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ABSTRACT 
We revisit the Probability Ranking Principle in the context of 
recommender systems. We find a key difference in the retrieval 
protocol with respect to query-based search, that leads to the 
identification of a different optimal ranking principle for non-
personalized recommendation. Based on this finding, we explore 
the definition of practical ranking functions that may lean to-
wards the optimal ranking. We run an experiment confirming 
and illustrating our theoretical analysis, and providing further 
observations and hints for reflection and future research. 

1 INTRODUCTION 
Robertson [7] put forward and discussed the Probability Ranking 
Principle (PRP) stating that under certain assumptions, the opti-
mal ranking for a given information need is by decreasing prob-
ability of relevance of the documents to the information need. 
Robertson described and analyzed cases where the PRP may fail, 
and potential restatements of the principle in view of such limi-
tations. A profuse line of research followed up extending or 
reexamining the PRP, seeking better, more complete, or more 
generalized principles [10], or aiming to fit the particularities of 
specific IR scenarios (such as interactive retrieval [5] or multi-
media retrieval [9], to name a few). The PRP remains nonethe-
less a prominent notion today at the foundation of IR theory. 

In this paper we analyze the recommendation task [1,4] as a 
new use case following up the spirit of this long strand of re-
search: seeking and analyzing the definition of an optimal rank-
ing, following a formal methodological approach. A particularity 
of recommendation compared to the search task is that item rel-
evance is understood to be a fully personal and subjective mat-
ter, solely defined by each end-user’s personal taste, whereas 
judging the relevance of a search result has a (non-null but) nar-
rower scope for disagreement, limited by a specific information 
need and its explicit expression as a query. Yet the PRP analysis 
in the context of search [7] has similarly considered degrees of 
user-level subjectivity or disagreement (in particular, as a chal-
lenge to the PRP), whereby our present research can be connect-
ed to such prior work in more than one way.  

In order to make the problem more tractable, we shall make a 
simplifying restriction: we shall consider non-personalized rec-
ommendation, where all users are delivered the same item rank-
ing. This is somewhat against the essence of recommender sys-
tems, which are assumed to be personalized in order to find closer 
approximations to user satisfaction optima. This restriction does 
however not make the problem irrelevant: forms of non-
personalized recommendation have been found to achieve subop-
timal but non-negligible performance compared to state of the art 
personalized recommender systems [4]. Moreover, personalized 
algorithms have been shown to display a noticeable degree of cor-

relation with non-personalized rankings [2,3,6]. Thus any theoret-
ical finding we may learn for non-personalized recommendation 
might potentially generalize, in some form and to some degree, to 
personalized methods, and help understand their trends and limits. 

A particularity of the recommendation task is that, in its most 
widespread statement, the system should avoid recommending 
items the target user has already been observed interacting with. 
This restriction applies in scenarios where the added-value of 
recommendation is tightly linked to a purpose of discovery, as a 
complement of what users can already have experienced by 
themselves, and the assistance that other information retrieval 
technologies such as search engines already provide. In terms of 
an evaluation experiment, the condition means that items with 
an observed interaction record for the target user should be ex-
cluded from the ranking delivered to this user. 

This restriction substantially changes the frame for the opti-
mal ranking analysis. To begin with, it means that a one-for-all 
ranking will eventually end up being personalized (albeit in a 
very limited way), since different items will be discarded from 
the ranking for different users, based on their respective individ-
ual prior experience with the item set. Moreover, item exclusion 
can potentially alter the optimality analysis, e.g. if dependencies 
are present between the probability of relevance and the proba-
bility of an item to be excluded from the ranking. 

2 BASIC CONCEPTS AND NOTATION 
The recommendation task considers a set of users 𝒰, a set of 
items ℐ, and a set of observed interaction records between users 
and items that can be interpreted as evidence of the user liking 
or disliking the item (i.e. relevance or non-relevance). As a wide-
spread simplification, we may assume interaction data consist of 
a binary value 𝑟: 𝒪 ⊂ 𝒰 × ℐ → {0,1} so that 𝑟(𝑢, 𝑖) = 1 if the user 
𝑢 ∈ 𝒰 likes the item 𝑖 ∈ ℐ, and 𝑟(𝑢, 𝑖) = 0 otherwise. Following 
common terminology, we shall refer to 𝑟(𝑢, 𝑖) as a rating, regard-
less of whether the datum has been explicitly introduced by the 
user as a literal rating, or is implicitly evidenced in her sponta-
neous interaction with the item. Ratings are available only for a 
subset 𝒪 (typically a tiny fraction) of all user-item pairs 𝒰 × ℐ –
there would otherwise not be any recommendation task to solve.  

