
0

Programming Graphical
User Interfaces (GUI’s)

Using Java Swing

Lecture notes by Anthony Hornof for CIS
443/543 (10/02/01)

A bit of this material is from Eckstein, Loy, and
Wood (1998) Java Swing. Bits of code and
text are also from Winston and Narasimhan
(1998) On to Java, 2nd ed.

1

A Brief History of Building
GUI’s in Java - Part One

Abstract Window Toolkit (AWT)
• Part of the Java Development Kit (JDK 1.0)

from the start (1995?)
• A package that supported some graphics

and GUI elements
- In Java, a package is a group of classes

grouped under a common name.
- Give your code access to classes with

“import java.awt.*” at the top of your
source code file.

- Note: Importing java.awt.* does
automatically also import java.awt.[word].*

• Supported everything you could do in HTML,
plus a little more

• But very limited in terms of its GUI
components

• Relied heavily on the runtime platform’s
native UI components

2

A Brief History of Building
GUI’s in Java - Part Two

Swing
• A set of classes that greatly extends AWT
• A subset of the Java Foundation Classes

(JFC), which also includes AWT.
• Released in JDK 1.1 (1998)
• Improved with JDK 1.2 (1999)

- Details on the names are available at
http://java.sun.com/products/jdk/1.2/java2
.html

• You do not load Swing separately. It is part
of the Java 2 Platform, Standard Edition.

• More on Swing...

3

A Brief History of Building
GUI’s in Java - Part Three

Swing
• Next-generation GUI toolkit from Sun

Microsystems.
• Support trees, tables, tabbed dialogs,

tooltips, and other fancy GUI capabilities
• Does not rely on the runtime platform’s

native UI components
• Takes complete control of the appearance of

components
- Includes pre-built or customizable

Pluggable Look-and-Feel (PLAF)
• Distinguishes model and view

4

Why Swing?

Allows you to build GUI’s

It’s available
• Not the case a year ago

Widely available

Free

Portable
• Solaris is the only officially supported

environment, but I would be curious to hear
if anyone is using a different JDK 1.2,
such as Sun’s JDK 1.2 for Windows with
Metrowerks CodeWarrior.

Relatively easy to use

You know Java

It’s Hot

5

Swing Resources

Sun's web sites
• The Java Tutorial “Creating a GUI with

JFC/Swing”
• Java 2 API Specification

- Packages, All Classes, the complete
spec.

• The first two links are the first two links on
the on-line version of the Project 2 handout.

Eckstein, Loy, and Wood (1998) Java Swing
• Available at UofO bookstore (?) near the

required texts for this class

6

To get started with Swing,
follow these steps:

1. Log onto a Solaris workstation in 100
Deschutes.

2. Set up your paths
Described in the “Java Programming
Environments for this Class” web page

3. Go to Sun’s Swing Tutorial.
It’s the first link on the on-line version of the
Project 2 handout.

4. Click right arrow 4 times
(Image from http://java.sun.com/docs/books/tutorial/uiswing/start/index.html 4/12/00)

5. Download and run SwingApplication.java
6. Contact the Prof or GTF if you have any

trouble with this.
• You’ve now started Project 2

Questions on Project 2?

7

Start Project 2 Early

The following are not acceptable excuses for a
late project:
• “There were no workstations in 100

Deschutes available.”
• “Sun’s web site crashed”
• “You didn’t respond to my email in time.”

8

Code Example:
Printing a Vector of Strings

Using an Iterator

Vector v = new Vector ();

... // Fill the vector

Iterator itor = v.iterator();

Object o = null; // used in the loop

while (itor.hasNext())

{
o = itor.next();
if (o instanceof String)

System.out.println((String) o);

}

9

Swing GUI code does not
reveal a clear thread of

the flow of control

You do not write code that you can walk
through in your head from beginning to end by
just looking at the code.

Remember, GUI’s are interactive.

Instead, you do the following:
1. Create a top-level container, typically a

frame.
2. Show the frame.
3. Leave it to the application to take care of

itself.

