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ABSTRACT
Although computing similarity is one of the fundamental challenges
of Information Access tasks, the notion of similarity is not yet com-
pletely understood from a formal, axiomatic perspective. In this
paper we show how axiomatic explanations of similarity from other
fields (i.e. Tversky’s axioms from the point of view of cognitive
sciences, and metric spaces from the point of view of algebra) do
not completely fit the problem of similarity in Information Access,
and we propose a new set of axioms which can be synthesized into a
single Similarity Information Monotonicity axiom (SIM). Directly
grounded on SIM, we then introduce a new similarity model, the
Information Contrast Model, which generalizes both Tversky’s lin-
ear contrast model and Pointwise Mutual Information, and, unlike
previous similarity models, satisfies the SIM axiom for a certain
range of values of its parameters.
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1 INTRODUCTION
Information retrieval systems are (at least partially) based on com-
puting the similarity between query and documents. Summarization,
Clustering and many other text processing applications require com-
puting the similarity between texts. Evaluation measures for text
generation tasks (such as summarization or machine translation),
computing textual similarity is the key to compare the output of
systems with the models produced by humans. And, beyond textual
similarity, applications such as collaborative recommendation are
based on estimating the similarity between users (based on their pref-
erences and behaviour) and between products (based on also on user
preferences). In summary, computing similarity is a core problem
which pervades, either implicitly or explicitly, many Information
Access tasks.
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In general, computing similarity deals with two problems: (i) how
best to represent (and possibly enrich representations of) objects;
and (ii) how best to compare object representations. In this paper
we will focus on the second step: once two objects are represented
(as sets of suitable features), how should we compute similarity
between that representations? For the sake of clarity, we will illus-
trate our analysis in terms of texts represented as bags of words, but
our formal study abstracts from which kinds of features are used
to represent objects (words, n-grams, concepts, user preferences,
syntactic/semantic relationships...) and concentrates on the problem
of comparing representations to infer similarity. Our main goal is to
deepen into the notion of similarity by providing a suitable axiomatic
characterization.

The closest references to model similarity in Information Ac-
cess come from Algebra (the notion of distance in metric spaces,
which play a role in many text processing models), from Information
Theory based models and from Cognitive Science (most notably
Tversky’s work on conceptual similarity). We will see, however, that
axiomatics from these fields are not entirely suitable to explain the
notion of similarity in the context of Information Access in general;
indeed, counterexamples can be found for many of the similarity
axioms proposed in the past.

Our first contribution in this paper is to define a new axiomatic
account of similarity based on concepts from Information The-
ory. We first postulate four intuitive axioms; identity, identity speci-
ficity, unexpectedness, dependency and asymmetricity. All of them
can be derived from a single Similarity Information Monotonicity
(SIM) axiom. A literature review shows that none of the existing sim-
ilarity models is able to satisfy our basic axioms, although different
techniques at the representation level may mitigate their potential
problems.

Our second contribution is to propose a new model to compute
textual similarity, the Information Contrast Model (ICM), which
derives directly from the SIM axiom. ICM computes similarity
between two objects as a linear combination of the individual infor-
mation quantity of each object and the information quantity of its
(multi set) union. The model generalizes multiple approaches such
as PointWise Mutual Information, Tversky’s linear contrast model,
language models or conditional probability. And, most importantly,
ICM satisfies our formal axioms for a specific range of values of its
parameters.
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2 PREVIOUS AXIOMATIC FRAMEWORKS
2.1 Metric Spaces
The most traditional axiomatic framework comes from the concept of
metric space [15, 32]. In Psychology, the assumption that similarity
can be expressed as distances in a metric space is known as the
Generalization Law [31]. The first axiom is maximality, which
states that every pair of identical objects achieve a maximal and
constant similarity:

Sim(X,X) = Sim(Y,Y ) ≥ Sim(X,Y )

However, maximality has already been objected in the context of
cognitive sciences [14]. Based on several experiments – e.g. cogni-
tion of Morse code [30] and cognition of rectangles varying in size
and reflectance [4], – many researchers claimed that the axiom of
maximality does not correspond with human intuitions. In particular,
Tversky’s experiments showed that maximality (or minimality in dis-
tance) does not hold if a larger stimulus with more signs is compared
to a smaller one with less signs: if a stimulus shows more details,
its level of perceived self-similarity increases [34]. In the context
of Information Retrieval (IR) this phenomenon is correlated with
query specificity. For instance, we can not ensure that a document
containing only the words “Good news” satisfies the user query

“Good news”. But typing the full content of an article as a query
ensures the relevance of the article as retrieved document. In both
cases, we are talking about self-similarity, but in the second case the
object contains more information.

The second axiom is triangular inequality:

Sim(X,Y ) ≤ Sim(X,Z) + Sim(Z,Y )

which has also been refuted in several cognitive experiments [29,
30]. Other studies also found evidence against the third axiom,
symmetricity (Sim(X,Y ) = Sim(Y,X)) [3, 35]. From a cognitive
point of view, the reason is that, according to human perceptions,
specific concepts tend to be closer to generic concepts than viceversa.
For instance, Tversky found that subjects perceived the concept

“North Korea” as being closer to “China” than vice versa, because
China has more salient distinctive features than North Korea. This
is also valid for the textual similarity context.

2.2 Axiomatics of Tversky and Gati
Tversky and Gati [35] tried to state axiomatics for similarity from an
ordinal perspective, defining a monotone proximity structure which
is based on three properties. The first one is dominance, which states
that replacing a different feature by a common feature increases
similarity:

Sim(X1Y1,X2Y2) < min{Sim(X1Y1,X1Y2),Sim(X1Y1,X2Y1)}

Exemplified with words as features, this implies that Sim(”brown
monkey”,”red cross”) is lower than Sim(”brown monkey”,”brown
cross”) because the second case texts share one feature.