Taking the available rating data as input, the task of a recom-
mender system is to compute a score for all user-item pairs where 
a rating is missing, and thus generate a ranking of unrated items 
to be delivered as a recommendation to each user in the system. 
The system output is evaluated using further user ratings on the 
recommended items, to be collected somehow, taken as relevance 
judgments. Such judgments can be obtained in different ways, 
depending on the evaluation setting. For instance, in offline eval-
uation, relevance judgments are sampled (as so-called test data) 
from the available rating dataset itself, hiding them from the rec-
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ommender system to be evaluated, and the remaining ratings are 
supplied as input training data to the system. In our theoretical 
analysis we will to some extent abstract ourselves from the prob-
lem of obtaining judgments, and assume we will manage some-
how to get the relevance information we need.  

For the convenience of our formal analysis, we shall intro-
duce two binary random variables 𝑟𝑎𝑡𝑒𝑑: 𝒰 × ℐ → {0,1}  and 
𝑟𝑒𝑙: 𝒰 × ℐ → {0,1}, where 𝑟𝑎𝑡𝑒𝑑 = 1 iff a rating (be it positive or 
negative) by the user on the item is present in the input data, 
and 𝑟𝑒𝑙 = 1 iff the user likes the item, regardless of whether this 
is known to the system (by the presence of a rating) or not. With 
this notation we can express well-defined distributions, e.g. 
𝑝(𝑟𝑎𝑡𝑒𝑑|𝑖) is the ratio of users in 𝒰 who have rated item 𝑖, and 
𝑝(𝑟𝑒𝑙|𝑖) is the fraction of users who like the item.  

2 EXPECTED PRECISION 
Whereas Robertson [7] considered a variety of evaluation met-
rics and cutoffs in his analysis, we shall focus here on 𝑃@1 as a 
simplest metric to make our analysis more tractable. Given a 
recommendation for a user, 𝑃@1 is a binary value that is equal 
to 1 if the target user likes the top ranked item, and 0 if she does 
not. This makes it easier to reason about the expected value of 
this metric. As a binary function, the expectation of 𝑃@1 for a 
given recommendation 𝑅 is the probability of taking value 1: 
𝔼[𝑃@1|𝑅] = 𝑝(𝑃@1 = 1|𝑅).  

Now we need to be more precise with the computation of the 
metric: 𝑃@1 = 1 given a ranking 𝑅 iff the first ranked recom-
mendable item in 𝑅 is relevant. Let this item be 𝑅𝑘, ranked in the 
𝑘-th position of 𝑅. As stated in the introduction, recommendable 
means that 𝑅𝑘 does not have a rating by the target user, and be-
ing the first means that all the items 𝑅1, 𝑅2,…, 𝑅𝑘−1 above 𝑅𝑘 are 
not recommendable because they do have a rating.  

Let 𝑟𝑎𝑡𝑒𝑑𝑗 represent the event that a rating 𝑟(𝑢, 𝑅𝑗) by the 
target user is present in the input data. Similarly, let 𝑟𝑒𝑙𝑗 mean 𝑅𝑗 
is relevant. If we marginalize 𝑝(𝑃@1 = 1|𝑅) by the possibility 
that the 𝑘-th item is the first recommendable, we have: 

𝔼[𝑃@1|𝑅] = ∑ 𝑝(𝑟𝑒𝑙𝑘 , 𝑟𝑎𝑡𝑒𝑑1, … , 𝑟𝑎𝑡𝑒𝑑𝑘−1, ¬𝑟𝑎𝑡𝑒𝑑𝑘|𝑅)

𝑛

𝑘=1

 

where 𝑛 = |ℐ| is the total number of items in the system. 
We shall now make the mild assumption that whether two 

items are rated or not by some user are mutually independent 
events. This assumption involves a (joint) probability overesti-
mation that is negligible in the top ranking positions (the ones 
that determine 𝑃@1 for the most part). Now switching to the 
notation 𝑝(𝑟𝑒𝑙|𝑅𝑘) for 𝑝(𝑟𝑒𝑙𝑘) and same for 𝑟𝑎𝑡𝑒𝑑, under this 
assumption we have: 

