/wiki’WWeb_search_query
A web search query is a query that a user entgrs into qrweb sea;ch engir

his or her informatior

weoncie. HOW CaN we optimize a retrieval model?
v etrieva

May 11, 2004 — When you enter a query at a search engine site, your inp

terms you enter should be within a certain number of words of each other.

Query Routing for Web Search Engines: Architecture and Ex I SCO re ( q ) d )
@

wwweonference.org/proceedings/iwww/139/139.html

Therefore, anly a small number of abstract terms (some of them represent

tonirs nf a aearch ennine) ran he nhtained On the nther hand nser aueri
LU

Natural Language Processing
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Retrieval model =
computational definition of “relevance”

S(“retrieval model tutorial”, [d])

/ N

s(“retrieval”, [d]) s(“model”,|d ] s(“tutorial”, [d))

T

How many times does “retrieval” occur in d?
Term Frequency (TF): c(“retrieval”, d)

I”

How long is d? Document length: |d|

How often do we see “retrieval” in the entire collection?
Document Frequency: df(“retrieval”)

P(“retrieval” | collection)

AT
==
¥ e a
e




Scoring based on bag of words in general

Sum over & d>
o

matched query terms

S(J,d) — f[ Zweight(w,q,d),a(q,d))

wegqNd l

glc(w,q), c(w,d),|d |,df (W)] inverse

Document
/ / ‘ Frequency
p(w]|C)

(IDF)

Term Frequency (TF)
Document length

fMAN © IREILab



Improving retrieval models Is a long-standing
challenge

* Vector Space Models: [Salton et al. 1975], [Singhal et al. 1996], ...

e Classic Probabilistic Models: [Maron & Kuhn 1960], [Harter 1975],
[Robertson & Sparck Jones 1976], [van Rijsbergen 1977], [Robertson
1977], [Robertson et al. 1981], [Robertson & Walker 1994/, ...

 Language Models: [Ponte & Croft 1998], [Hiemstra & Kraaij 1998],
[Zhai & Lafferty 2001], [Lavrenko & Croft 2001], [Kurland & Lee 2004], ...

 Non-Classic Logic Models: [van Rijsbergen 1986], [Wong & Yao
1995], ...

e Divergence from Randomness: [Amati & van Rijsbergen 2002],
[He & Ounis 2005], ...

e Learning to Rank: [Fuhr 1989], [Gey 1994], ...

Many different models were proposed and tested

rilAn ©




Some are working very well (equally well)

* Pivoted length normalization (PIV) [singhal et al. 96]
e BM25 [Robertson & Walker 94]

e PL2 [Amati & van Rijsbergen 02]

e Query likelihood with Dirichlet prior (DIR) [ponte

& Croft 98], [Zhal & Lafferty]

but many others failed to work well...

Ay © [ELab .



State of the art retrieval models

e PIV (vector space model)

5 1+In(1+|n(c(|vc\l/ ld))) ctma)-n 2L N +1
wegnd (1 S)+S ( )
avdl

e DIR (language modeling approach)

et C(wd)
2 cwa)xine = ey alin fo

e BM25 (classic probabilistic model)

Z In N —df (w)+0.5 (k, +1) xc(w,d) .(k3+1)><c(w,q)
weand af (w)+0.5 kl((l—b)+b8|l\(jd||)+c(w,d) Ky +c(W, Q)

PL2 is a bit more complicated, but implements similar heuristics

m..lﬂh 12
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Questions

« Why do {BM25, PIV, PL2, DIR, ...} tend to
perform similarly even though they were
derived in very different ways?

AP88- FR88- Trec?
89 89

023 018 019 0.29 0.18 0.24

DIR 022 018 021 030 0.19 0.26
BM25 0.23 019 023 031 019 0.25
PL2 022 019 0.22 031 0.18 0.26

fMAN € [FEILab
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Questions

« Why do {BM25, PIV, PL, DIR, ...} tend to
perform similarly even though they were derived
In very different ways?

« Why are they better than many other
variants?

fillAn € [FELab
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Is it possible to predict the performance?

DIV 1+log(c(t,D))

N +1 1+Iog4’1‘-|—~o e (t. D))
S (Q,D)= c(t, log S
QD)= 2, cltQ)xlog g D

avdl

-~

(1—5)+Sx

Performance Comparison

0.165

0.16

0.155

=8
% 0.15

0.145 -

0.14

0.135

1

W Before modification M After modification

m-ﬂh 15
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Questions

« Why do {BM25, PIV, PL, DIR, ...} tend to
perform similarly even though they were derived
In very different ways?

 Why are they better than many other variants?

« Why does it seem to be hard to beat these
strong baseline methods?

AN € IFGLab



Questions

« Why do {BM25, PIV, PL, DIR, ...} tend to
perform similarly even though they were derived
In very different ways?

 Why are they better than many other variants?

 Why does it seem to be hard to beat these
strong baseline methods?

 Are they hitting the ceiling of bag-of-words
assumption?
— If yes, how can we prove it?
— If not, how can we find a more effective one?

fiMAN €& IIELab



Suggested Answers: Axiomatic Analysis

« Why do {BM25, PIV, PL, DIR, ...} tend to perform similarly even though

they were derived in very different ways?
They share some nice common properties

These properties are more important than how each is derived

 Why are they better than many other variants?
Other variants don’t have all the “nice properties”

« Why does it seem to be hard to beat these strong baseline methods?
We don’t have a good knowledge about their deficiencies

e Are they hitting the ceiling of bag-of-words assumption?
— If yes, how can we prove it?
— If not, how can we find a more effective one?