However, this axiom is grounded on the idea of independence
across dimensions, but words – and other features – do not co-occur
randomly. For instance:

Example 2.1.

Sim(”Disney mouse”,”дame Mickey”) >
Sim(”Disney mouse”,”дame mouse”)

Even if they do not share any word, ”Mouse Disney” can be
closer to ”game Mickey” than ”Disney mouse” to ”game mouse”,
contradicting the dominance axiom. Notice that Mickey is com-
monly associated with the Disney character, while “game mouse”
can be associated with other contexts, for instance computer mouses
and games.

The second axiom is consistency, which states that the ordinal
relation between similarities along one dimension is independent of
the other dimension.

Sim(X1Y1,X2Y1) < Sim(X3Y1,X4Y1) ⇔

Sim(X1Y2,X2Y2) < Sim(X3Y2,X4Y2)

Again, this axiom is grounded on the assumption that features are
mutually independent. We can found also counter samples for this in
the context of textual similarity. For instance, the word “mouse” is
closer to “Mickey” than to “hardware” in the context of “Disney”,
but not in the context of computers and external devices (“Wire-
less”).

Example 2.2.

Sim(“Mouse Disney”,“Mickey Disney”) >

Sim(“Mouse Disney”,“Hardware Disney”)

Sim(“Mouse Wireless”,“Mickey Wireless”) <

Sim(“Mouse Wireless”,“Hardware Wireless”)

The third constraint, transitivity, is grounded on a definition of
“betweenness” which assumes the validity of consistency. Therefore,
Example 2.2 also contradicts this third axiom.

2.3 Feature Contrast Model
The most popular study of Tversky [34] about similarity is the Fea-
ture Contrast Model. Assuming that objects can be represented as
sets of features, he defined three basic axioms: matching, mono-
tonicity and independence. Once more, all of them are based on
the idea that features are mutually independent. Matching states
that similarity can be computed as a function of the intersection
and difference. Monotonicity is closely related with Dominance,. It
states that increasing the intersection or decreasing the difference
between sets, increases the similarity. But, again, we know this
is not always true for texts. Because words do not occur indepen-
dently from each other, adding different words to a pair of texts may
increase their similarity, as in this example where “Desktop” and

“Computer” bring “Apple” and “Mouse” to the context of computers.

Example 2.3.

Sim(“Apple Desktop”,“Mouse Computer”) >

Sim(“Apple”,“Mouse”)

Example 2.1 (from previous section) also contradicts monotonic-
ity, given that similarity increases in spite of the fact that the inter-
section decreases and the difference increases.

The third property is (independence). Its formalization is less
intuitive than other axioms. It states that, being the intersection
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(X ∩ Y ) and the differences (X \ Y,Y \ X) the three components of
similarity, if (X,Y ) and (X′,Y ′), share the same two components
as (W ,Z) and (W ′,Z′), while (X,Y ) and (W ,Z) share a third
component as well as (X′,Y ′) and (W ′,Z′), then:

Sim(X,Y ) > Sim(W ,Z) ↔ Sim(X′,Y ′) > Sim(W ′,Z′)

Example 2.2 also contradicts this property. Note that the first and
third similarity instances share the difference sets (X \Y =“Mouse”
and Y \ X =“Mickey”). The second and fourth similarity instances
also share the difference, and the first and second, as well as the third
and fourth share the intersection component (“Disney” and “Wire-
less”). The independence axiom is violated because a human may
understand that “Mouse” is closer to “Mickey” than to “Hardware”
in the context of “Disney” but not in the context of “Wireless”.

2.4 Axiomatics in Information Retrieval
Information retrieval is grounded on similarity principles, in the
sense that the basic IR scenario can be interpreted as the problem of
estimating the similarity between a certain user query and documents
in a collection. Fang and Zhai presented a seminal work about
the axiomatics of information retrieval. In their first proposal [8]
they stated six axioms, which were eventually refined to only three
general constraints in [9]: (i) Adding one query term to a document
must increase the score, (ii) adding a non-query term to a document
must decrease the score and (iii) the amount of increase in the score
due to adding a query term to a document must decrease as we add
more and more query terms.

The first and second axioms are, in fact, equivalent to Tversky’s
monotonicity axioms when we interpret the occurrence of words as
features. The third constraint is an extension that determines the
effect of new common features in similarity when they are added
progressively. In any case, accepting the first axiom is necessary
to assume the third one. Therefore, the counter example shown for
Tversky’s monotonicity axiom also hold here, and they derive from
the need of assuming independence between words.

In summary, according to our analysis, existing axiomatics do not
fit the concept of similarity in the context of information access, and
one of the main reasons is that previous proposals tend to assume
independence between features, a condition that is not always met.
In the following section we propose a new set of axioms that take
this problem into account.

3 PROPOSAL: AXIOMATICS FOR
SIMILARITY IN INFORMATION ACCESS
SCENARIOS.

3.1 Notation and Representation
3.1.1 Objects as Multisets of Features. Let us assume that

an object is represented as a multi-set (a set with possibly repeated
elements)X of observed features belonging to a feature domain Ω of
features, i.e. X ≡ {x1,x2..,xn } ∈ Ωn . For simplicity, in all our exam-
ples features will be words; but all our reasoning is feature-agnostic
and equally valid for other representation features of information
pieces, such as n-grams, concepts, syntactic and semantic relation-
ships, meta-data, user preferences in recommendation scenarios,
followers in a network, etc.