𝔼[𝑃@1|𝑅] ∼ ∑ 𝑝(𝑟𝑒𝑙, ¬𝑟𝑎𝑡𝑒𝑑|𝑅𝑘) ∏ 𝑝(𝑟𝑎𝑡𝑒𝑑|𝑅𝑗)

𝑘−1

𝑗=1

𝑛

𝑘=1

 (1) 

We should note how this equation contrasts to what we would 
get without considering item exclusion, in which case we would 
simply have 𝔼[𝑃@1|𝑅] ∼ 𝑝(𝑟𝑒𝑙|𝑅1)  and 𝔼[𝑃@𝑁|𝑅] ∼

∑ 𝑝(𝑟𝑒𝑙|𝑅𝑘)𝑁
𝑘=1  as in [7], and the PRP analysis would be similarly 

applicable here. The exclusion of rated items can thus make a dif-
ference in the computation of the metric and, potentially, in the 
outcome of a comparative evaluation of algorithms. 

3 OPTIMAL RANKING PRINCIPLE 
We can now set forth the following result on the optimal non-
personalized ranking for expected precision. 

Lemma – Discovery False Negative Principle. Assuming 
pairwise item rating independence, the optimal non-personalized 
recommendation 𝑅  that maximizes the expected 𝑃@1  ranks 
items by non-increasing value of 𝑝(𝑟𝑒𝑙|¬𝑟𝑎𝑡𝑒𝑑, 𝑅𝑘). 

Proof. It suffices to show that a swap against 𝑝(𝑟𝑒𝑙|¬𝑟𝑎𝑡𝑒𝑑, 𝑅𝑘) 
in a ranking produces a smaller value for 𝔼[𝑃@1|𝑅]. Given that 
any ranking can be generated by a sequence of pairwise counter-
order swaps on any other ranking (as per e.g. the proof of cor-
rection of bubble sort), we would have proven our point.  

Let 𝑅  be some ranking so that 𝑝(𝑟𝑒𝑙|¬𝑟𝑎𝑡𝑒𝑑, 𝑅𝑘) ≥

𝑝(𝑟𝑒𝑙|¬𝑟𝑎𝑡𝑒𝑑, 𝑅𝑘+1) for some 𝑘, and let us consider a ranking 𝑅′ 
consisting of swapping 𝑅𝑘 and 𝑅𝑘+1 in 𝑅. Using equation 1 it is 
easy to see that, by trivial algebraic cancellation and rearrange-
ment of terms, we have: 

𝔼[𝑃@1|𝑅] ≥ 𝔼[𝑃@1|𝑅′] 
⇔ 𝑝(𝑟𝑒𝑙, ¬𝑟𝑎𝑡𝑒𝑑|𝑅𝑘) + 𝑝(𝑟𝑒𝑙, ¬𝑟𝑎𝑡𝑒𝑑|𝑅𝑘+1)𝑝(𝑟𝑎𝑡𝑒𝑑|𝑅𝑘) 

≥ 𝑝(𝑟𝑒𝑙, ¬𝑟𝑎𝑡𝑒𝑑|𝑅𝑘+1) + 𝑝(𝑟𝑒𝑙, ¬𝑟𝑎𝑡𝑒𝑑|𝑅𝑘)𝑝(𝑟𝑎𝑡𝑒𝑑|𝑅𝑘+1) 

⇔
𝑝(𝑟𝑒𝑙, ¬𝑟𝑎𝑡𝑒𝑑|𝑅𝑘)

1 − 𝑝(𝑟𝑎𝑡𝑒𝑑|𝑅𝑘)
≥

𝑝(𝑟𝑒𝑙, ¬𝑟𝑎𝑡𝑒𝑑|𝑅𝑘+1)

1 − 𝑝(𝑟𝑎𝑡𝑒𝑑|𝑅𝑘+1)
 

⇔ 𝑝(𝑟𝑒𝑙|¬𝑟𝑎𝑡𝑒𝑑, 𝑅𝑘) ≥ 𝑝(𝑟𝑒𝑙|¬𝑟𝑎𝑡𝑒𝑑, 𝑅𝑘+1) 

Which is true by description of 𝑅. That is, swapping 𝑅𝑘 and 𝑅𝑘+1 
decreases 𝔼[𝑃@1|𝑅].  

