
A Generic Provenance Middleware for
Database Queries, Updates, and Transactions

Bahareh Sadat Arab
Illinois Institute of Technology

barab@iit.edu

Dieter Gawlick
Oracle Corporation

dieter.gawlick@oracle.com

Venkatesh Radhakrishnan
Oracle Corporation

venkatesh.radhakrishnan@oracle.com

Hao Guo
Illinois Institute of Technology

hguo@iit.edu

Boris Glavic
Illinois Institute of Technology

bglavic@iit.edu

Abstract
We present an architecture and prototype implementation for a
generic provenance database middleware (GProM) that is based
on the concept of query rewrites, which are applied to an algebraic
graph representation of database operations. The system supports
a wide range of provenance types and representations for queries,
updates, transactions, and operations spanning multiple transac-
tions. GProM supports several strategies for provenance genera-
tion, e.g., on-demand, rule-based, and “always on”. To the best of
our knowledge, we are the first to present a solution for comput-
ing the provenance of concurrent database transactions. Our solu-
tion can retroactively trace transaction provenance as long as an
audit log and time travel functionality are available (both are sup-
ported by most DBMS). Other noteworthy features of GProM in-
clude: extensibility through a declarative rewrite rule specification
language, support for multiple database backends, and an optimizer
for rewritten queries.

Categories and Subject Descriptors H.2.4 [Relational databases]

Keywords Provenance, Databases, Query Rewrite, Transactions

1. Introduction
Provenance tracking for database operations, i.e., automatically
collecting and managing information about the origin of data, has
received considerable interest from the database community in the
last decade. Efficiently generating and querying provenance is es-
sential for debugging data and queries, evaluating trust measures
for data, defining new types of access control models, auditing,
and as a supporting technology for data integration and proba-
bilistic databases. The de-facto standard for database provenance
is to model provenance as annotations on data and compute the
provenance for the outputs of an operation by propagating annota-
tions [1, 4, 11, 13, 15]. Many provenance systems [11] use a re-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CONF ’yy, Month d–d, 20yy, City, ST, Country.
Copyright c© 20yy ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

lational encoding of provenance annotations. These systems apply
query rewrite techniques to transform a query q into a query that
propagates input annotations to produce the result of q annotated
with provenance. This approach has many advantages. It benefits
from existing database technology, e.g., provenance computations
are optimized by the database optimizer. Queries over provenance
can be expressed as SQL queries over the relational encoding [11].
Alternatively, we can compile a special-purpose provenance query
language into SQL queries over such an encoding [4, 14]. In spite
of the advances made, the current state-of-the-art falls short in sev-
eral aspects:

• Even though provenance of relational updates (we use update
as an umbrella term for DML operations) is relatively well un-
derstood [2, 5, 15, 17], no comprehensive implementation exists.
Furthermore, no solution for tracking transactions has been pro-
posed so far.
• Systems are inflexible in their support for deciding when to com-
pute provenance, when to store it, and how to store it. For example,
Trio [1], DBNotes [4], and ORCHESTRA [15] compute and gen-
erate provenance for all operations and systems such as Perm [11]
do not compute any provenance unless it is explicitly requested.
• Queries produced by query rewrites use atypical access patterns
and operator sequences which often leads to poor execution plans,
even for database systems with sophisticated optimizers.
• Most systems only support one type of provenance using one
particular representation of provenance.

In this work, we present our vision and a prototype imple-
mentation for GProM, a generic provenance middleware, that ad-
dresses the aforementioned problems. We use annotation propaga-
tion and query rewrite techniques for computing, querying, storing,
and translating the provenance of SQL queries, updates, transac-
tions, and across transactions. To the best of our knowledge, we are
the first to present an approach for tracking the provenance of con-
current transactions (our prototype supports snapshot isolation [3]
and statement snapshot isolation1). We will support a wide vari-
ety of database backends from mature DBMS to SQL processors
running over distributed analytics platforms.

We first present an overview of the system in Section 2 and
then describe our main contribution, provenance computation for
updates and transactions, in Section 3. The prototype implementa-
tion of GProM will be presented in Section 4. Appendix A shows

1 To be explained later

GProMParserParser

Query Log
-- --- ---
-- -- --- -- -- - - -

--- --- - ---

Versioned TablesQuery Log
-- --- ---
-- -- --- -- -- - - -

--- --- - ---

Versioned TablesQuery Log
-- --- ---
-- -- --- -- -- - - -

--- --- - ---

Versioned TablesQuery Log
-- --- ---
-- -- --- -- -- - - -

--- --- - ---

Versioned Tables

Parser
1

SELECT *
FROM ...

PROVENANCE OF
(SELECT * FROM ...

Provenance
RewriterProvenance

RewriterProvenance
RewriterProvenance

Rewriter

2

Provenance
Storage
Manager

4

Transaction
Reenactor

3

Optimizer
6

Provenance
Translator

5

SQL Code
GeneratorSQL Code

GeneratorSQL Code
Generator

7

Audit Log
-- --- ---
-- -- --- -- -- - - -

--- --- - ---

Versioned Tables

RSL
Manager

8

User

PolicyPolicyPolicy
PolicyPolicyRSL

Policy RSL

Figure 1: GProM Overview

how GProM processes an example provenance request for a trans-
action to translate it into SQL code. We present additional details
about the extensibility mechanism, database independence, prove-
nance translations, provenance import/export, optimizer, and stor-
age policies, in Appendices B, C, D, E, F, and G. Related work
will be discussed inline where appropriate.