Need to formally define “the ceiling” (= complete set of “nice
properties”)

11T = MInfol A .




Axiomatic Relevance Hypothesis (ARH)

* Relevance can be modeled by a set of formally
defined constraints on a retrieval function

— If a function satisfies all the constraints, it will perform well
empirically

— If function F, satisfies more constraints than function F,, F,
would perform better than F;,, empirically
* Analytical evaluation of retrieval functions

— Given a set of relevance constraints C = {cq, ..., Cx }

— Function E is analytically more effective than function F, iff
the set of constraints satisfied by F}, is a proper subset of those
satisfied by F,.

— A function F is optimal iff it satisfies all the constraints in C.

rillAn ©
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Different models, but similar heuristics

e PIV
+In@+In(c(w,d))
W;ﬂ%ﬂ @Hsj\l ?: c(W,CI)
av
e DIR Dodonerned
c(w,d)

W;q;dc(w,q) In(1++|q|

e BM25

N —df (w)+0.5 (k, +1)xc(w,d) (k, +1)xc(w, Q)
> An R
wegrd df (w)+0.5 kl((1@+b ' Nec(w,d) K, +c(w,Qq)
avd

PL2 is a bit more complicated, but implements similar heuristics

11T = MInfol A .




Are they performing well because
they implement similar retrieval
heuristics?

Can we formally capture these
necessary retrieval heuristics?

[Fang et. al 2004, Fang et al 2011]

fMAN € TELab -




Term Frequency Constraints (TFC1)

Give a higher score to a document with more occurrences of
a query term.

e TFC1

. W
Let g be a query with only one term w. q9: m c(/vv\,dl)

It ]dy [=d, | o I —
and c(w,d,) >c(w,d,) d.:
then f(d,,q) > f(d,,q). :

c(w,d,)
f(d,q)> f(d,,q)

filan © [TELab
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Term Frequency Constraints (TFC3)

Favor a document with more distinct query terms.

TFC3

Let g be a query and w,, w, be two query terms. .
c(w,,d;) c(w,,d,)

Assume idf (w,) =idf (w,) and |d;|=d,|
0  e———

If c(w,d,)=c(w,d,)+c(w,,d,)

and c¢(w,,d,)=0,c(w,,d,)=0,c(w,,d,)=0 d,;
then f(d,,q)> f(d,,q). )

f(d,,q)> f(d,,q)

24



Length Normalization Constraints(LNCs)

Penalize long documents(LNC1);

Avoid over-penalizing long documents (LNC2).

e INC1 S — c(w. d,)
Let g be a query. |
If for some word w ¢ ¢,c(w,d,) =c(w,d,)+1 du: W¢&(Qq
but for other wordsw, c(w, d,) =c(w,d,) >
then f(d;,q) > f(d,,q) f(dy,q) > f(d,,q) c(wd,)

e LNC2

Let g be a query. CH
If vk >1,d, |=k-|d,|and c(w,d,) =k-c(w,d,) dy: T
then f(d,,q)> f(d,,q) d,:

f(d,,q)> f(d,,q)

25




TF-LENGTH Constraint (TF-LNC)

Regularize the interaction of TF and document length.

e TF-LNC

Let g be a query with only one term w. q: &V C(%dl)

if |d,|Hd,|+c(w,d,)—-c(w,d,) d,: e —
and c(w,d,) > c(w,d,)  ———

then f(d,,q) > f(d,,q). c(w, d,)

f(d,,q) > f(d,,q)

26
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Seven Basic Relevance Constraints
[Fang et al. 2011]

Comstraints |__________Intuitions__

TFC1 To favor a document with more occurrences of a query term

TFC2 To ensure that the amount of increase in score due to adding
a query term repeatedly must decrease as more terms are
added

TFC3 To favor a document matching more distinct query terms

TDC To penalize the words popular in the collection and assign
higher weights to discriminative terms

LNC1 To penalize a long document (assuming equal TF)

LNC2, To avoid over-penalizing a long document

TF-LNC

TF-LNC To regulate the interaction of TF and document length

Hui Fang, Tao Tao, ChengXiang Zhai: Diagnostic Evaluation of Information
Retrieval Models. ACM Trans. Inf. Syst. 29(2): 7 (2011)

11T = MInfol A .




Discussion 1:

Weak or Strong Constraints?
TDC:

To penalize the words popular in the collection and assign
higher weights to discriminative terms

e Our first attempt:

— Let Q = {qq, q»}. Assume |D;| = |D,| and c(q;,D;) +

c(q2, D1) = c(qq1, D2)+ c(qz, D). If td(q,) = td(q3) and
c(q1,D;1) =c(qq, D;), we have S(Q,D;) = S(Q, D;).

e Our second attempt (a relaxed version)

— Let Q = {q4, q>}. Assume |D;| = |D,| and D1 contains only q1
and D2 contains only 2. If td(q,) = td(q,),5(Q,D; U D) >
S(Q, D, U D).
AN €& IFELab
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Discussion 2:
Avolid including redundant constraints

LNC1

/Let g be a query. )
If for some word w ¢ ¢,c(w,d,) =c(w,d,)+1
but for other words w, c(w,d,) =c(w,d,)
then f(d,,q) > f(d,,q)

J
TF-LNC Derived
/ Let g be a query with only one term w. constraints

If Idll = |d2| + C(Wl dl) _ C(W, dZ)

and c(w,d,) >c(w,d,) [ Let g be a query with only one term w.