The scope of the lemma is non-personalized recommendation 
because we are considering a single ranking 𝑅 for all users, and 
the user variable is missing in the above statement and the sub-
sequent proof all along.  

We thus see we get a variation of the PRP, stating we should 
rank items by decreasing value of 𝑝(𝑟𝑒𝑙|¬𝑟𝑎𝑡𝑒𝑑, 𝑅𝑘) rather than 
𝑝(𝑟𝑒𝑙|𝑅𝑘). The probability 𝑝(𝑟𝑒𝑙|¬𝑟𝑎𝑡𝑒𝑑, 𝑅𝑘) corresponds to the 
fraction of unobserved (unrated) user tastes that are positive: the 
ratio of positive missing ratings. This means that the best items 
to be recommended are not exactly the ones that please most 
people, but the ones for which most unobserved preferences by 
the system (or undiscovered by users themselves) are positive. If 
we look at preference discovery as a retrieval process (prior to 
recommendation) in its own, 𝑝(𝑟𝑒𝑙|¬𝑟𝑎𝑡𝑒𝑑, 𝑅𝑘) represents the 
false negative ratio of this process. We may thus label this find-
ing as the Discovery False Negative Principle (DFNP). 

This principle makes natural sense in the recommendation 
context. An item that many people like (pure probability of rele-
vance), but that most people have already interacted with, is of 
little use for recommendation, as it will be excluded from the 
rankings delivered to their potential “likers”, and will be recom-
mended to people who have not yet interacted with the item, but 
who will most probably not like it. Items with a high positive 
ratio in their missing ratings, in contrast, have a safe unexploited 
potential market –be it small or large– to make profit from.  

Ratings come to be by users becoming aware of the existence 
of an item in the first place (by searching, browsing, advertise-
ment, advice from a friend, random chance, etc.) and, second, by 
the system witnessing the encounter between the user and the 
item. Thus recommendation should favor items for which prior 
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discovery has most failed, which to much extent describes the 
raison d’être of recommendation: complementing and filling the 
gaps left by other means for discovery and retrieval. 

4 OPTIMIZING NON-PERSONALIZED 
RECOMMENDATION 

Considering the principle that drives the best possible recom-
mendation, we may wonder if we could use it to the benefit of 
designing the best possible recommendation algorithms, namely 
by managing to obtain some approximation to (𝑟𝑒𝑙|¬𝑟𝑎𝑡𝑒𝑑, 𝑅𝑘). 
A proper estimation of this probability involves two random var-
iables, for one of which we have full knowledge (𝑟𝑎𝑡𝑒𝑑), but not 
for the other (𝑟𝑒𝑙). For relevance, we only have a sample, name-
ly, the relevance that is observed by ratings. Unfortunately using 
this sample is incompatible with the estimation of a probability 
that negates the presence of ratings as a condition.  

We can however consider combinations of probabilities that 
may partially match the optimal ranking function, and use them 
to rank items for recommendation, taking positive ratings as an 
observed sample of the relevance data, in the hope that such 
functions may produce rankings that are, in practice, not that far 
from the optimal. Reading the optimal ranking function as 
𝑝(𝑟𝑒𝑙|¬𝑟𝑎𝑡𝑒𝑑, 𝑅𝑘) = 𝑝(𝑟𝑒𝑙, ¬𝑟𝑎𝑡𝑒𝑑|𝑅𝑘) 𝑝(¬𝑟𝑎𝑡𝑒𝑑|𝑅𝑘)⁄ , we may 
consider related expressions such as:  

𝑓1(𝑅𝑘) = 𝑝(𝑟𝑒𝑙, 𝑟𝑎𝑡𝑒𝑑|𝑅𝑘) 𝑝(¬𝑟𝑎𝑡𝑒𝑑|𝑅𝑘)⁄  
𝑓2(𝑅𝑘) = 𝑝(𝑟𝑒𝑙, 𝑟𝑎𝑡𝑒𝑑|𝑅𝑘) 𝑝(𝑟𝑎𝑡𝑒𝑑|𝑅𝑘)⁄  
𝑓3(𝑅𝑘) = 𝑝(𝑟𝑒𝑙, 𝑟𝑎𝑡𝑒𝑑|𝑅𝑘) 

It is easy to see that 𝑓2 is the average rating value of an item 
(i.e. the ratio of positive ratings when we consider binary values), 
and 𝑓3 is equivalent to the number of positive ratings of the item, 
which amounts to what is referred to as item popularity in the 
recommender systems literature [2,3,4,6]. 𝑓1 does not have such a 
natural interpretation but might be a fair candidate as well. 