2. System Overview
Figure 1 shows an overview of GProM. The user interacts with the
system using an extension of the underlying database system’s SQL
dialect. Specifically, we support new language constructs for com-
puting and managing provenance (similar to Perm [11]). Incoming
statements are translated into a relational algebra graph represen-
tation which we call algebra graph model (AGM) 1©. Similar to
intermediate code representations used by compilers, this model is
used as a representation of computation which is independent of the
target language. If the statement does not use any provenance fea-
tures, then the AGM model is translated back into the native SQL
dialect using a vendor specific SQL code generator 7©.
Provenance Computation: Similar to Perm [11] (and other sys-
tems [15]) we represent provenance information using a relational
encoding of provenance annotations. This representation is flexible
enough to encode typical database provenance models including
PI-CS [11] (and, thus, provenance polynomials [13]), Where- and
Why-provenance [6], and many others. The provenance rewriter
module 2© uses provenance-type specific rules to rewrite an input
query q into a query q+ that propagates annotations to produce this
encoding of data annotated with provenance.
Supporting Past Queries, Updates, and Transactions: One
unique feature of GProM is that the system can retroactively com-
pute the provenance of queries, updates, and transactions. This fea-
ture requires that a log of database operations is available (we call
this an audit log) and that the underlying database system supports
time travel, i.e., querying past versions of a relation. These features
are available in most database systems or can be added using ex-
tensibility mechanisms. An audit log paired with time travel func-

tionality is sufficient for computing the provenance of past queries
using simple modifications of standard provenance rewrites [7, 18].
Our main contribution is to demonstrate that this is also sufficient
for tracking the provenance of updates and transactions. If the user
requests provenance for a transaction T , the transaction reenac-
tor 3© extracts the list of SQL statements executed by T from the
audit log and constructs a reenactment query q(T) that simulates
the effects of these statements. We use the provenance rewriter to
rewrite q(T) into a query q(T)+ that computes the provenance
of the reenacted transaction. Note that the construction of q(T)
is independent of the provenance2 rewrite and q(T) is a standard
relational query. Using this approach, we can compute any type
of provenance for updates, transactions, and across transactions as
long as rewrite rules for computing the provenance of queries have
been implemented for this provenance type.
Provenance Generation and Storage Policies: As explained
above we can reconstruct provenance for any past query, update,
or transaction using the audit log and time travel. Thus, explicit
provenance storage is unnecessary. The default in GProM is to
only compute provenance if it is explicitly requested. Nonetheless,
we also support automatic provenance generation and storage for
use cases where retroactive reconstruction of provenance is not an
option. The user can register provenance storage policies with the
storage manager 6©. These policies determine when and how to
generate and store provenance.
Optimizing Rewritten Queries: GProM will include an opti-
mizer 7© which applies heuristic and cost-based rules to transform
rewritten queries into SQL code that can be successfully optimized
by the underlying DBMS. This is necessary, because provenance
rewrites generate queries with unusual access patterns and operator
sequences. Even sophisticated database optimizers are not capable
of producing reasonable plans for such queries.
Rewrite Extensibility: GProM relies on query rewrites for prove-
nance computation, optimizations, transaction support, provenance
storage, and translation between provenance representations. Thus,
the main bottleneck for extending the system with new function-
ality is implementing new rewrites. We will develop a declarative
rewrite specification language (RSL) for expressing rewrite rules
in a concise and easy to understand manner. User and system-
developer provided rewrites will be stored in a repository 8©. Rules
are applied to input queries using an interpreter for this language.

3. Support for Updates And Transactions
GProm is the first system capable of computing provenance for
queries, update operations, transactions, and across transaction
boundaries. Provenance computation for updates and transactions
is implemented in the transaction reenactment module of the sys-
tem. We can retroactively compute the provenance of transactions
(and across transactions) as long as two conditions are met: 1) the
underlying database supports time travel, i.e., we can retrieve a past
version of a relation and 2) the database keeps a log of executed
SQL statements (the aforementioned audit log). We require the
audit log to contain at least the following information for each exe-
cuted statement: an identifier for the transaction (xid) this statement
was part of, a timestamp storing when the statement was executed,
and the SQL code for the statement.

As observed by Zhang et al. [18], an audit log and time travel
combined with standard provenance rewrites can be used to com-
pute the provenance of past queries without the need to store any
additional information. Chirigati et al. [7] also use these features to
compute provenance of database operations with the goal to com-

2 This is because the reenactment query q(T) and transaction T are
annotation-equivalent, i.e., they have the same result and provenance.