3.1.2 Operators. Therefore, we can apply the multi-set union,
intersection and inclusion operators over objects. Note that, accord-
ing to the definition of multi-set, the union and intersection rules cor-
respond with the maximal and minimal cardinalities: {abb}∪{cb}) =
{abbc} and {abb} ∩ {cb} = {abc}. We will also use the multi-set sum
operator, X +Y, using the simplified notation XY to denote it. Us-
ing the same sample sets, {abb} + {cb} = {abbcb}. If both multi-sets
have no features in common, their sum is equivalent to their union.

3.1.3 Probabilistic Space. Let us consider a set of informa-
tion object samples, D, where each sample, d ∈ D, is represented
as a feature multi-set. in order to model the problem of similarity in
probabilistic terms, we need to interpret these multi-sets as events.
In the literature, this probabilistic space have been defined in sev-
eral ways. For instance, the traditional IR models uses the space of
documents as events; language models consider the potential word
sequences that could be generated, and word embeddings (such as
word2vec, Glove, etc.) consider contextual windows around the
word to be represented as sample set.

In general, features are accumulative. For instance, observing a
sequence of words {abc} implies observing the subsequence {ab}
in terms of language models. Therefore, considering objects as
multi-sets of observed features, we can generalize the likelihood of
an object as the probability of observing a superset in the sample
space:

(
P (X) = Pd ∈D (X ⊂ d )

)
. Accordingly, the joint probability

of two texts X and Y is the probability of finding the union of both
feature multi-sets:

P (X,Y ) = P (X ∪Y ) = Pd ∈D (X ∪Y ⊂ d )

The idea is also valid for other contexts. For instance, in collaborative
recommendation a “like” from an user is a product feature. The
probability associated to this feature would be the probability of a
product to achieve a “like” from this user.

Note that the concept of probability, and therefore similarity, is
related with the nature of the sample set. Therefore, different sample
sets lead to different notions of similarity. Considering large contexts
(e.g. full documents may provide evidence about topical similarity
(which is the kind of similarity used in Information Retrieval), but
considering small contexts may provide evidence about interchange-
ability (as in word embedding models). Our axioms do not prescribe
what are the events (or contexts), and therefore can accommodate
different notions of similarity depending on how events are defined.

3.2 Axioms
The first intuitive idea is that changing an object (by removing or
adding information) decreases its similarity with the original. In an
intuitive manner, “if something changes, it is not the same anymore”.
Formally:

AXIOM 1. Identity Axiom: Adding or removing features to an
object decreases the similarity to the original:

Sim(X,X) > Sim(X,XY ) and Sim(XY,XY ) > Sim(XY,X)

For instance, although we can not state axiomatically how close
is “Apple Mouse” to itself, we can at least say that it is more similar
to itself than to “Apple” or to “Apple Mouse Desktop”. This axiom
is actually a relaxed version of maximality: we postulate that any
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object is more similar to itself than to any other object, but not that
its self-similarity is maximal.

The reason to avoid postulating Maximality is that, according to
Tversky’s findings, more informative texts are more self-similar. We
reflect this idea with a second axiom:

AXIOM 2. Identity Specificity Axiom: Adding new features to
a text increases its self-similarity. Being Y , ∅:

Sim(XY,XY ) > Sim(X,X)

For instance, in the context of Information Retrieval, being a query
exactly like a document content, the more both contain information,
the more the relevance is ensured.

We now depart from Tversky’s axioms. We have seen that their
main drawback, in the context of textual similarity, is that Tversky
does not take into account the dependencies between features across
intersection and differences of objects [10]. Therefore, instead of
grounding axioms on the independence assumption, we formal-
ize dependency with two new axioms. The first one states that
adding a new feature decreases similarity to a greater extent if it
is unexpected. For instance, “Mickey mouse” is closer to “Mickey”
than “Mickey Apple”, because ”Apple” is less expected in the con-
text of ”Mickey” than ”mouse”.

AXIOM 3. Unexpectedness Axiom: An added feature changes
the text more if it is less expected:

If P (Y|X) < P (Y ′ |X) then

Sim(X,XY ) < Sim(X,XY ′)

We also want to incorporate the possibility that adding different
features to different objects may bring them together (instead of
necessarily making them less similar as it is postulated by Tver-
sky). For instance, Sim(“Apple Desktop”, “Mouse Computer”) >
Sim(“Apple”,“Mouse”). We postulate that this happens when the
conditional probabilities of finding one text given the other (and
viceversa) increase:

AXIOM 4. Dependency Axiom: Adding new features in both ob-
jects increases their similarity whenever their respective conditional
probabilities grow:

If P (XZ|YZ′) > P (X|Y )

and P (YZ′ |XZ) > P (Y|X)

then Sim(XZ,YZ′) > Sim(X,Y )

For instance, in the case of IR, suppose that there is no correspon-
dence between a query and a document: different words, different
domain. So, the probabilities P (q |d ) and P (d |q) are extremely low.
Then we add the name of an artist in q and his artistic name in d , then
both P (q |d ) and P (d |q) will be higher and the estimated similarity
should increase.

Notice that Tversky’s monotonicity axiom is not compatible with
the dependency axiom given that a new feature in one text represents
an increase in the difference component (see Proof 1 in the additional
material).

Finally, there are multiple studies confirming that similarity is
inherently asymmetric [34], and that specific objects are closer to
general objects than vice versa. Assuming that text specificity grows

Figure 1: Red and white apples are considered the most similar
object pairs by humans in the left and right side, respectively.

when adding features, we formalize an asymmetricity axiom in the
following way:

AXIOM 5. Asymmetricity: An object is more similar to any of
its parts than viceversa:

Sim(XY,X) > Sim(X,XY )

4 SIMILARITY INFORMATION
MONOTONICITY AXIOM

We will now show that we can join previous axioms into an unique
axiom that we call Similarity Information Monotonicity axiom (SIM).