Even if such functions are not a proper analytical match of 
the optimal ranking function, we may hope they may produce as 
good rankings as we can get without further relevance 
knowledge beyond the available ratings. We explore this possi-
bility empirically, setting up a special purpose dataset. 

5 EXPERIMENT 
To match the implicit assumptions of our theoretical analysis, 
we take a crowdsourced dataset that provides the opportunity to 
get ratings in the way users might produce through spontaneous 
activity, but at the same time includes further relevance 
knowledge that would not be obtained in the natural process. 

The dataset1 [3] was built using the CrowdFlower2 platform, 
and includes preference judgments entered by 1,000 people for 
1,000 music tracks randomly sampled from the Deezer database.3 
A judgment declares whether or not the user likes the music, 
after listening to a short clip of the track. Each user is assigned 
100 tracks, sampled uniformly at random, in such a way that 
each track gets about 100 judgments, amounting to a total of 
100,000 judgments in the dataset. In addition to her taste, the 
                                                                 
1 The dataset is available at http://ir.ii.uam.es/cm100k. 
2 http://crowdflower.com. 
3 http://deezer.com. 

user is asked whether or not she knew the music before this sur-
vey. Fig. 1a shows the user interface where the CrowdFlower 
workers enter their input for a music track, and Fig. 1b shows 
the resulting distributions of the total number of judgments, pos-
itive judgments, and prior awareness for each item. 

Now we use this offline dataset to reproduce an online rec-
ommendation scenario as follows. The judgments for music that 
users declare having already heard before can be taken to rea-
sonably represent ratings that users might have entered sponta-
neously in a system, had they come to find such items within 
such a system. These judgments therefore make up a reasonable 
representation of the input data that a recommender system is 
commonly supplied with. And the remaining judgments, for mu-
sic that users had never heard before the survey, can be used as 
relevance judgments for evaluation. These relevance judgments 
thus apply to unrated items, the ones that are recommendable 
for each user. This relevance knowledge is not complete: our 
crowdsourced survey only covers about 10% of all items for each 
user. But since the user-item pairs are sampled uniformly at ran-
dom, the judgments provide an unbiased estimate of the full rel-
evance information. 

Furthermore, to represent the design of an offline experi-
ment, we randomly split the rating data into training and test 
subsets, with a ratio 𝜌 ∈ (0,1] of training data. The recommenda-
tion algorithms are only supplied with the training ratings, and 
the test data are put together with the unrated item judgments to 
form the set of relevance judgments for evaluation.  

Note that the higher the training ratio 𝜌, the more items shall 
be discarded from recommendations (because of having training 
ratings for more users). Thus 𝜌 sets the transition from an offline  
setting with different split ratios, to an online setting experiment 

 a) Music judgment questionnaire b) Crowdsourced data distribution 

 
Figure 1: Music track judgment questionnaire (left) and 
data distribution in the obtained dataset (right). We take 
the top two answers to the first question in the judgment 
form (“how do you like this song”) as indicating relevance, 
and the next two as non-relevance. We used the last an-
swer (“flawed audio”) to help curate the set of 1,000 sam-
pled tracks and discard flawed ones, as well as to filter out 
unreliable users (we intentionally introduce flawed music 
at a random position every 12 tracks and discard users 
who fail to properly identify it). The questionnaire does 
not show the song title or artist in order to get as much 
spontaneous and unbiased answers from users as possible. 
In the data distribution graph (right), the 𝒙 axis for each 
curve is sorted by decreasing value of the 𝒚 coordinate 
(each curve has therefore a different order in the 𝒙 axis). 
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at 𝜌 = 1 where no available input is spared for evaluation. We 
use this possibility to test and observe how the experiment results 
may change through this transition, and see in particular how the 
outcome of online vs. offline experiments may agree or differ.  