bine workflow and database provenance. However, their approach
has the disadvantage that it models the provenance of a tuple as old
versions of this tuple and does not model additional provenance
dependencies to other input tuple versions. For example, consider
an update which inserts tuples from a relation R into a relation
S (INSERT INTO S (SELECT * FROM R)). No previous version ex-
ists for tuples inserted into relation S, because temporal databases
do not track dependencies across relations. We reenact update op-
erations to unearth such additional dependencies and compute the
provenance of transactions. Our transaction reenactment approach
produces a query q(T) which reenacts the updates executed by a
transaction T . To compute the provenance of transaction T , we
rewrite q(T) using rules designed to compute the provenance of
queries. One important advantage of this approach is that we only
need rewrite rules for computing the provenance of queries. How to
implement such rules is relatively well understood [11]. We com-
pute the provenance of a transaction T as follows.
Gather Transaction Information: We access the audit log to
retrieve the SQL statements u0, . . . , un of transaction T and for
each statement ui the time τi when the statement was executed.
Translate updates: We transform each SQL statement ui into
an AGM reenactment query q(ui). Assume that statement ui did
update relation Ri. Query q(ui), if evaluated over the state of
relation Ri as of the time when ui was originally executed, returns
the updated content of relation Ri. We use the database backend’s
time travel features to access this version of Ri.
Construct Reenactment Query: The individual update reenact-
ment queries are then merged into a global reenactment query q(T)
simulating the whole transaction. We need to reconstruct the in-
put for each update to correctly reenact the transaction. Different
concurrency control mechanisms enforce different visibility rules
for concurrent modifications and, thus, each concurrency control
mechanism requires a different merge process. For example, up-
dates of a transaction T running under snapshot isolation [3] only
see modifications by transactions that did commit before T started
and modifications by previous updates of T .
Rewrite For Provenance Computation: The query q(T) is rewrit-
ten for provenance computation according to the type of prove-
nance requested by the user. The result q(T)+ is then passed to the
storage, translation, optimizer, and SQL code generator modules to
translate it into efficient SQL code.

3.1 Update Reenactment
The provenance of updates has been studied in related work [2, 5,
15, 17], but none of these approaches addresses the complications
that arise when updates are run as parts of concurrent transactions.3

Buneman et al. [5] have studied a copy-based provenance type for
the nested update language and nested relational calculus. Vansum-
meren et al. [17] define provenance for SQL DML statements. This
approach modifies the updates to store provenance. Our approach
differs in that we reconstruct provenance on demand instead of
computing and storing provenance for all operations.

The three types of SQL update statements (UPDATE, INSERT, and
DELETE) all modify a single relation R. Conceptually, an update
statement reads the version of relation R (Rt0) before the update4

and returns an updated version of relation R (Rt1). We can reenact
the modifications using a query that runs over the version of the
database before the update (Dt0). The result relation of such a
query is Rt1 , the updated version of relation R. For example,
consider the following UPDATE statement that doubles the value

3 Note that the “transactions” studied by Archer et al. [2] are sequences of
update operations and not concurrent database transactions.
4 Updates may access additional relations from the same database version.

Rt0

A B
a 12
b 3

Rt1

A B
a 12
b 6

Provenance
A B P(A) P(B)
a 12 a 12
b 6 b 3

Figure 2: Relation R before (Rt0) and after the update (Rt1), and
the provenance of the update operation.

of attribute B for all tuples fulfilling the condition A = ‘b‘. An
example instance of relation R is shown in Figure 2.

UPDATE R SET B = B * 2 WHERE A = ’b’;

Execution of this update triggers insertion of a new entry into
the audit log. The update can be reenacted based on the database
instance at time t0 (the version seen by this operation). Rt1 , the
updated version of relation R, will contain the updated version for
all tuples fulfilling the WHERE clause condition and the previous
version (Rt0) for all remaining tuples (the ones not fulfilling the
condition). Consequently, the update operation u can be reenacted
as a query q(u) which returns all tuples from Rt0 that do not fulfill
the condition5 and returns the updated version of all tuples from
Rt0 fulfilling the condition. Here R AS OF t denotes the use of time
travel to retrieve the version of R at time t. Note that the result of
this query is exactly Rt1 shown in Figure 2.

SELECT a, b * 2 AS b
FROM R AS OF t0 WHERE A = ’b’;
UNION ALL
SELECT *
FROM R AS OF t0 WHERE (A = ’b’) IS NOT TRUE;

To compute the provenance of update u, we use the provenance
rewriter to rewrite this reenactment query into a query q(u)+ that
computes the provenance of u. As an example, consider the result-
ing query (shown below) for the PI-CS provenance type introduced
in Perm [11]. The relational representation used by this query uses
additional attributes P (A) and P (B) to pair an updated tuple ver-
sion with the tuple versions in its provenance. Figure 2 shows the
result of this query for the example instance.

SELECT a, b * 2 AS b, A AS P (A), B AS P (B)
FROM R AS OF t0
WHERE A = ’b’;
UNION ALL
SELECT a, b, A AS P (A), B AS P (B)
FROM R AS OF t0
WHERE (A = ’b’) IS NOT TRUE;

Our provenance rewriter can produce a variation of this rewrit-
ten query that in addition shows the unique tuple identifier and ver-
sion number for each tuple in the result and each tuple in the prove-
nance. This is useful to disambiguate tuples with the same attribute
values and to determine which version of a tuple is in the prov-
enance. In some database systems, such a (tuple ID,version) pair
can be used to extract additional information about the update [8],
e.g., the user who executed it. Alternatively, we also support return-
ing only updated tuples, limiting the result size of the provenance
query to the number of updated tuples.