4.1 Intuitions and Formalization
SIM is based on two main intuitions. The first one is that the
proximity of objects is related with their Information Quantity
Let us consider Figure 1. When asking people for the most similar
pair of apples, most of them answer that, in the left case, the red
pair are more similar than the rest, while when presenting the right
distribution, most of them assert that the white apples are the most
similar. In both cases, the most similar apples are identical. The
key point is that the less likely the objects are (or the more they are
specific), the more they are similar to themselves. This matches
with Tversky’s observation that specific features have more effect
in similarity than generic features. The specificity of objects can be
measured in terms of Information Quantity (I (X) = −loд(P (X)))

The second intuition is related with the fact that we can not dissect
events into intersection or difference components. This assumption
causes inconsistencies in Tversky’s axioms with respect to obser-
vations when there are dependencies between the intersection and
difference sets between objects. The SIM axiom is grounded on
the information quantities of single objects and the information
quantity of their union, that is, their joint probability. Notice that

both the Pointwise Mutual Information
(

P (x,y )
P (x ) ·P (y )

)
and the condi-

tional probability
(
P (x |y) =

P (x,y )
P (y )

)
are expressed in terms of joint

and single probabilities. The SIM axiom states that:
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Similarity Information Monotonicity Axiom: If the Pointwise
Information Quantity and the conditional probabilities between two
objects grows, then their similarity grows. Formally if:

4PMI (X,Y ) ≥ 0 ∧ 4P (X|Y ) ≥ 0 ∧ 4P (X|Y ) ≥ 0

Then 4Sim(X,Y ) ≥ 0. In addition, if at least one increase is strict
then the similarity increase is strict.

In other words, SIM basically states that Pointwise Mutual Infor-
mation and conditional probabilities are the two basic dimensions of
similarity, and similarity is monotonic with respect to both of them.
If both grow, then the similarity grows. In the case of a trade-off be-
tween both, the similarity growth depends of the particular similarity
metric.

SIM can be expressed in terms of increase of the joint and single
information quantities (see Proof 2):

THEOREM 4.1. SIM is equivalent to saying that there exists a
positive similarity increase when both the single information quan-
tity increase and their sum are higher than the joint information
quantity increase:

4I (X) + 4I (Y ) ≥ 4I (X ∪Y ) ≡ 4PMI (X,Y ) ≥ 0

and 4 I (X) ≥ 4I (X ∪Y ) ≡ 4P (X|Y ) ≥ 0
and 4 I (Y ) ≥ 4I (X ∪Y ) ≡ 4P (X|Y ) ≥ 0

4.2 Formal Properties
The most important aspect of SIM is that it synthesizes all the
proposed basic axioms. Proofs 3, 4, 5 and 6 in the additional material
of this article prove that:

THEOREM 4.2. Satisfying SIM is a sufficient condition to satisfy
the identity, identity specificity, unexpectedness and dependency
axioms.

Given that SIM is defined in a symmetric manner, it can not be a
sufficient condition for the Asymmetricity axiom. In fact, SIM does
not say anything about the situation considered by the Asymmetricity
axiom, given that the Pointwise Mutual Information does not change:

PMI (XY ,X) = PMI (X,XY )

and the conditional probabilities grow in opposite directions:

p (XY |X) − p (X|XY ) = −
(
p (X|XY ) − p (XY |X)

)
Therefore, the SIM conditions never hold.

Although we have discarded Tversky’s axioms due to the need
for considering dependencies between features, SIM has a direct
correspondence with Tversky’s Monotonicity axiom if we assume
independence between intersection and difference set components.
The following theorem states this (see Proof 7 in the additional
material)

THEOREM 4.3. Assuming independence between intersection
and difference set components:

I (X ∪Y ) = I (X ∩Y ) + I (X \ Y ) + I (Y \ X)

then the SIM axioms are equivalent to the following statement:

4I (X ∩Y ) ≥ 0 and 4 I (X \ Y ) ≤ 0 and 4 I (Y \ X) ≤ 0

Note that the monotonicity axiom states that similarity grows
when the intersection set grows nor the differences decrease. Given
that adding elements to a set necessarily increases its information
quantity:

I (XY ) ≥ I (X)

we can say that:

THEOREM 4.4. Assuming independence between intersection
and difference set components, satisfying SIM is a sufficient condi-
tion to satify Tversky’s Monotonicity axiom.

Going further, if we assume independence and equiprobability
between features, then the information quantity of a feature set
corresponds with its size (I (X) ∝ |X|) and therefore:

THEOREM 4.5. Assuming independence and equiprobability of
features, SIM conditions are equivalent to stating that the intersec-
tion set size grows and the difference set size decrease:

4|X ∩ Y| ≥ 0 and 4 |X \ Y| ≤ 0 and 4 |Y \ X| ≤ 0

4.3 SIM as the Basis of Similarity
There are a number of reasons to believe that SIM could be the basic
axiom of similarity:

(1) It synthesizes the proposed basic axioms (identity, identity
specificity, unexpectedness and dependence).

(2) It models the traditional pointwise mutual information and
the conditional probabilities as complementary components
of similarity; and

(3) it has a direct correspondence with Tversky’s axioms when
assuming independence between intersection and differ-
ence components.

5 STUDY OF CURRENT SIMILARITY
MODELS

In this section, we will see that, in general, current models do not sat-
isfy our axioms, but they include additional mechanisms to mitigate
this limitation.