Fig. 2 shows the results for 𝜌 ranging from 0.1 to 1. Alongside 
the non-personalized recommendations, we evaluate the PRP and 
DFNP as oracle rankings that are given access to all the available 
relevance information. We see that for low values of 𝜌, the PRP 
and DFNP are not far from each other. However, for higher val-
ues of 𝜌 the disagreement grows considerably due to the increas-
ing effect of item exclusion, and reaches a quite extreme point at 
𝜌 = 1. We see that the PRP completely fails to represent an opti-
mal ranking at 𝜌 = 1, to the point of being even substantially 
worse than a random recommendation. In contrast, the DFNP 
seems quite robust to the split ratio. A general decrease in preci-
sion with the split ratio for DFNP, as for any recommendation, is 
natural since increasing 𝜌 means preserving less positive rele-
vance judgments for evaluation (which are left as training data). 

The non-personalized attempts at approximating the optimal 
ranking seem to be somewhat effective for low values of 𝜌, but are 
increasingly ineffective for higher split ratios. Popularity-based 
recommendation (𝑓3) seems to follow the PRP rather than the 
DFNP ranking. The 𝑓1 ranking gives almost equal results to popu-
larity, and is hence omitted from the figure. The lack of difference 
between 𝑓1 and 𝑓3 is due to the variations in 𝑝(¬𝑟𝑎𝑡𝑒𝑑|𝑅𝑘) being 
negligible in relative terms, compared to the differences in 
𝑝(𝑟𝑒𝑙, 𝑟𝑎𝑡𝑒𝑑|𝑅𝑘) between items. In contrast, recommendation by 
average rating seems to be more robust and consistent than the 
popularity ranking to variations in the split ratio, and possibly a 
better approximation to the DFNP. It is the only ranking that 
stands above random recommendation for 𝜌 = 1.  

The poor outcome for PRP, and the rankings that seem to fol-
low it, is due to the fact that the top few music tracks that most 
people like in the survey (“I will survive” by Gloria Gaynor, Bee-
thoven’s “Fur Elise”, Mozart’s “Rondo alla Turca”) are known to 
almost everyone who was asked to judge them. As a conse-
quence, the only users left for whom the items are not excluded 
are mainly those who were not asked to judge them. Since we 
take the absence of judgment as non-relevance, this badly hurts 
the performance of the PRP ranking. This may be to some extent 

unfair, as these items might actually please some users for whom 
we have no judgment. However, these users might in fact al-
ready know the items if they were asked, and again, the items 
would be excluded. Further research would be needed to try to 
elucidate what is the true situation.  

Be that as it may, it becomes clear that the PRP is vulnerable 
to the overlap between relevance and rating, and can largely di-
verge from an optimal ranking when these two conditions strong-
ly correlate (i.e. when relevance mostly falls on rated items). 

6 CONCLUSIONS 
We have found that the common recommender system task, 
where items should not be recommended to users who have al-
ready discovered them, motivates a revision of the Probability 
Ranking Principle [7]. Our analysis finds a simple principle for 
the optimal ranking in this context. We empirically confirm the 
divergence between this principle and the PRP in a small exper-
iment, where the former shows a more consistent behavior over 
variations in the experimental setting for recommender system 
evaluation.  

Recent research in the field has shown that most collaborative 
filtering algorithms are biased towards recommending popular 
items [2,6]. More recently, we found that certain algorithms are 
rather biased to the average rating instead [3], and such algo-
rithms apparently show worse results in common experiments on 
public datasets. Interestingly, our present exploration raises the 
question whether the average rating might be a better signal than 
the number of positive ratings under certain experimental condi-
tions, incidentally the ones that may more closely represent a live 
setting. This may call for a second look at the outcomes of offline 
experiments, under the light of further angles in the experimental 
design, involving e.g. the relevance judgment collection proce-
dure, or reproducing the conditions of an online setting. 
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Figure 2: Experiment results. The curves show the evolu-
tion of the recommendations accuracy for different rating 
data split ratios by steps of 0.1. For 𝒇𝟐 (average rating) we 
use Dirichlet smoothing with 𝝁 = 𝟏 in the probability es-
timation, as it is highly sensitive to the large variance of 
the average value in the items with fewest ratings. The re-
sults are averaged over 100 repetitions of the data splits. 
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