3.2 Transaction Reenactment
If we ignore concurrent operations, then a transaction is just a
sequence of update statements where each update accesses the
database version produced by the previous updates. For simplic-
ity, we limit the discussion to transactions where all updates mod-
ify the same relation. Our system also supports transactions that

5 We need to use (a = ’b’) IS NOT TRUE instead of NOT(a = ’b’) to
account for cases where the update’s condition evaluates to NULL

do not follow this pattern. To compute the provenance of such a
transaction we chain the translations of the transaction’s updates so
that reenactment query q(ui) reads from the result of reenactment
query q(ui−1). The result of this chaining process is a query q(T)
that runs over the version of relation R as of transaction start and
returns the updated version of R produced by the transaction.

If transactions are run concurrently, then we need to reconstruct
the database version seen by each update which will be a mix of
tuple versions from some past state of the database and local tu-
ple versions produced by previous statements of the same transac-
tion. The exact details depend on the concurrency control mecha-
nism applied by the database system. Currently, we support snap-
shot isolation [3] and statement snapshot isolation. Under snapshot
isolation, a transaction T does not see any modifications of cur-
rently running transactions. Consequently, such a transaction can
be reenacted by chaining update reenactment queries as mentioned
above ignoring changes made by concurrent transactions. Under
statement snapshot isolation each statement within a transaction T
sees a consistent snapshot based on its start time (instead of all
statements of T using the same snapshot based on the transaction
start time) and write operations wait for concurrent writers to com-
mit instead of aborting. Reenactment of statement snapshot isola-
tion transactions is more involved, but follows the same principle:
reconstructing the input seen by each update. Computing the prov-
enance of an reenactment query q(T) produces the provenance of
the whole transaction T with respect to the updated relation (re-
call that we limit the discussion to transactions which only update
a single relation).

Our approach is not limited to single transactions. We can also
construct reenactment queries for tracking the provenance of a
relation back to a certain database version or back to its creation and
beyond (we support user-provided provenance for imported data).

4. Prototype Implementation
We have implemented a first prototype of GProM using Oracle as a
database backend. At this point in time we have a working parser,
algebraic query model, update and transaction reenactor, and prov-
enance rewriter. We currently support reenactment for transactions
run under snapshot isolation and statement snapshot isolation6,
provenance rewrites for the PI-CS provenance type [11], prove-
nance computations as parts of queries, and some basic simplifica-
tion rules for our heuristic optimizer. The required time travel and
audit log functionality is readily available through Oracle’s Total
Recall and fine grained auditing (FGA) features [8].

5. Conclusions
We present our vision for GProM, a database-independent middle-
ware for computing the provenance of queries, updates, and trans-
actions. Our approach takes query rewrite techniques to the next
level by using them for provenance computation, transaction reen-
actment, provenance translation, provenance storage, and optimiza-
tion. The system can be extended with new rewrite rules specified
in a declarative rewrite specification language (RSL). To the best of
our knowledge, we are the first to support provenance computation
within and across concurrent database transactions. Notably, this
feature only requires the underlying database to support time travel
and to provide an audit log. Furthermore, this feature is indepen-
dent of what type of provenance is computed and, aside from the
runtime and storage overhead caused by maintaining the audit log
and data required to support time travel, results in no overhead for
normal database operations. Our prototype implementation using
Oracle demonstrates the feasibility of our approach.

6 Called isolation level SERIALIZABLE and READ COMMITTED by Oracle.

There are many interesting avenues for future work such as im-
plementing additional provenance types, a comprehensive study of
heuristic and cost-based optimizations for rewritten queries, the
language design and implementation of RSL, implementing addi-
tional provenance formats, and supporting lock-based concurrency
control mechanisms in transaction reenactment.

Acknowledgments
This research is partially supported by a gift from the Oracle Corpo-
ration. We would like to thank the following contributors: Shukun
Xie, Bowen Dan, Pankaj Purandare, Zefeng Lin, and Ying Ni.

References
[1] P. Agrawal, O. Benjelloun, A. D. Sarma, C. Hayworth, S. U. Nabar,

T. Sugihara, and J. Widom. Trio: A System for Data, Uncertainty, and
Lineage. In VLDB, pages 1151–1154, 2006.

[2] D. W. Archer, L. M. Delcambre, and D. Maier. User Trust and
Judgments in a Curated Database with Explicit Provenance. In In
Search of Elegance in the Theory and Practice of Computation, pages
89–111. Springer, 2013.

[3] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil.
A critique of ANSI SQL isolation levels. ACM SIGMOD Record, 24
(2):1–10, 1995.

[4] D. Bhagwat, L. Chiticariu, W.-C. Tan, and G. Vijayvargiya. An
Annotation Management System for Relational Databases. VLDB
Journal, 14(4):373–396, 2005.

[5] P. Buneman, J. Cheney, and S. Vansummeren. On the Expressiveness
of Implicit Provenance in Query and Update Languages. TODS, 33
(4):1–47, 2008.

[6] J. Cheney, L. Chiticariu, and W.-C. Tan. Provenance in Databases:
Why, How, and Where. Foundations and Trends in Databases, 1(4):
379–474, 2009.

[7] F. Chirigati and J. Freire. Towards integrating workflow and database
provenance. In IPAW, pages 11–23. 2012.

[8] D. Gawlick and V. Radhakrishnan. Fine grain provenance using
temporal databases. In TaPP, 2011.

[9] B. Glavic and G. Alonso. Provenance for Nested Subqueries. In
EDBT, pages 982–993, 2009.