10

The Tiniest Swing Application
Possible

import javax.swing.*;

public class SwingApp {
public static void main (String argv []) {
JFrame frame = new JFrame("Tiny Swing
App");

frame.show();
}

}

11

Add functionality by expanding
the recipe as follows:

1. Create a top-level container.

2. Create components and add them to the
top-level container.

3. Tell some components to listen for events.

4. Show the frame.

5. Leave it to the application to take care of
itself.

• The listeners will listen for events and, when
they hear an event, will do what you told
them to do.

Let’s walk through the basic structure of a
Swing program.

12

SwingApplication.java
Walkthrough:

General Structure

imports at the top
• An old-style swing import is commented out

No “include” statements.
• If there were other classes and the .java files

were in the directory, they would be
automagically updated and included. (?)

One class in the file

The file is the exact same name as that class
• Compile with “javac SwingApplication.java”
• Run with java SwingApplication

“main” at the end

No clear thread and flow of control.

13

public interface ActionListener

(from Java API)

extends EventListener

The listener interface for receiving action
events. The class that is interested in
processing an action event implements this
interface, and the object created with that class
is registered with a component, using the
component's addActionListener method. When
the action event occurs, that object's
actionPerformed method is invoked.

14

The imported packages

import javax.swing.*;

//import com.sun.java.swing.*;

import java.awt.*;

import java.awt.event.*;

15

How to add a beep for
debugging:

import java.awt.Toolkit;

Toolkit.getDefaultToolkit().beep();

16

Working with Vectors

Vector v = new Vector();

v.addElement(new Song(“Jingle Bells”, 80);

(v.firstElement()).print();

Java looks for an Object.print()

You must cast the Object as a Song:

((Song)(v.firstElement())).print();

17

Other Java Hints

Be sure to delete your *.class files periodically.
It doesn’t always get the dependencies right.

18

Iterators

Problem:

You can’t access an element without moving
the iterator.

Solution: Use a ListIterator and follow every
next() access with a previous().

19

Events

Change in status that can initiate a response
from the computer.

Examples:
• Click a mouse button --> Mouse event
• Press a key --> Keyboard event
• Move, hide, click in title bar of window -->

Window event

For your program to respond to events
• Define a listener class
• Attach an instance of that class (a listener)

to a component

20

A Listener Class

public class myWindowListener extends
WindowAdapter {

public void windowClosing (WindowEvent e)
{

System.exit(0); return;
}}

// WindowAdapter implements WindowListener

21

A Listener Instance

public class App {
public ... main (String argv []) {

JFrame f = new JFrame("Window");
f.setSize(300, 100);
f.addWindowListener(new
myWindowListener());
f.show();

}}

22

Another Listener Instance

// from Sun’s SwingApplication.java

frame.addWindowListener(new
WindowAdapter() {

public void windowClosing(WindowEvent e)
{
System.exit(0);
}

});

// Anonymous inner class

23

Listeners Create “Delegation”

Components delegates responsibility to
attached listeners.

Benefits of listeners:
• Refine pre-existing classes, reuse behavior.
• Can be attached to and deleted from

components dynamically.
• Keep track of state, such as number of times

an event occurred (as in the Sun demo).

24

The Model-View-Controller
(MVC) Architecture

Model: The data

View: The display of the data

Controller: How the UI reacts to events

Example: scroll bar
• Model: min, max, current position.
• View: What it looks like.
• Controller: Drag and move, click on the

ends.

Benefits: Increased flexibility and reuse.

Where are they in your Java Swing classes?

25

Swing Simplifies the MVC
Architecture

Just “Model-View” or “Component and UI
Delegate”

Model: Info about the component’s state

UI Delegate: How to draw the component and
how to react to events.

Example: JTable
• Model: TableModel

- JTable(data, columnNames), getModel(),
getValueAt(i, j)

• UI Delegate: Handle all GUI responsibilities,
including displaying and handling events
- addMouseListener()

26

Layout Managers

Organize your components within a logical
hierarchy of containers.

Nest components into subsets and manage the
organization and arrangement of each subset
individually.

Layout managers are responsible for two
tasks:
• Arrange the components in a container
• Calculate the sizes of containers

27

BorderLayout

From Sun’s Java Tutorial

Components can only be added to one of five
regions.

The components are often other containers,
such as JPanels