5.1 Objects as Points in a Metric Space
Many similarity measures are grounded on the idea that object fea-
tures can be represented as points in a metric space, which satisfies
maximality, triangular inequality and symmetricity axioms. Typi-
cally, documents are modeled as vectors of word frequencies, and
similarity is computed with metric distances such as euclidean or
cosine.

Our identity axiom is satisfied, given that it is a relaxed version
of maximality. However, maximality is not compatible with identity
specificity: in metric spaces, every document is maximally similar
to itself regardless of its specificity. Our unexpectedness axiom is
also violated, given that features contribute to the overall similarity
in a mutually-independent way.

In practice, this drawback of metric space models is mitigated by
giving more weight to features with high specificity (or low likeli-
hood). For instance, the cosine distance, which outperforms other
measures such as the euclidean distance does not reward features if
they are salient in both information pieces. For instance:

Cosine ((2,10), (1,12)) = Cosine ((2000,10), (1000,12))
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The popular tf.idf feature projection function reduces the weight
of words that are frequent in the collection. Notice that the second

component loд
(

1
p (w )

)
of the tf.idf actually matches information

quantity, assuming the document collection as sample space. Stop-
word removal also discards frequent features. However, identity
specificity is not strictly satisfied, given that these models assume
independence across features.

On the other hand, metric space measures do not consider the
probabilistic dependency relationships between features. There-
fore, the dependency and unexpectedness axioms are not satisfied.
However, current approaches mitigate this problem at the represen-
tation level. One alternative is enriching texts by adding informa-
tion from ontologies such as WordNet, or from related documents
(pseudo-relevance feedback). Another approach, used by distribu-
tional semantics techniques such as Latent Semantic Indexing [7]
and compositional distributional semantics [25], consists of collect-
ing distributional information from the corpus and encoding it in
high-dimensional vectors, obtaining a new representation of texts.
The effect is that two texts with mutually dependent words will
be enriched with similar information, thus increasing the overlap
between them when computing similarity.

In this line, in recent years, neural networks have been used to map
sentences into fixed-length vectors and then perform comparisons
on these representations [23, 27]. In most cases, instead of applying
metric distances, word similarity is estimated as the product of
their corresponding vectors. Previous research has shown that the
most popular representation algorithms (word2vec) converges into
Pointwise Mutual Information (PMI) when computing the product
of word vectors [2, 17].

(
〈 ~vw , ~vw ′〉 ≈ PMI (w ,w ′)

)
PMI is analyzed

in further sections, having other limitations in terms of axiomatics.
The compositionality of neural network language models for

longer text pieces is still an open issue. In order to solve this issue,
some of the most effective approaches to compute sentence simi-
larity consist of combining this model with alignment mechanisms.
These approaches are described in the following section. However
linguistic units longer than words have been also projected into low
dimensions as well as other features such as PoS tags and topic
identifiers [33].

5.2 Objects and Transformations: Editing
Distances

Another perspective consists of considering objects as things that can
be transformed into other objects. In psychology, this corresponds
with the transformational approach proposed by Hahn and Charter
[11]. In the context of text processing, an example of editing based
measure is WER, [26] which have been used to evaluate the perfor-
mance of Machine Translation and Speech Recognition systems. An
important strength of transformational models is that they are able
to capture and align structures.

Some word alignment based approaches have achieved compet-
itive results [12, 16, 21, 22] in the context of Semantic Textual
Similarity tasks. The key point is that the lack of unexpectedness
and dependency is mitigated by considering semantic distances be-
tween words (instead of substitutions): at the representation level,
words are replaced by vectors of values in a reduced dimensionality
space, or vectors of statistically related words. A measure like this

outperformed 89 systems in the 2013 Semantic Textual Similarity
shared task [1]. Some approaches also consider word order [18] and
phrases [23].

However, there are two aspects that need to be solved. First, the
alignment processes does not capture the dependencies between
components in each object. The second one is that the similarity
between structures is again an open issue. In principle, when as-
suming independence between transformational steps and structures,
unexpectedness and dependency axioms can not be satisfied.

5.3 Texts as Feature Sets
Another family of similarity models follows the assumption that ob-
jects to be compared can be represented as sets of features. They are
based on Tversky’s axioms (matching, monotonicity and indepen-
dence). One of the key contributions of Tversky is the representation
theorem which states that similarity can be modeled as a linear func-
tion of the intersection and differences of sets; this is the Tversky
linear contrast model:

Sim(X,Y ) = α1 f (X ∩Y ) − α2 f (X \ Y ) − α3 f (Y \ X)

Where f is a certain function which increases across subsumed sets
(f (X) < f (X ∪ Y )). This model fails to satisfy expectedness and
dependency given that the difference component is assumed to be
independent from the intersection between objects.

The parameterization (α2 and α3), on the other hand, captures
asymmetricity, and the linear contrast model captures identity speci-
ficity, given that:

Sim(X,X) = α1 f (X ∩ X) − α2 f (X \ X) − α3 f (X \ X) =

= α1 f (X) − α2 f (∅) − α3 f (∅) = α1 f (X)

Therefore, self-similarity is not the same for every object. Assuming
that f is related with the information quantity, identity specificity is
satisfied.

Tversky studies showed that the parameterization depends on each
particular scenario, and estimating the parameters is not straight-
forward. As an alternative, Tversky proposed the Ratio Contrast
Model:

Sim(X,Y ) =
α1 f (X ∩Y )

α2 f (X \ Y ) + α3 f (Y \ X) + α4 f (X ∩Y )

An advantage of this model is that it is easier to parameterize.
Actually, whenever α1 = α4 the relative ordering between similar-
ity instances values is not affected by the α1 value, (See Proof 8).
Therefore, only the relative value of α2 and α3 must be estimated in
order to keep a consistent ordering between similarity values. The
drawback for the ratio formulation is that identity specificity is no
longer satisfied (see Proof 9 in the additional material).