[10] B. Glavic, K. S. Esmaili, P. M. Fischer, and N. Tatbul. Ariadne:
Managing fine-grained provenance on data streams. In DEBS, pages
39–50, 2013.

[11] B. Glavic, R. J. Miller, and G. Alonso. Using SQL for Efficient
Generation and Querying of Provenance Information. In In Search of
Elegance in the Theory and Practice of Computation, pages 291–320.
Springer, 2013.

[12] T. Grust, M. Mayr, and J. Rittinger. Let SQL drive the XQuery
workhorse (XQuery join graph isolation). In EDBT, pages 147–158,
2010.

[13] G. Karvounarakis and T. Green. Semiring-annotated data: Queries and
provenance. SIGMOD Record, 41(3):5–14, 2012.

[14] G. Karvounarakis, Z. Ives, and V. Tannen. Querying data provenance.
In SIGMOD, pages 951–962, 2010.

[15] G. Karvounarakis, T. J. Green, Z. G. Ives, and V. Tannen. Collabora-
tive data sharing via update exchange and provenance. TODS, 38(3):
19, 2013.

[16] P. Missier, K. Belhajjame, and J. Cheney. The W3C PROV family of
specifications for modelling provenance metadata. In EDBT, pages
773–776, 2013.

[17] S. Vansummeren and J. Cheney. Recording Provenance for SQL
Queries and Updates. IEEE Data Engineering Bulletin, 30(4):29–37,
2007.

[18] J. Zhang and H. Jagadish. Lost source provenance. In EDBT, pages
311–322, 2010.

USacc
ID Owner Balance Type
1 Fanny Marble 2,000,000 Premium
2 Peter Bright 1,000 Standard

CanAcc
ID Owner Balance Type
3 Alice Bright 1,500,000 US dollar
4 Mark Smith 20,000 Standard
5 Mark Smith 50 US dollar

Figure 3: Example Instance For Running Example

A. Example Provenance Computation
We demonstrate how our approach handles a provenance request
for a transaction using an example which requires the application
of several types of rewrites. For simplicity, we will use SQL code
through this section instead of the AGM representation used inter-
nally by GProM.

Consider a bank that stores information about US accounts in a
relation USacc and Canadian accounts in relation CanAcc. Exam-
ple instances for these relations are shown in Figure 3. The bank
decides to give free US accounts to Canadian customers that al-
ready have an US dollar account (Type = ’US dollar’) with the
Canadian branch. The new accounts in relation USaccs are created
from the data of the corresponding CanAcc tuples. These newly cre-
ated accounts should get “premium” status if their balance is over
1,000,000 US Dollar. Finally, “standard” accounts with low balance
(below 100 US Dollar) should be removed as it is the bank’s policy
to require a minimum 100 dollar balance for “standard” accounts
in the US. A transaction implementing these changes is shown in
Figure 6 (left hand side).

Assume that this transaction has been run under isolation level
SERIALIZABLE (recall that this is actually snapshot isolation) and
was assigned the transaction identifier (xid) 0A0202F5. Figure 4
shows the content of the audit log produced by running this trans-
action. Recall that our prototype implementation uses Oracle’s fine
grained auditing feature for the audit log. Oracle stores the audit log
in a relation called fga log$. An internal version counter called
the system change number (SCN) is used to represent versions.
Note that all statements are assigned the same SCN in the exam-
ple, because in a SERIALIZABLE transaction each statement sees the
same snapshot (version) of the database modulo changes of previ-
ous statements of the same transaction.

A.1 Request Provenance
If interested in the provenance of this transaction, the user may
request it as follows using the transaction’s xid.

PROVENANCE OF TRANSACTION ’0A0202F5 ’;

GProM’s parser will recognize that this statement requests the
provenance of a transaction and pass an initial AGM graph consist-
ing of a dummy operator representing the provenance computation
to the transaction reenactor module.

A.2 Gather Transaction Information
The transaction reenactor gathers information about the transaction
from the audit log. In particular, it determines the SCNs and sql
code for all statements executed by the transaction using the query
shown below. The result of this query also can be used to determine
the isolation level under which the transaction was executed.

SELECT SCN , sql
FROM audit_log

USacc after u1

ID Owner Balance Type
1 Fanny Marble 2,000,000 Premium
2 Peter Bright 1,000 Standard
3 Alice Bright 1,500,000 Standard
5 Mark Smith 50 Standard

USacc after u2

ID Owner Balance Type
1 Fanny Marble 2,000,000 Premium
2 Peter Bright 1,000 Standard
3 Alice Bright 1,500,000 Premium
5 Mark Smith 50 Standard

USacc after u3

ID Owner Balance Type
1 Fanny Marble 2,000,000 Premium
2 Peter Bright 1,000 Standard
3 Alice Bright 1,500,000 Premium

Figure 5: Updated Example Instances

WHERE xid = ’0A0202F5 ’
ORDER BY execOrder;

A.3 Translate updates
In the next step, we generate an individual reenactment query q(ui)
for each update ui of the transaction. The translation for updates
has been explained in Section 3. An insert statement adds new
tuples to the relation. This is simulated by computing the union of
the version of the relation before the insert and the newly inserted
tuples. A delete retains the unmodified versions of all tuples that
do not fulfill the WHERE clause condition. The reenactment queries
generated for the running example are shown on the right hand side
of Figure 6.