\_ then f(d,,q) > f(d,,q). If |d3| < |d,| + c(w,d3) — c(w,d,)

and c(w,d,) >c(w,d,)

Ay © TELab \__hen 18, )> T(d,9)
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Axiomatic Relevance Hypothesis (ARH)

 Relevance can be modeled by a set of formally
defined constraints on a retrieval function

— If a function satisfies all the constraints, it will perform well
empirically
— If function F, satisfies more constraints than function Fy, F,
would perform better than F, empirically
« Analytical evaluation of retrieval functions
— Given a set of relevance constraints C = {cy, ..., Cx}

— Function F, is analytically more effective than function F iff the
set of constraints satisfied by F; is a proper subset of those
satisfied by F,.

— Afunction F is optimal iff it satisfies all the constraints in C.

rillAn ©
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Testing the Axiomatic Relevance Hypothesis

e |s the satisfaction of these constraints correlated

with good empirical performance of a retrieval
function?

e Can we use these constraints to analytically
compare retrieval functions without
experimentation?

e “Yes!” to both questions

— Constraint analysis reveals optimal ranges of
parameter values

— When a formula does not satisfy the constraint, it
often indicates non-optimality of the formula.

— Violation of constraints may pinpoint where a formula
needs to be improved.

fMAN © IFYELab
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An Example of Constraint Analysis

PIV: 1+ In(1 + In(c(w, d))) N+1
d, = ) : -
e, q) wezqmd 1 —s+ sggﬁlﬂ elwrq) ndf(w)

LNC2:

Let g be a query. CH
Iif vk >1d, |=k-|d,|and c(w,d,) =k-c(w,d,) dy: T
then f(d,,q)> f(d,,q) d,:

f(d,,q)> f(d,,q)

Does PIV satisfy LNC2?

fMAN © IREILab 33



An Example of Constraint Analysis
LNC2:
Let g be a query.

If vk >1) d, |=k-|d, | and c(w,d,) =k-c(w,d,)
then f(d,,q)> f(d,,q)

L+in(l+in(c(w,d1))) | N+1 1+in(1+in(c(w,d2))) | N+1
l—sts ‘deli c(w, q) - Inzts df (w) > 1—sts ‘deli c(w, q) - Inf= af(w)
1+ln(1+ln(k-c('w,d3))) N+1 1+in(1+in(c(w, dg))) ' N+1
1—8+8k—¢;1%%-|- (w q) I e df (w) 2 1— 8+si%2&|!- (w’ q) n df (w)
1+ In(1 + In(k - c(w, d2))) S 1+ In(1 + In(c(w, dy)))
1 —s+ siﬁzll B 1 —s+ scﬁfjll
AN € [FELab 34




An Example of Constraint Analysis
1+ In(1 + In(k - c(w, dg)))

S 1+ In(1 + In(c(w, dq)))
1—8—|—3£}E|' - 1—8—|—3£@|§

¥

tfi —tfo
= Dt — (-

tfi =1+1In(1 +In(k - c(w,dp)))
)tfl tfo =14+ In(1+ In(clw,ds)))

sk Upper bound for parameter s
Dar

Assuming |d,| = avdl,

Bound
= o

111
{ix

€
nnnnnnnnnnnnn

% s 10 15 20 2 a0
c(w,d,)

Figure 1: Upper bound of parameter s

35



Bounding Parameters

e PIV
Optimal s (for average precision) LINC2 = s<0.4

AP |DOE| FR | ADF | Web | Tree 7 | Trec 8
LK | 02 | 02 [ 005 0.2
SK | 001 ] 0.2 | 001 | 005|001 005 0.05
LY | 03 | 03 | 0.1 | 0.2 | 0.2 0.2 0.2
SV | 02 | 03 01 | 02 | 01 0.1 02

Parameter Sensitivity of Pivoted

0.2

D_J-E *Lﬁ_ il ﬂ.\ OA
0.16
0.14 \""*-..

% o — —
o.08
006 \
0.04 \

0.0z
D

D 0.2 0.4 0.6 2.8 1
parameter value (s)

© [EHLab




Analytical Comparison

e Okapi BM25

Z@ (k1+1)c(t1D) . (k3 +1)C(t,Q)
teQnD df (t) c(t,D)+ ki((l_b)-l_bm) k, +¢(t,Q)

Negative = Violates the constraints

Satisfies Violates
0.25% 0.2%
0.2 0.2
0.15 0.15
b W Okapl - WOkapl
E B Pivoted § B Plvoted
0.1 0.1
0.0% 0.0% 1
0 - o -
1 1

fiMAN € LD




Fixing a deficiency in BM25 improves the

effectiveness
* Modified Okapi BM25 jog L
df (t)
Z lo ) (k1+1)c(t1D) (k3+1)C(t,Q)
teQnD c(t,D)+ kl((l—b)+b-alvjd||) Ky +C(t,Q)