Most set-based similarity measures can be derived from the ra-
tio contrast model, taking the set size as salience function f . [20]
contains a comprehensive description of these measures. Fixing dif-
ferent values for 〈α1,α2,α3,α4〉 we obtain measures such as Jaccard,
(〈1,1,1,1〉), Precision (〈1,1,0,1〉), Recall (〈1,0,1,1〉), Dice coeffi-
ciente (〈2,1,1,2〉), Anderberg coefficient (〈1,2,2,1〉) or First Kul-
czynski coefficient (〈1,1,1,0〉).
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5.4 Objects as Sets of Events: Measures based on
Information Theory

Other similarity models consider that object features are independent
events with a certain information quantity and probability. In this
line, Lin proposed a theoretical framework for similarity based on
information theory [19]. Given a set of formal assumption, he
obtains the Similarity Theorem, which states that: The similarity
between X and Y is measured by the ratio between the amount of
information needed to state the commonality of X and calY and the
information needed to fully describe what X and Y are:

Sim(X,Y ) =
loдp (common(X,Y ))

loдp (description(X,Y ))

where common(X,Y ) is a proposition that states the commonalities
between them, and common(X,Y ) is a proposition that describes
what X and Y are.

For string similarity, Lin proposed the following similarity model,
considering words as independent features:

Lin(X,Y ) =
2 ×

∑
x ∈X∩Y I (x )∑

x ∈X I (x ) +
∑
y∈Y I (y)

This expression matches Tversky’s Ratio Contrast Model, if we use
information quantity (− log P (X)) as f function [5]. Consequently,
it inherits its limitations: it does not satisfy identity specificity, unex-
pectedness and dependency. In addition, assumption 4 (maximality)
in Lin’s work intrinsically contradicts the identity specificity con-
straint.

Cazzanti and Gupta [5], tried to improve Lin’s distance by apply-
ing the linear contrast model with fixed parameters instead of the
ratio.

RES = f (X ∩Y ) − 0.5f (X \ Y ) − 0.5f (Y \ X)

where f salience function is the conditional entropy of random
objects R regarding the observed features. ( f (X) = H (R |X ⊂ R)).
Basically, this salience function ensure that unfrequent features have
more weight than frequent features. The interesting aspect of RES
is that it captures identity specificity. However, it has the same
limitations than Lin’s distance in terms of unexpectedness and de-
pendency. More explicitly , RES satisfies Tversky Monotonicity
axiom (Property 8 in [5]) which is not compatible with the depen-
dency axiom. As well as in the case of Lin distance, the underlying
drawback is that the dependence between features in the differences
and intersection is never considered. Regarding the asymmetricity
axiom, these measures state fixed parameters that make the measure
symmetric. There exists the possibility of tuning them for satisfying
asymmetricity.

In general, the most interesting aspect of these models is that they
are able to manage the specificity of features in the own similarity
measure, instead of applying a previous feature projection functions
such as tf.idf or stop-word removal.

5.5 Objects as Probabilistic Density Functions
In [6], Cha et al. describe 65 different similarity measures based
on comparing probabilistic density functions. This perspective has
a remarkable generalization power and, in fact, measures based on
metric spaces and feature sets can be interpreted as density function
similarities [6].

Again, a common drawback of all these measures is that they do
not satisfy unexpectedness and dependency. The reason is modeling
objects as probability distributions does not allow to infer statistical
dependencies across objects.

In addition, none of them comply with identity specificity, because
a distribution is equally similar to itself regardless of how much
information it contains. Even measures based on Shannon’s entropy
[6] assign a maximal similarity (or minimal distance) to identical
distributions. Consider the most paradigmatic measure, Kullback-
Leibler divergence. Being Pi and Qi the probability of the feature i
in the object P or Q , their divergence is

dkl ≡
∑
i
Pi ln

Pi
Qi
.

Now, if Pi = Qi for all i, then : dkl =
∑
i Pi ln 1 = 0. The same

happens with other distribution entropy based measures such as
Jeffreys, K divergence or Jensen-Shanon.

In summary, existing distribution based measures are not able
to capture the identity specificity and dependency based axioms.
In addition, although they are able to generalize geometric and set
based measures, modeling similarity in this way does not allow to
apply feature projection functions to mitigate these lacks.

5.6 Objects Generated by Probabilistic
Distributions: Language Models

Another perspective consists of considering objects as single events
generated by probabilistic distributions. Then, the similarity of
objects is the likelihood of objects to be produced by the same
probabilistic distribution. In text objects, this is the case of language
models. In the basic language model approach proposed by Ponte
and Croft [28] in the context of information retrieval, the similarity
between a query and a document d is estimated as the probability
that the query is produced by a probabilistic distribution θd inferred
from the document d. (Sim(Q ,D) = p (Q |θD )) Assuming that θD is
a multiple Bernouilli distribution:

p (Q |θD ) =
∏
w ∈Q

p (w |D)
∏
w<Q

(1 − p (w |D))

where p (w |D) is estimated as f r eq (w,D )
|D | .In practice, this requires a

smoothing process in which the probability of unseen query words
is estimated from the whole collection. Many improvements have
been proposed since then. For instance, Hiemstra and Kraaij [13]
and Miller et al. [24], proposed a variation based on multinomial
word distributions.

In general, language models can satisfy identity and identity speci-
ficity. For instance, the last component in the model proposed by
Zhai and Lafferty [37] is the sum of probabilities of query terms in
the collection (..+

∑
w ∈Q p (w |C )). This component is not considered

given that it does not affect to the document ranking in a document
retrieval task; but it would increase the self similarity of big queries
as our axiom requires.