A.4 Construct Reenactment Query
The individual update translations are then merged into a global
reenactment query by recursively replacing in each reenactment
query q(ui) all accesses to relation USacc with the query q(ui−1)
producing the version of the relation read by ui. The result of this
process is shown below.

WITH
u1 AS
(SELECT ID, Owner , Balance , ’Standard ’ AS Type
FROM CanAcc AS OF SCN 3652
WHERE Type = ’US dollar ’
UNION ALL
SELECT * FROM USacc AS OF SCN 3652),

u2 AS
(SELECT ID, Owner , Balance , ’Premium ’ AS Type
FROM u1 WHERE Balance > 1000000
UNION ALL
SELECT * FROM u1
WHERE (Balance > 1000000) IS NOT TRUE)

SELECT * FROM u2
WHERE (Balance < 100) IS NOT TRUE;

A.5 Rewrite For Provenance Computation
The generated reenactment query is then rewritten for provenance
computation according to the type of provenance that was re-

xid execOrder SCN sql
0A0202F5 1 3652 INSERT INTO USacc

(SELECT ID, Owner , Balance, ’Standard’ AS Type

FROM CanAcc WHERE Type = ’US dollar’)

0A0202F5 2 3652 UPDATE USacc SET Type = ’Premium’ WHERE Balance > 1000000

0A0202F5 3 3652 DELETE FROM USacc WHERE Balance < 100

Figure 4: Example Audit Log

Transaction

u1: INSERT INTO USacc
(SELECT ID,Owner ,Balance ,

’Standard ’ AS Type
FROM CanAcc
WHERE Type = ’US dollar ’);

u2: UPDATE USacc SET Type = ’Premium ’
WHERE Balance > 1000000;

u3: DELETE FROM USacc WHERE Balance < 100;

Update Reenactment Queries

q(u1): SELECT ID, Owner , Balance , ’Standard ’ AS Type
FROM CanAcc AS OF SCN 3652
WHERE Type = ’US dollar ’
UNION ALL
SELECT * FROM USacc AS OF SCN 3652;

q(u2): SELECT ID, Owner , Balance , ’Premium ’ AS Type
FROM USacc AS OF SCN 3652
WHERE Balance > 1000000
UNION ALL
SELECT *
FROM USacc AS OF SCN 3652
WHERE (Balance > 1000000) IS NOT TRUE;

q(u3): SELECT *
FROM USacc AS OF SCN 3652
WHERE (Balance < 100) IS NOT TRUE;

Figure 6: Example Transaction and Translated Updates

quested. The query shown below has been rewritten to compute
PI-CS provenance [11]. Note that the user has requested that only
tuples modified by the transaction should be returned. This is re-
alized by propagating an attribute updated which is set to 1 for
updated tuples and to 0 for tuples which have not been updated.
This attribute is used to select only updated tuples.

WITH
u1 AS
(SELECT ID, Owner , Balance , ’Standard ’ AS Type ,

ID AS prov_CanAcc_ID ,
Owner AS prov_CanAcc_Owner ,
Balance AS prov_CanAcc_Balance ,
Type AS prov_CanAcc_Type ,
NULL AS prov_USacc_ID ,
NULL AS prov_USacc_Owner ,
NULL AS prov_USacc_Balance ,
NULL AS prov_USacc_Type ,
1 AS updated ,

FROM CanAcc AS OF SCN 3652
WHERE Type = ’US dollar ’
UNION ALL
SELECT ID, Owner , Balance , Type ,

NULL AS prov_CanAcc_ID ,
NULL AS prov_CanAcc_Owner ,
NULL AS prov_CanAcc_Balance ,
NULL AS prov_CanAcc_Type ,
ID AS prov_USacc_ID ,
Owner AS prov_USacc_Owner ,
Balance AS prov_USacc_Balance ,
Type AS prov_USacc_Type
0 AS updated

FROM USacc AS OF SCN 3652) ,

u2 AS
(SELECT ID, Owner , Balance , ’Premium ’ AS Type ,

prov_CanAcc_ID ,

prov_CanAcc_Owner ,
prov_CanAcc_Balance ,
prov_CanAcc_Type ,
prov_USacc_ID ,
prov_USacc_Owner ,
prov_USacc_Balance ,
prov_USacc_Type
1 AS updated

FROM u1
WHERE Balance > 1000000
UNION ALL
SELECT * FROM u1
WHERE (Balance > 1000000) IS NOT TRUE)

SELECT *
FROM u2
WHERE (Balance < 100) IS NOT TRUE

AND updated = 1;

A.6 Heuristic Optimization
GProM features an optimizer for AGM queries. This optimizer is
used to transform rewritten queries into queries that can be trans-
lated into efficient SQL code. Our current prototype implementa-
tion only supports some primitive simplification rules and heuristic
choices between alternative rewrite methods. For example, we can
reduce the number of set operations by using an alternative reenact-
ment query generation for UPDATE statements. Instead of computing
the union between the updated tuples and not updated tuples, we
use the CASE construct to check the update’s condition for each in-
put tuple and only modify attribute values for tuples which fulfill
this condition. The common table expression u2 in the previous
query can be optimized as follows:

...
u2 AS

Result of Example Provenance Query
Updated USacc Tuples Provenance from CanAcc Provenance from USacc