Make it satisfy constraints; expected to improve performance

Satisfies Violates

0.25 0.25

0.2

WOkapl 0.15 1
B Plvoted
W Mod-Okapi

W Okapl
M Plvoted
B Mod-Okapl

MAP

0.1 -

0.05 -

38




Systematic Analysis of 4 State of the Art Models
[Fang et al. 2011]

Function TDC Parameter s must be small LNC

Problematic when a query term occurs

less frequently in a doc than expected .
Negative IDF

Problematic with common terms;

parameter ¢ must be large

Yes Yes
vioditiedc
PL2 C5 Co* C7 C8* C8*
(Original)
PL2 Yes Co* Yes C8* C8*
(modified)
B iflan © [FXILab :




Perturbation tests:

An empirical way of analyzing the constraints
[Fang et al 2011]

fiMAN €& IRELab
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Medical Diagnhosis Analogy

Non-optimal Better performed
retrieval functlon retrieval function
e i ATl

Design tests with available
instruments

observe symptoms
provide treatments

How to find available instruments?
How to design diagnostic tests?

filan € [IELab .




Relevance-Preserving Perturbations

e Perturb term statistics
» Keep relevance status

Document scaling perturbation:

— T
DdK) | T————

"5 .

concatenate every document with itself K times

9 perturbations are designed
filAn €& [F@Lab



Relevance-Preserving Perturbations

Relevance addition
Noise addition

Internal term growth

Document scaling

Relevance document concatenation
Non-relevant document concatenation
Noise deletion

Document addition

Document deletion

fillAn €& [ELab

Add a query term to a relevant document
Add a noisy term to a document

Add a term to a document that original
contains the term

Concatenate D with itself K times

Concatenate two relevant documents K
times

Concatenate two non-relevant
documents K times

Delete a term from a non-relevant
document

Add a document to the collection

Delete a document from the collection

43



Length Scaling Test
1. Identify the aspect to be diagnosed

test whether a retrieval function over-penalizes long documents

2. Choose appropriate perturbations

c¢D(d,d,K)
— .

3. Perform the test and interpret the results

TREC7?7 length scaling (all}

0.19
0.185 *sq"-— —
0.18

Dirichlet over-penalizes
long documents!

0.175 L\
0.17 5
- : \ = Okapi
§ L g \,\ —— Dirichlet
0.16 e
0.155% _-—_‘_'_'_.‘
0.15 /
0.145
0.14 . .
1 10 100 1000
K
fiMAN @ [ Lab
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Identifying the weaknesses makes it
possible to improve the performance

MAP P@30
trec8 | wt2g FR trec8 wt2g FR
DIR | 0.257 | 0.302 | 0.207 | 0.365 | 0.331 | 0.151
Imp.D. | 0.262 | 0.321 | 0.224 | 0.373 | 0.345 | 0.166
filAn & [@Lab
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Summary of All Tests

Length variance reduction The gain on length normalization
Length variance amplification The robustness to larger document variance
Length scaling The ability at avoid over-penalizing long
documents
Term noise addition The ability to penalize long documents

Single query term growth The ability to favor docs with more distinct query

terms
Majority query term growth Favor documents with more query terms
All query term growth Balance TF and LN more appropritely

Hui Fang, Tao Tao, ChengXiang Zhai: Diagnostic Evaluation of Information
Retrieval Models. ACM Trans. Inf. Syst. 29(2): 7 (2011)

Ay € IELab .
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How can we leverage constraints to
find an optimal retrieval model?

Ay € [RELab
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Basic Idea of the Axiomatic Framework
(Optimization Problem Setup)

/

Function space

Our target

Retrieval constraints

fillAy € [FIELab
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Three Questions

e How do we define the constraints?

We’ve talked about that; more later

e How do we define the function space?

One possibility: leverage existing state of the art functions

e How do we search in the function space?

One possibility: search in the neighborhood of
existing state of the art functions




Inductive Definition of Function Space

S:QxD =¥ Q=0,0,...0,; D=d,d,,...d

Define the function space inductively

Primitive weighting function (f)

cat bi — —
Q: .:g 5(Q,D) =S(m, I.) f(H,m)
D: Query growth function (h)
b S(Q,D) = S(Mm, M) = S(M, W)+h(m,m )

Document growth function (g)
S(Q,D) = S(H, l) = S(H, N )+g(H W, O)

fMAN © IREILab 51



Derivation of New Retrieval Functions

S(Q,D) existing function
decompose / l \
f 0 h
generalize l l l
F G H
constrain l l

assemble \

S' (Q, D) Y new function

11T = MInfol A -



A Sample Derived Function based on BM25
[Fang & Zhai 2005]

IDF TF

B | /c(t,D)y”
QD)= te; /A (D) s |D

avdl

length normalization

filAn & [@Lab
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The derived function Is less
sensitive to the parameter setting

better Parameter Sensitivity(TRECY sv)
4 D.25 :
Axiomatjc Model
0.2
0.15
:
0.1
D.05
o
D 1 1 1 1 1
o] 0.2 0.4 0.6 0.8 1

parameter value (b or s)

miils Ax iomatic —gde— Mod-Okapl —=— Pivoted —%=— Okapi

fillAn € IIGLab
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Inevitability of heuristic thinking and
necessity of axiomatic analysis

* The “theory-effectiveness gap”

— Theoretically motivated models don’t
automatically perform well empirically

— Heuristic adjustment seems always necessary
— Cause: inaccurate modeling of relevance

« How can we bridge the gap?
— The answer lies in axiomatic analysis

— Use constraints to help identify the error in
modeling relevance, thus obtaining insights about
how to improve a model

fillAn € [FELab
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Systematic Analysis of 4 State of the Art Models
[Fang et al. 2011]

PIV Yes Yes Yes C1l* C2*

DIR Yes Yes Yes C3 Yes
BM?25 C4 Yes C4 C4 C4
(Original)
BM?2 Yes Yes Yes Yes Yes
(Modified)

Modified BM25 satisfies all the constraints!