Strictly speaking, unexpectedness can not be satisfied: It is not
possible to estimate the dependency between unseen query words
and the document, given that the probability distribution is inferred
from the document. However, according to the analysis in [37] and
[36], the smoothing techniques have a connection with the idf effect,
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and therefore they mitigate non-compliance with our unexpectedness
axiom.

Dependency cannot be satisfied as well, given that there is no
statistical dependence estimated from the document that connects
different features from different objects. In addition, for computa-
tional reasons, language models in practice use multidimensional
distributions that assume independence between features; therefore,
the dependence within intersection and difference component sets
is not considered. The use of n-grams (instead of single words)
mitigates this problem.

5.7 Objects as Single Events in a Whole
Probabilistic Distribution

The last approach consists of considering objects as single events in
a global probabilistic distribution. From this perspective, in psychol-
ogy, Shepard proposed to model similarity as the probability of one
stimulus given another stimulus [31]: Sim(X,Y ) = P (X|Y ).

The strength of the conditional probability as similarity model
is that it trivially satisfies dependency and unexpectedness, given
that adding different features to the second object can increase the
estimated similarity. For instance:

P (”Computer”|”Apple Desktop”) > P (”Computer”|”Apple”).

The main limitation of conditional probability as similarity mea-
sure is that it does not comply with identity specificity, given that the
self similarity is maximal and constant for every object (P (X|X) =
1).

The other well known approach is Pointwise Mutual Information
(PMI), which is based on the idea that the more two objects are
statistically independent, the less they are similar. PMI is estimated
as:

PMI = log
(

P (X,Y )

P (X) · P (Y )

)
which is zero when both events are independent. PMI can be also
expressed in terms of information quantity:

PMI = I (X) + I (Y ) − I (X ∪Y )

PMI have been used in multiple approaches to estimate pairwise
word similarity. It also has been employed to predict concept simi-
larity, by estimating their information quantities according to their
depth in the hierarchical ontology.

As well as conditional probabilities, PMI satisfies dependency
(see Proof 10). But the main strength of PMI is that, unlike the
previous models, it captures the identity specificity case. In particular,
the self similarity for any object corresponds with its Information
Quantity:

PMI (X,X) = log
(

p (X,X)

p (X) ∗ p (X)

)
= −loд(p (X))

The main lack of PMI is that (as its name suggests) it focuses
only on the common features. For this reason, it cannot satisfy
unexpectedness (See Prove 11)

5.8 Summary of Theoretical Analysis of Measures
Let us summarize the conclusions about this axiomatic analysis.
Identity is satisfied by every model, but only measures based on the
linear contrast ratio, language models and mutual information satisfy

identity specificity. Most similarity models ignore this case, given
that self similarities are not usually compared to each other in real
scenarios. Only the conditional probability itself is able to satisfy
unexpectedness in a strict manner.

However, this lack have been mitigated by techniques at represen-
tation level, such as text enrichment, pseudo relevance feedback or
distributional semantics. The conditional probability also satisfies
dependence at the cost of identity specificity. On the other hand, PMI
is able to satisfy at the same time dependence and identity specificity,
but not unexpectedness.

Finally, the asymmetricity is not the focus of many of the models.
The reason is that, in most evaluation scenarios, the similarity ground
truth annotated by humans for evaluation purposes is symmetric.
In other scenarios, such as IR, texts (documents in a collection)
are compared with one reference text (e.g query). Therefore, the
asymmetric nature of similarity does not play a crucial role.

In general, we can extract the same conclusion than from the
similarity information monotonicity axiom. Interpreting objects as
single events in a whole distribution leads to conditional probability
and Pointwise Mutual Information, which in combination are able
to satisfy every axiom.

6 THE INFORMATION CONTRAST MODEL
(ICM)

Assuming the SIM axiom as the core of similarity, we now derive
the Information Contrast Model1. The SIM axiom suggests that a
desirable measure should consider the relative increase of single,
sum and union information quantities. That is, I (X) and I (Y ) have
a positive effect on similarity while I (X ∪Y ) has a negative effect.

Definition 6.1. The Information Contrast Model is the linear
combination of the information quantity of each object and their
union:

ICMα1,α2,β (X,Y ) = α1I (X) + α2I (Y ) − βI (X ∪Y )

This measure can be interpreted as a generalized parametric ver-
sion of Pointwise Mutual Information, being equivalent to:

ICMα1,α2,β (X,Y ) = loд *
,

p (X ∪ Y )β

p (X )α1 · p (Y )α2
+
-

6.1 Formal Properties
The most important property of ICM is that, it satisfies SIM under
certain parameter ranges (see Proof 12):

THEOREM 6.2. The information contrast model satisfies the
similarity information monotonicity axiom when α1 + α2 > β >
α1 > α2.

The inequality α1 > α2 ensures that the measure is asymmetric,
rewarding the similarity from the most specific text to the most
general text. In a symmetric scenario, being α1 = α2 = 1, β must
satisfy 2 > β > 1. Note that, this theorem implies that ICM is able
to capture all the axioms defined in this article.

ICM has a direct relationship with Pointwise Mutual Information
and conditional probabilities depending of the parameters (See Proof

1We have selected this name by analogy with the Linear and Ratio Contrast model
proposed by Tversky.
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13):

α · log(P (X |Y ) ∗ P (Y |X )) > ICMα ,α ,β > α · log(PMI (X ,Y ))

Therefore, being α1 = α2 = α , the conditional probabilities and the
mutual information profile the limits of ICM depending on the β
value. In other words, the mutual information and conditional
probabilities are actually extreme cases of a generic measure.