ID Owner Balance Type P1 P2 P3 P4 P5 P6 P7 P8

3 Alice Bright 1,500,000 Premium 3 Alice Bright 1,500,000 US dollar NULL NULL NULL NULL

Figure 7: Provenance for the Running Example Transaction

Abbreviation Provenance Attribute Name
P1 prov USacc ID

P2 prov USacc Owner

P3 prov USacc Balance

P4 prov USacc Type

P5 prov CanAcc ID

P6 prov CanAcc Owner

P7 prov CanAcc Balance

P8 prov CanAcc Type

Figure 8: Provenance Attribute Names

(SELECT ID, Owner , Balance ,
CASE

WHEN Balance > 1000000 THEN ’Premium ’
ELSE Type

END AS Type ,
prov_CanAcc_ID ,
prov_CanAcc_Owner ,
prov_CanAcc_Balance ,
prov_CanAcc_Type ,
prov_USacc_ID ,
prov_USacc_Owner ,
prov_USacc_Balance ,
prov_USacc_Type ,
1 AS updated

FROM u1)
...

A.7 Executing the Rewritten Query
Figure 7 shows the result of executing the rewritten query. In the re-
sult, the updated version of each tuple produced by the transaction
is paired with its provenance in relations USacc and CanAcc. Full
attribute names for provenance attributes are shown in Figure 8.

B. Extensibility using RSL
The architecture of GProM, in particular the AGM model that we
use as an internal representation of queries, makes it easy to ex-
tend the system with new types of rewrites no matter whether they
are used to implement a new provenance type, heuristic optimiza-
tion rule, provenance storage strategy, or provenance representa-
tion. Since query rewrites are such a fundamental part of our ap-
proach, we propose to develop a special-purpose language for spec-
ifying query rewrites. This language which we call rewrite speci-
fication language (RSL) will be a rule-based graph transformation
language. It will enable concise specification of query rewrites over
our AGM model and, thus, allow for rapid development of new ex-
tensions for GProM. Future versions of GProM will feature a parser
and interpreter for this language, and an RSL repository for storing
rewrite scripts. Rewrites can either be activated on a per query ba-
sis or triggered automatically based on conditions specified in the
rules. Figure 9 shows how the RSL engine will interact with the
other modules of GProM.

EXAMPLE 1. As an example, consider a simplification rewrite rule
that uses a textbook relational algebra equivalence to merge adja-
cent selection operators into a single selection using conjunction.

User

RSL
Manager

1

RSL

Provenance
Rewriter

PolicyPolicyRSL

2

RSL
Interpreter

3

1

2 3

4

Figure 9: Interaction of a module (provenance rewriter) with the
RSL engine. To process an input, the module retrieves applicable
RSL scripts from the RSL repository 2© using the RSL manager
1©. The RSL scripts and input AGM are then send to the RSL

interpreter 3©. The interpreter applies the RSL rules and sends back
a modified AGM model to the module.

In relational algebra this rule can be expressed as σC1(σC2(q))→
σC1∧C2(q). The RSL language design is based on lessons learned
from pattern-based graph rewrites and tree query languages (e.g.,
XQuery). The properties of an AGM operator (node in the graph)
are represented as a set of key-value pairs (e.g., the type of the oper-
ator) accessible using the -> operator. The FOR clause of a rewrite
rule matches subgraphs in the AGM model and binds node vari-
ables. In the implementation of the example rule shown below, we
match a pattern of three nodes q, c, and g, where c is a child of
q and g is a child of c. The WHERE clause filters out matches that
do not fulfill the condition specified in this clause. In the example,
both q and c have to be relational selection operators (checked by
accessing the node’s type field). The REWRITE clause defines how
to rewrite each matched subgraph by constructing a subgraph that
can contain both matched input graph nodes and newly constructed
nodes. The semantics of RSL rules is that of a step-wise fix-point
computation, i.e., as long as at least one match is found, we non-
deterministically pick a match and apply the rewrite. Matches are
reevaluated after each rule application. We plan to add additional
language features for guiding computation in the future, e.g., defin-
ing rule precedence and calling rewrite rules from within a rule.

RULE mergeSelections {
FOR q => c => g
WHERE q->type = selection

AND c->type = selection
REWRITE INTO

selection[pred = q->pred AND c->pred] => g
}

C. Database Independence
One of the goals of GProM is to support a wide variety of database
backends. To support this goal, we encapsulate database-specific
functionality in pluggable modules. Query rewrites related to prov-
enance computation, optimization, provenance translation, and up-
date and transaction reenactment all operate on our AGM model.
These rewrites do not need to be modified to support additional

database backends. What needs to be adapted are 1) the parser (each
database vendor supports a different SQL dialect), 2) the SQL code
generator (again for dialect compliance), and 3) metadata access,
4) audit log access, and 5) time travel activation. Furthermore, we
may want to tweak the optimization for each individual system.

D. Translating between Provenance
Representations

As mentioned before, we will support multiple provenance models
and multiple representations and variants for these models. Often it
is possible to express conversion between these provenance models
and their representations as queries. For example, we can use this
approach to translate between provenance models such as Why-
provenance or Lineage (using the definition from [6]) that can
be expressed in the semi-ring framework has been discussed by
Karvounarakis et al. [14].