Without knowing its deficiency, we can’t easily propose
a new model working better than BM25

AN € IFELab s6




A Recent Success of Axiomatic Analysis:

Lower Bounding TF Normalization
[Lv & Zhai 20114]

e EXxisting retrieval functions lack a lower bound
for normalized TF with document length =

— Long documents overly penalized

— A very long document matching two query terms can
have a lower score than a short document matching

only one query term
* Proposed two constraints for lower bounding TF
* Proposed a general solution to fix the problem

that worked for BM25, PL2, Dir, and Plv, leading
to iImproved versions of them (BM25+, PL2+,

Dir+, Piv+)

filAn €& IITELab




Lower Bounding TF Constraints (LB1)

The presence —absence gap (0-1 gap) shouldn’t be
closed due to length normalization.

» LBl Q: mm
Let Q be a query. Assume D; and D, Q' p—
are two documents such that I —

1-

S(QJDl) — S(Q)DZ)

D,:
If we reformulate the query by adding U

another term q € Q into Q, where ¢(q,D,)

c(q,D;) =0andc(q,D,) >0, $(0,Dy) = S(0,D,)
S(Q U {CI}: Dl) < S(Q U {q}» DZ)

T|MAN m-lﬂh 58




Lower Bounding TF Constraints (LB2)

Repeated occurrence of an already matched query
term isn’t as important as the first occurrence of an
otherwise absent query term.

+ LB2 o g S@d)=50Q.dy)
Let Q = {w;,w,} be a query with two terms w; el &)
and w, . Assume td(w;) = td(wy). dy: ﬂ
If d{ and d, are two documents such that 0, I
c(Wp,dq1) =c(wy,dz) =0, c(wy,dq) > Y

O; C(Wl, dz) > O, and S(Q, dl) — S(Q, dz), C(Vsl(’v(;lll’)dz)

then S(Q,d; U{w} —{t1}) <
S(Q,d, U {w,}—{t,}) ,forallt; and t, such A ﬂ
thatt; €dy,t; €Edy, t; € Qand t; € Q. d,: I
)
fiMAN © I8Lab $(Q,d;") < S(Q.dz") 59




No retrieval model satisfies both constraints

Model

PIV

DIR

LB1

Yes

No

LB2

No

Yes

restrictions

Parameter and/or query

s should not be too large

u should not be too large; query
terms should be discriminative

Can we "fix" this problem for all the models in a
general way?

AT
'h
==
¥ e a
e
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Solution:
a general approach to lower-bounding TF normalization

e Current retrieval model:

Term frequency \ / Document length

F(c(t,D),|D]|,...)

e Lower-bounded retrieval model:

"F(c(t,D),| D|,...)+ F(0,1,...) ireeoi=o

\
I
I
- | |
I
I
I

-F(c(t,D),| D |,...)4 F(8,1,...) iotherwise

————————————
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Example: Dir+, a lower-bounded version of the
query likelihood function

Dir: Zc(q,Q)-Io{H (4.D) j+|Q|.IOQ “

S u-p(w|C) p+| D]
| | (g, D) 0
Dir+: qeg(;DC(q,Q) {Iog(h_ m p(w|C)j*Eog(l+ M- p(W|C)m
| £
+1Q|-log 1D

Dir+ incurs almost no additional computational cost
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Example: BM25+, a lower-bounded version of
BM25

g—
oo ks +(t.Q) kl(l—b+ba|iVDdD+c(t,D) ar (1)

BM25: Z (ks +1)-¢(t,Q) (k, +1)-c(t,D) 1o N +1

BM25+: Y (ks +1)-c(t,Q) (k, +1)-c(t, D) )@.Iogdl\lf?t)l

S ky+c(t,Q) kl(l_ b+ belxlvjdlj +c(t,D

BM25+ incurs almost no additional computational cost

riMAN € [FTELab



The proposed approach can fix or alleviate the
problem of all these retrieval models

Traditional
retrieval
models

Lower-
bounded
retrieval
models

LB1

LB2

BM25+

PL2+

Yes

Yes
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BM25+ Improves over BM25

Short

Verbose

For details, see

Yuanhua Lv, ChengXiang Zhai, Lower Bounding Term Frequency Normalization, Proceedings of the 20t
ACM International Conference on Information and Knowledge Management (CIKM'11), page 7-16, 2011.