ICM is also closely related with set and information theory based
measures. It is a generalization of the linear contrast model. In fact,
assuming independence between component sets and information
quantity as salience function, both ICM and the linear contrast model
are equivalent.

ICMα1,α2,β (X,Y ) =

(α1 +α2 − β )I (X∩Y ) − (β −α1) (I (X \Y )) − (β −α2) (I (Y \X))

In addition, there is a strong connection between ICM and lan-
guage models as they are applied in IR. Language models estimate
the similarity between text as the probability of the first text under
the distribution derived from the second text.

ICMα1,α2,β (q,d ) = loд
P (q,d )β

P (q)α1 · P (d )α2

Assuming a fixed P (q) for all the retrieved documents, and α2 = β :

ICMα1,α2,β (q,d ) ∝ loд
P (q |d )P (q)β

·P (d )α2
= β log(P (q |d )) ∝ P (q |d )

Therefore, according to ICM, language model in IR could be
improved by considering the information quantity of candidate doc-
uments (P (d )) and a certain parameter.

7 EXPERIMENTAL PROOF OF CONCEPT
In this section, we focus on the counter examples that we used in
Section 2 to invalidate, in the context of textual similarity, some of
the axioms proposed elsewhere.

To do this, we need to estimate the information quantity of phrases
such as “Mickey Mouse” or “Apple desktop”. We have used sta-
tistics from the Flickr search facility, which gives exact numbers
(Web search engine statistics are larger, but search engines only offer
approximate statistics on the number of hits and the way of determin-
ing the figures depends on the length of the query). For instance, for
the word set “Mickey apple”, Flickr finds 2,141 documents. Given
that Flickr stores around 13,000 million photos, it represents a prob-
ability of 0.164 ∗ 10−6. We have made this estimation for every text
in the examples, and we have computed ICM for each pair of texts.
We have set ICM parameters as α1 = 1.2,α2 = 1,β = 1.5, arbitrary
values that fit into the ranges stated in our theoretical analysis.

Table 1 shows the results. The first column contains the similarity
inequality that we expect intuitively. The second and third columns
contain the ICM values of the leftmost and rightmost text pairs in
the inequality, and the last column checks if ICM agrees with our
intuitions. The first example, for instance, shows that ICM assigns
a higher self-similarity to ”apple computer” than to ”apple”, in
agreement with our identity specificity axiom and in disagreement
with the maximality axiom from the state of the art. Overall, ICM
satisfies all examples for our axioms, and violates previous axioms
in the cases where they predict counter-intuitive results. This is of
course anecdotal evidence rather than a quantitative confirmation of

Table 1: Capturing Counter Samples with ICM

Similarity instance comparison ICM1 ICM2
Counterexample for maximality axiom.
Example for identity specificity axiom

Sim (“Apple Computer”, “Apple Computer”) > 1.32 0.88 4

Sim (“Apple’, “Apple’)
Counterexample for symmetricity axiom

Sim (“North Korea”, “China”) > 2.86 -0.79 4

Sim (“China”, “North Korea”)
Counterexample for dominance axiom

Sim (“Disney Mouse”, “Game Mickey”) > 1.32 0.88 4

Sim (“Disney Mouse”, “Game Mouse”)
Counterexample for consistency and independency axioms (I)
Sim (“Mouse Disney”, “Mickey Disney”) > 2.86 -0.79 4

Sim (“Mouse Disney”, “Hardware Disney”)
Counterexample for consistency and independency axioms (II)

Sim (“Mouse Wireless”, “Hardware Wireless”) > 2.6 2.47 4

Sim (“Mouse Wireless”, “Mickey Wireless”)
Counterexample for monotonicity Axiom

Sim (“Apple Desktop”, “Mouse Computer”) > 4.03 -2.86 4

Sim (“Apple”, “Mouse”)
Example for identity axiom

Sim (“Apple Mouse”, “Apple Mouse”) > 4.06 2.29 4

Sim (“Apple Mouse”, “Mouse”)
Example for unexpectedness

Sim (“Mickey”, “Mickey Mouse”) > 2.59 1.51 4

Sim (“Mickey”, “Mickey Apple”)

the validity of ICM, but it serves as a proof-of-concept of how ICM
works.

8 CONCLUSIONS
In this paper we have shown how axiomatic explanations of simi-
larity from other fields (Tversky’s axioms from the point of view
of cognitive sciences, and metric spaces from the point of view of
algebra) do not fit the problem of computing textual similarity, and
we propose a new axiomatics. We have then performed a formal
analysis of existing approaches to compute similarity, and we have
seen that no previous model satisfies all our axioms. In many cases
this is, however, mitigated with an enrichment at the representation
level (for instance, idf weights add a notion of specificity into metric
space distances which is not in the similarity model).

Our formal study leads us to introduce a new similarity model, the
Information Contrast Model, which generalizes both Tversky’s linear
contrast model and Pointwise Mutual Information, and, unlike most
existing similarity models, satisfies our axiomatic framework for a
certain range of parameter values. In short, ICM states that similarity
grows with the information quantity of individual objects (intuitively,
rare object features that tend to occur simultaneously are strongly
connected), and decreases with the information quantity of the union
(intuitively, object features that rarely occur simultaneously have
little connection). We have presented a small proof of concept over
Flickr statistics, where ICM satisfies the predictions of our axiom
set, and aligns with our intuition in the cases where previous axioms
prescribe counterintuitive behavior.
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The main challenge derived from our study is how to estimate
properly the information quantity (or probability of feature sets)
without assuming feature independence.
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