In GProM, we implement translation between provenance mod-
els and representations as additional query rewrites. By decou-
pling provenance computation from translation, we significantly re-
duce the number of rewrite rules that need to be implemented. In
particular, implementing a translation usually requires much less
work than implementing the rewrites for a new provenance type.
There may exist several options for translating between two differ-
ent provenance types and these options may have different perfor-
mance characteristics. We will use the optimizer proposed in Ap-
pendix F to determine which rewrite option to use.

EXAMPLE 2. Consider a provenance representation similar to the
one used by an early version of the Trio system. This format rep-
resents the provenance of the result of a query q as pairs of tuple
identifiers. The identifier for a query result tuple t is paired with all
identifiers of tuples from t’s provenance. This is a concise represen-
tation of provenance, but such identifiers are meaningless to a user.
GProM, and other approaches such as Karvounarakis et al. [14] or
Perm [11], use attribute values from the tuples as a more informa-
tive representation of provenance. As an example for rewrite based
translations consider two rewrites that translate from the identifier
into the full tuple representations. The first method (assuming that
provenance is computed by propagation of a relational encoding of
annotations) modifies the query used for provenance computation
by propagating additional attributes used in the full tuple represen-
tation. The second method joins the original query which computes
the provenance as tuple identifiers with the input relations to re-
place tuple identifiers with the corresponding full tuples.7

E. Importing and Exporting Provenance
Several standard formats for representing provenance have been
proposed (e.g., PROV [16]). To make our system interoperable with
other provenance systems, we would like to be able to export prov-
enance into these formats. The heavy lifting of this translation can
be implemented as query rewrites. We would also like to be able
to import provenance produced manually or by other provenance
systems and propagate imported provenance in an provenance-
independent way (as pioneered in Perm [11]). The user will be able
to inform the system about available provenance information dur-
ing import. GProM will import the provenance, transform it using
the techniques discuss above, and record the association between
the data and its provenance. GProM will automatically use the im-
ported provenance for all operations accessing the imported data.
The user will also be able to retroactively associate provenance with
existing data.

7 this is similar to a technique applied in Ariadne [10] for computing prov-
enance of continuos queries.

F. Heuristic and Cost-based Optimization
Previous projects using query rewrites, e.g., for provenance [11] or
compiling non-relational languages into SQL (e.g., Pathfinder [12]),
have demonstrated that queries produced by such rewrites often
contain atypical access patterns and operator sequences (e.g., large
number of unions over subqueries accessing the same input and
long chains of operators). Such queries “confuse” even sophisti-
cated DBMS optimizers.

We propose to build a general purpose heuristic optimizer for
our AGM model inspired by Grust et al. [12]. Note that the goal of
such an optimizer is not to compete with mature database optimiz-
ers, but rather to transform the input query into a form that can be
successfully optimized by the database optimizer. For example, we
may want to cluster joins in the query or remove redundant dupli-
cate removal operators and analytical functions. Since all rewrite
operations in our system operate on the AGM representation of
queries, such an optimizer would benefit all provenance compu-
tations. The optimizer will also be used to decide which rewrites
to apply if multiple equivalent rewrites are available. For the rea-
sons outlined above and confirmed by our experience on rewriting
nested subqueries in the Perm project [9], we cannot rely on the
database optimizer to be able to detect these alternatives. Finally,
we do not have to rely on purely heuristic optimization. For ex-
ample, we could use the DBMS optimizer to decide between alter-
native rewrite options at critical points in the optimization process
as long as the underlying database system supports inspection of
query plans (standard database systems do support this).

One application domain for GProM are systems such Hive, Pig,
Shark, Tenzing, Asterix, and many others which provide SQL or
SQL-like query capabilities for BigData workloads. Query opti-
mization in these systems is currently rather limited. For example,
Hive only applies a set of heuristic plan rewrites. This is likely to
change over time while these systems are becoming more mature.
Until then, however, we expect our optimizer to be quite effective.
The example shown in Appendix A discusses some simple heuristic
optimizations.

G. Provenance Generation and Storage Policies
We let the user decide when to store which types of provenance
and how to store it. The default in GProM is to not compute any
provenance information unless it is explicitly requested by the user.
This is reasonable, because we can always reconstruct provenance
of past operations as explained in Section 3. However, the under-
lying database system may not support keeping an audit log and
versioned relations, or the user may not be willing to tolerate the
storage overhead entailed by these features. To support provenance
tracking under these conditions, we enable the user to register stor-
age policies that define when to store which type of provenance
(e.g., store the provenance of queries accessing a certain relation
as a map between input and output tuple identifiers). For each exe-
cuted statement, we check whether the statement matches an exist-
ing storage policy. If the conditions of a policy are fulfilled, then,
in addition to executing the input operation unmodified, the prove-
nance storage manager will call the provenance rewriter to create a
query for computing the provenance of the operation and store the
result according to the policy. This whole process is transparent to
the user executing the statement.

	Introduction
	System Overview
	Support for Updates And Transactions
	Update Reenactment
	Transaction Reenactment

	Prototype Implementation
	Conclusions
	Example Provenance Computation
	Request Provenance
	Gather Transaction Information
	Translate updates
	Construct Reenactment Query
	Rewrite For Provenance Computation
	Heuristic Optimization
	Executing the Rewritten Query

	Extensibility using RSL
	Database Independence
	Translating between Provenance Representations
	Importing and Exporting Provenance
	Heuristic and Cost-based Optimization
	Provenance Generation and Storage Policies