AN €& [HLab

BM25
BM25+
BM25+

(6 = 1.0)

BM25
BM25+
BM25+

(6 = 1.0)

0.1879
0.1962
0.1927

0.1745
0.1850
0.1841

0.3104
0.3172
0.3178

0.2484
0.2624
0.2565

0.2931
0.3004
0.2997

0.2234
0.2336
0.2339

0.2544
0.2553
0.2548

0.2260
0.2274
0.2275
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Outline

 Motivation

 Formalization of Information Retrieval Heuristics
* Analysis of Retrieval Functions with Constraints
 Development of Novel Retrieval Functions

* | Beyond Basic Retrieval Models

e Summary ‘
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Axiomatic Analysis of Pseudo-Relevance
Feedback Models

fillAy € [FIELab
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Pseudo-Relevance Feedback

Original Query

[

-~ N
N A

IR System

Expanded Query

~—_

Selecting
expansion
terms

Initial Retrieval
Query Expansion

Second Round Retrieval

R

>
—

Initial Results

Final Results
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Existing PRF Methods

e Mixture model [zhai&Lafferty 2001b]

* Divergence minimization [zhai&Lafferty 2001b]
e Regularized mixture model [Tao et. al. 2006]

e Relevance model [Lavrenko et al. 2001]

e EDCM (extended dirichlet compound
muItinomiaI) [Xu&Akella 2008]

* DRF B02 [Amati et al. 2003]
e Log-logistic model [Cinchant et al. 2010]

fiMAN © IIELab
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Motivation for the DF Constraint

Performance

Comparison Mixture Log-logistic Divergence
Model model minimization

Robust-A 0.280 0.292 0.263

Log-logistic model is more effective because of
e [t select better feedback terms
e [t assignhs more appropriate weight for expansion terms.

Expansion terms: intersect Expansion terms: diff
sectings | vix | u | ov [l sewings | wx | u | OV

Robust-A 0.246 0.257 0.24 Robust-A 0.03 0.11 0.009
Trec- 0.242 0.245 0.234 Trec- 0.03 0.09 0.009
1&2-A 1&2-A

Robust-B 0.253 0.262 0.226 Robust-B 0.03 0.10 0.015
Trec- 0.261 0.265 0.247 Trec- 0.021 0.112 0.005
1&2-B 1&2-B
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Motivation for the DF Constraint

Performance

Comparison Mixture Log-logistic Divergence
Model model minimization

Robust-A 0.280
Trec-1&2-A 0.263
Robust-B 0.282
Trec-1&2-B 0.273
ﬂ(FDF)

Robust-A 7.21 8.41
Trec- 7.1 7.8 8.49
1&2-A

Robust-B 9.9 11.9 14.4
Trec- 12.0 13.43 14.33
1&2-B

fiMAN © [EELab

0.292
0.284
0.285
0.294

Mean IDF

0.263
0.254
0.259
0.257

SSewngs | x| | ow

Robust-A

Trec-
1&2-A

Robust-B

Trec-
1&2-B

4.33
3.84

4.36
3.82

5.095 2.36
4.82 2.5
4.37 1.7
4.29 2.0
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PRF Heuristic Constraints

[Clinchant and Gaussier, 2011a] [ Clinchant and Gaussier, 2011b]

 Document frequency constraint

— Feedback terms should receive higher weights when
they occur more in the feedback set.

Let e>0 and wyand w, two words such that
(1) IDF(w)=IDF(w5)
(2) The distribution of the frequencies of w; and w, in the feedback set
are given by:
T(wq)=(x1, x2,..., X, 0,...,0)
T(wz)=(xq, X2,..., Xj-€, €,...,0)
with Vx; > 0, and xj — €>0

(hence FTF(wy) = FTF(w,) and FDF (w,) = FDF (w;) + 1).

Then: FW (w;) < FW (w,)

fillAn & [FELab
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Understanding the DF constraint

Performance

Comparison Mixture Log-logistic Divergence
Model model minimization
Robust-A
Trec-1&2-A

Violate DF
constraint

Satisfy DF constraint,
but IDF effect is not
sufficiently enforced

Satisfy DF
constraint
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PRF Heuristic Constraints

[Clinchant and Gaussier, 2011a] [ Clinchant and Gaussier, 2011b]

 Document frequency constraint

— Feedback terms should receive higher weights when
they occur more in the feedback set.

e Document score constraint

— Document with higher score should be given more
weight in the feedback weight function.

* Proximity constraint

— Feedback terms should be close to query terms in
documents.
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Axiomatic Analysis of Translational Model
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The Problem of Vocabulary Gap

Query = auto wash
auto P(“auto”) P(“wash”)
wash
d1 How to support inexact matching?
I {car” , “vehicle”} €===» “auto”
“buy” (-><:-) “wash”
auto
dz | buy
auto
L 7 -7"‘—’:: e
- u
car_L----"_- P(“auto”) P(“wash”)

d3 | wash
vehicle” ‘ I
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Translation Language Models for IR

dl

d2

d3

illAn ©

[Berger & Lafferty 1999]

Query = auto wash

“translate” R
aUtO TIT T T “auto” | e » “autd” = = — -~ 7
wash | e s “car” Query = car wash
4
auo | p(w|d)=> p,Uld)p(w|u)
buy u /
auto )
How to estimate?
—r P(“car”|d3)
r P(“auto”) P(“wash”)
Ca. — —— ucarn . Pt(uautonl ucar”
wash | e “auto”
- s  “auto
vehicle _ I
s => ‘“vehicle”...-x===*" >
P(“vehicle”|d3)

I Lab

P.(“auto”| “vehicle”)
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Estimation of Translation Model: p.(w | u)

p.(w|u) = Pr(d mentions u =» d is about w)

Supervised learning on (document, query) pairs:
- Synthetic queries [Berger & Lafferty 99]
- Take document title as a query [Jin et al. 02]
Limitations:
1. Can’t translate into words not seen in the training queries
2. Computational complexity

Heuristic estimation based on Mutual Information: more efficient, coverage, &
effective [Karimzadehgan and Zhai, SIGIR 2010].

fillAy € [EGLab
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Axiomatic Analysis of Translational Model

[Karimzadehgan & Zhai 2012]

e |sthere a better method than Mutual
nformation?

e How do we know whether one estimation
method is better than another one?

e |sthere any better way than pure empirical
evaluation?

 Can we analytically prove the optimality of a
translation language model?

Ay © [ELab o



General Constraint 1:
Constant Self-Trans. Prob.

Cl:In order to have a reasonable retrieval
behavior, for all translation language models,
the self-translation probability should be the

same (constant).
Vv and w,p(w|w) = p(v|v)

W V

Q pw,vID) = [ p(IDPWI)] * Pamootn (v1C)
DI _ﬂv = p(lt/VlDl) * p(WIW) * Dsmooen (V1C)
v p(w,v|Dy) =pW|D3) * p(v|V) * Psmootn W|C)
D, M.

p(w|D;) = p(v|D,) If P(W|W)>p.(VIV), D1 would be
p(v|C) = p(w|C) (unfairly) favored
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General Constraint 2

C2: Self-translation probability should be larger
than translating any other words to this word.
Vu and w,p(w|w) > p(w|u)

\\4

Q: B p(w|D;)=pWw|Dy) * p(w|w)
w
D I | |
| since p(w|D;)=p(u|D,) ===y
u
D2 I The constraint must be satisfied to
ensure a document with exact
matching gets higher score.
dillAn € [FIEILab
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General Constraint 3

C3: A word is more likely to be translated to
itself than translating into any other words.
VYu and w,p(w|w) > p(u|w)

Again to avoid over-rewarding inexact
matches

fiMAN € [EELab
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Constraint 4 — Co-occurrence

C4: if word u occurs more times than word v in the
context of word w and both words u and v co-occur
with all other words similarly, the probability of
translating word u to word w should be higher.
if cw,u) > c(w,v)and )., c(w’,u) =),,, c(w,v)

¥

p(wlu) > p(w|v)

Q: “Europe” ., ; .
Europe” co-occurs more with

’

D: ..."Copenhagen ..." “Copenhagen” than with “Chicago” =)

D’: ..."Chicago ...”
p(Europe | Copenhagen) > p(Europe | Chicago)

fillAn € IIGLab
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Constraint 5 — Co-occurrence

C5: if both u and v equally co-occur with word w but
v co-occurs with many other words than word u, the
probability of translating word u to word w is higher.
if cw,u) = clw,v)and )., c(w,u) <), c(w,v)

\ 4

p(wlu) > p(w|v)

Q: “Copenhagen”

D: ...“Denmark” ...

D’: ..."Europe” ...

p(Copenhagen | Denmark) > p(Copenhagen | Europe)

T|MAN [EELE!JD 84




Analysis of Mutual Information-based
Translation Language Model

p(Xw»Xu)
p(Xw)p(Xy)

((w;u) = ZXW=O,1 qu=o,1 p(Xy, Xy)log
_ I(w;u)
P = 5 w0

It only satisfies C3:
Vuand w,p(w|w) > p(u|w)

Can we design a method to better satisfy the
constraints?

© [MHLab .




New Method:
Conditional Context Analysis

?

—

Spain J - EuropeJ
EuropeJ * Spain J
Main Idea:
...... Europe ... .... Spain ... ....
...... Europe ... .... Spain ... ....
...... Europe ... .... Spain ... ....
...... Europe ... .... France ... ....
...... Europe ... .... France ... ....
D [ELab

17IMAN €

p(Europe|Spain) high

p(Spain|Europe)

P(Spain|Europe)=3/5
P(Europe|Spain) =3/3

low
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Conditional Context Analysis: Detail

- Use the frequency of seeing word w in the
context of word u to estimate p(wju).
- See w often in the context of u =»high p(w]u)

!

clw,u) +1
Ywrcw,u) + |V]

p(wlu) =

Satisfies more constraints than Ml
However, C1 is not satisfied by either method

Vv and w,p(w|lw) = p(v|v)

fMAN © IREILab
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Heuristic Adjustment of Self-Translation
Probability

Old way (non-constant self translation)
a+1-a)pu|u) w=u

PN =V ypwiu)  weu

New way (constant self translation)

p'(ulu) = s(s = 0.5)

(1—s)p(w|u)
D=y P(V|U)

p'(wlu) =

fiMAN © IFTELab .



Conditional-based Approach Works better than
Mutual Information-based

Cross validation results

__Data | mAP | Precision @10

BL M Cond l BL M Cond

TREC7 0.1852  0.1854 0.1864%+ . 0.4180  0.42 0.418
WS)J 0.2600  0.2658 0.275%+ 0.44 0.448
DOE 0.1740  0.1750 0.1758* 0.1956  0.2043

Upper bound results

__Data | MAP_______ | Precision@10

BL MI Cond l BL MI Cond l

TREC7 0.1852  0.1885 0.1887* . 0.4180  0.42 0.446 .
WS)J 0.2600  0.2708 0.2778*+ . 0.424 0.44 0.448 .

DOE 0.1740  0.1813 0.1868*+ . 0.1913  0.1956 0.2086 .




Constant Self-Translation Probability Improves
Performance

Cross validation results

| Data | wma Precision @10

M cMI Cond CCondI MI CMI Cond CCond

TREC?7 0.1854 0.1872+ 0.1864  0.1920*7 l 0.42 0.408 0.418 0.418
WSJ 0.2658 0.267+ 0.275 0.278*7 l 0.44 0.442 0.448 0.448
DOE 0.1750 0.1774+ 0.1758  0.1844*n l 0.1956 0.2 0.2043 0.2

Upper bound results

m Precision @10
M cMI Cond  CCond l MI CMI Cond CCond

TREC?7 0.1885 0.1905+ 0.1887 0.1965*7 0.42 0.41 0.418 0.418

WSJ 0.2708 0.2717+ 0.2778  0.2800*" 0.44 0.448 0.448 0.45

DOE 0.1813 0.1841+ 0.1868  0.1953*"

filAn & [F8ILab .
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Outline

 Motivation

 Formalization of Information Retrieval Heuristics
* Analysis of Retrieval Functions with Constraints
 Development of Novel Retrieval Functions
 Beyond Basic Retrieval Models

 'Summary |{um
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Updated Answers

Why do {BM25, PIV, PL, DIR, ...} tend to perform similarly even though
they were derivied in vvens diffarant \wave?

They shar: Relevance more accurately modeled with constraints
These properties are more important than how each is derived

Why are they better than many other variants?
Other variants don’t have all the “nice properties”

Why does it seem to be hard to beat these strona baseline methods?
We don’t h We didn’t find a constraint that they fail to satisfy

Are they hitting the ceiling of bag-of-words assumption?
— If yes, how can we prove it?

- No, they have NOT hit the ceiling yet!

Need to formally define “the ceiling” (= complete set of “nice
properties”)

I Lab
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Summary: Axiomatic Relevance Hypothesis

 Formal retrieval function constraints for modeling
relevance

e Axiomatic analysis as a way to assess optimality of
retrieval models

 |nevitability of heuristic thinking in developing retrieval
models for bridging the theory-effectiveness gap

e Possibility of leveraging axiomatic analysis to improve
the state of the art models

 Axiomatic Framework = constraints + constructive
function space based on existing or new models and
theories

AN € IFGLab



What we’ve achieved so far

e A large set of formal constraints on retrieval
functions

e A number of new functions that are more effective
than previous ones

e Some specific questions about existing models that
may potentially be addressed via axiomatic analysis

* A general axiomatic framework for developing new
models
— Definition of formal constraints
— Analysis of constraints (analytical or empirical)
— Improve a function to better satisfy constraints

I Lab

& i"‘ ::'.
i riMAn ©
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For a comprehensive list of the
constraints propose so far, check out:

http://www.eecis.udel.edu/~hfang/AX.html

fillAn € [FELab
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You are invited to join the mailing
list of axiomatic analysis for IR!!!

groups.google.com/forum/#!forum/ax4ir

Mailing list: AX4IR@googlegroup.com

T|MAN I Lab %



Two unanswered “why questions” that may
benefit from axiomatic analysis

e The derivation of the query likelihood retrieval function relies
on 3 assumptions: (1) query likelihood scoring; (2)
Independency of query terms; (3) collection LM for
smoothing; however, it can’t explain why some apparently
reasonable smoothing methods perform poorly

* No explanation why other divergence-based similarity
function doesn’t work well as the asymmetric KL-divergence
function D(Q||D)

riMANn €& [EELab
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Open Challenges

 Does there exist a complete set of constraints?
— If yes, how can we define them?
— If no, how can we prove it?

e How do we evaluate the constraints?

— How do we evaluate a constraint? (e.g., should the score
contribution of a term be bounded? In BM25, it is.)

— How do we evaluate a set of constraints?

e How do we define the function space?
— Search in the neighborhood of an existing function?
— Search in a new function space?

fiMAN © IIELab

98



Open Challenges

* How do we check a function w.r.t. a constraint?
— How can we quantify the degree of satisfaction?

— How can we put constraints in a machine learning
framework? Something like maximum entropy?

e How can we go beyond bag of words? Model
pseudo feedback? Cross-lingual IR?

 Conditional constraints on specific type of
queries? Specific type of documents?

AN € IFGLab



Possible Future Scenario 1:
Impossibility Theorems for IR

 We will find inconsistency among constraints

o Wil be able to prove impossibility theorems
for IR

— Similar to Kleinberg’s impossibility theorem for
clustering

J. Kleinberg. An Impossibility Theorem for Clustering. Advances in Neural Information
Processing Systems (NIPS) 15, 2002
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Future Scenario 2:
Sufficiently Restrictive Constraints
 We will be able to propose a comprehensive

set of constraints that are sufficient for
deriving a unique (optimal) retrieval function

— Similar to the derivation of the entropy function

C. E. Shannon, A mathematical theory of communication, Bell system technical journal,
Vol. 27 (1948) Key: citeulike:1584479
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Future Scenario 3 (most likely):
Open Set of Insufficient Constraints

 We will have a large set of constraints without
conflict, but insufficient for ensuring good
retrieval performance

e Room for new constraints, but we’ll never be
sure what they are

* \We need to combine axiomatic analysis with
a constructive retrieval functional space and
supervised machine learning

Ay © [ELab .
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